
Efficient and Portable ALS Matrix Factorization
for Recommender Systems

Jing Chen1, Jianbin Fang1, Weifeng Liu2, Tao Tang1, Xuhao Chen1, Canqun Yang1

College of Computer, National University of Defense Technology 1

Niels Bohr Institute, University of Copenhagen 2

Contents

Ø Background

Ø Design and Implementation

Ø Experimental Setup

Ø Performance Results

Ø Conclusion

Ø Motivations

1.BACKGROUND

1.1 Recommender systems
System Goal :

build a model
train with observed imcomplete rating data;
and predict preference over items not rated.

Recommendation Approaches :
Matrix factorization (MF), nearest-neighbor ...

Popular Algorithms of Matrix Factorization :
ALS (Alternating least squares), SGD (Stochastic gradient descent),
CCD (Cyclic coordinate descent) ...

1.2 Matrix Factorization
• Input : Rating matrix between users and items, R(m!n)
• Output : X(m!k) matrix and Y(n!k) matrix so that rui ≈ xuyiT

1.2 Matrix Factorization
• Input : Relation matrix between users and items, R(m!n)
• Output : X(m!k) matrix and Y(n!k) matrix so that rui ≈ xuyiT

• minimize the regularized squared error to obtain X, Y

xuT : the uth row vector of matrix X
yi : the ith column vector of matrix Y
Ω : all the nonzero ratings of matrix R
lambda : regularized coefficient (to avoid over-fitting)

å
WÎ

++-=
iu

iui
T
uui yxlambdayxrYXL

,

222)()(),(

1.3 ALS
Principle : to keep one fixed while calculating the other

1. We minimize the equation over X while fixing Y , the function becomes,

2. Calculating derivative of xu and let the partial derivative equal zero,

3. In a same way,

4. ALS iterates until it reaches the maximum specified cycles or error rate.

å
WÎ

+-=
ui

ui
T
uui xyxrX 22)()(L l

() u
TT

u rYIYYx 1-
+= l

() i
TT

i rXIXXy 1-
+= l

2.MOTIVATIONS

Observation 1 :
ALS on CPUs runs faster than on GPUs.

ü 11! faster on the CPU than on the GPU.

ü Restructure the algorithm

ü Customize optimizations according to the

architectural specifics.
Fig 1. Performance comparison of an
OpenMP implementation on a 16-core CPU
versus a CUDA implementation on K20C.

2.1 Motivations

2.2 Motivations
Observation 2 :

The current implementation cannot run on the coprocessors, such
as Intel Xeon Phi.

Various Platforms : GPUs, MICs, FPGAs, DSPs ...

The current implementations cannot be offloaded to run on FPGAs.

Porting is time-consuming and error-prone.

ü Speed

ü Portability

3. DESIGN
and

IMPLEMENTATION

Thread Batching Parallelization
Baseline Design :

using one thread to update a row of X or a column of Y.
unaware of the hierarchical thread organization in CPU / GPU / MIC

Problem :
• unbalanced thread use
• random memory access

Solution :
• using thread batching technique
• wrap a branch of threads to deal with a row / column

Architecture-specific Optimizations
nUsing Registers

Modern GPUs feature abundunt registers (small accessing latency).
Tesla K20C : 256KB registers in each SM.

Figure 2. An example of unrolling the code to calculate YTY, where k=5.

Original version: private array sum[k*k] for each thread
Unrolling version: k registers for each thread block are enough

Architecture-specific Optimizations
nUsing Scratch-pad memory (Local memory in OpenCL)
• is a high-speed memory unit located on-chip
• data sharing in a same thread block
• increase data moving bandwidth

between off-chip and on-chip memory

nUsing Vector Units
ØCPU
ØMIC

Sparsity of R matrix

Incontiguous Data

Code Variant Selection

Thread batching

+ local memory

+ registers

+ vector

ØApplying different optimizations

ØCombining them

Goal:
Select the most

appropriate

implementations for a

specific execution

context (i.e. target

architectures and

input datasets).

4.SETUP and DATASET

Platform Configurations

ü Intel Xeon E5-2670 (CPU): 16 cores

ü NVIDIA Tesla K20c (GPU): 13 SM, 192 CUDA cores in each SM

ü Intel Xeon Phi 31SP (MIC): 57 cores, 6GB global memory

ü OpenCL (version 1.2)

ü Host CPU: Redhat (v7.0) GCC(v4.9.2)

Input Datasets

n Format of datasets
<user ID, item ID, rating>

Abbr. m n Training Nz

Movielens10M MVLE 71567 65133 8000044

Netflix NTFX 480189 17770 99072112

YahooMusic R1 YMR1 1948882 98212 115248575

YahooMusic R4 YMR4 7642 11916 211231

5. PERFORMANCE
RESULTS

5.1 Compare with the State-of-the-art

5.5! faster than OpenMP
nvs SAC15

21.2! faster on K20c GPU

nvs HPDC16 (CuMF) 2.2! ~ 6.8!

usage of thread batching

archi-specific optimizations

Using cusparse library

highly tune

Figure 3. A performance comparison of our implementation versus the state-
of-the-art implementations.

GPU: thread batching + local memory + register (upto 2.6!)

CPU/MIC: thread batching + local memory (1.4! for MIC, 1.6! for CPU)

5.2 Evaluate Optimizations

5.3 Apply Optimizations

step1: YTY+lambda*I
u ALS step2: YTru

step3: solve the linear system

u give a priority to the most time-consuming step

step a

step b

step c

step d

+ thread baching

optimize YTY+lambda*I

optimize YTru

Hot-spot guided manner

Applying Optimizations

5.4 Compare between Different Architectures

ØCPU performs best
Ø1.5x slower on GPU
Ø4.1x slower on MIC

But, for Yahoo Music R1 the

performance on GPU

outperform that on 16-core CPU

5.5 Sensitivity to Thread Blocks
Configuration:
Ø8192 * 32, k=10
Øthread batching + local

memory + registers

GPU: threads per block=16 / 32,
best performance!

K = 10

warp size = 32

6. CONCLUSION

Efficient and Portable ALS solver

ü hierarchical thread organization on modern hardware
ü thread batching
ü architecture-specific optimizations
ü OpenCL implementation (CPUs, GPUs, MICs)
ü select suitable variant for each platform

THANK YOU

