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« Depth First Search (DFS) traverses a graph by exploring vertices along one branch as deeply as
possible before backtracking, generating a valid DFS tree.

« Serial DFS produces the unique lexicographically ordered DFS tree.
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« Depth First Search (DFS) traverses a graph by exploring vertices along one branch as deeply as
possible before backtracking, generating a valid DFS tree.

« Serial DFS produces the unique lexicographically ordered DFS tree.
- Parallel DFS relaxes the constraints and constructs a DFS tree without enforcing lexicographic order.
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Introduction

« Depth First Search (DFS) traverses a graph by exploring vertices along one branch as deeply as
possible before backtracking, generating a valid DFS tree.

« Serial DFS produces the unique lexicographically ordered DFS tree.

- Parallel DFS relaxes the constraints and constructs a DFS tree without enforcing lexicographic order.

Algorithm 2 A pseudocode of the parallel DFS

1: S; « Local stack of processor P; H OW t o m a 0] »
2: while not terminated do w ;
3: while S; # 0 do ©\ |

Execute DFS on S;

4
5 end while

6: Steal work from other processors
7

8:

Termination Check
end while

[1] V. Nageshwara Rao and Vipin Kumar. 1987. Parallel depth first search. part i. implementation. International Journal of Parallel Programming 16, 6 (1987), 479—-499.
[2] Vipin Kumar and V. Nageshwara Rao. 1987. Parallel depth first search. part ii. analysis. International Journal of Parallel Programming 16, 6 (1987), 501-519.

[3] Guojing Cong, Sreedhar Kodali, Sriram Krishnamoorthy, Doug Lea, Vijay Saraswat, and Tong Wen. 2008. Solving Large, Irregular Graph Problems Using Adaptive
Work-Stealing. In ICPP ’08. 536-545.

[4] Umut A. Acar, Arthur Charguéraud, and Mike Rainey. 2015. A work efficient algorithm for parallel unordered depth-first search. In SC ’15. 1-12.

[5] Prasoon Mishra and V. Krishna Nandivada. 2024. COWS for High Performance: Cost Aware Work Stealing for Irregular Parallel Loop. ACM Trans. Archit. Code
Optim., Article 12 (2024), 26 pages.
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Motivations
Issue #1: Shared memory vs DFS depth
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Algorithm 2 A pseudocode of the parallel DFS

GPU on-chip memory is limited (shared > 1 S « Local stack Gfprﬂcessan
memory perSMissmall). IR S oo mmnenen?
. 2: g::a:l‘\:rl::lf from other processors
DFS may require very deep stacks (depth 7: Temminaion Check
proportional to longest path)
= Cannot keep the whole stack on-chip Graphs #vertices longest path
rgg_24 16.7 M 2622
road_usa S57.7 M 6262
Nee_d a segme_nted stack delaunay 16.7 M 1651
(on-chip + off-chip segments)
euro_osm 509 M 17346
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Motivations @@

Issue #2: Divergence vs Synchronization

Algorithm 2 A pseudocode of the parallel DFS
Thread-private stacks: all threads follow L: S +~ Local stack of processor

2: while not terminated do

-------------------------------------------------------------

. L - I' 3 while S: £ 0 do
d!fferent execution paths, causing warp >4 Execute DFS on S; :
divergence. Nemmmeeees 6™ el work o Gther procesors ~ T TT T

7: Termination Check
8: end while

Shared stack in a block: require costly
atomic operations and synchronization.

Hard to get efficient intra-block
execution.
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Motivations @@

Issue #3: Scalability vs Global Coordination Cost

Algorithm 2 A pseudocode of the parallel DFS

Execution must extend from single- to I S« Localstack of pracessor P,
multi-block so that more SMs and blocks e reons
become active. >§ 6: p“St::alnwork from other processors

_____________________________________________________________

It requires costly communication, and
irregular DFS workloads complicate
balanced distribution.

Hard to achieve
scalable inter-block execution while
ensuring load balance.

32
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DiggerBees Implementation
Two-Level Stack Data Structure

HotRing: a circular buffer in shared memory
serving as the fast-access portion of the stack.

ColdSeg: a contiguous region in global memory 5
serving as the large-capacity portion of the stack. 4
N
0) L 3
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shared memory global memory

vertex | offset
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Two-Level Stack Data Structure

HotRing: a circular buffer in shared memory
serving as the fast-access portion of the stack.

ColdSeg: a contiguous region in global memory
serving as the large-capacity portion of the stack.

shared memory global memory
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DiggerBees Implementation

Two-Level Stack Data Structure

A+
HotRing: a circular buffer in shared memory  fgst push head=(0+1)%4=1

serving as the fast-access portion of the stack.

ColdSeg: a contiguous region in global memory

serving as the large-capacity portion of the stack. hefd 2
Four core operations: 0 @ I 3
 Fast push: insert a new entry into the HotRing. 3 ' ‘ ' | 2 | 2¢top
head = (head + 1) % hot_size ‘ \—/T ‘ 1
: Q< bottom
tail
shared memory global memory
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lingpdeavd iStatiobata Structure

HotRing: a circular buffer in shared memory
serving as the fast-access portion of the stack.

ColdSeg: a contiguous region in global memory
serving as the large-capacity portion of the stack.

Four core operations: 0

» Fast push: insert a new entry into the HotRing. 3 |
head = (head + 1) % hot _size

« Fast pop: retrieve the top entry in the HotRing.
head = (head — 1 + hot_size) % hot_size shared memory g|0ba| memory
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DiggerBees Implementation
Two-Level Stack Data Structure

HotRing: a circular buffer in shared memory

| | head=(0-1+4)%4=3 fast pop
serving as the fast-access portion of the stack.

ColdSeg: a contiguous region in global memory
serving as the large-capacity portion of the stack.

Four core operations: O

il 2¢—top
1

Q< bottom

« Fast push: insert a new entry into the HotRing. 3 |
head = (head + 1) % hot_size -

« Fast pop: retrieve the top entry in the HotRing.

head = (head — 1 + hot_size) % hot_size shared memory global memory
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DiggerBees Implementation
Two-Level Stack Data Structure

HotRing: a circular buffer in shared memory
serving as the fast-access portion of the stack.

ColdSeg: a contiguous region in global memory
serving as the large-capacity portion of the stack.

Four core operations: 0|

il 2¢—top
1

Q< bottom

 Fast push: insert a new entry into the HotRing. 3 @_ :
head = (head + 1) % hot_size

« Fast pop: retrieve the top entry in the HotRing.

head = (head — 1 + hot_size) % hot_size shared memory global memory

« Flush: when the HotRing is full, a batch of the oldest entries is moved to the ColdSeg.
tail = (tail + batch) % hot_size, top = top + batch
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DiggerBees Implementation
Two-Level Stack Data Structure

HotRing: a circular buffer in shared memory tail=(2+2)%4=0
serving as the fast-access portion of the stack. top=2+2=4

ColdSeg: a contiguous region in global memory _
serving as the large-capacity portion of the stack. tail head

Four core operations: 0|

« Fast push: insert a new entry into the HotRing. 3 |
head = (head + 1) % hot_size -

Q< bottom

« Fast pop: retrieve the top entry in the HotRing.
head = (head — 1 + hot_size) % hot_size shared memory g|0ba| memory

« Flush: when the HotRing is full, a batch of the oldest entries is moved to the ColdSeg.
tail = (tail + batch) % hot_size, top = top + batch
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DiggerBees Implementation ©@6) &
Two-Level Stack Data Structure

HotRing: a circular buffer in shared memory
serving as the fast-access portion of the stack.

ColdSeg: a contiguous region in global memory .
serving as the large-capacity portion of the stack. head==tail

Four core operations: 0

 Fast push: insert a new entry into the HotRing. 3
head = (head + 1) % hot_size k

Q< bottom

« Fast pop: retrieve the top entry in the HotRing.
head = (head — 1 + hot_size) % hot_size shared memory global memory
« Flush: when the HotRing is full, a batch of the oldest entries is moved to the ColdSeg.
tail = (tail + batch) % hot_size, top = top + batch

+ Refill: When the HotRing is empty, a batch is refilled from the ColdSeg.
head = (head + batch) % hot size, top = top - batch 41



DiggerBees Implementation ©@6) &
Two-Level Stack Data Structure

HotRing: a circular buffer in shared memory head=(1+2)%4=3
serving as the fast-access portion of the stack. top=4-2=2

ColdSeg: a contiguous region in global memory .
serving as the large-capacity portion of the stack. tail

Four core operations: 0

] 2e—top

- Fast push: insert a new entry into the HotRing. 3 |

head = (head + 1) % hot_size 1
head Q< bottom
« Fast pop: retrieve the top entry in the HotRing.
head = (head — 1 + hot_size) % hot_size shared memory g|0ba| memory

« Flush: when the HotRing is full, a batch of the oldest entries is moved to the ColdSeg.
tail = (tail + batch) % hot_size, top = top + batch

+ Refill: When the HotRing is empty, a batch is refilled from the ColdSeg.
head = (head + batch) % hot size, top = top - batch 42



DiggerBees Implementation

Intra-Block Work Stealing

 Warp-Level Workload: one warp = one DFS worker'

All 32 threads within a warp follow the same DFS path
(no warp divergence)

BlockO0

h=2—}
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DiggerBees Implementation

Intra-Block Work Stealing

 Warp-Level Workload: one warp = one DFS worker:

All 32 threads within a warp follow the same DFS path
(no warp divergence)

* Idle warp steals locally: three-step mechanism

Step1: victim selection: An idle warp steals from the
deepest HotRing above Kot cutoff.

BlockO0

Warp select victim
Warp2 hot_rest 0(0
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DiggerBees Implementation
Intra-Block Work Stealing

Warp-Level Workload: one warp = one DFS worker:

All 32 threads within a warp follow the same DFS path
(no warp divergence)

Idle warp steals locally: three-step mechanism

Step1: victim selection: An idle warp steals from the Warp1 2 select victim
deepest HotRing above Kot cutoff. i‘

Warp2 hot_rest . 0(0
Step2: work reservation: The thief claims a batch from

the victim’s HotRing tail. o~ .
If success: steals hot cutoff2 entries and updates tail.  Varp’ m» Warp1

If fail: retry. Warp2 atomlcCAS(tO—>1 ) Warp2
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DiggerBees Implementation

Intra-Block Work Stealing

 Warp-Level Workload: one warp = one DFS worker:
All 32 threads within a warp follow the same DFS path

(no warp divergence)

* Idle warp steals locally: three-step mechanism

Step1: victim selection: An idle warp steals from the

deepest HotRing above Kot cutoff.

Step2: work reservation: The thief claims a batch from

the victim’s HotRing tail.

If success: steals Kot cutoffl2 entries and updates tail.

If fail: retry.

Step3: local transfer: After a successful claim, the
thief copies the batch from the victim’s HotRing into

its own, updates head, and resumes DFS.

BlockO0

Warp select victim
Warp2 hot_rest 0|0
Warp1 o8 reserve work Warp1 ()
Warp2 i‘ atomicCAS(t.0—1)  Warp2

—\ transfer data

warp! ﬁ‘ @10




DiggerBees Implementation
Intra-Block Work Stealing

 Warp-Level Workload: one warp = one DFS worker

All 32 threads within a warp follow the same DFS path
(no warp divergence)

* Idle warp steals locally: three-step mechanism

Step1: victim selection: An idle warp steals from the

steal hot_rest(RO)ZZ—»l_?}IJccess! atomicCHA28 RO(t=61
——T4

deepest HotRing above %ot _cutoff. step@ HO~—

steal, hot_rest(R0)=2-1=1<2—falil!

Step2: work reservation: The thief claims a batch from
the victim’s HotRing tail.

If success: steals Kot cutoffl2 entries and updates tail.
If fail: retry.

Step3: local transfer: After a successful claim, the
thief copies the batch from the victim’s HotRing into
its own, updates head, and resumes DFS.




DiggerBees Implementation
Inter-Block Work Stealing T :

..... Warp5, idle_
i._Warp4, idle_ !
. ] , | Warp0, active : | Warp1, active } { Warp2,active || { Warp3,idle :iio
* When triggered: a block becomes idle | Tirest(Co)=0¢0 | | rest(C1)=4C1_ | rest(C2)=2c2 || : c3iiis
(all warps run out of local work). i ZNE i o SRk
£ &% s B £
T R ot h=2eeaa] e it=0(] 0| e ' -
 What to steal: a batch from the victim %5 & _ @1 =2 T
y : [ 1 : [&]
warp’s ColdSeg. 2:h=0 % ®)1 -b=0 ke
: . ste H3 h victim block — Block0
 How it works: four-step mechanism e SERTn T R T T
o _ step@® H3 search victim in Block0 — max(cold_rest[0E¥2] ) — C1
Step1: victim blcok selection: power-of- sopg HOCO Hic1 H2 C2 H3 C3
two choices. steal, cold_rest(C1)z4—success! atomicCAS C1(b=082)
Step2: victim warp selection: with step@ 0G0 HICl CGW - 33
g ' t = ton-bott g >' 1d cut Yy ~ R3(h=82), Warp3 actively
cold_rest = top-bottom and = cold_cutoff [ Az acive’s © Warpl actve " | v |[ " Warp3, active T o
- o b Pl 111 S
Step3: work reservation: reserve batch N e 1 2
. w ] ! :
by atomicCAS(bottom). g =He E:
S 2Nl <
Step4: remote transfer: ColdSeg—HotRing| §: ERE 8
o] S5 I Il ‘m

4

0¢]



DiggerBees Implementation

An Execution Example

The effectiveness of load balancing:

In BlockO:

WarpO0: 5 vertices
Warp1: 5 vertices
Warp2: 3 vertices

In Block1:

Warp3: 3 vertices,
Warp4: 3 vertices,
Warp5: 3 vertices

Step6

Step1 @ Step6 Step7
Step3 -
@
- - _l-;___.__:_____: T e e mm mm me mm mm m mem mm mm mem M mm o mm mm o i
I Detailed Breakdown of Steps 6-Termination Warp0 Warpl Warp2 Warp3 Warp4 Warp5
HotRing0 & HotRing2 pop entry HotRing0 & HotRing2 push visited HotRing1 & HotRing2 pop entry |
HotRingl flushes entries to ColdSegl entry, skip |
HotRing1 pushes entry HotRingl pops entry :
(20 N (1) N vy ing v(g) L) I
< [HotRing0] [HotRing1] [HotRing2) < [HotRing0] [HotRing1] [HotRing2) < [HetRing0] [HetRing1] [HotRing2]
x i = - = . I
S [P e S S c
o =l ko) ol
0 [coldSeg0| [ColdSegl |ColdSeg2| @ [ColdSeg0| [ColdSegl| [ColdSeg2] 0 |ColdSeg0| [ColdSegl| [ColdSeg2| =1
Warp0 Warpl Warp2 IE_ Warp0 Warpl Warp2 Og_ Warp0 Warpl Warp2 g|
i nfer-sieal [EUGE—— ] ] —— (1 0.-S L0 0] [P ) T "=
¥ a intra-steal 5 EI
— [HotRing3] [HotRing4] [HotRing5) — [HotRing3] [HotRing4] [HotRing5) +— [HotRing3] [HotRing4] [HotRing5] o,
%‘é @ ' FEG «@ ) g 0 @ v© I_I
o0 |Co|d5eg3| |COId5eg4\ \ColdSegS| o |CoIdSegS| |Co||:ISeg4\ \CoIdSeg5| o [CoIdSegS| [CaIdSeg4| [CnldSegS\
Warp3 Warp4 Warp5 Warp3 Warp4 Warp5 Warp3 Warp4 Warp5

HotRing3 steals from ColdSegl
HotRing3 pushes entry

HotRing3 pushes entry
HotRing4 & HotRing5 steal from HotRing3

HotRing4 & HotRing5 push entry

HotRing3 & HotRing4 & HotRing5 pop

An example of the complete execution flow of DiggerBees, where different colored
regions indicate the subtrees explored by different warps.
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Performance Evaluation
Experimental Setup Method visited DFSTree  Lex-  Level

Order
Platforms: One CPU with a 64-core Intel Xeon Max ﬁ‘é‘gﬁiﬂiﬁ j iﬁi ﬁ;ﬁ Eﬁi
687 (9462) processor and two NVIDIA GPUs: A100 NVG-DFS / v Ordered N/A
(Ampere architecture) and H100 (Hopper architecture). Gunrock/BerryBees v N/A N/A v
DiggerBees (this v v Unordered N/A
work)
Tested methods: Two CPU DFS implementations
(CKL-PDFS[1] and ACR-PDFS[2]), one GPU DFS Group  Count Description
implementation (NVG'DFS[S])’ and two GPU BFS DIMACS10 151  Benchmark graphs from the 10th DIMACS Im-
implementations (Gunrock[4] and BerryBees|[5]). plementzfion l(lllhallenge,dcove;ring cluitering,
numerical simulation, and road networks.
SNAP 68 Real-world networks from the Stanford Net-
] work Analysis Platform, including social, cita-
Dataset: all 234 graphs from three widely used graph tion, and web graphs.
collections, DIMACS10, SNAP[G], and LAW[?] available LAW 15  Large-scale web graphs from the Laboratory
in the SUiteSparse Matrix CO”eCtion[S]. for Web Algorithmics, based on real web crawls

and compressed via WebGraph.

[1] Guojing Cong et al.. 2008. Solving Large, Irregular Graph Problems Using Adaptive Work-Stealing. In ICPP '08. 536-545.

[2] Umut A. Acar et al.. 2015. A workefficient algorithm for parallel unordered depth-first search. In SC ’15. 1-12.

[3] Maxim Naumov et al.. 2017. Parallel Depth-First Search for Directed Acyclic Graphs. In IA3’17.

[4] Yangzihao Wang et al.. 2016. Gunrock: a high-performance graph processing library on the GPU. In PPoPP '16. 1-12.

[5] Yuyao Niu et al.. 2025. BerryBees: Breadth First Search by Bit-Tensor-Cores. In PPoPP ’'25. 339-354.

[6] Marinka Zitnik et al.. 2018. BioSNAP Datasets: Stanford Biomedical Network Dataset Collection.

[7] Paolo Boldi et al.. 2011. Layered Label Propagation: A Multiresolution Coordinate-Free Ordering for Compressing Social Networks. In WWW ’*11. 587-596.

[8] Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix Collection. ACM Trans. Math. Softw. 38, 1 (2011). 51



Performance Evaluation
Comparison with Existing DFS Approaches

CKL-PDFS +  NVG-DFS
= ACR-PDFS » DiggerBees (this work)

vs. CKL-PDFS (CPU): achieves an average
speedup (geometric mean) of 1.37x, with the best
case 6.24x on hugebubbles.

(log scale)

=]
OO N H © F N W »

Speedup Performance (MTEPS)

2 vs. ACR-PDFS (CPU): achieves an average speedup of
g 9 ‘< Ll B 1.83x, with the best case 12.44x on euro_osm.
é 2 _bg____;a"h¥im;§;'_' & e
= 0 K 3 T TE &
L 10 e® WS, .
gg 8 . y 8’ “". . vs. NVG-DFS (GPU): delivers an average speedup of
B I PNER SCOT LSO T N 30.18x, reaching 1841.68x on higgs-twitter and 1075.21 x
o0 | N — on soc-Pokec.
S9I0] e Er AAREN Y o
22 plix ___C Lt Lok Lo b S
T4 5 6 1 8 o9

#Edges (log scale)

Performance comparison of DiggerBees with three state-of-the-art
DFS methods on the H100 GPU.
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Performance Evaluation
Comparison with Existing BFS Approaches

1 CKL-PDFS I ACR-PDFS 0 NVG-DFS [ Best BFS (Gunrock/BerryBees) Il DiggerBees (this work)
8 10% - DIMACS10 SNAP
C —
© 2 103 1 1o —

13100 -

E Ll 102 i N g
(. l_ ™~ o)
=
€ =101
a
o

eur... del... rgg... hug... aut... cit... ama... web... wik... ljo... hol...

Performance comparison of four DFS methods and the best BFS baseline (the better-performing result between Gunrock and BerryBees) across 12 representative graphs from
three groups on the H100 GPU.

DiggerBees outperforms Gunrock/BerryBees on

Group  Graph vl |E] Graph  |V|  |E| several graphs, e.g., euro_osm: 12.12x faster, where
euro_osm 509M 108.1M  delaunay 16.8M 100.7M BFS requires 17,346 levels.

pouacsio (86 SIS el 1

ilZL(l)10 05M 2 9M ' ' Why: Long, narrow traversals hurt BFS; block-level

' ' work stealing keeps DFS efficient.

SNAP amazon 03M 1.2M google 09M 5.1M

wiki 1.8M  28.6M
LAW ljournal 54M 79.0M  hollywood 1.1IM 113.9M Limit: On small-diameter graphs (e-g-’ ljournal, 10

Detailed information of 12 representative graphs.

BFS levels), BFS wins; DiggerBees is 3.70x slower.
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Scalability Comparison with GPU DFS

NVG-DFS (A100) DiggerBees (A100)
—e— NVG-DFS (H100)  —e— DiggerBees (H100)

N W A

Performance
o =

(MTEPS) (log scale)

I
(-

N

R

N

=
!

DiggerBees NVG-DFS
Scalability Scalability

3 4 5 6 7 8 9
#Edges (log scale)

Scalability comparison of DiggerBees and NVGDFS on A100 and H100 GPUs.

DiggerBees outperforms NVG-DFS on both two
GPUS.

Better scaling to H100: average H100-to-A100
speedup is 1.33x for DiggerBees vs 1.18x for NVG-
DFS.

Why it scales: DiggerBees better utilizes H100’s
higher compute capacity (132 SMs vs 108 SMs,
+22.2%), delivering gains that closely track the
hardware scaling.

54



Performance Evaluation
Performance Breakdown

[ v1: 1-lvl stack-1 Block:Intra [ v3: 2-Ivl stack-66 Blocks-Intra+Inter ‘vl — v2 (2-level stack): leveraging
_ @ v2: 2-lvl stack-1 Block-Intra  HEEl v4: 2-lvl stack-132 Blocks:Intra+Inter the memory hierarchy for low-latency
. o

o hugebubbles stack access yields ~45% higher
W x103 euro osm x103 delaunay x10° throughput on average.
[ I I77% 51 £33 I.82% 1.67
S 21 | T |
= | 1 25.94 \ | . | 26 24 x

D_ , 94 x D_ 1 37.31x D . .
Y . . . v2 — v3 (inter-block work stealing):
CO T T 0 T T 0 T 1 - 1
ST v2 v3 w4 V1 v V3 va V1 \{2 V3 va en_abllng multi _block_ collaboration
€ x10° _amazon x10° google x10*  |ljournal brings dramatic gains on deep-path
‘55 R P CT 9 92"1 =L y----—————3<14 04X o™ 51— 355 S22l graphs, e.g., 25.94x on euro_osm and
E H:L L L | ]384l 37.31x on delaunay (work stealing is
ol i 0 . key to scaling across SMs).

vl v2 v3 v4 vl v2 vy v4 vl v2 v3 v4

Performance breakdown of four versions of DiggerBees across six representative graphs on the H100 GPU.

v3 — v4 (scale to all SMs): increasing blocks to match SM count provides an additional 67-82%
improvement on most graphs, while small graphs see limited gains (2-12%) due to already sufficient
parallelism.
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Performance Evaluation
Block-Level Load Balance Analysis

Y min A max
euro_osm delaunay hugebubbles
X
8 T 105 f 105
5105
h Vargp0.54 Var.=0.28 Var.g0.36 Var.=0.17 10% Var—033
14 Baseline DiggerBees Baseline DiggerBees Basellne DiggerBees
Q.
3‘3 amazon google i ljournal
n 4 10
@ _+_ 10 ——
102
8 Var.=0.72 100 Var.32.14 Var.=0.52 | 104| Var.=0.41 - Var.
Basellne DiggerBees Baseline DiggerBees Baseline DiggerBees

Block-level workload distribution for six representative graphs, comparing Baseline (left) and DiggerBees (right).

DiggerBees balances work: consistently reduces variance by >2x, e.g., amazon drops to 0.72 (3.44 x
lower variance).

Why: load-aware two-choice victim selection + hierarchical work stealing improves block-level
balance, boosting scalability and performance.
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DiggerBees Implementation
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© Performance Evaluation

Q Conclusion




DiggerBees Implementation ©@6) &

Conclusion

 We design a two-level stack structure that maps DFS workloads onto
the GPU memory hierarchy.

 We develop a hierarchical work-stealing mechanism tailored
specifically for DFS traversal on GPUs.

 We achieve significant performance gains over existing approaches on
the latest NVIDIA GPUs.
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Thanks for Listening!
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