Efficient and Portable ALS Matrix Factorization for Recommender Systems

Jing Chen¹, Jianbin Fang¹, Weifeng Liu², Tao Tang¹, Xuhao Chen¹, Canqun Yang¹ College of Computer, National University of Defense Technology ¹ Niels Bohr Institute, University of Copenhagen ²

- Background
- > Motivations
- Design and Implementation
 Experimental Setup
 Performance Results
 Conclusion

-1.BACKGROUND-

1.1 Recommender systems

System Goal :

build a model

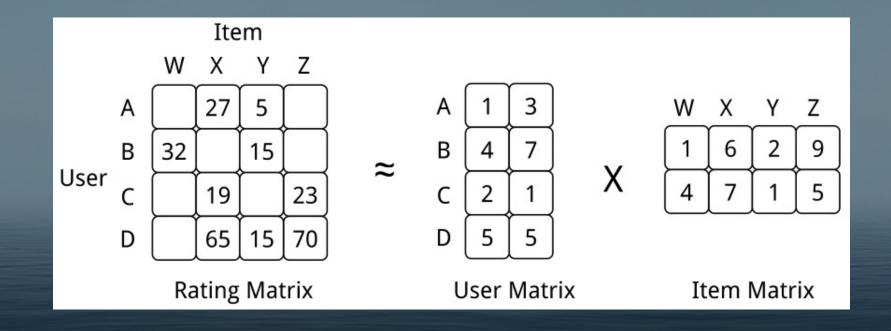
train with observed imcomplete rating data; and predict preference over items not rated.

Recommendation Approaches : <u>Matrix factorization (MF)</u>, nearest-neighbor ...

Popular Algorithms of Matrix Factorization : <u>ALS (Alternating least squares)</u>, SGD (Stochastic gradient descent), CCD (Cyclic coordinate descent) ...

1.2 Matrix Factorization

- Input : Rating matrix between users and items, $R(m \times n)$
- Output : $X(m \times k)$ matrix and $Y(n \times k)$ matrix so that $r_{ui} \approx x_u y_i^T$



1.2 Matrix Factorization

- Input : Relation matrix between users and items, $R(m \times n)$
- Output : $X(m \times k)$ matrix and $Y(n \times k)$ matrix so that $r_{ui} \approx x_u y_i^T$
- minimize the regularized squared error to obtain X, Y

$$L(X,Y) = \sum_{u,i\in\Omega} (r_{ui} - x_u^T y_i)^2 + lambda(|x_u|^2 + |y_i|^2)$$

 x_u^T : the uth row vector of matrix X

y_i: the ith column vector of matrix Y

 Ω : all the nonzero ratings of matrix R

lambda : regularized coefficient (to avoid over-fitting)

1.3 ALS

Principle : to keep one fixed while calculating the other

1. We minimize the equation over X while fixing Y, the function becomes,

$$L(X) = \sum_{i \in \Omega_u} (r_{ui} - x_u^T y_i)^2 + \lambda |x_u|^2$$

2. Calculating derivative of x_u and let the partial derivative equal zero, $x_u = (Y^T Y + \lambda I)^{-1} Y^T r_u$

3. In a same way, $y_i = (X^T X + \lambda I)^{-1} X^T r_i$

4. ALS *iterates* until it reaches the maximum specified cycles or error rate.

· 2.MOTIVATIONS -

2.1 Motivations

Observation 1 : <u>ALS on CPUs runs faster than on GPUs.</u>

- \checkmark **11** \times faster on the CPU than on the GPU.
- ✓ Restructure the algorithm
- Customize optimizations according to the architectural specifics.

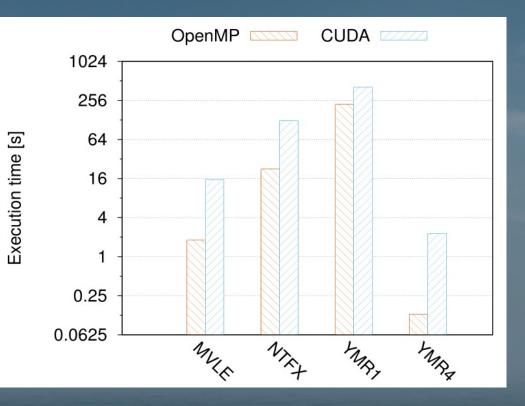


Fig 1. Performance comparison of an OpenMP implementation on a 16-core CPU versus a CUDA implementation on K20C.

2.2 Motivations

Observation 2: The current implementation cannot run on the coprocessors, such as Intel Xeon Phi. Various Platforms : GPUs, MICs, FPGAs, DSPs ... The current implementations cannot be offloaded to run on FPGAs. Porting is time-consuming and error-prone. ✓ Speed

✓ Portability

3. DESIGN and IMPLEMENTATION

Thread Batching Parallelization

Baseline Design :

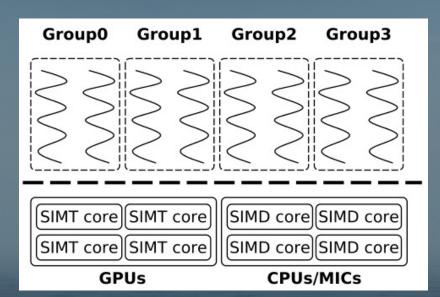
using <u>one thread</u> to update a row of X or a column of Y. unaware of the hierarchical thread organization in CPU / GPU / MIC

Problem :

- unbalanced thread use
- <u>random memory access</u>

Solution :

- using thread batching technique
- wrap a branch of threads to deal with a row / column



Architecture-specific Optimizations

Using Registers

Modern GPUs feature abundunt registers (small accessing latency). Tesla K20C : 256KB registers in each SM.

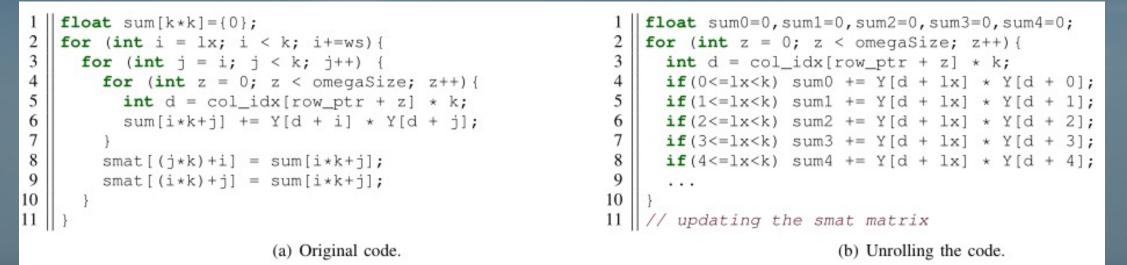


Figure 2. An example of unrolling the code to calculate Y^TY , where k=5.

Original version: private array sum[k*k] for each thread Unrolling version: k registers for each thread block are enough

Architecture-specific Optimizations

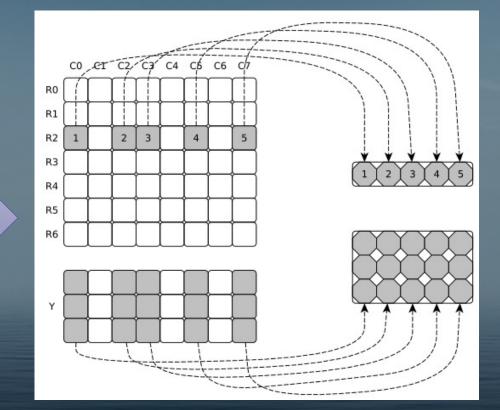
Using Scratch-pad memory (Local memory in OpenCL)

- is a high-speed memory unit located on-chip
- *data sharing* in a same thread block
- increase <u>data moving bandwidth</u> between off-chip and on-chip memory

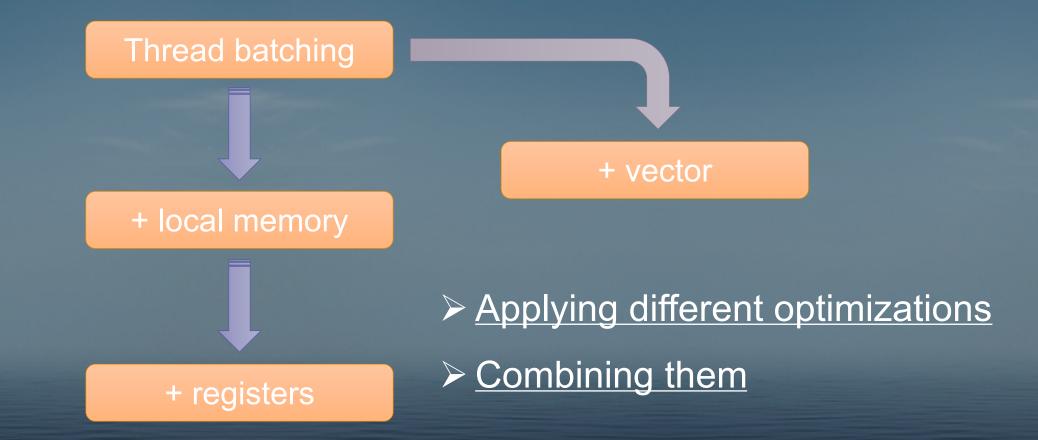
Sparsity of R matrix

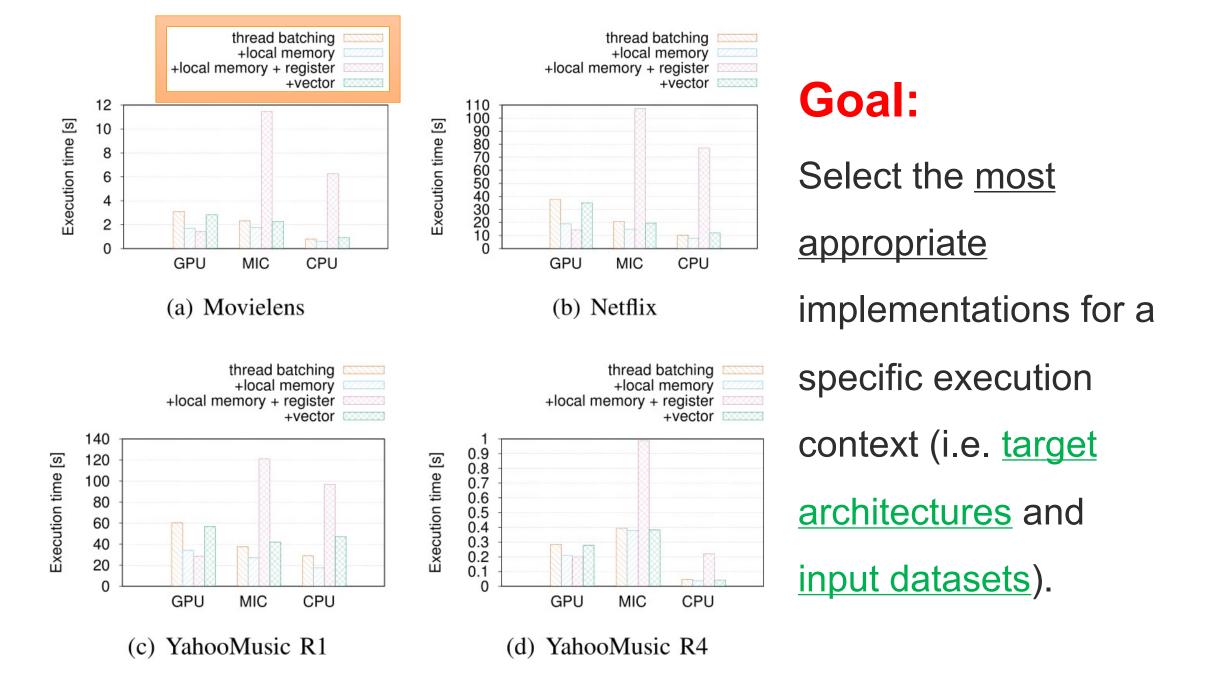
Incontiguous Data

■Using Vector Units > CPU > MIC



Code Variant Selection





-4.SETUP and DATASET -

Platform Configurations

- ✓ Intel Xeon E5-2670 (CPU): 16 cores
- ✓ NVIDIA Tesla K20c (GPU): 13 SM, 192 CUDA cores in each SM
- ✓ Intel Xeon Phi 31SP (MIC): 57 cores, 6GB global memory
- ✓ OpenCL (version 1.2)
- ✓ Host CPU: Redhat (v7.0) GCC(v4.9.2)

Input Datasets

Format of datasets

<user ID, item ID, rating>

	Abbr.	m	n	Training N _z
Movielens10M	MVLE	71567	65133	8000044
Netflix	NTFX	480189	17770	99072112
YahooMusic R1	YMR1	1948882	98212	115248575
YahooMusic R4	YMR4	7642	11916	211231

5. PERFORMANCE RESULTS

5.1 Compare with the State-of-the-art

 $5.5 \times$ faster than OpenMP

 \mathbf{V} s SAC15 $\frac{15}{21.2 \times \text{faster on K20c GPU}}$

■vs HPDC16 (CuMF)

2.2× ~ 6.8×

usage of thread batching

archi-specific optimizations

highly tune

Using <u>cusparse</u> library

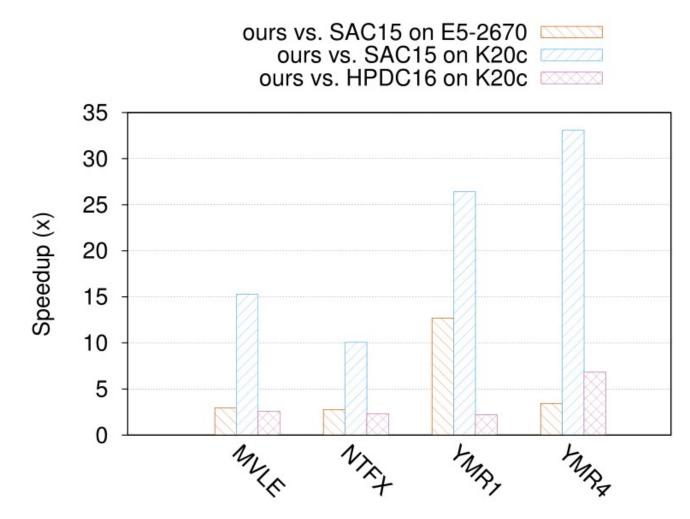
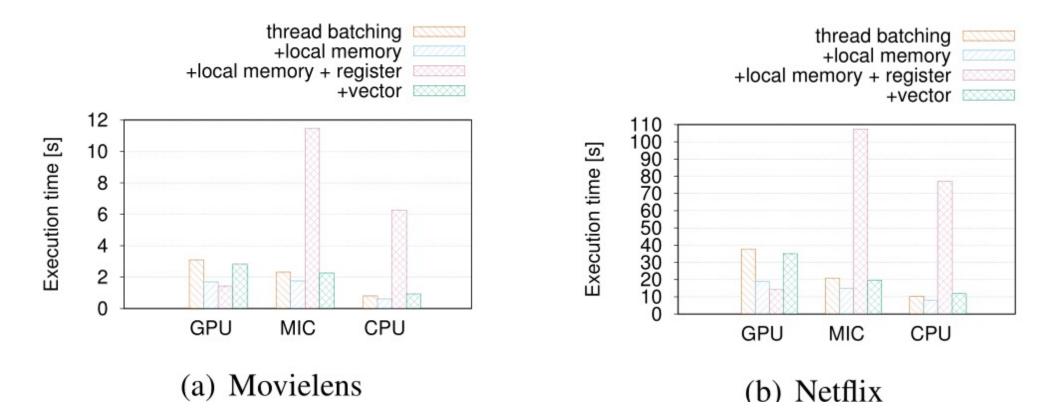
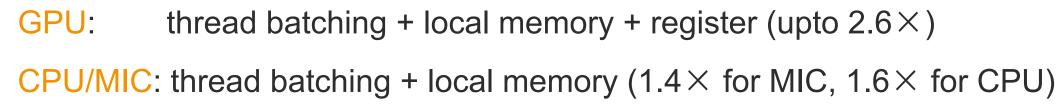


Figure 3. A performance comparison of our implementation versus the stateof-the-art implementations.

5.2 Evaluate Optimizations



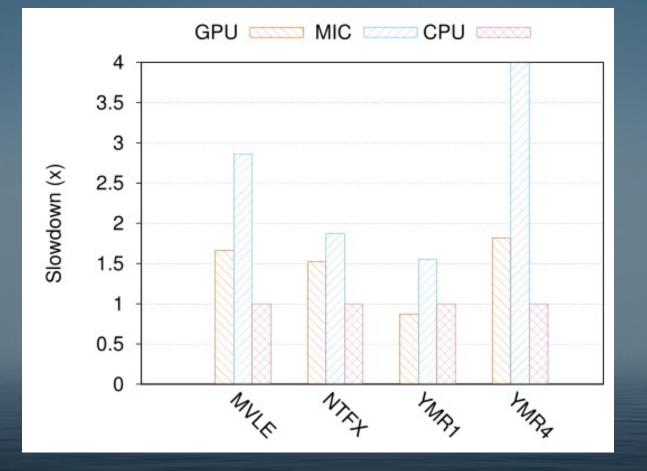


5.3 Apply Optimizations

♦ give a priority to the most <u>time-consuming</u> step

Applying Optimizations

5.4 Compare between Different Architectures



<u>CPU performs best</u>
<u>1.5x slower on GPU</u>
<u>4.1x slower on MIC</u>

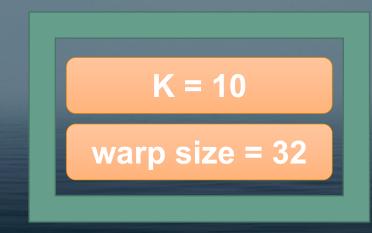
But, for <u>Yahoo Music R1</u> the performance on GPU outperform that on 16-core CPU

5.5 Sensitivity to Thread Blocks



Configuration:
≥ 8192 * 32, k=10
≥ thread batching + local memory + registers

GPU: threads per block=<u>16 / 32</u>, best performance!



- 6. CONCLUSION -

Efficient and Portable ALS solver

✓ hierarchical thread organization on modern hardware
 ✓ thread batching
 ✓ architecture-specific optimizations
 ✓ OpenCL implementation (CPUs, GPUs, MICs)
 ✓ select suitable variant for each platform

THANK YOU