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Introduction
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• Depth First Search (DFS) traverses a graph by exploring vertices along one branch as deeply as 

possible before backtracking, generating a valid DFS tree.

• Serial DFS produces the unique lexicographically ordered DFS tree. 
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Introduction
• Depth First Search (DFS) traverses a graph by exploring vertices along one branch as deeply as 

possible before backtracking, generating a valid DFS tree.

• Serial DFS produces the unique lexicographically ordered DFS tree. 

• Parallel DFS relaxes the constraints and constructs a DFS tree without enforcing lexicographic order.

[1] V. Nageshwara Rao and Vipin Kumar. 1987. Parallel depth first search. part i. implementation. International Journal of Parallel Programming 16, 6 (1987), 479–499. 

[2] Vipin Kumar and V. Nageshwara Rao. 1987. Parallel depth first search. part ii. analysis. International Journal of Parallel Programming 16, 6 (1987), 501–519. 

[3] Guojing Cong, Sreedhar Kodali, Sriram Krishnamoorthy, Doug Lea, Vijay Saraswat, and Tong Wen. 2008. Solving Large, Irregular Graph Problems Using Adaptive 

Work-Stealing. In ICPP ’08. 536–545. 

[4] Umut A. Acar, Arthur Charguéraud, and Mike Rainey. 2015. A work efficient algorithm for parallel unordered depth-first search. In SC ’15. 1–12. 

[5] Prasoon Mishra and V. Krishna Nandivada. 2024. COWS for High Performance: Cost Aware Work Stealing for Irregular Parallel Loop. ACM Trans. Archit. Code 

Optim., Article 12 (2024), 26 pages. 

How to map?
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Motivations
Issue #1: Shared memory vs DFS depth

DFS may require very deep stacks (depth 

proportional to longest path)

Graphs #vertices longest path

rgg_24 16.7 M 2622

road_usa 57.7 M 6262

delaunay 16.7 M 1651

euro_osm 50.9 M 17346

GPU on-chip memory is limited (shared 

memory per SM is small).

⇒ Cannot keep the whole stack on-chip

Need a segmented stack 

(on-chip + off-chip segments)
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Motivations
Issue #2: Divergence vs Synchronization

Thread-private stacks: all threads follow 

different execution paths, causing warp 

divergence.

Shared stack in a block: require costly 

atomic operations and synchronization.

Hard to get efficient intra-block 

execution.
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Motivations
Issue #3: Scalability vs Global Coordination Cost

Execution must extend from single- to 

multi-block so that more SMs and blocks 

become active.

It requires costly communication, and 

irregular DFS workloads complicate 

balanced distribution.

Hard to achieve

scalable inter-block execution while 

ensuring load balance.
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DiggerBees Implementation
Two-Level Stack Data Structure

HotRing: a circular buffer in shared memory 

serving as the fast-access portion of the stack.

ColdSeg: a contiguous region in global memory

serving as the large-capacity portion of the stack.

0 1

23

shared memory

vertex offset|

5
4
3
2
1
0
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DiggerBees Implementation
Two-Level Stack Data Structure
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• Fast push: insert a new entry into the HotRing.
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DiggerBees
ImplementationTwo-Level Stack Data Structure
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DiggerBees Implementation
Two-Level Stack Data Structure
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DiggerBees Implementation
Two-Level Stack Data Structure
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DiggerBees Implementation
Two-Level Stack Data Structure
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DiggerBees Implementation
Two-Level Stack Data Structure
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• Refill: When the HotRing is empty, a batch is refilled from the ColdSeg.
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DiggerBees Implementation
Two-Level Stack Data Structure

HotRing: a circular buffer in shared memory 
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DiggerBees Implementation
Intra-Block Work Stealing
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DiggerBees Implementation
Intra-Block Work Stealing
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DiggerBees Implementation
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DiggerBees Implementation
Inter-Block Work Stealing

• How it works: four-step mechanism

• When triggered: a block becomes idle 

(all warps run out of local work).

• What to steal: a batch from the victim 

warp’s ColdSeg.

Step1: victim blcok selection: power-of-

two choices.

Step2: victim warp selection: with
cold_rest = top-bottom and ≥ cold_cutoff

Step4: remote transfer: ColdSeg→HotRing

Step3: work reservation: reserve batch 

by atomicCAS(bottom).
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DiggerBees Implementation
An Execution Example

An example of the complete execution flow of DiggerBees, where different colored 

regions indicate the subtrees explored by different warps.

The effectiveness of load balancing:

In Block0:

Warp0: 5 vertices

Warp1: 5 vertices

Warp2: 3 vertices

In Block1:

Warp3: 3 vertices, 

Warp4: 3 vertices, 

Warp5: 3 vertices
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Performance Evaluation
Experimental Setup

Dataset: all 234 graphs from three widely used graph 

collections, DIMACS10, SNAP[6], and LAW[7] available 

in the SuiteSparse Matrix Collection[8].

Platforms: One CPU with a 64-core Intel Xeon Max 

687 (9462) processor and two NVIDIA GPUs: A100 

(Ampere architecture) and H100 (Hopper architecture).

Tested methods: Two CPU DFS implementations 

(CKL-PDFS[1] and ACR-PDFS[2]), one GPU DFS 

implementation (NVG-DFS[3]), and two GPU BFS 

implementations (Gunrock[4] and BerryBees[5]).

[1] Guojing Cong et al.. 2008. Solving Large, Irregular Graph Problems Using Adaptive Work-Stealing. In ICPP ’08. 536–545.
[2] Umut A. Acar et al.. 2015. A workefficient algorithm for parallel unordered depth-first search. In SC ’15. 1–12. 

[3] Maxim Naumov et al.. 2017. Parallel Depth-First Search for Directed Acyclic Graphs. In IA3’17.

[4] Yangzihao Wang et al.. 2016. Gunrock: a high-performance graph processing library on the GPU. In PPoPP ’16. 1–12.
[5] Yuyao Niu et al.. 2025. BerryBees: Breadth First Search by Bit-Tensor-Cores. In PPoPP ’25. 339–354.

[6] Marinka Zitnik et al.. 2018. BioSNAP Datasets: Stanford Biomedical Network Dataset Collection. 

[7] Paolo Boldi et al.. 2011. Layered Label Propagation: A Multiresolution Coordinate-Free Ordering for Compressing Social Networks. In WWW ’11. 587–596.
[8] Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix Collection. ACM Trans. Math. Softw. 38, 1 (2011). 
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Comparison with Existing DFS Approaches

Performance comparison of DiggerBees with three state-of-the-art 

DFS methods on the H100 GPU.

vs. CKL-PDFS (CPU): achieves an average 

speedup (geometric mean) of 1.37×, with the best 

case 6.24× on hugebubbles.

vs. ACR-PDFS (CPU): achieves an average speedup of 

1.83×, with the best case 12.44× on euro_osm.

vs. NVG-DFS (GPU): delivers an average speedup of 

30.18×, reaching 1841.68× on higgs-twitter and 1075.21×
on soc-Pokec.

Performance Evaluation
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Comparison with Existing BFS Approaches

Performance comparison of four DFS methods and the best BFS baseline (the better-performing result between Gunrock and BerryBees) across 12 representative graphs from 

three groups on the H100 GPU.

Detailed information of 12 representative graphs.

DiggerBees outperforms Gunrock/BerryBees on 

several graphs, e.g., euro_osm: 12.12× faster, where 

BFS requires 17,346 levels.

Why: Long, narrow traversals hurt BFS; block-level 

work stealing keeps DFS efficient.

Limit: On small-diameter graphs (e.g., ljournal, 10

BFS levels), BFS wins; DiggerBees is 3.70× slower.

Performance Evaluation
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Scalability Comparison with GPU DFS

Scalability comparison of DiggerBees and NVGDFS on A100 and H100 GPUs. 

DiggerBees outperforms NVG-DFS on both two

GPUS.

Better scaling to H100: average H100-to-A100 

speedup is 1.33× for DiggerBees vs 1.18× for NVG-

DFS.

Why it scales: DiggerBees better utilizes H100’s 

higher compute capacity (132 SMs vs 108 SMs, 

+22.2%), delivering gains that closely track the 

hardware scaling.

Performance Evaluation
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Performance Breakdown
•v1 → v2 (2-level stack): leveraging 

the memory hierarchy for low-latency 

stack access yields ~45% higher 

throughput on average.

•v3 → v4 (scale to all SMs): increasing blocks to match SM count provides an additional 67–82%

improvement on most graphs, while small graphs see limited gains (2–12%) due to already sufficient 

parallelism.

•v2 → v3 (inter-block work stealing): 

enabling multi-block collaboration 

brings dramatic gains on deep-path 

graphs, e.g., 25.94× on euro_osm and 

37.31× on delaunay (work stealing is 

key to scaling across SMs).

Performance breakdown of four versions of DiggerBees across six representative graphs on the H100 GPU.

Performance Evaluation



56

Block-Level Load Balance Analysis

Block-level workload distribution for six representative graphs, comparing Baseline (left) and DiggerBees (right).

DiggerBees balances work: consistently reduces variance by >2×, e.g., amazon drops to 0.72 (3.44×
lower variance).

Why: load-aware two-choice victim selection + hierarchical work stealing improves block-level 

balance, boosting scalability and performance.

Performance Evaluation
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DiggerBees Implementation
Conclusion

• We design a two-level stack structure that maps DFS workloads onto 

the GPU memory hierarchy.

• We develop a hierarchical work-stealing mechanism tailored 

specifically for DFS traversal on GPUs.

• We achieve significant performance gains over existing approaches on 

the latest NVIDIA GPUs.



PPoPP 2026

Yuyao Niu1, 2 Yuechen Lu3 Weifeng Liu3   Marc Casas1, 2

1 Barcelona Supercomputing Center
2 Universitat Politècnica de Catalunya
3 SSSLab, China University of Petroleum-Beijing

Sydney, Australia • February 2, 2026 

https://doi.org/10.5281/zenodo.17709254

Thanks for Listening!

Any Questions?
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