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Background and Motivation

• MMUs have shown strong impact in deep learning, but their role in scientific computing is still 
not well understood.

NVIDIA 
Tensor Core

MMUs offer 2～7× higher peak throughput.

NVIDIA H100 AMD MI300X
Peak FP64 25.6 TFLOPS 81.7 TFLOPS

Peak FP64 TC 51.2 TFLOPS 163.4 TFLOPS
Peak FP32 51.2 TFLOPS 163.4 TFLOPS

Peak FP32 TC N/A 163.4 TFLOPS
Peak TF32 TC 378 TFLOPS 653.7 TFLOPS

Peak FP16 102.4 TFLOPS N/A
Peak FP16 TC 756 TFLOPS 1307.4 TFLOPS

Peak BF16 102.4 TFLOPS N/A
Peak BF16 TC 756 TFLOPS 1307.4 TFLOPS
Peak FP8 TC 1513 TFLOPS 2614.9 TFLOPS
Peak INT8 TC 1513 TOPS 2614.9 TOPS

2x

7x
4x

7x

7x
AMD

Matrix Core

• MMU: Matrix Multiply-Accumulate Unit



SSSLab Page2026/2/3 5

Background and Motivation

• Recent studies indicate that MMUs can accelerate key scientific kernels (Stencil, Scan, BFS…)

• Diverse parallel patterns in scientific workloads make effective MMU utilization nontrivial.
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Dakkak et al. TCU ScanScan

Lu et al. mBSR SpGEMM
SpGEMM

Zhang et al.
LoRaStencil

Stencil Computation

Niu et al. Berrybees BFSBFS

• However, we still lack a systematic MMU analysis tool for architecture researchers, parallel algorithm 
researchers, and HPC application researchers.
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• Bandwidth perspective: SpMV and SpGEMM are bandwidth bound. If bandwidth does not 
change, why can MMUs speed them up?

• Compute perspective: FP64 Tensor Cores offer only ~2× higher peak than CUDA Cores, yet many 
kernels use only a small part of the MMA output (e.g. 1/8 or 1/2). Why can we still see large 
speedups (e.g.  DASP SpMV can get 5.75× speedups on cop20k_A over cuSPARSE )?

DASP SpMV mBSR SpGEMM

Background and Motivation
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Background and Motivation

A scientific computing benchmark suite 
for MMUs is needed!
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The Cubie Benchmark Suite

Key Observation 1: To exploit MMUs, non-GEMM algorithms in scientific computing 
often have to modify data structures and reorganize algorithms.

Lu et al. 
DASP SpMV

Lu et al.
mBSR SpGEMM

Dakkak et al.
TCU Scan

Li et al.
tcFFT

Niu et al.
Berrybees BFS

Zhang et al.
LoRaStencil

Kernel Ref Berkeley Dwarf Baseline

GEMV - Dense LA cuBLAS

GEMM cudaSample Dense LA cudaSample

SpMV DASP SpMV Sparse LA cuSPARSE

SpGEMM mBSR 
SpGEMM Sparse LA cuSPARSE

FFT tcFFT Spectral methods cuFFT

Stencil LoRaStencil Structured grids DRStencil

Reduction TCU-
Reduction MapReduce CUB

Scan TCU-Scan MapReduce CUB

BFS BerryBees Graph traversal Gunrock

PiC PiCTC N-Body methods -

• Cubie includes ten open source scientific 
kernels accelerated with MMUs.
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Categorization of MMU Utilization Patterns
• Two dimensions: Input utilization and Output utilization • Two levels: Full and Partial

Four Quadrants
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Categorization of MMU Utilization Patterns
• Two dimensions: Input utilization and Output utilization

Key Observation 2: Scientific kernels may not fully utilize the dense input and output 
matrices of MMUs, exhibiting distinct utilization patterns in four quadrants characterized 
by varying levels of density.

• Two levels: Full and Partial

Four Quadrants
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Experiments - Setup

• Experiments Setup

• We evaluate Cubie on NVIDIA A100 (Ampere), H200 (Hopper), and B200 (Blackwell) GPUs,
using five test cases per workload.

Specifications of A100, H200, and B200

• Test Cases

Five test cases for each kernel
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Experiments - Algorithmic Implementation Variants
• To study performance changes and determine whether they come from MMU usage or algorithm 

design, we consider three implementation variants. 

• Tensor Core version (TC)

Uses Tensor Cores for computation, calling FP64 MMA
instructions.

Example: GEMV (Ax=y)
Tensor
 Core

CUDA
 Core

CUDA
 Core

A

A

A

Scale x

Scale x

x y

y in diagonal

y in diagonal

Keeps the same data structures and algorithm as TC, 
but replaces MMA with CUDA Core computation.

• CUDA Core MMA Replacement (CC)

Computes only the essential parts on CUDA Cores, 
removing extra work introduced by MMU mapping.

• CUDA Core Essential Replacement (CC-E)
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Experiments - Performance

Performance comparison of baselines, TC, CC, and CC-E implementations for all workloads on the three GPUs.

Speedups of TC versions compared to 
their baselines across all workloads.

Speedups of CC replacements over 
TC versions across all workloads.

Speedups of CC-E replacements over 
TC versions across all workloads.
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Speedups of TC versions compared to their baselines across all workloads.

• Do MMU accelerated kernels outperform vector based implementations? à TC vs. Baseline

Key Observation 3: MMU-accelerated workloads consistently outperform vector baselines 
in most cases, and exhibit performance portability across the Ampere, Hopper, and 
Blackwell architectures.

MMA input and 
output tiles are 
well utilized. TC 
show portable 
speedups across 
architectures.

Using constant 
matrices as operands 
reduces data 
movement, leading to 
better performance.

With higher 
memory 
bandwidth on 
H200 and B200, 
TC shows a clear 
advantage over 
the baseline.

Experiments - Performance
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• With the same data structures and algorithms, how much speedup comes purely from MMU 
hardware？ à CC vs. TC

Key Observation 4: Removing the impact of data structures and algorithms (replacing 
MMU instructions with equivalent vector unit operations), MMUs account for 10% to 200% 
of the performance gains.

Consistent with 
peak throughput 
gaps, CC is ~2×
slower than TC.

Beyond peak 
throughput, 
CUDA cores 
cannot exploit 
constant matrices 
as effectively as 
Tensor Cores.

The gap is smaller, 
but TC still wins:  
TC can benefit 
bandwidth bound 
kernels.

Experiments - Performance

Speedups of CC replacements over TC versions across all workloads.
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• Is the redundant work introduced for MMU mapping worth it? Would vector units be faster after 
removing it? à CC-E vs. TC

Key Observation 5: Generally, the redundant computations introduced to enable MMU-
friendly matrix computing patterns should not be removed. The only exception is SpMV, 
where avoiding the redundancy yields up to 20% higher performance.

TC is still faster 
overall, so the 
redundancy is 
generally 
worthwhile.

For most kernels, 
CC-E is close to TC.
Since TC also beats 
the baseline and CC, 
the introduced 
redundancy is usually 
justified.

For SpMV, after 
removing 
redundancy, CC-E 
can be further 
improved.

Experiments - Performance

Speedups of CC-E replacements over TC versions across all workloads.
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• We measure power, energy, and EDP (Energy–Delay Product, lower is better) for each workload on 
H200.

Power consumption over time of baselines and three implementations for all workloads on H200.

The EDP comparison of baselines, TC, CC, and CC-E implementations for all workloads on H200.

!"# = $%&'()& #*+&' × !,&-./0*1 203&2

Key Observation 6: MMUs exhibit similar power consumption to vector units but 
complete computations significantly faster, resulting in 30% to 80% lower geomean EDP 
across all workloads.

Instantaneous 
power of TC can 
be similar to CC.

But TC can finish 
faster, so energy 
and EDP are 
lower overall.

Experiments - Power and Energy
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• We measure FP64 numerical errors on H200 and B200, using the serial CPU results as the reference.

TC and CC show identical average and maximum errors.

Key Observation 7: MMUs and vector units provide comparable numerical accuracy, but 
algorithmic transformations for MMU utilization can induce significant numerical 
deviations that undermine the reproducibility of scientific results.

Errors can vary from Baseline to TC/CC, sometimes by more than one order of magnitude.

Experiments - Numerical Accuracy
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• Cache-aware roofline model

Key Observation 8: Adapting data layouts and algorithms for MMUs fundamentally alters 
memory access patterns, often yielding more regular access and significant performance 
gains.

In Q-I, FFT and GEMM 
have higher arithmetic 
intensity, while Stencil 
and PiC are lower. 
Without advanced 
GEMM optimizations, 
TC GEMM does not 
reach peak throughput.

In Q II–III, Reduction 
and Scan use 
segment processing 
and are cache friendly, 
so TC can even 
exceed the DRAM 
bandwidth roofline.

In Q-IV, TC, CC, and 
CC-E change memory 
access patterns and get 
closer to the bandwidth 
roofline than the 
baseline (blue dot).

Experiments - Performance Model
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Comparison with other Benchmark Suites
• Compared with Rodinia and SHOC: Cubie covers 

more Berkeley Dwarfs and offers broader 
characterization.

• We collect the following NCU metrics and run 
PCA. Cubie workloads show a wider spread in 
the principal component space.

5 5 7

4 4 5

Key Observation 9: Originally developed with the primary goal of evaluating MMUs, the 
Cubie benchmark suite encompasses a wide range of behaviors in scientific programs, 
positioning it as an effective tool for assessing modern processors.
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Conclusion

Concerns Arch. Alg. App. Observations

Compute Patterns ✓ ✓ O1、O2

Performance Portability ✓ ✓ O3

Necessity of MMUs ✓ ✓ O4、O5

Power and Energy ✓ ✓ O6

Numerical Precision ✓ ✓ ✓ O7

Memory ✓ ✓ O8

Workload Diversity ✓ ✓ O9

Concerns and corresponding observations for architecture, algorithm, and application researchers.

• We present Cubie, a benchmark suite of MMU optimized scientific kernels. Cubie covers diverse 
parallel patterns and kernel behaviors, and evaluates performance, power, and numerical accuracy, 
providing practical insights for architecture, algorithm, and application researchers.
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A Call for Preserving FP64 MMU Capability

FP16 TC: continues to 
grow across A100 → 
H200 → B200.

FP64 TC: drops on B200.

• Our results show FP64 MMU acceleration benefits most scientific workloads.

• Future GPUs should KEEP FP64 MMUs as a core capability!
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Thanks for Listening!
Any Questions?
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