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I Background and Motivation

« MMU: Matrix Multiply-Accumulate Unit

« MMUs have shown strong impact in deep learning, but their role in scientific computing is still

not well understood.

NVIDIA
Tensor Core

AMD
Matrix Core

NVIDIA H100 AMD MI300X
|{ Peak FP64 25.6 TFLOPS 81.7 TFLOPS D I
\_Peak FP64TC____51.2 TFLQPS ______ 163.4 TELOPS___
I! " PeakFP32 ¢ 512 TFLOPS 1634 TFLOPS
: Peak FP32 TC N/A
\_Peak TF32TC ___ 378 TFLOPS ______653.7 TFLOPS__
(" Peak FP16 102.4 TFLOPS  NA
\_Peak FP16 TC____ 756 TFLOPS _____1307.4TFLOPS _
(" Peak BF16 102.4 TFLOPS 1 A
| Peak BF16TC __ 756 TFLOPS 1307.4 TFLOPS __) D 7
Peak FP8 TC 1513 TFLOPS 2614.9 TFLOPS
Peak INT8 TC 1513 TOPS 2614.9 TOPS

MMUs offer 2 ~7x higher peak throughput.



I Background and Motivation

- Diverse parallel patterns in scientific workloads make effective MMU utilization nontrivial.

« Recent studies indicate that MMUs can accelerate key scientific kernels (Stencil, Scan, BFS...)
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researchers, and HPC application researchers.
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« However, we still lack a systematic MMU analysis tool for architecture researchers, parallel algorithm



I Background and Motivation

- Bandwidth perspective: SpMV and SpGEMM are bandwidth bound. If bandwidth does not
change, why can MMUs speed them up?

« Compute perspective: FP64 Tensor Cores offer only ~2x higher peak than CUDA Cores, yet many
kernels use only a small part of the MMA output (e.g. 1/8 or 1/2). Why can we still see large
speedups (e.g. DASP SpMV can get 5.75x speedups on cop20k A over cuSPARSE )?
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I Background and Motivation

- Bandwidth perspective: SpMV and SpGEMM are bandwidth bound. If bandwidth does not
change, why can MMUs speed them up?

« Compute perspective: FP64 Tensor Cores offer only ~2x higher peak than CUDA Cores, yet many
kernels use only a small part of the MMA output (e.g. 1/8 or 1/2). Why can we still see large
speedups (e.g. DASP SpMV can get 5.75x% speedups on cop20k A over cuSPARSE )?

A scientific computing benchmark suite
for MMUs is needed!
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I The Cubie Benchmark Suite

« Cubie includes ten open source scientific

kernels accelerated with MMUs.

Kernel Ref
GEMV -
GEMM | cudaSample
SpMV DASP SpMV

mBSR
SpGEMM

FFT tcFFT

SpGEMM

Stencil LoRaStencil
: TCU-
Reduction Reduction

Scan TCU-Scan
BFS BerryBees
PiC PiCTC

Berkeley Dwarf
Dense LA
Dense LA
Sparse LA

Sparse LA

Spectral methods
Structured grids

MapReduce

MapReduce
Graph traversal
N-Body methods

Baseline
CuBLAS
cudaSample
cuSPARSE

cuSPARSE

CufFFT
DRStencil

CUB

CuB
Gunrock
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Key Observation 1: To exploit MMUs, non-GEMM algorithms in scientific computing
often have to modify data structures and reorganize algorithms.
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I Categorization of MMU Utilization Patterns

« Two dimensions: Input utilization and Output utilization « Two levels: Full and Partial
‘ Four Quadrants
Quadrant Il (@ partial input, @ full output) Aoll:.ll::)lut Quadrant | (@ full input, @full output)
Scan , GEMM from shared FFT Stencil
/Bl, A2, Bz are constant matrices; Other\ PiC memory l\ from shared l \ from constant l\
operands ar read from shared me mory. memory memory
B, [dtlilil g A, B, L1l B B B
AR 12| | [from shared from global from shared
0[o[o]o memory memory memory
t[t]o[0 - — —
1j1f1)0
PartiaI\Al C: Az C:  As=C; Ca/ K A C / \ A C / K A C / Full
| -
Input Reduction \ /" BFS from global | \ / GEMV from global |\ /~  SpGEMM \'“PUt
Ai, B2 are constant matrices; memory l SpMV  memory
load from read from
LIS 1]oJoJo B
shared g B, [1fofo]o B B global —» @
memory @ S from global from global memory
ARAR memowF F memorylﬁ
ololo]o —> —> —>
0/0]0]|0
ofojojo
A Azt o ]\ A T \_ A A ¢C /

Quadrant Ill (Qpartial input, @partial output)vopzzgﬂlt Quadrant IV (@full input, Q partial output)




I Categorization of MMU Utilization Patterns

« Two dimensions: Input utilization and Output utilization « Two levels: Full and Partial

‘ Four Quadrants
Full i
Output Quadrant | (@ full input, @full output)

/~'GEMM from shared\ /~ FFT l\ 4 fromsggr?s(,:tizlant l\

PiC memory from shared
memo memory
B s @ B
from shared from global from shared
memory memory memory

\ A c /\_ A ¢ /\_ A C_/ Full




I Categorization of MMU Utilization Patterns

« Two dimensions: Input utilization and Output utilization « Two levels: Full and Partial

‘ Four Quadrants

-

Quadrant Il (Q partial input, @ full output) ‘

g Scan _ \
B, A2, Bs are constant matrices; Other

Partialkﬁu C, A C. As=C, Ca/
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I Categorization of MMU Utilization Patterns

« Two dimensions: Input utilization and Output utilization « Two levels: Full and Partial
‘ Four Quadrants

Input/ Reduction \
As, B are constant matrices;

load from BGT5T6
shared B, B, ooe
memory oloJo

K Ai C. A=C, GC, /

Quadrant lll (Qpartial input, @ partial output)v
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I Categorization of MMU Utilization Patterns

« Two dimensions: Input utilization and Output utilization « Two levels: Full and Partial

‘ Four Quadrants
/BFS from global |\ / GEMV fromglobal ™\ /~ SpGEMM \Input
memory SpMV  memory
B read from B
global —»
from global from global memory
memowFF memoryF
\_ A e/ \_ A__C / \_ A_c /
W Opzz::ﬁlt Quadrant IV (@full input, @ partial output)

Key Observation 2: Scientific kernels may not fully utilize the dense input and output
matrices of MMUs, exhibiting distinct utilization patterns in four quadrants characterized
by varying levels of density.
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I Experiments - Setup

« We evaluate Cubie on NVIDIA A100 (Ampere), H200 (Hopper), and B200 (Blackwell) GPUs,
using five test cases per workload.

« Experiments Setup - Test Cases
NVIDIA GPUs FP64 Units Peak Performance Kernel Five Test Cases
GEMV M*N: 4K*16, 4K*32, 11K*16, 32K*16, 40K*16
A100 (Ampere) PCle Tensor Core 19.5 TFLOPs GEMM M*N*K: 256*256*256, 512*512*512, 1IK*1K*1K, 2K*2K*2K, 4K*4K*4K
40 GB, 1.55 TB/s SpMV Five real-world sparse matrices from SuiteSparse [61], see Table 4
CUDA Core 9.7 TFLOPs SpGEMM  Five real-world sparse matrices from SuiteSparse [61], see Table 4
H200 (Hopper) SXM Tensor Core 66.9 TELOPs FFT Sizes: 256*256, 256*512, 256*1K, 512*256, 512*512; Batch: 2K
96 GB. 4 TB/s Stencil star2d1r: 1IK*1K, 5K*5K, 10K*10K; star3d1r: 512*512, 1K*1K
’ CUDA Core 33.5 TFLOPs Reduction Size: 64, 128, 256, 512, 1024
B200 (Blackwell) SXM Tensor Core 40.0 TFLOPs eaty _ Rize:iGay 128, 256,’ 212,.1024
180 GB. 8 TB/ BFS Five real-world graphs from SuiteSparse [61], see Table 5
’ 5 CUDA Core 40.0 TFLOPs PiC N: 64K, 128K, 256K, 512K, IM

Specifications of A100, H200, and B200 Five test cases for each kernel



I Experiments - Algorithmic Implementation Variants

« To study performance changes and determine whether they come from MMU usage or algorithm

design, we consider three implementation variants.

« Tensor Core version (TC)

Uses Tensor Cores for computation, calling FP64 MMA
Instructions.

« CUDA Core MMA Replacement (CC)

Keeps the same data structures and algorithm as TC,
but replaces MMA with CUDA Core computation.

« CUDA Core Essential Replacement (CC-E)

Computes only the essential parts on CUDA Cores,
removing extra work introduced by MMU mapping.

Tensor

Co rg

CUDA

Co rg

CUDA

Co rg

Example: GEMV (Ax=y)

X =

A Scale x  yin diagonal
X =

A Scale x  yin diagonal
Xl—=

A X y



Speedups

I Experiments - Performance
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Performance comparison of baselines, TC, CC, and CC-E implementations for all workloads on the three GPUs.
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I Experiments - Performance

« Do MMU accelerated kernels outperform vector based implementations? - TC vs. Baseline

[MMA input and\

output tiles are 4—// n\ A100 B H200 I;I—_E’-Z-Qg‘ (o )

well utilized. TC ‘\LM A~ QIHQET 77 QIV With higher

show portable A ) 7 \| N, | g D a2 memory )

speedups across 5 i \ ooy V| NI o™ G h_L_, | bandwidth on

architectures. T " H 1 SO e " W ~SE T H200 and B200,

\_ o 2!' e ! Rl :l"_"“.m_ ™ g o ! TC shows a clear
g_ : = Jo 1 ir| I e . 4.'_‘1\ == A /__'__ advantage over
w VTR TR 2 ey Y 1: R J%i Qhe baseline. )

(Using constant o > VAN 2 c)' \\\r X -

matrices as operands R C’aé\\)c,{\c(‘ of 6?)]\ 5()%]\ 6?)“

reduces data Q

movement, leading to

better performance. y Speedups of TC versions compared to their baselines across all workloads.

\_

Key Observation 3: MMU-accelerated workloads consistently outperform vector baselines
in most cases, and exhibit performance portability across the Ampere, Hopper, and
Blackwell architectures.




I Experiments - Performance

«  With the same data structures and algorithms, how much speedup comes purely from MMU
hardware? - CCvs. TC

(Consistent with ) 1 A1Q0O0 1 H200 1 B200
peak throughput o nmo-m-_ .-—0-IV —
gaps, CC is ~2x m ______________ Q ________________ Q Q _______ pa— ?Q _________ QN
slower than TC. = N e . /. NS ~_ 292N [The gap is smaller,
\_ J ’ © \ I I Do o5 © \ > 20
S, Qnl 7 TN S off | Bos I | but TC still wins:
A= STl < ST 1 | TC can benefit

= [

%, .l :

00_5—:0'0 el =)
/Be RY-
Beyond peak (7)) ]
|

throughput,
CUDA cores
cannot exploit
constant matrices
as effectively as

Qensor Cores. j

Key Observation 4: Removing the impact of data structures and algorithms (replacing
MMU instructions with equivalent vector unit operations), MMUs account for 10% to 200%
of the performance gains.

q—
O - " || .
- | oM N 1"| | bandwidth bound
< Z_
W, B LR T kkernels. y
l," 1 1 1 1

Speedups of CC replacements over TC versions across all workloads.




I Experiments - Performance

* |s the redundant work introduced for MMU mapping worth it? Would vector units be faster after
removing it? > CC-Evs. TC

(For SpMV, after ) 0 A100 W H200 =3 B200

removing
redundancy, CC-E
can be further

Jm proved. y

r ~
For most kernels,

CC-E is close to TC.
Since TC also beats
the baseline and CC,
the introduced
redundancy is usually
Justified.

(TC is still faster\
overall, so the
redundancy is
generally

Qvorthwhile. )

J

Speedups of CC-E replacements over TC versions across all workloads.

Key Observation 5: Generally, the redundant computations introduced to enable MMU-
friendly matrix computing patterns should not be removed. The only exception is SpMV,
where avoiding the redundancy yields up to 20% higher performance.




[ e o

I EXperimentS = Power and Energyi EDP = Average Power x Execution Time?

=
5

---------------------------------------------------------

« We measure power, energy, and EDP (Energy—-Delay Product, lower is better) for each workload on

H 200- Baseline —— Tensor Core version (TC) CUDA Core MMA replacement (CC) CUDA Core Essential replacement (CCE)
GEMV GEMM SpMV SpGEMM FFT
. 750 == 600 600 — 1000
2 200 (RN N
g Bl > 1 4001y N
e N 2 00 ! 1 R — — 1 i Iy i VUre——
S A =a —— 200§} ] 2&0 Rt 1 \
Instantaneous 0 10 20 o 10 20 0 10 20 N _/10 20 0 10 20
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0 . 400 600 600 600
be similar to CC. o v oo IR
| “e—— | W e = | L
- / 200 /—]\_ 200 -/} | |\ 200 k ( \
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| But TC can finish
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Runtime (s) Runtime (s) Runtime (s) Runtime (s) Runtime (s) faster SO energy
I

Power consumption over time of baselines and three implementations for all workloads on H200. | and EDP are

BN Baselne WEN TC MW CC [0 CCE  ============- ~\ lower overall.
~ = =] - v f 1

;42' - : ~ Qm- Qm- s I nm § @ N I N2 - - J

=101 8+ ol m@ B S B (EmB® AuEE Rog W I goo Cor Ern@m |1
W . ~N ©m) | | , ‘ icin | , aata] I
GEMM PiC FFT  Stencil Scan Reduction BFS GEMV SpMV SpGEMM\ Ql Q IlI-lll QlIv ,'

The EDP comparison of baselines, TC, CC, and CC-E implementations for all workloads on H200.

Key Observation 6: MMUs exhibit similar power consumption to vector units but
complete computations significantly faster, resulting in 30% to 80% lower geomean EDP
across all workloads.




I Experiments - Numerical Accuracy

« We measure FP64 numerical errors on H200 and B200, using the serial CPU results as the reference.

TC and CC show identical average and maximum errors.

Errors on H200 GPU Errors on B200 GPU
Workload Baseline TC/CC CC-E Baseline TC/CC CC-E
( Avg. ) Max. Avg. \  Max. Avg. Max. [ Avg. ) Max Avg. Max. Avg. Max.
GEMV 5.19E-16 | 3.55E-15 0 0 4.69E-16 3.55E-15 | 6.30E-16 | 3.55E-15 | 4.92E-16| 5.33E-15 6.07E-16 3.55E-15
GEMM 4.36E-14 | 3.69E-13 | 3.12E-13 | 1.82E-12 - - 5.22E-15| 4.97E-14 | 7.40E-15| 1.14E-13 - -
SpMV 2.15E-08 | 9.54E-07 |7.11E-10| 2.38E-07 2.02E-08 1.07E-06 | 2.10E-08 | 9.54E-07 | 8.92E-09] 4.77E-07 2.09E-08 1.07E-06
SpGEMM 7.10E-16 | 7.11E-14 |6.30E-16| 8.53E-14 6.30E-16 8.53E-14 | 6.78E-16| 7.11E-14 | 6.55E-16| 8.53E-14 6.55E-16 8.53E-14
FFT 4.83E-18 | 1.22E-15 | 7.50E-17 | 2.77E-14 - - 5.00E-18| 1.22E-15| 7.49E-17| 2.77E-14 - -
Stencil 1.05E-16 | 6.66E-16 | 8.77E-15 | 5.68E-14 - - 1.05E-16| 6.66E-16 | 5.84E-15]| 4.26E-14 - -
Reduction |1.82E-14| 5.68E-14 | 2.91E-14 | 8.53E-14 2.13E-14 5.33E-14 | 1.82E-14| 5.68E-14 | 291E-14| 8.53E-14 2.13E-14 5.33E-14
Scan 9.53E-15| 5.68E-14 | 1.11E-14 | 8.17E-14 1.11E-14 8.17E-14 | 9.53E-15| 5.68E-14 | 1.11E-14| 8.17E-14 1.11E-14 8.17E-14
PiC \ 0 ) 0 , 0 ) 0 - - (2.52E-16) 2.22E-15 \ 2.52E-16) 2.22E-15 - -

Errors can vary from Baseline to TC/CC, sometimes by more than one order of magnitude.

Key Observation 7: MMUs and vector units provide comparable numerical accuracy, but
algorithmic transformations for MMU utilization can induce significant numerical
deviations that undermine the reproducibility of scientific results.




I Experiments - Performance Model

« Cache-aware roofline model

@ Q I, Reduction\

and Scan use
segment processing
and are cache friendly,
so TC can even
exceed the DRAM

Qandwidth roofline. j

(InQ-IV, TC,CC,and
CC-E change memory
access patterns and get
closer to the bandwidth

roofline than the
\baseline (blue dot). )

Performance (G
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Memory i Compute
| Bound . M|xedl Bound
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Arithmetic Intensity (FLOP/byte)

mQ-I, FFT and GEMM\

have higher arithmetic
intensity, while Stencil
and PiC are lower.
Without advanced
GEMM optimizations,
TC GEMM does not

@ach peak throughput/

Key Observation 8: Adapting data layouts and algorithms for MMUs fundamentally alters
memory access patterns, often yielding more regular access and significant performance

gains.
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I Comparison with other Benchmark Suites

« Compared with Rodinia and SHOC: Cubie covers « We collect the following NCU metrics and run
more Berkeley Dwarfs and offers broader PCA. Cubie workloads show a wider spread in

characterization. the principal component space.
Rodinia SHOC Cubie Metric Name in NCU Description
Dwarf / Feature . gpu__dram_throughput global mem. throughput
[44] [59] (thls Work) Iitex_ t sector_hit_rate L1 cache hit rate
Dense linear algebra 3 2 2 Its__t_sector_hit_rate L2 cache hit rate
Sparse linear aleebra _ _ 2 l1tex__data_bank_conflicts_pipe_lsu_mem_shared shared mem. bank conflicts
p g sm__inst_executed.avg.per_cycle_active inst. per cycle
Spectral methods - 5 1 5 1 7 sm__inst_executed_pipe_lsu inst. by Isu pipes
N_Body = 1 1 sm__inst_executed_pipe_fma inst. by fma pipes
. sm__inst_executed_pipe_tensor inst. by tensor pipes
StruCtured grlqs 4 1 1 sm_pipe_tensor_cycles_active tensor active cycles
Unstructured grids 2 - -
MapReduce : 3 2 A Rodinia
Graph traversal 2 - 1 N4 N SHOC
Dynamic programming 1 - - 9 N 4 Cubie
. . o 2 r
Parallelization pattern v v g
AA A
Performance v/ v/ v/ S, 4 Y D
Power and energy v 4 v 4 v § s R & A
A
Precision v £ -2 AR A
. M
Memory bandwidth v v .
CPU-GPU data transfer v/ v [ ] 0 1 2 3

Principal Component 1

Key Observation 9: Originally developed with the primary goal of evaluating MMUs, the
Cubie benchmark suite encompasses a wide range of behaviors in scientific programs,
positioning it as an effective tool for assessing modern processors.
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I Conclusion

« We present Cubie, a benchmark suite of MMU optimized scientific kernels. Cubie covers diverse
parallel patterns and kernel behaviors, and evaluates performance, power, and numerical accuracy,
providing practical insights for architecture, algorithm, and application researchers.

Concerns . . Observations
Compute Patterns v v 01, O2
Performance Portability v v O3
Necessity of MMUs v v 04, O5
Power and Energy v 06
Numerical Precision v v v o7
Memory v v O8
Workload Diversity v v 09

Concerns and corresponding observations for architecture, algorithm, and application researchers.



I A Call for Preserving FP64 MMU Capability

FP16 CUDA Core FP16 Tensor Core
—-e- FP64 CUDA Core —a— P64 Tensor Core .
- FP16 TC: continues to
v 103 13.2x% rl.ox grow across A100 —
S . ] H200 — B200.
= 107 13.4x —e——10.4x
10t L g======m7 77 , =
2020 2022 4 )
A100 H200 8200 FP64 TC: drops on B200.
Gen3 TC Gen4 TC Gen5 TC

« Our results show FP64 MMU acceleration benefits most scientific workloads.

* Future GPUs should KEEP FP64 MMUs as a core capability!
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