
PPoPP 2026

DiggerBees: Depth First Search

Leveraging Hierarchical Block-

Level Stealing on GPUs
Yuyao Niu1, 2 Yuechen Lu3 Weifeng Liu3 Marc Casas1, 2

1 Barcelona Supercomputing Center
2 Universitat Politècnica de Catalunya
3 SSSLab, China University of Petroleum-Beijing

Sydney, Australia • February 2, 2026

https://doi.org/10.5281/zenodo.17709254

PPoPP 2026

OUTLINE

Introduction and Motivations

DiggerBees Implementation

Performance Evaluation

Conclusion

1

2

3

4

PPoPP 2026

OUTLINE

Introduction and Motivations

DiggerBees Implementation

Performance Evaluation

Conclusion

1

2

3

4

4

Introduction

a

b c

d e f

Input graph

• Depth First Search (DFS) traverses a graph by exploring vertices along one branch as deeply as

possible before backtracking, generating a valid DFS tree.

• Serial DFS produces the unique lexicographically ordered DFS tree.

5

Introduction

a

b c

d e f
a 0|

Stack
vertex next_idx|

push

Input graph

b 0|

• Depth First Search (DFS) traverses a graph by exploring vertices along one branch as deeply as

possible before backtracking, generating a valid DFS tree.

• Serial DFS produces the unique lexicographically ordered DFS tree.

6

Introduction

a

b c

d e f
a 1|

Stack
vertex next_idx|

b 0|

Input graph

• Depth First Search (DFS) traverses a graph by exploring vertices along one branch as deeply as

possible before backtracking, generating a valid DFS tree.

• Serial DFS produces the unique lexicographically ordered DFS tree.

7

Introduction

a

b c

d e f
a 1|

Stack
vertex next_idx|

push

b 0|
d -1|

Input graph

• Depth First Search (DFS) traverses a graph by exploring vertices along one branch as deeply as

possible before backtracking, generating a valid DFS tree.

• Serial DFS produces the unique lexicographically ordered DFS tree.

8

Introduction

a

b c

d e f
a 1|

Stack
vertex next_idx|

b 1|
d -1|

Input graph

• Depth First Search (DFS) traverses a graph by exploring vertices along one branch as deeply as

possible before backtracking, generating a valid DFS tree.

• Serial DFS produces the unique lexicographically ordered DFS tree.

9

Introduction

a

b c

d e f
a 1|

Stack
vertex next_idx|

b 1|
d -1|

pop

Input graph

• Depth First Search (DFS) traverses a graph by exploring vertices along one branch as deeply as

possible before backtracking, generating a valid DFS tree.

• Serial DFS produces the unique lexicographically ordered DFS tree.

10

Introduction

a

b c

d e f
a 1|

Stack
vertex next_idx|

b 1|
e -1|

push

Input graph

• Depth First Search (DFS) traverses a graph by exploring vertices along one branch as deeply as

possible before backtracking, generating a valid DFS tree.

• Serial DFS produces the unique lexicographically ordered DFS tree.

11

Introduction

a

b c

d e f
a 1|

Stack
vertex next_idx|

b -1|
e -1|

Input graph

• Depth First Search (DFS) traverses a graph by exploring vertices along one branch as deeply as

possible before backtracking, generating a valid DFS tree.

• Serial DFS produces the unique lexicographically ordered DFS tree.

12

Introduction

a

b c

d e f
a 1|

Stack
vertex next_idx|

b -1|
e -1|

pop

a

b c

d e f

Input graph

• Depth First Search (DFS) traverses a graph by exploring vertices along one branch as deeply as

possible before backtracking, generating a valid DFS tree.

• Serial DFS produces the unique lexicographically ordered DFS tree.

13

Introduction

a

b c

d e f
a 1|

Stack
vertex next_idx|

b -1|

a

b c

d e f

pop

Input graph

• Depth First Search (DFS) traverses a graph by exploring vertices along one branch as deeply as

possible before backtracking, generating a valid DFS tree.

• Serial DFS produces the unique lexicographically ordered DFS tree.

14

Introduction

a

b c

d e f
a 1|

Stack
vertex next_idx|

c 0|

a

b c

d e f

push

Input graph

• Depth First Search (DFS) traverses a graph by exploring vertices along one branch as deeply as

possible before backtracking, generating a valid DFS tree.

• Serial DFS produces the unique lexicographically ordered DFS tree.

15

Introduction

a

b c

d e f
a -1|

Stack
vertex next_idx|

c 0|

a

b c

d e f

Input graph

• Depth First Search (DFS) traverses a graph by exploring vertices along one branch as deeply as

possible before backtracking, generating a valid DFS tree.

• Serial DFS produces the unique lexicographically ordered DFS tree.

16

Introduction

a

b c

d e f
a -1|

Stack
vertex next_idx|

c 1|

a

b c

d e f

Input graph

• Depth First Search (DFS) traverses a graph by exploring vertices along one branch as deeply as

possible before backtracking, generating a valid DFS tree.

• Serial DFS produces the unique lexicographically ordered DFS tree.

17

Introduction

a

b c

d e f
a -1|

Stack
vertex next_idx|

c 1|

a

b c

d e f

f -1|

push

Input graph

• Depth First Search (DFS) traverses a graph by exploring vertices along one branch as deeply as

possible before backtracking, generating a valid DFS tree.

• Serial DFS produces the unique lexicographically ordered DFS tree.

18

Introduction

a

b c

d e f
a -1|

Stack
vertex next_idx|

c -1|

a

b c

d e f

f -1|

Input graph

• Depth First Search (DFS) traverses a graph by exploring vertices along one branch as deeply as

possible before backtracking, generating a valid DFS tree.

• Serial DFS produces the unique lexicographically ordered DFS tree.

19

Introduction

a

b c

d e f
a -1|

Stack
vertex next_idx|

c -1|

a

b c

d e f

f -1|

pop

Input graph

• Depth First Search (DFS) traverses a graph by exploring vertices along one branch as deeply as

possible before backtracking, generating a valid DFS tree.

• Serial DFS produces the unique lexicographically ordered DFS tree.

20

Introduction

a

b c

d e f
a -1|

Stack
vertex next_idx|

c -1|

a

b c

d e f

pop

Input graph

• Depth First Search (DFS) traverses a graph by exploring vertices along one branch as deeply as

possible before backtracking, generating a valid DFS tree.

• Serial DFS produces the unique lexicographically ordered DFS tree.

21

a

b c

d e f
a -1|

Stack
vertex next_idx|

a

b c

d e f

pop

Introduction

Input graph

• Depth First Search (DFS) traverses a graph by exploring vertices along one branch as deeply as

possible before backtracking, generating a valid DFS tree.

• Serial DFS produces the unique lexicographically ordered DFS tree.

22

a

b c

d e f

strong dependencies

hard to parallelize

Introduction

a

b c

d e f

Lex-ordered DFS treeInput graph

• Depth First Search (DFS) traverses a graph by exploring vertices along one branch as deeply as

possible before backtracking, generating a valid DFS tree.

• Serial DFS produces the unique lexicographically ordered DFS tree.

23

Introduction

a

b c

d e f

• Depth First Search (DFS) traverses a graph by exploring vertices along one branch as deeply as

possible before backtracking, generating a valid DFS tree.

• Serial DFS produces the unique lexicographically ordered DFS tree.

Input graph

• Parallel DFS relaxes the constraints and constructs a DFS tree without enforcing lexicographic order.

a 1|

Stack1
vertex next_idx|

b 1|
d -1|

24

Introduction

a

b c

d e f

• Depth First Search (DFS) traverses a graph by exploring vertices along one branch as deeply as

possible before backtracking, generating a valid DFS tree.

• Serial DFS produces the unique lexicographically ordered DFS tree.

Input graph

• Parallel DFS relaxes the constraints and constructs a DFS tree without enforcing lexicographic order.

a 1|

Stack1
vertex next_idx|

b 1|
d -1|

Stack2
vertex next_idx|

steal

25

Introduction

a

b c

d e f

• Depth First Search (DFS) traverses a graph by exploring vertices along one branch as deeply as

possible before backtracking, generating a valid DFS tree.

• Serial DFS produces the unique lexicographically ordered DFS tree.

Input graph

• Parallel DFS relaxes the constraints and constructs a DFS tree without enforcing lexicographic order.

Stack1
vertex next_idx|

Stack2
vertex next_idx|

b 1|
d -1|

a 1|

pop

c 0|

push

26

Introduction

a

b c

d e f

• Depth First Search (DFS) traverses a graph by exploring vertices along one branch as deeply as

possible before backtracking, generating a valid DFS tree.

• Serial DFS produces the unique lexicographically ordered DFS tree.

Input graph

• Parallel DFS relaxes the constraints and constructs a DFS tree without enforcing lexicographic order.

Stack1
vertex next_idx|

Stack2
vertex next_idx|

b 1|
d -1|

a -1|
c -1|
e -1|

f -1|

pop push

27

Introduction

a

b c

d e f

• Depth First Search (DFS) traverses a graph by exploring vertices along one branch as deeply as

possible before backtracking, generating a valid DFS tree.

• Serial DFS produces the unique lexicographically ordered DFS tree.

Input graph

• Parallel DFS relaxes the constraints and constructs a DFS tree without enforcing lexicographic order.

Stack1
vertex next_idx|

Stack2
vertex next_idx|

a -1|

pop

28

Introduction

a

b c

d e f

• Depth First Search (DFS) traverses a graph by exploring vertices along one branch as deeply as

possible before backtracking, generating a valid DFS tree.

• Serial DFS produces the unique lexicographically ordered DFS tree.

Input graph

• Parallel DFS relaxes the constraints and constructs a DFS tree without enforcing lexicographic order.

a

b c

d e f

Lex-ordered DFS tree

a

b c

d e f

Non-Lex DFS tree

29

Introduction
• Depth First Search (DFS) traverses a graph by exploring vertices along one branch as deeply as

possible before backtracking, generating a valid DFS tree.

• Serial DFS produces the unique lexicographically ordered DFS tree.

• Parallel DFS relaxes the constraints and constructs a DFS tree without enforcing lexicographic order.

[1] V. Nageshwara Rao and Vipin Kumar. 1987. Parallel depth first search. part i. implementation. International Journal of Parallel Programming 16, 6 (1987), 479–499.

[2] Vipin Kumar and V. Nageshwara Rao. 1987. Parallel depth first search. part ii. analysis. International Journal of Parallel Programming 16, 6 (1987), 501–519.

[3] Guojing Cong, Sreedhar Kodali, Sriram Krishnamoorthy, Doug Lea, Vijay Saraswat, and Tong Wen. 2008. Solving Large, Irregular Graph Problems Using Adaptive

Work-Stealing. In ICPP ’08. 536–545.

[4] Umut A. Acar, Arthur Charguéraud, and Mike Rainey. 2015. A work efficient algorithm for parallel unordered depth-first search. In SC ’15. 1–12.

[5] Prasoon Mishra and V. Krishna Nandivada. 2024. COWS for High Performance: Cost Aware Work Stealing for Irregular Parallel Loop. ACM Trans. Archit. Code

Optim., Article 12 (2024), 26 pages.

How to map?

30

Motivations
Issue #1: Shared memory vs DFS depth

DFS may require very deep stacks (depth

proportional to longest path)

Graphs #vertices longest path

rgg_24 16.7 M 2622

road_usa 57.7 M 6262

delaunay 16.7 M 1651

euro_osm 50.9 M 17346

GPU on-chip memory is limited (shared

memory per SM is small).

⇒ Cannot keep the whole stack on-chip

Need a segmented stack

(on-chip + off-chip segments)

31

Motivations
Issue #2: Divergence vs Synchronization

Thread-private stacks: all threads follow

different execution paths, causing warp

divergence.

Shared stack in a block: require costly

atomic operations and synchronization.

Hard to get efficient intra-block

execution.

32

Motivations
Issue #3: Scalability vs Global Coordination Cost

Execution must extend from single- to

multi-block so that more SMs and blocks

become active.

It requires costly communication, and

irregular DFS workloads complicate

balanced distribution.

Hard to achieve

scalable inter-block execution while

ensuring load balance.

PPoPP 2026

OUTLINE

Introduction and Motivations

DiggerBees Implementation

Performance Evaluation

Conclusion

1

2

3

4

34

DiggerBees Implementation
Two-Level Stack Data Structure

HotRing: a circular buffer in shared memory

serving as the fast-access portion of the stack.

ColdSeg: a contiguous region in global memory

serving as the large-capacity portion of the stack.

0 1

23

shared memory

vertex offset|

5
4
3
2
1
0

global memory

35

DiggerBees Implementation
Two-Level Stack Data Structure

0 1

23

shared memory

HotRing: a circular buffer in shared memory

serving as the fast-access portion of the stack.

ColdSeg: a contiguous region in global memory

serving as the large-capacity portion of the stack.

tail

head 5
4
3
2
1
0 bottom

top

global memory

36

DiggerBees Implementation
Two-Level Stack Data Structure

0 1

23

shared memory

HotRing: a circular buffer in shared memory

serving as the fast-access portion of the stack.

ColdSeg: a contiguous region in global memory

serving as the large-capacity portion of the stack. 5
4
3
2
1
0 bottom

top

fast push

a i|

tail

head

head=(0+1)%4=1

Four core operations:

+

head = (head + 1) % hot_size

global memory

• Fast push: insert a new entry into the HotRing.

37

DiggerBees
ImplementationTwo-Level Stack Data Structure

0 1

23

shared memory

HotRing: a circular buffer in shared memory

serving as the fast-access portion of the stack.

ColdSeg: a contiguous region in global memory

serving as the large-capacity portion of the stack. 5
4
3
2
1
0 bottom

top
a i|

head

Four core operations:

tail

fast pop
-

head = (head + 1) % hot_size

head = (head – 1 + hot_size) % hot_size global memory

• Fast push: insert a new entry into the HotRing.

• Fast pop: retrieve the top entry in the HotRing.

38

DiggerBees Implementation
Two-Level Stack Data Structure

0 1

23

shared memory

HotRing: a circular buffer in shared memory

serving as the fast-access portion of the stack.

ColdSeg: a contiguous region in global memory

serving as the large-capacity portion of the stack. 5
4
3
2
1
0 bottom

top

head

Four core operations:

head = (head + 1) % hot_size

head = (head – 1 + hot_size) % hot_size

tail

fast pop
-

head=(0-1+4)%4=3

global memory

• Fast push: insert a new entry into the HotRing.

• Fast pop: retrieve the top entry in the HotRing.

39

DiggerBees Implementation
Two-Level Stack Data Structure

HotRing: a circular buffer in shared memory

serving as the fast-access portion of the stack.

ColdSeg: a contiguous region in global memory

serving as the large-capacity portion of the stack. 5
4
3
2
1
0 bottom

top

Four core operations:

head = (head + 1) % hot_size

head = (head – 1 + hot_size) % hot_size

tail = (tail + batch) % hot_size, top = top + batch

0 1

23

shared memory

tail

head

b j| a i|

global memory

• Fast push: insert a new entry into the HotRing.

• Fast pop: retrieve the top entry in the HotRing.

• Flush: when the HotRing is full, a batch of the oldest entries is moved to the ColdSeg.

40

DiggerBees Implementation
Two-Level Stack Data Structure

HotRing: a circular buffer in shared memory

serving as the fast-access portion of the stack.

ColdSeg: a contiguous region in global memory

serving as the large-capacity portion of the stack.

Four core operations:

head = (head + 1) % hot_size

head = (head – 1 + hot_size) % hot_size

tail = (tail + batch) % hot_size, top = top + batch

shared memory

0 1

23

5
4
3
2
1
0

head

b j|
a i|

bottom

top
tail

tail=(2+2)%4=0

top=2+2=4

global memory

• Fast push: insert a new entry into the HotRing.

• Fast pop: retrieve the top entry in the HotRing.

• Flush: when the HotRing is full, a batch of the oldest entries is moved to the ColdSeg.

41

DiggerBees Implementation
Two-Level Stack Data Structure

HotRing: a circular buffer in shared memory

serving as the fast-access portion of the stack.

ColdSeg: a contiguous region in global memory

serving as the large-capacity portion of the stack.

Four core operations:

head = (head + 1) % hot_size

head = (head – 1 + hot_size) % hot_size

tail = (tail + batch) % hot_size, top = top + batch

shared memory

0 1

23

5
4
3
2
1
0

b j|
a i|

bottom

top

global memory

head = (head + batch) % hot_size, top = top - batch

head== tail

• Fast push: insert a new entry into the HotRing.

• Fast pop: retrieve the top entry in the HotRing.

• Flush: when the HotRing is full, a batch of the oldest entries is moved to the ColdSeg.

• Refill: When the HotRing is empty, a batch is refilled from the ColdSeg.

42

DiggerBees Implementation
Two-Level Stack Data Structure

HotRing: a circular buffer in shared memory

serving as the fast-access portion of the stack.

ColdSeg: a contiguous region in global memory

serving as the large-capacity portion of the stack.

Four core operations:

• Fast push: insert a new entry into the HotRing.

head = (head + 1) % hot_size

• Fast pop: retrieve the top entry in the HotRing.

head = (head – 1 + hot_size) % hot_size

• Flush: when the HotRing is full, a batch of the oldest entries is moved to the ColdSeg.

tail = (tail + batch) % hot_size, top = top + batch

shared memory

0 1

23

5
4
3
2
1
0

b j|

a i|

bottom

top

head=(1+2)%4=3

top=4-2=2

global memory

• Refill: When the HotRing is empty, a batch is refilled from the ColdSeg.

head = (head + batch) % hot_size, top = top - batch

tail

head

43

DiggerBees Implementation
Intra-Block Work Stealing

Warp0
active

b 1|

a 0|

h=2

t=0
t=0

Warp1
idle

Warp2
idle

h=0
t=0

h=0

• Warp-Level Workload: one warp = one DFS worker

m
as

k
1

0
0

Block0

All 32 threads within a warp follow the same DFS path

(no warp divergence)

44

DiggerBees Implementation
Intra-Block Work Stealing

Warp0
active

b 1|

a 0|

h=2

t=0
t=0

Warp1
idle

Warp2
idle

h=0
t=0

h=0

• Warp-Level Workload: one warp = one DFS worker

m
as

k
1

0
0

Block0

All 32 threads within a warp follow the same DFS path

(no warp divergence)

• Idle warp steals locally: three-step mechanism

Step1: victim selection: An idle warp steals from the

deepest HotRing above hot_cutoff.
hot_rest 2 0 0

Warp1
Warp2

Warp0
select victim

45

DiggerBees Implementation
Intra-Block Work Stealing

Warp0
active

b 1|

a 0|

h=2

t=0
t=0

Warp1
idle

Warp2
idle

h=0
t=0

h=0

• Warp-Level Workload: one warp = one DFS worker

m
as

k
1

0
0

Block0

All 32 threads within a warp follow the same DFS path

(no warp divergence)

• Idle warp steals locally: three-step mechanism

Step1: victim selection: An idle warp steals from the

deepest HotRing above hot_cutoff.
hot_rest 2 0 0

Warp1
Warp2

Warp0

Step2: work reservation: The thief claims a batch from

the victim’s HotRing tail.

If success: steals hot_cutoff/2 entries and updates tail.

If fail: retry.

select victim

reserve workWarp1
Warp2 atomicCAS(t:0→1)

Warp1
Warp2

46

DiggerBees Implementation
Intra-Block Work Stealing

Warp0
active

b 1|

a 0|

h=2

t=0
t=0

Warp1
idle

Warp2
idle

h=0
t=0

h=0

• Warp-Level Workload: one warp = one DFS worker

m
as

k
1

0
0

Block0

All 32 threads within a warp follow the same DFS path

(no warp divergence)

• Idle warp steals locally: three-step mechanism

Step1: victim selection: An idle warp steals from the

deepest HotRing above hot_cutoff.
hot_rest 2 0 0

Warp1
Warp2

Warp0

Step2: work reservation: The thief claims a batch from

the victim’s HotRing tail.

If success: steals hot_cutoff/2 entries and updates tail.

If fail: retry.

select victim

reserve workWarp1
Warp2 atomicCAS(t:0→1)

Warp1
Warp2

Warp1
Step3: local transfer: After a successful claim, the

thief copies the batch from the victim’s HotRing into

its own, updates head, and resumes DFS.

transfer data

a 0|
Warp1

47

DiggerBees Implementation
Intra-Block Work Stealing

Warp0
active

b 1|

a 0|

h=2

t=0
t=0

Warp1
idle

Warp2
idle

h=0
t=0

h=0

• Warp-Level Workload: one warp = one DFS worker

m
as

k
1

0
0

Block0

All 32 threads within a warp follow the same DFS path

(no warp divergence)

• Idle warp steals locally: three-step mechanism

Step1: victim selection: An idle warp steals from the

deepest HotRing above hot_cutoff.

Step2: work reservation: The thief claims a batch from

the victim’s HotRing tail.

If success: steals hot_cutoff/2 entries and updates tail.

If fail: retry.

Warp0
active

b 1|

a 0|

h=2

t=1

t=0

Warp1
active

Warp2
idle

h=1

t=0
h=0

m
as

k
1

1
0

Block0

Step3: local transfer: After a successful claim, the

thief copies the batch from the victim’s HotRing into

its own, updates head, and resumes DFS.

48

DiggerBees Implementation
Inter-Block Work Stealing

• How it works: four-step mechanism

• When triggered: a block becomes idle

(all warps run out of local work).

• What to steal: a batch from the victim

warp’s ColdSeg.

Step1: victim blcok selection: power-of-

two choices.

Step2: victim warp selection: with
cold_rest = top-bottom and ≥ cold_cutoff

Step4: remote transfer: ColdSeg→HotRing

Step3: work reservation: reserve batch

by atomicCAS(bottom).

49

DiggerBees Implementation
An Execution Example

An example of the complete execution flow of DiggerBees, where different colored

regions indicate the subtrees explored by different warps.

The effectiveness of load balancing:

In Block0:

Warp0: 5 vertices

Warp1: 5 vertices

Warp2: 3 vertices

In Block1:

Warp3: 3 vertices,

Warp4: 3 vertices,

Warp5: 3 vertices

PPoPP 2026

OUTLINE

Introduction and Motivations

DiggerBees Implementation

Performance Evaluation

Conclusion

1

2

3

4

51

Performance Evaluation
Experimental Setup

Dataset: all 234 graphs from three widely used graph

collections, DIMACS10, SNAP[6], and LAW[7] available

in the SuiteSparse Matrix Collection[8].

Platforms: One CPU with a 64-core Intel Xeon Max

687 (9462) processor and two NVIDIA GPUs: A100

(Ampere architecture) and H100 (Hopper architecture).

Tested methods: Two CPU DFS implementations

(CKL-PDFS[1] and ACR-PDFS[2]), one GPU DFS

implementation (NVG-DFS[3]), and two GPU BFS

implementations (Gunrock[4] and BerryBees[5]).

[1] Guojing Cong et al.. 2008. Solving Large, Irregular Graph Problems Using Adaptive Work-Stealing. In ICPP ’08. 536–545.
[2] Umut A. Acar et al.. 2015. A workefficient algorithm for parallel unordered depth-first search. In SC ’15. 1–12.

[3] Maxim Naumov et al.. 2017. Parallel Depth-First Search for Directed Acyclic Graphs. In IA3’17.

[4] Yangzihao Wang et al.. 2016. Gunrock: a high-performance graph processing library on the GPU. In PPoPP ’16. 1–12.
[5] Yuyao Niu et al.. 2025. BerryBees: Breadth First Search by Bit-Tensor-Cores. In PPoPP ’25. 339–354.

[6] Marinka Zitnik et al.. 2018. BioSNAP Datasets: Stanford Biomedical Network Dataset Collection.

[7] Paolo Boldi et al.. 2011. Layered Label Propagation: A Multiresolution Coordinate-Free Ordering for Compressing Social Networks. In WWW ’11. 587–596.
[8] Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix Collection. ACM Trans. Math. Softw. 38, 1 (2011).

52

Comparison with Existing DFS Approaches

Performance comparison of DiggerBees with three state-of-the-art

DFS methods on the H100 GPU.

vs. CKL-PDFS (CPU): achieves an average

speedup (geometric mean) of 1.37×, with the best

case 6.24× on hugebubbles.

vs. ACR-PDFS (CPU): achieves an average speedup of

1.83×, with the best case 12.44× on euro_osm.

vs. NVG-DFS (GPU): delivers an average speedup of

30.18×, reaching 1841.68× on higgs-twitter and 1075.21×
on soc-Pokec.

Performance Evaluation

53

Comparison with Existing BFS Approaches

Performance comparison of four DFS methods and the best BFS baseline (the better-performing result between Gunrock and BerryBees) across 12 representative graphs from

three groups on the H100 GPU.

Detailed information of 12 representative graphs.

DiggerBees outperforms Gunrock/BerryBees on

several graphs, e.g., euro_osm: 12.12× faster, where

BFS requires 17,346 levels.

Why: Long, narrow traversals hurt BFS; block-level

work stealing keeps DFS efficient.

Limit: On small-diameter graphs (e.g., ljournal, 10

BFS levels), BFS wins; DiggerBees is 3.70× slower.

Performance Evaluation

54

Scalability Comparison with GPU DFS

Scalability comparison of DiggerBees and NVGDFS on A100 and H100 GPUs.

DiggerBees outperforms NVG-DFS on both two

GPUS.

Better scaling to H100: average H100-to-A100

speedup is 1.33× for DiggerBees vs 1.18× for NVG-

DFS.

Why it scales: DiggerBees better utilizes H100’s

higher compute capacity (132 SMs vs 108 SMs,

+22.2%), delivering gains that closely track the

hardware scaling.

Performance Evaluation

55

Performance Breakdown
•v1 → v2 (2-level stack): leveraging

the memory hierarchy for low-latency

stack access yields ~45% higher

throughput on average.

•v3 → v4 (scale to all SMs): increasing blocks to match SM count provides an additional 67–82%

improvement on most graphs, while small graphs see limited gains (2–12%) due to already sufficient

parallelism.

•v2 → v3 (inter-block work stealing):

enabling multi-block collaboration

brings dramatic gains on deep-path

graphs, e.g., 25.94× on euro_osm and

37.31× on delaunay (work stealing is

key to scaling across SMs).

Performance breakdown of four versions of DiggerBees across six representative graphs on the H100 GPU.

Performance Evaluation

56

Block-Level Load Balance Analysis

Block-level workload distribution for six representative graphs, comparing Baseline (left) and DiggerBees (right).

DiggerBees balances work: consistently reduces variance by >2×, e.g., amazon drops to 0.72 (3.44×
lower variance).

Why: load-aware two-choice victim selection + hierarchical work stealing improves block-level

balance, boosting scalability and performance.

Performance Evaluation

PPoPP 2026

OUTLINE

Introduction and Motivations

DiggerBees Implementation

Performance Evaluation

Conclusion

1

2

3

4

58

DiggerBees Implementation
Conclusion

• We design a two-level stack structure that maps DFS workloads onto

the GPU memory hierarchy.

• We develop a hierarchical work-stealing mechanism tailored

specifically for DFS traversal on GPUs.

• We achieve significant performance gains over existing approaches on

the latest NVIDIA GPUs.

PPoPP 2026

Yuyao Niu1, 2 Yuechen Lu3 Weifeng Liu3 Marc Casas1, 2

1 Barcelona Supercomputing Center
2 Universitat Politècnica de Catalunya
3 SSSLab, China University of Petroleum-Beijing

Sydney, Australia • February 2, 2026

https://doi.org/10.5281/zenodo.17709254

Thanks for Listening!

Any Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

