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. | Three Phases of Sparse LU Factorisation

Sparse LU factorisation includes three major phases: reordering, symbolic
and numeric factorisation.
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, The reordering phase aims to permute the matrix A to
Reordering i
reduce fill-in elements.
svmbol The symbolic factorisation phase identifies the
ymBOHc structures of the sparse factor matrices L and U.

The numeric factorisation phase determines the value of
Numeric L and U, which is generally the only stage processing a
large amount of floating point operations.
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The numeric phase spends most of the time, which motivates us to investigate
a strategy for optimising the numeric phase on heterogeneous GPU clusters.

.} Time Breakdown of Sparse LU factorisation

g 1] Reordering Symbolic B Numeric
o/ .
_8 100 A) he numeric factorisation \
N 750/0 phase spends most
®
o/ . execution time, on average
g o0 A) 97%, and is almost the only
o 25%) phase that scales to a large
amount of compute nodes.
£ 0% -1 ,\ (\ P /
— \ N\ S
Q‘a \’ ra,\)‘6 (\\Q QS
Matrlces
Sparse direct solver: SuperLU 9.1.0
CPU: AMD Ryzen 9 9950X (one core)
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. 1 Task Dependencies Restrict Concurrency

There are three task types (LU factorisation, triangular solve and Schur complement) in sparse
LU factorisation. This figure shows the task dependency of factorising a 6-by-6 blocked matrix.

@ LU Eactorisation @ Fristly, task ‘1F starts.
T  Triangular Solve

(S) Schur Complement
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There are three task types (LU factorisation, triangular solve and Schur complement) in sparse
LU factorisation. This figure shows the task dependency of factorising a 6-by-6 blocked matrix.

'S) Schur Complement < 4T
O
'IQ 2 | 3
4 |.5.|-6
Ta| aBe | 2
-

Task Count Statistics
LU factorisation x3
Triangular solve x6
Schur complement x5
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Fristly, task ‘1F starts.

Then, four triangular
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executed, depending on
the result of “1F.
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There are three task types (LU factorisation, triangular solve and Schur complement) in sparse
LU factorisation. This figure shows the task dependency of factorising a 6-by-6 blocked matrix.
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There are three task types (LU factorisation, triangular solve and Schur complement) in sparse
LU factorisation. This figure shows the task dependency of factorising a 6-by-6 blocked matrix.
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There are three task types (LU factorisation, triangular solve and Schur complement) in sparse
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@ LU Factorisation

. 1 Task Dependencies Restrict Concurrency

Fristly, task ‘1F starts.

T Triangular Solve Then, four triangular

solve tasks can be

'S) Schur Complement
— executed, depending on

) the result of “1F.
12 | 3
Q After this, four Schur
4 C% 6 complement tasks can
Q Q be executed, depending

o'e on previous results.

V4 8 \9
The dependencies

4 L N between tasks are
Task Count Statistics complex in sparse LU

LU factorisation x3 factorisati hich
Triangular solve x6 actorisation, whic

Schur complement x5 restricts concurren cy.
N J

China University of Petroleum-Beijing

PPoPP 2026, Sydney, Australia Feb. 3, 2026 12




22| ab

There are three task types (LU factorisation, triangular solve and Schur complement) in sparse
LU factorisation. This figure shows the task dependency of factorising a 6-by-6 blocked matrix.
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. 1 Task Dependencies Restrict Concurrency

There are three task types (LU factorisation, triangular solve and Schur complement) in sparse
LU factorisation. This figure shows the task dependency of factorising a 6-by-6 blocked matrix.
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L | Single Task Is Too Small For a GPU

Existing methods break the matrix into small blocks and generate small tasks.
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Supernodal / Multifrontal Methods:
The input of each task is generally
very small, typically on the order of

10 on average.
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The small scale of
individual tasks limits
the effective utilisation
of GPU parallelism.

\

j

Sparse Blocking Methods:
The input of each task is generally bigger,
typically on the order of 512, with a sparsity

of approximately 0.05 on average.
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L Aggregate: to Prepare More Tasks for a GPU

In the numeric factorisation stage, some tasks
are mutually independent and they can be
executed concurrently.

We conduct a static analysis on the task DAGs
from SuperLU and PangulLU, recording the
parallelisable task count.

/In the violin plots, the width at each
vertical position indicates the count of

Parallelisable

task count
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L Aggregate: to Prepare More Tasks for a GPU

Taking the matrix ‘Ga41As41H72’ highlighted, SuperLU
the highest number of tasks can run in parallel <+«
are 1047 and 199 in SuperLU and PangulU. 231 ® % fime Step (x10%)
. . . = %1000
The observation brings the potential to run S8
_ a~ 500
the tasks in a batch mode. ) J\
O'-'\(\‘- : -’(-;\-’\21'\’\3
‘ Qa"d-- \ aud\--“\QK-ge(%in Gk 208" ¢ a0®
Matrices
- Coneiderat ™
onsiderations
20—
Prepare Obey Consider 2 200[icha il | Pangukt).
adequate dependency task ‘_5% 150/ °,
9 tasks constraints priority Y %% 100 L Time Step (x1073) ‘ A
5 O R
e~ s0 Tl
[ o 4 A A 1 ‘ ---- *
. . . 0-1 \oa(‘a,.- \,\‘\ \)d\ ‘\]\01 “\p\k Se(e & 'aA‘\ age'\%
We will design the Aggregate stage with two modules S Natices
called Prioritizer and Container in Trojan Horse.
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This figure shows the parallelisable tasks when factorising a 6-by-6 sparse métrix, assuming
a GPU can process two tasks in parallel. It leads to a requirement to batch diverse tasks.

. | Batch: to Selectively Run the Tasks in Parallel
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Schur complement x5
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This figure shows the parallelisable tasks when factorising a 6-by-6 sparse métrix, assuming
a GPU can process two tasks in parallel. It leads to a requirement to batch diverse tasks.
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This figure shows the parallelisable tasks when factorising a 6-by-6 sparse métrix, assuming
a GPU can process two tasks in parallel. It leads to a requirement to batch diverse tasks.
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This figure shows the parallelisable tasks when factorising a 6-by-6 sparse métrix, assuming
a GPU can process two tasks in parallel. It leads to a requirement to batch diverse tasks.
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This figure shows the parallelisable tasks when factorising a 6-by-6 sparse métrix, assuming
a GPU can process two tasks in parallel. It leads to a requirement to batch diverse tasks.
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This figure shows the parallelisable tasks when factorising a 6-by-6 sparse métrix, assuming
a GPU can process two tasks in parallel. It leads to a requirement to batch diverse tasks.
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This figure shows the parallelisable tasks when factorising a 6-by-6 sparse métrix, assuming
a GPU can process two tasks in parallel. It leads to a requirement to batch diverse tasks.
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This figure shows the parallelisable tasks when factorising a 6-by-6 sparse métrix, assuming
a GPU can process two tasks in parallel. It leads to a requirement to batch diverse tasks.
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This figure shows the parallelisable tasks when factorising a 6-by-6 sparse matrlx assuming
a GPU can process two tasks in parallel. It leads to a requirement to batch diverse tasks.
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T ) Triangular solve

@ Schur complement :

Different kinds of Batches
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Invoke different kernels
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The Batch stage would receive it
e tasks on different blocky Trojan Horse: to

« tasks of different types, | aggregate and batch small
- tasks triggered by differ tasks for saturating GPUs.

For different tasks in one batched execution,
* their kernel may be different,

® O @

3

‘00 ‘@

From different blocks
Hybrid dense and sparse
Triggered by different diagonal blocks

@ ool
‘co0 0@

on block 8) are triggered by different diagonal blocks (blocks 1

Tasks ‘5F” (LU factorisation on block 5) and ‘8S,’ (Schur update
and 5) and can be batched, despite involving different kernels.

* their inputs may be dense or sparse blocks, and

YT )E
oe 000

To the same block (write conflict)
Hybrid dense and sparse

Triggered by different diagonal blocks

&

|

Tasks ‘3T’ (triangular solve on block 3, sparse) and ‘8T’
(triangular solve on block 8, dense) can be batched, despite
one is sparse and the other is dense.

 they may write the same block.

Tasks ‘9S," (Schur update on block 9, triggered by the Oth diagonal block 1) and ‘9S,” (Schur update on block 8, triggered by the
1st diagonal block 5) can be batched. Both task compute Schur update on block 9. Batching them will bring write conflict,

therefore needs atomic operations.

" N/
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The Trojan Horse focuses on
(1) Scaling up the execution efficiency of a single GPU in a cluster, and
(2) Scaling out to multiple GPUs, and integrating to distributed solvers.

Block-cycli¢’)
process grid

’
e

Pij

The Trojan Horse strategy in the process Pij
Aggregate Batch

[OTask, high priority ( Task, low priority ()Task, priority not decided)
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Two stages:
* Aggregate
* Batch

Four functional modules:
* Prioritizer
* Container
* Collector
* Executor
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The Trojan Horse focuses on
(1) Scaling up the execution efficiency of a single GPU in a cluster, and
(2) Scaling out to multiple GPUs, and integrating to distributed solvers.
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Four functional modules:
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* Container
* Collector
* Executor
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(1) Scaling up the execution efficiency of a single GPU in a cluster, and
(2) Scaling out to multiple GPUs, and integrating to distributed solvers.

The Trojan Horse strategy in the process Pij

Aggregate Batch
/ el
(Block-cyclic s ke,
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- o = > 9 >
7 4--- . l Low
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Pij ' tasks
\ S -j """"

i )
(OTask, high priority () Task, low priority ()Task, priority not decided)
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The Trojan Horse focuses on

(1) Scaling up the execution efficiency of a single GPU in a cluster, and
(2) Scaling out to multiple GPUs, and integrating to distributed solvers.

The Trojan Horse strategy in the process Pij
Aggregate Batch
r b L)
"Blo ck-cycli E\ :gsll(l; ptgggy Collector
process gl,rjd OO ;( Prioritizer> O O
. >
Pii l ( pt:?g{(wity ®
ij -~ | tasks
N e 0o
) o

o
(OTask, high priority ( Task, low priority ()Task, priority not decided)

China University of Petroleum-Beijing

PPoPP 2026, Sydney, Australia

Two stages:

Four functional modules:

Aggregate

Batch

Prioritizer
Container
Collector
Executor

Feb. 3, 2026

22| ab

) BRRF RS

Super Scientific Software Laboratory

35



22| ab

/) BRI RS

Super Scientific Software Laboratory

r - -
L 4 Overview

The Trojan Horse focuses on
(1) Scaling up the execution efficiency of a single GPU in a cluster, and
(2) Scaling out to multiple GPUs, and integrating to distributed solvers.

The Trojan Horse strategy in the process Pij Two stages:
Aggregate Batch .
2 | ggreg ich Aggregate
(Block-cyclig) fabie Fedid Collector * Batch
process g,r’id O O ;( Prioritizer> O O
—m > :
- Four functional modules:
~ l -\ priority O . oy
= Pij y tasks 00 * Prioritizer
~. {C*J + Container
e e * Collector
. —— . . —— ¢ Executor
(OTask, high priority ( Task, low priority ()Task, priority not demded)
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L 4 Overview

The Trojan Horse focuses on
(1) Scaling up the execution efficiency of a single GPU in a cluster, and
(2) Scaling out to multiple GPUs, and integrating to distributed solvers.

(Block-cyclic )
process grid

14
.

Pij

The Trojan Horse strategy in the process Pij

Aggregate
High

Input /\ priority
tasks tasks

Batch

Collector

OOK?rioritizer) O O‘
\—/Low ]

l priority
~| tasks

( Container} —

@
e

L

(OTask, high priority () Task, low priority ()Task, priority not decided)
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Two stages:
* Aggregate
* Batch

Four functional modules:
* Prioritizer
* Container
* Collector
* Executor
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L 4 Overview

The Trojan Horse focuses on
(1) Scaling up the execution efficiency of a single GPU in a cluster, and
(2) Scaling out to multiple GPUs, and integrating to distributed solvers.

The Trojan Horse strategy in the process Pij Two stages:
g AggregateHigh ) B\?tih . * Aggregate
/Block-cycliﬁ\ ::gll:; ptggai;y Collector| |[Executor e Batch
process 9,,”0' O O Prioritizer> O O L O O
— o ! @ 4 O | ‘,t Four functional modules:
. | |Pi l DFiacks’ o0 00 * Prioritizer
N : / """ (Cmtai",erj =00 00 e Container
— BN et * Collector
— — —— * Executor
(OTask, high priority () Task, low priority ()Task, priority not demded)
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L 4 Overview

The Trojan Horse focuses on
(1) Scaling up the execution efficiency of a single GPU in a cluster, and
(2) Scaling out to multiple GPUs, and integrating to distributed solvers.

(Block-cyclic
process grid

4
g

Pij

N TJA‘-~-
~
IN
~

The Trojan Horse strategy in the process Pij

Aggregate
High
Input priority
tasks tasks

Batch
\\
Eollector

/ N\
Executor

, Tasks to
L ) (:) other

OO ;( Prioritizer> O O‘

Low
-\ priority
| tasks

{Container J —>

<:> - processes

o0 00 00
(:? <:> ® ®

— 5
(OTask, high priority ( Task, low priority ()Task, priority not decided)
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Two stages:
* Aggregate
* Batch

Four functional modules:
* Prioritizer
* Container
* Collector
* Executor
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The Trojan Horse strategy in the process Pij

Aggregate Batch
. High- B L
t:rtl:t / P'l:mt!' Collector Executor
i Tasks fo
DQQ?WZEEJ @ ok,

o o188 o
|t 00100
Container | !! \._)\.:,:
coo 000 ®®

(I Task, high priority | Task, low pricrity (_Task, priority not decided]
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We prepare an example of factorising a 6-order
blocked matrix using a solver integrated with
the Trojan Horse.

Each number on the blocked matrix labels a
nonzero block.

An Example to Use the Trojan Horse

1" represents block id, 'F' represents
@l this block runs LU Factorisation.

21. 12T “2' represents block id, 'T' represents
this block runs Triangular solve.

= '9' represents block id, 'S1' represents
gsj‘lSchur complement task led by the 1st
diagonal block.

7511381 More than one task in one rectangle
9S1 15581 means these tasks are batched.

The width of the rectangle represents
9T |the time unit(s) required by these

IEI".iTtasks. One or two tasks take one time
unit.

2T 12T Three or four tasks take two time

se0 D @ 3 @ 5 ® @ ®
PO's task | 781 1381 7F | 9T [1582]
s aske i03951 1581, 13T B
P1's tasks L 2T 12T 8T [14S2|[14T
e N e
. 10T 5T
P2's tasks aT
P3's tasks [3F] 11s0| 11F

(d) SuperLU : Tasks of the same type from the same block can be batched.

Batch tasks of different blocks Batch tasks of different blocks
These Triangular solve tasks belong to || These Schur complement tasks belong

different blocks, and do not depend on || to different blocks, and do not depend
each other, so can be batched. on each other, so can be batched.

Sttp @ @ ® @ & ® ® ® ©® 4 4

An elimination tree, or a DAG, of the numeric
factorisation phase.

6T units, and so on.

T2l 1fo | o] [
3415} 1

[6]78]9| 2 2]

10[ ¢ [ [14--1{} 3

: [1213[14]15]F 4 HJ

(a) Matrix ( imination tree

The complete dependencies of all 48 tasks:
 5diagonal LU factorisation

e 10 triangular solve

* 7 Schur complement

These tasks are divided into 5 parts by the
diagonal blocks 0-4 triggering them.

\

J [
2T)  A0T

_®
4
's1) (s1) s @v

(3] @@L
8T

82

147

=l

J

China University of Petroleum-Beijing

(c) Task DAG

"~ Task Number Statics (F):5 (T):10 §):7 |

PPoPP 2026, Sydney, Australia

PO'stasks[AF]  [7S1|[7F|[1551/[951][ OT |[1351[13T|[1552|[16F]

P1's tasks 6T || 2T |[12T | 8T 1452 (14T
P2's tasks 4T | 10T || 5T
P3's tasks [ 3F | [11F]

(e) PanguLU : Only selects tasks’ priority, and does not batch anything.

Step @@ & ® @
. 1F 9T |[15S2/[15F
P0's tasks 1351 13T
PO's
Container
P1's tasks 1482 [147
P1's
Container
' T 1
PSS 10%" Time Unit Statistics
-
P2's 5T | (d) SuperLU: 10 time units
Container
.............................................................................................. (e) PanguLU: 11 time units
P3's tasks 2T 11150/ [ 11F |
(f) SuperLU or PangulLU with
P3's Trojan Horse: 8 time units
Container

(f) SuperLU or PanguLU with Trojan Horse

Feb. 3, 2026 42



', An Example to Use the Trojan Horse

Step (1) @ 3 @ & ® @ ®

PO's tasks T 7751 13817 7F | oT |[1552 15F
s tasks ;OI'??" 1551 13T

P1's tasks | S ' o e
N , 6T
. 10T 5T

P2's tasks aT

P3's tasks 2 [11F ]

(d) SuperLU : Tasks of the same type from the same block can be batched.

These Triangular solve tasks belong to || These Schur complement tasks belong
different blocks, and do not depend on || to different blocks, and do not depend

0 _Batch tasks of different blocks Batch tasks of different blocks
T
each other, so can be batched. on each other, so can be batched.

Step O @ ® @ & ® @® ® ©® @ 4

PO's tasks| 1F | (781 7F |[1581|[9s1 ][ 9T |[1351|/13T |[1552|[15F |
e e e o
P2's tasks 4T (10T 5T | B
P3's tasks E]

e angu - Unly selects tasks priority, an oées not patch an ing.

455 B8
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Step D @ @@ ® ® @ ®

] [1F ] 7S17 7F 4951/ 9T [15S2|[15F |
PlEaks 1155441381 13T
PO's 951
Container 1381
P1's tasks i 21?121- & LT
P1's 21
Container
e e
PZstasks 1 4084 Time Unit Statistics
e = -
P2's | 5T | (d) SuperLU: 10 time units
Container
........................... 3 F..AA1A1.soi1AF.AA. (e) PanguLU: 11 time units
P3's tasks .
(f) SuperLU or PangulLU with
P3's Trojan Horse: 8 time units
Container

SuperLU or PanguLU with Trojan Horse

China University of Petroleum-Beijing

4 N
The timeline (10 time units) of SuperlLU using four processes.
SuperLU can batch:

e Tasks of the same type
* Tasks from the same elimination tree level.

\. J
The timeline (11 time units) of PangulU using four processes.
PangulLU executes tasks based on priority and without batching.

4 N
The timeline (only 8 time units) of SuperlLU or PangulU with the
Trojan Horse using four processes.

Solver with Trojan Horse can batch:
» Tasks of different blocks
* Tasks of different types
| * Tasks triggered by different diagonal blocks )
Assume the GPU can execute two tasks simultaneously.
PPoPP 2026, Sydney, Australia Feb. 3, 2026 43
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' | Aggregate Stage: Module 1: Prioritizer

The Prioritizer is designed to

Tag executable tasks and separate them into high- and low-priority tasks.

— Ensure the high-priority tasks be executed earlier.

22| ab
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Tasks to
other
processes

Q0

The Trojan Horse strategy in the process Pij
Aggregate Batch
, - High- - ~ ™~
/Block-cyclig?\ :QSPE p :LI;F i:nllectur Executor|
process g","'d () L\Priuritizer N0 © O
; > >
!’.f d“__.-*"' |\J Low O
B l priority O
Pij | tasks O O
\§ / " Container | ——
e AN J

-
[OTask, high priority ( Task, low priority ( )Task, priority not decided)

PPoPP 2026, Sydney, Australia

China University of Petroleum-Beijing
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. . Aggregate Stage: Module 1: Prioritizer

o o ———

( T
' (@ Receive
' executable tasks

—— o

-~ — -

(@ Prioritize
executable tasks

(@ The Prioritizer needs to receive executable tas

(Block-cycli¢')
process grid

4
am

Pij

The Trojan Horse strategy in the process Pij
Batch

Aggregate

— ~ High-
npu priority
tasks |~ tasks

OO;Hrioritizer ) @ @

S —

Low.

priority
tasks

Container | ———

O
X

O

Collector| Executor

O

Tasks to
other
processes

QO

executable tasks

[OTask, high priority ( Task, low priority ()Task, priority not decided

<S.

(3®Provide
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13T) (21T

e

Example:

After the execution of ‘1F and ‘4F’, '2T', '3T', '8T', and '16T' are the executable tasks.

China University of Petroleum-Beijing

PPoPP 2026, Sydney, Australia

Feb. 3, 2026

46




. . Aggregate Stage: Module 1: Prioritizer

@ Receive
executable tasks

(@ Prioritize
executable tasks

- - -

———————————————

(3®Provide
executable tasks

(@ The Prioritizer determines the urgency of each task.

(Block-cycli¢')
process grid

4
am

Pij

The Trojan Horse strategy in the process Pij
Batch

Collector |[Executor

Aggregate
High-
Input priority
tasks tasks Tasks to

O O :Frioritizer O ) O other
O processes
lobss  |® OC
tasks O O

Container | ———

[OTask, high priority ( Task, low priority ()Task, priority not decided
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1 2 3
4195 6|7
3|9 1011112

13 14 15
16(17(18]19|20

2122|2324 |25|26

The closer a block is to the diagonal block, the higher its urgency.

China University of Petroleum-Beijing

PPoPP 2026, Sydney, Australia
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. o Aggregate Stage: Module 1: Prioritizer
@ Receive ' (2 Prioritize \E (3®Provide
executable tasks ' executable tasks '

| ]

———————————————

executable tasks

22| ab
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For example, 1

‘BT’ is the closest to the diagonal block (the most urgent), and
‘3T’ is the farthest from the diagonal block (the least urgent).

4 5]

i3

8’| 9 |10

11

12

13T 21T

15

16(17(18

19

20

22|23 |24

25

26

China University of Petroleum-Beijing

PPoPP 2026, Sydney, Australia
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. . Aggregate Stage: Module 1: Prioritizer

o o —

@ Receive (@ Prioritize
executable tasks executable tasks ' executable tasks

. I

(3 The Prioritizer will provide executable tasks to Collector and Container
according to the task priorities.

Step @ @
. [1F |
Aggregate Batch PO's tasks
Input High- c Pf'.s . 5
npu priority ontainer
tasks__ tasks Collector|| Executor 77 . 3T | Exam p|€:
ey P1's task
O O Prioritizer ) ) © U |l | ond Time Step
> P1’s 16T
’ > O container |37 | . 8T = Collector
Low- .
l priority O Pastasks || | - 2T, 16T—> Container
tasks P2's 6T . .
Container , | O® comainer 7 |~ 31~ Container |
P3's tasks 2721.}
P3's
Container

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 49
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L | Aggregate Stage: Module 2: Container

The Container is designed to:
Serve as a temporary buffer for tasks with relatively lower priority.

— Give some tasks for batched run when GPU is not that saturated.

Step @@@@@@@Q@.@@
[4F | [9S1 |[ 9F |[1181|[ 11T |[19S2| [19F |

Aggregate Batch PO's tasks 1954 1750 17T
~ High- - ) PO's 1181
i // AN P;“;'W Collector| [Executor Container | . S| o
SKS P1's task 8T |[16T| 3T |[10T 18S2| 18T 20T
O O pnunt.zer O O O s tasks 2T 12812081 12T 208
, 3 P1's 16T || 3T
\ / O Container 3T
T Low- o po's taske 5T | 6T | 21T|[23T| | 255 | 25T
priority S tasks 13T ||23S1//2551
tasks O O P2's 6T |[21T
I Container
Container }— | — — | . 77|l G e —
, [4F || 7T |[14So|| 14F |[15S0| [26S0|[ 15T |[ 24T |[26S3] [26S4|[ 26F |
P3's tasks 22T 2681 24S0| 2652|245 |
., A h ,x"l — P3's 15T
Container

Tasks in the Container do not need to be executed immediately, therefore can be deferred to
saturate the GPU when high-priority tasks are not enough in later timesteps.

China University of Petroleum-Beijing

PPoPP 2026, Sydney, Australia Feb. 3, 2026 50
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. | Batch Stage: Module 3: Collector

The Collector is designed to :

Assemble a group of tasks and dispatch them to the GPU.
—> Schedule workload to saturate the GPU’s resources.

Aggregate Batch
High- The count of the tasks collected by the Collector
Input priority Collector| [Executor ) ) )

B ® is dynamically determined:

(O Q) ( prioritizer ) () O‘_ ®  While the Executor runs tasks, the Collector
Low- ® will collect one more group of tasks.
l ) o0 * The Collector will collect more tasks on faster
Container | ——> GPUs, and less tasks for slower GPUs.

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026




22| ab

o/ BRI FIRAFEENE
> uper Scientific Software Laboratory

Supe

. | Batch Stage: Module 3: Collector

The Collector is designed to :
Assemble a group of tasks and dispatch them to the GPU.
—> Schedule workload to saturate the GPU’s resources.

Aggregate Sl Two phases of task collecting
:ﬂput priority Collector| Executor
asks tasks
OO Prinritizer) O O @)
—_— > O
l p;eri%E;y O
dSKS
[Cuntainer} S o

China University of Petroleum-Beijing

PPoPP 2026, Sydney, Australia Feb. 3, 2026 52
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Supe

. | Batch Stage: Module 3: Collector

The Collector is designed to :
Assemble a group of tasks and dispatch them to the GPU.
—> Schedule workload to saturate the GPU’s resources.

Aggregate el Two phases of task collecting
ST V. N2 N
Ptralg:(';v Collector| [Executor R e tasks f
ive tasks from
OO Prinritizer) O O O ece e .
/L— O Prioritizer
l : pri%EEy O
tasks
[Cuntainer} — @0
- I
PPOPP 2026, Sydney, Australia Feb. 3, 2026 53
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. | Batch Stage: Module 3: Collector

The Collector is designed to :
Assemble a group of tasks and dispatch them to the GPU.
—> Schedule workload to saturate the GPU’s resources.

Aggregate o Lt Two phases of task collecting
igh “ N T
:22;‘; priority Collector| [Executor :
N A Receive tasks from Fetch tasks from
QQ Prmnhzer) O O O Prioriti Contai
> N @ rioritizer ontainer
1 Low-
l pri%Ety O
tasks
[Cuntainer}— ®0
N J \ J
PPOPP 2026, Sydney, Australia Feb. 3, 2026 54
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Supe

. | Batch Stage: Module 3: Collector

The Collector is designed to :
Assemble a group of tasks and dispatch them to the GPU.
—> Schedule workload to saturate the GPU’s resources.

Aggregate Sateh . Two phases of task collecting
:22&‘; Ptriﬂiitv Collector| [Executor -
OO0 Prinritizer>“6 @ ® Receive tasks from Fetch tasks from
- > O Prioritizer Container
l : [::FSE;? O ‘
dSKS
Container | —— O O _ _
To ensure the most urgent tasks are considered first.

(& JoN

China University of Petroleum-Beijing
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Batch Stage: Module 4: Executor

The Executor is designed to:
Provide a flexible batched kernel.
— Let heterogeneous tasks run simultaneously.

Aggregate Batch
High- T
:ﬂput /\P"O"W v’(/‘.:fnrlIqtect«::nﬂl:ﬁ Executo?
asks tasks
Prioritizer O O O
\/ > O
L
prI%Ety O
tasks
(Cuntamer J — o
\ J Lk 2

China University of Petroleum-Beijing
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The heterogeneity of the tasks is reflected in:
(@ Each task can execute different types of kernels:
 GETRF (LU factorisation)
 TSTRF/GESSM (triangular solve)
e SSSSM (Schur complement matrix multiplication)
(@ Each matrix block can be dense or sparse.
(® Whether or not need to handle write conflicts.

PPoPP 2026, Sydney, Australia Feb. 3, 2026 56
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Batch Stage: Module 4: Executor

T CUDA Block

m/m [GETRF] [atomnic) / (02D rstre. | (D Each task can execute different types of

U kernels: GETRF, TSTRF, GESSM, SSSSM
CSC / CSC / CSC /
Dense pense || Dense | (@) Each block can be dense or sparse.
one column per CUDAblock || one row mBorXper CUDA block | @ Configurable whether to enable atomic
i‘"""""“-'-:--'."""..-'---'---'---'---'--""'"""“""'“':' """"""""" Rl Sttt entaliiininllededetalietetataly E Ope ratIOnS to resolve erte COﬂﬂICtS.

M/m cessM | | | (aomd®/ (3000 To execute multiple tasks in one CUDA kernel,

X oo B c| | | we map tasks to CUDA blocks.
CSC / —| CSC/ CSC/ [x| CSC/ |z| CSC/ .
Dense Dense Dense Dense Dense Before Iaunchlng the kernel, we prepare an

one column in B or X per CUDA block = |one column in Aor C per CUDA block | | @rray to store each task's starti ng block index.

Each task can use Each matrix block | ach task can execute
atomic operation or not. || can be dense or sparse. ||different types of kerne

GETRF TSTRF GESSM SSSSM
(10 columns) | (9 rows) (11 columns) (15 columns)
Index Array
China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 57
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Batch Stage: Module 4: Executor

T CUDA Block

m/m [GETRF] [atomnic) / (02D rstre. | (D Each task can execute different types of

U kernels: GETRF, TSTRF, GESSM, SSSSM
CSC / CSC / CSC /
Dense pense || Dense | (@) Each block can be dense or sparse.
one column per CUDAblock || one row mBorXper CUDA block | @ Configurable whether to enable atomic
i‘"""""“-'-:--'."""..-'---'---'---'---'--""'"""“""'“':' """"""""" Rl Sttt entaliiininllededetalietetataly E Ope ratIOnS to resolve erte COﬂﬂICtS.

M/m cessM | | | (aomd®/ (3000 To execute multiple tasks in one CUDA kernel,

X oo B c| | | we map tasks to CUDA blocks.
CSC / —| CSC/ CSC/ [x| CSC/ |z| CSC/ .
Dense Dense Dense Dense Dense Before Iaunchlng the kernel, we prepare an

one column in B or X per CUDA block = |one column in Aor C per CUDA block | | @rray to store each task's starti ng block index.

0 Each task can use Each matrix block | ach task can execute |
\atomic operation or not. ]| can be dense or sparse. ||different types of kernels. |

0 10 19

30 22 During execution, CUDA blocks use their

SSSSM block indices to identify their tasks.
(15 columns)

Index Array

GETRF
(10 columns)

TSTRF GESSM
(9 rows) (11 columns)

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 58
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. | Batch Stage: Module 4: Executor

o) /) [GETRr)
I —

A U The GETRF tasks assign one CUDA block per column,
CSC/ X adopting a synchronisation-free left-looking approach
Dense 1 for LU factorisation.

one column per CUDA block

Erormel IE=ST)

__AT B C The SSSSM tasks employ a column-column multiplication
CSC/ |y| CSC/ |=| CSC/ method, where each element of matrix B independently
Dense Dense Dense multiplies an entire column of matrix A.

T .
one column in A or C per CUDA block

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 59
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o) /[EEE) TSTRF

U B X
CSC/ CSC/
Dense Dense

one row in B or X per CUDA block

Gomic) /() Gessw
I i I | i i I
B X

CSC/ [Z| CSC/

1 Dense Dense

| = O =
one column in B or X per CUDA block

China University of Petroleum-Beijing
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The TSTRF tasks assign each CUDA block to a row of B.
Each thread holds an element in column of U and
multiply it with corresponding row element of B.

The GESSM tasks assign each CUDA block to a column of
B. Each thread holds an element in row of L and multiply
it with corresponding column element of B.

PPoPP 2026, Sydney, Australia
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Sug

. o Experimental Setup

We evaluate these solver variants (in double precision):
(1) SuperLU_DIST 9.1.0 without/with Trojan Horse (max supernode size : 256)
(2) PangulU 5.0.0 without/with Trojan Horse (block size: 512)
(3) PangulLU 5.0.0 with multiple CUDA streams (block size: 512)
(4) PaStiX 6.4.0 with StarPU 1.4.8
(5) MUMPS 5.6.0

We compiled above solvers with three major libraries:

(1) CUDA 12.8 (on NVIDIA GPUs) / ROCm 4.3 (on AMD GPUs)
(2) Intel MP] 2021.1
(3) OpenBLAS 0.3.29

The evaluation is conducted in three parts:
(1) Scale-up, on a single GPU (NVIDIA RTX 5060Ti, RTX 5090 and A100)

(2) Scale-out, on distributed multiple GPUs (16-card NVIDIA H100 and 16-card AMD MI50)
(3) Comparison with modern CPU (32-core Intel Xeon Gold 6462C)
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GPU platforms: RTX 5060Ti and RTX 5090 GPUs share the same architecture but differ in
theoretical performance (~4x FP64 peak performance difference, and ~4x memory

bandwidth difference), enabling an effective scale-up evaluation.

GPU #CUDA Cores | FP64 peak Memory B/W
RTX 5060Ti 4,608 0.37 TFlops 16 GB 0.45TB/s
RTX 5090 21,760 1.64 TFlops 32 GB 1.79 TB/s
A100 PCle 6,912 9.75 TFlops 40 GB 1.56 TB/s

PPoPP 2026, Sydney, Australia Feb. 3, 2026 64
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The four matrices used are from SuiteSparse, and were selected in prior SuperLU and
PangulLU benchmarks. These matrices are of moderate size, sufficient for GPU parallelism,
yet small enough to be tested on a single GPU.

v | oo | o | e | e
c-71 76.6K 860K 49.4M 24.9M
cagel2 130K 2.03M 550M 537M
para-8 156K 2.09M 187M 178M
Lin 256K 1.77M 216M 194M
PPOPP 2026, Sydney, Australia Feb. 3, 2026
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We trace the numeric factorisation phase of SuperLU and PangulLU without (que lines) and W|th
(red lines) the Trojan Horse. The performance of each kernel execution are shown in these figures.

—— SuperlU —— SuperLU w/ Trojan Horse Kernel Speedup
3100 c-71 300 cagel? 300 para-38 240 Lin ,V'?VE-rage: 1_22())(
© 50 150 400 120 aximum: 2.0x
(u5 | The solvers integrated with )

Time (s) Time (s)

— PangullU - P

% 900 %9 1000% 5 10 %O 9 18| Trojan Horse has higher

Time (s) Time (s) average performance (y-axis)

and completes factorisation

angulLU w/ Trojan Horse faster (x-axis). )
c-71 cagel? para-8 Lin
8_400 400 400 400 Kernel Speedup
E 200 200 200 200 Average: 25X
o612 D 2550 B 27 8 % 5 10 Maximum: 2.8x

Time (s) Time (s)
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The following figure illustrates the performance of different solvers on four example matrices.

SuperLU, 5060Ti M SuperLU w/ Trojan Horse, 5060Ti SuperLU Without Trojan Horse: 1.09x, ]
SuperLU, 5090 SuperLU w/ Trojan Horse, 5090 SuperLU With Trojan Horse: 1.94x.
PangulLU, 5060Ti""PanguLU (CUDA stream), 5060Ti
PangulLU, 5090 PanguLU (CUDA stream), 5090

MPaStiX, 5060Ti MEPangulLU w/ Trojan Horse, 5060Ti

PASHiX .
astix, 5090 PanguLU w/ Trojan Horse, 5090 PangulLU Without Trojan Horse: 1.57x,

ggg ____________________________________________________________________________________________________________________________________ PanguLU With Trojan Horse: 3.25x.
() 2D
L R e 2 A
L D0 Trojan Horse improve the
oo A - erJformance aipn attained

50 Lol RN -l p ;
| _
0 c-7/1 cagel2 para-8 Lin eometric from faster GPUs.
Matrices Mean

China University of Petroleum-Beijing
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Our aggregate stage reduces the kernel execution count, providing substantial tasks to batch.

Matrix Kernel count Kernel count Rate Matrix Kernel count Kernel count Rate
w/o Trojan Horse | w/ Trojan Horse w/o Trojan Horse | w/ Trojan Horse
c-71 12,991,278 110,227 0.85% c-71 17,678 515 2.91%
cagel2 28,722,440 80,157 0.28% cagel2 226,568 847 0.37%
para-8 2,241,384 40,627 1.81% para-8 47,617 1,009 2.12%
Lin 3,345,581 112,727 3.37% Lin 81,844 1,699 2.08%
Geomean 1.10% Geomean 1.48%
SuperLU PangulLU
For both SuperLU and PangulU, the number of kernel
execution decrease by about two orders of magnitude.
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L Reduction in Kernel Runtime of SuperLU

The Trojan Horse batched kernel reduces the kernel execution time. The comparison of
kernel execution times between SuperLU without and with Trojan Horse is shown below.

Kernel+Scatter BTrojan Horse batched Kernel = Others

~~

.__‘{3,125_"_931 1026

O An average reduction of 97.9%
B €

=T 7~ o

2 B0 B

O o5 i

g OL_ - : S— *__._

e c-71 cage... para... Lin Geometric

Matrices Mean
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. 1 Reduction in Kernel Runtime of PangulLU
i/ BERFI A=

The Trojan Horse batched kernel reduces the kernel execution time. The comparison of
kernel execution times between PangulLU without and with Trojan Horse is shown below.

BGETRF FEGESSM BETrojan Horse batched Kernel
TSTRF BSSSSM ' Others

0 50

0)15

E’IZ-

= 9

Qg

: 5

> 0 71 cage... para... Lin Geometric

Matrices Mean
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We conduct further performance evaluations on an NVIDIA A100 GPU using 200 square
matrices from the SuiteSparse. These matrices cover 31 different kinds, a wide range of sizes,
nonzeros in L+U, and flop counts. Trojan Horse yields an average (Geomean) speedup of 5.47x
(up to 418.79x) for SuperLU, and 2.84x (up to 5.59x) for PangulLU.

L 1 Scale-Up Evaluation on 200 Matrices

SuperlLU PangulLU
«SuperLU w/ Trojan Horse «PangulLU w/ Trojan Horse
240 300
2160 A Bogol |
5 160 7 5 yd
6 80 6 100
0 50100 150 200 0 50100 150 200
Matrices Matrices

Performance evaluation of Trojan Horse on 200 square matrices from SuiteSparse (GPU: an NVIDIA A100)
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PPoPP 2026, Sydney, Australia Feb. 3, 2026 71




Outline

e Background

®
@
©)

22| ob

Sparse LU Factorisation
Task Dependencies Restrict Concurrency
Single Task Is Too Small For a GPU

e Motivations

®
@

Aggregate: to Prepare More Tasks for a GPU
Batch: to Selectively Run the Tasks in Parallel

e Trojan Horse

®
@
€),

Overview
An Example to Use the Trojan Horse
Functional Modules of the Trojan Horse (Priortizer, Container, Collector & Executor)

e Experiments

®
@
€),
@

Experimental Setup

Scale-Up Evaluation
Scale-Out Evaluation
Comparison with CPU solvers

e Conclusion

China University of Petroleum-Beijing

PPoPP 2026, Sydney, Australia Feb. 3, 2026

) BRRF R =

super Scientific Software Laboratory

72



22| ab

) BRI E

Super Scientific S5oftware Laboratory

The hardware configuration is shown below. The 16-card H100 GPUs are evenly distributed
on two nodes, and the 16-card MI50 GPUs are evenly distributed on four nodes.

4 Scale-Out: Experimental Setup

16 GPUs #CUDA Cores FP64 peak Memory B/W
H100 SXM 14592 25.61 TFlops 80 GB 2.04TB/s
MI50 PCle 3840 6.71 TFlops 16 GB 1.02 TB/s

The six matrices used are from SuiteSparse and have been widely employed in existing
works on SuperLU and PangulLU.

Matrix n(A) nnz(A) nsl:l:(’f :_LZ) npnaz?fl_:_l"lj)
Ga41As41H72 268K 18.5M 4.61G 4.59G
RMO7R 381K 37.4M 2.68G 2.14G
cagel3 445K 7.48M 4.68G 4.66G
audikw_1 943K 77.6M 2.46G 2.43G
nlpkkt80 1.06M 28.1M 3.80G 3.28G
Serena 1.39M 64.1M 5.42G 5.38G

PPOPP 2026, Sydney, Australia Feb. 3, 2026 73
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Both SuperLU and PangulLU with Trojan Horse continue to deliver strong performance gains
as the number of GPUs increases, despite the workload per GPU is reduced.

" 7 Scale-Out Evaluation

—8— PasStiX -4 - SuperLU —A&— SuperLU w/ Trojan Horse Speedup on 16-card H100
-®- PangulLU PanguLU (using CUDA stream) —@— PangulLU w/ Trojan Horse Average Maximum
H100 MI50 H100 MI50 H100 MI50
800 7200 2800 SuperLU w/ Trojan Horse
o 600 5400- 2100 1 3.5x 24.6x
S 4001 3600+ 1400 1 .
5 / PanguLU w/ Trojan Horse
200+ & ~7 118001 700/ - 4‘ 19 53
Y Sa & -8~ .9x .3X
O,Lﬁ-#.—_gg&:ﬁ Y SO Sy O,X_---.A;—éf P ; : . : ole—% o o4 |
1 2 4 6841% 4111H272 4 8 16 1 2 4 8 éﬁﬂO;Rz 4 8 16 1 2 4 8 16 1132 4 8 16
ad41As cage
1200, H100 MI50 1600,_H100 H100 MI50 Speedup on 16-card MI50
Average Maximum
o 900/ 1200+ _
o
§ 600 800, SuperLU w/ Trojan Horse
O 450 400 4.7x 12.8x
g-- §=29==8 90— -k PangulLU w/ Trojan Hor
01 2 4 816 1 2 4 8 16 01 2 4 8 16 1 2 4 8 angulU / ola orse

audikw_1 nlpkkt80
- #Processes (onpe GPU per process) 1.3x 1.4x
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.} Comparison with CPU solvers

Ghe memory B/W and peak

[ — FP64 performance of a GPU
are higher than a CPU by

\about an order of magnitude.J

intel
- XEON

~Intel” Xeon' 6 processor

—

GPU CPU
Peak FP64 Performance: ~25 Tflops Peak FP64 Performance: ~3 Tflops
Memory B/W: ~2 TB/s Memory B/W: ~0.2 TB/s
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.} Comparison with CPU solvers

As shown in the red box, over the past twenty years, sparse direct methods are far from
saturating modern GPUs because of highly independent small tasks. Sparse direct methods
on GPU has been slower than CPU methods.

) SuperLU GPU PangulLU GPU SuperLU GPU PangulLU GPU
Matrix (w/o 'II)‘rojan Horse) (w/o T{iojan Horse) SuperLU CPU MUMPS CPU (w/ 'II‘)rojan Horse) (w/ Tlil‘;an Horse)
Time | Perf. Time | Perf. Time | Perf. Time | Perf. Time | Perf. Time | Perf.
cagel3 25141 s | 3 GFlops 897 s | 96 GFlops 1143 s| 75 GFlops 201s | 428 GFlops | 301s|286 GFlops 157 s | 548 GFlops
Ga41As41H72 10679 s | 9 GFlops 792 s | 119 GFlops 425 s | 222 GFlops 141s| 668 GFlops | 279s|338 GFlops 148 s | 636 GFlops
RMO7R 1157 s | 17 GFlops 197 s | 99 GFlops 92 s|212 GFlops  41s|476 GFlops 86 s | 227 GFlops 35 s | 557 GFlops
audikw_1 267 s | 43 GFlops 140 s | 83 GFlops 19 s | 609 GFlops 295|399 GFlops 65 s | 178 GFlops 24 s | 482 GFlops
nlpkkt80 700 s | 41 GFlops 395 s | 72 GFlops 43 s | 665 GFlops Fail 119 s | 240 GFlops 68 s | 421 GFlops
Serena 1248 s | 46 GFlops 733 s | 78 GFlops 815|703 GFlops 110s|518 GFlops | 150 s| 380 GFlops 112 s | 508 GFlops

For each matrix, underlined and bold represents the fastest result, and bold represents the second-fastest result.
CPU: Intel Xeon Gold 6462C (32 cores) GPU: NVIDIA H100

China University of Petroleum-Beijing
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As shown in the red box, today, SuperLU_DIST and PangulLU on GPU with Trojan Horse are
comparable to or faster than CPU methods.

() B R =

Super Scientific Software Laboratory

Matrix

SuperLU GPU

(w/o Trojan Horse)

Time | Perf.

PanguLU GPU

(w/o Trojan Horse)

Time | Perf.

SuperLU CPU
Time | Perf.

MUMPS CPU
Time | Perf.

SuperLU GPU

(w/ Trojan Horse)

Time | Perf.

PangulLU GPU

(w/ Trojan Horse)

Time | Perf.

cagel3
Ga41As41H72
RMO7R
audikw_1
nlpkkt80
Serena

25141 s | 3 GFlops
10679 s | 9 GFlops
1157 s | 17 GFlops
267 s | 43 GFlops
700 s | 41 GFlops
1248 s | 46 GFlops

897 s | 96 GFlops
792 s | 119 GFlops
197 s | 99 GFlops
140 s | 83 GFlops
395 s | 72 GFlops
733 s | 78 GFlops

1143 s | 75 GFlops
425 s | 222 GFlops
92 s | 212 GFlops
19 s | 609 GFlops

43 s | 665 GFlops

81 s | 703 GFlops

201 s | 428 GFlops
141 s | 668 GFlops

41 s | 476 GFlops
29 s | 399 GFlops
Fail
110 s | 518 GFlops

301 s | 286 GFlops
279 s | 338 GFlops
86 s | 227 GFlops
65 s | 178 GFlops
119 s | 240 GFlops
150 s | 380 GFlops

157 s | 548 GFlops

148 s | 636 GFlops
35 s | 557 GFlops
24 s | 482 GFlops
68 s | 421 GFlops
112 s | 508 GFlops

For each matrix, underlined and bold represents the fastest result, and bold represents the second-fastest result.
CPU: Intel Xeon Gold 6462C (32 cores) GPU: NVIDIA H100
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1. We propose the Trojan Horse strategy for efficiently aggregating and batching fine-grained
small tasks to saturate high-end GPUs;

2. We integrate the Trojan Horse strategy into SuperLU_DIST and PangulU to effectively
improve their task management and kernel performance;

3. We bring SuperLU_DIST and PangulLU obviously better scale-up throughput and comparab
scale-out performance.

We believe that more advanced scheduling techniques and faster kernels can further
accelerate sparse direct solvers on GPUs. Therefore, the work presented in this paper
serves only as a starting point and opens the door to a broader Renaissance of sparse
direct solvers on GPUs.

China University of Petroleum-Beijing

PPoPP 2026, Sydney, Australia Feb. 3, 2026

o/ BIRE LN E
> Super Scientific Software Laboratory

le

80



455 B8

/) BRRZRETR =

Super Scientific Software Laboratory

_..-..3&“ "u'.a%:-.._ pa ""-'.-..v 0 = EProg.

(f & A1 = = Iy =

i i JEW R & (\ by, &
PPoPP 2026 &3 R %4

i\ g £ e e

L A [ abte V1.1

ble ™

Trojan Horse: Aggregate-and-Batch for
Scaling Up Sparse Direct Solvers on GPU Clusters

Open-sourced on Github: https://github.com/SuperScientificSoftwarelLaboratory/TrojanHorse

Yida Li, Siwei Zhang, Yiduo Niu, Yang Du, Qingxiao Sun, Zhou Jin, Weifeng Liu
Super Scientific Software Laboratory (SSSLab)
China University of Petroleum-Beijing
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