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Sparse LU factorisation includes three major phases: reordering, symbolic 
and numeric factorisation.

Three Phases of Sparse LU Factorisation
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The reordering phase aims to permute the matrix A to 
reduce fill-in elements.

Reordering

Symbolic
The symbolic factorisation phase identifies the 
structures of the sparse factor matrices L and U.

Numeric
The numeric factorisation phase determines the value of 
L and U, which is generally the only stage processing a 
large amount of floating point operations. 

Three Phases of Sparse LU Factorisation
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The numeric phase spends most of the time, which motivates us to investigate 
a strategy for optimising the numeric phase on heterogeneous GPU clusters.

Sparse direct solver: SuperLU 9.1.0
CPU: AMD Ryzen 9 9950X (one core)

Time Breakdown of Sparse LU factorisation
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The numeric factorisation
phase spends most 
execution time, on average 
97%, and is almost the only 
phase that scales to a large 
amount of compute nodes.
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Task Dependencies Restrict Concurrency
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There are three task types (LU factorisation, triangular solve and Schur complement) in sparse 
LU factorisation. This figure shows the task dependency of factorising a 6-by-6 blocked matrix.

Fristly, task ‘1F’ starts.
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Single Task Is Too Small For a GPU

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 16

Existing methods break the matrix into small blocks and generate small tasks.

Supernodal / Multifrontal Methods:
The input of each task is generally
very small, typically on the order of
10 on average.

Sparse Blocking Methods:
The input of each task is generally bigger,
typically on the order of 512, with a sparsity
of approximately 0.05 on average.

The small scale of 
individual tasks limits 
the effective utilisation
of GPU parallelism.
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In the numeric factorisation stage, some tasks 
are mutually independent and they can be 
executed concurrently. 
We conduct a static analysis on the task DAGs 
from SuperLU and PanguLU, recording the 
parallelisable task count.

Aggregate: to Prepare More Tasks for a GPU
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In the violin plots, the width at each 
vertical position indicates the count of 
occurrences for a specific batch size. 
The height of each violin indicates the 
maximum parallelisable task count.

SuperLU

PanguLU



Aggregate: to Prepare More Tasks for a GPU

Taking the matrix ‘Ga41As41H72’ highlighted, 
the highest number of tasks can run in parallel 
are 1047 and 199 in SuperLU and PanguLU.
The observation brings the potential to run 
the tasks in a batch mode.

Prepare
adequate

 tasks

Obey 
dependency
constraints

Consider 
task

priority

Considerations

SuperLU

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 19

We will design the Aggregate stage with two modules 
called Prioritizer and Container in Trojan Horse.

PanguLU
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Batch: to Selectively Run the Tasks in Parallel

This figure shows the parallelisable tasks when factorising a 6-by-6 sparse matrix, assuming 
a GPU can process two tasks in parallel. It leads to a requirement to batch diverse tasks. 
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Batch: to Selectively Run the Tasks in Parallel

Tasks ‘5F’ (LU factorisation on block 5) and ‘8S0’ (Schur update 
on block 8) are triggered by different diagonal blocks (blocks 1 
and 5) and can be batched, despite involving different kernels.

Tasks ‘9S0’ (Schur update on block 9, triggered by the 0th diagonal block 1) and ‘9S1’ (Schur update on block 8 , triggered by the 
1st diagonal block 5) can be batched. Both task compute Schur update on block 9. Batching them will bring write conflict, 
therefore needs atomic operations.

The Batch stage would receive
• tasks on different blocks,
• tasks of different types, and
• tasks triggered by different diagonal blocks.
For different tasks in one batched execution,
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• their inputs may be dense or sparse blocks, and

• they may write the same block.

Tasks ‘3T’ (triangular solve on block 3, sparse) and ‘8T’ 
(triangular solve on block 8, dense) can be batched, despite 
one is sparse and the other is dense.

• their kernel may be different,

Trojan Horse: to 
aggregate and batch small 
tasks for saturating GPUs.
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Overview
The Trojan Horse focuses on
(1) Scaling up the execution efficiency of a single GPU in a cluster, and
(2) Scaling out to multiple GPUs, and integrating to distributed solvers.

Two stages: 
• Aggregate
• Batch 

Four functional modules:
• Prioritizer
• Container
• Collector
• Executor
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1 Aggregate + Batch
2 Input Tasks
3 Prioritizer, High/Low prio
4 Collector + red 
5 Container + green
6 Container -> Collector
7 Collector -> Executor
8 to other proc
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Overview
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An Example to Use the Trojan Horse

We prepare an example of factorising a 6-order 
blocked matrix using a solver integrated with 
the Trojan Horse.

Each number on the blocked matrix labels a 
nonzero block.

An elimination tree, or a DAG, of the numeric 
factorisation phase.

The complete dependencies of all 48 tasks:
• 5 diagonal LU factorisation
• 10 triangular solve
• 7 Schur complement 
These tasks are divided into 5 parts by the 
diagonal blocks 0-4 triggering them.
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An Example to Use the Trojan Horse

The timeline (11 time units) of PanguLU using four processes.
PanguLU executes tasks based on priority and without batching.

The timeline (only 8 time units) of SuperLU or PanguLU with the 
Trojan Horse using four processes.
Solver with Trojan Horse can batch:
• Tasks of different blocks
• Tasks of different types
• Tasks triggered by different diagonal blocks
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The timeline (10 time units) of SuperLU using four processes.
SuperLU can batch:
• Tasks of the same type
• Tasks from the same elimination tree level.

Assume the GPU can execute two tasks simultaneously.
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Aggregate Stage: Module 1: Prioritizer

The Prioritizer is designed to
Tag executable tasks and separate them into high- and low-priority tasks.
→ Ensure the high-priority tasks be executed earlier.
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Aggregate Stage: Module 1: Prioritizer
② Prioritize 

executable tasks
① Receive

executable tasks

Example:
After the execution of ‘1F’ and ‘4F’, '2T', '3T', '8T', and '16T' are the executable tasks.

① The Prioritizer needs to receive executable tasks.
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③Provide 
executable tasks



Aggregate Stage: Module 1: Prioritizer

② The Prioritizer determines the urgency of each task. 

The closer a block is to the diagonal block, the higher its urgency.

② Prioritize 
executable tasks

① Receive
executable tasks

③Provide 
executable tasks
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Aggregate Stage: Module 1: Prioritizer

For example, 
‘8T’ is the closest to the diagonal block (the most urgent), and
‘3T’ is the farthest from the diagonal block (the least urgent).
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② Prioritize 
executable tasks

① Receive
executable tasks

③Provide 
executable tasks



Aggregate Stage: Module 1: Prioritizer

Example: 
2nd Time Step 
· 8T → Collector
· 2T, 16T→ Container
· 3T → Container

③ The Prioritizer will provide executable tasks to Collector and Container
according to the task priorities.

② Prioritize 
executable tasks

① Receive
executable tasks

③Provide 
executable tasks

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 49



Aggregate Stage: Module 2: Container
The Container is designed to:
Serve as a temporary buffer for tasks with relatively lower priority.
→ Give some tasks for batched run when GPU is not that saturated.

Tasks in the Container do not need to be executed immediately, therefore can be deferred to 
saturate the GPU when high-priority tasks are not enough in later timesteps.
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The count of the tasks collected by the Collector
is dynamically determined:
• While the Executor runs tasks, the Collector

will collect one more group of tasks.
• The Collector will collect more tasks on faster

GPUs, and less tasks for slower GPUs.

The Collector is designed to :
Assemble a group of tasks and dispatch them to the GPU.
→ Schedule workload to saturate the GPU’s resources.

Batch Stage: Module 3: Collector
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Batch Stage: Module 3: Collector

Two phases of task collecting

The Collector is designed to :
Assemble a group of tasks and dispatch them to the GPU.
→ Schedule workload to saturate the GPU’s resources.
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Batch Stage: Module 3: Collector

Two phases of task collecting

Receive tasks from 
Prioritizer

The Collector is designed to :
Assemble a group of tasks and dispatch them to the GPU.
→ Schedule workload to saturate the GPU’s resources.
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Batch Stage: Module 3: Collector

Two phases of task collecting

Receive tasks from 
Prioritizer

Fetch tasks from 
Container

The Collector is designed to :
Assemble a group of tasks and dispatch them to the GPU.
→ Schedule workload to saturate the GPU’s resources.

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 54



Batch Stage: Module 3: Collector

To ensure the most urgent tasks are considered first.

The Collector is designed to :
Assemble a group of tasks and dispatch them to the GPU.
→ Schedule workload to saturate the GPU’s resources.

Two phases of task collecting

Receive tasks from 
Prioritizer

Fetch tasks from 
Container
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Batch Stage: Module 4: Executor

The heterogeneity of the tasks is reflected in:
① Each task can execute different types of kernels: 

• GETRF (LU factorisation)
• TSTRF/GESSM (triangular solve)
• SSSSM (Schur complement matrix multiplication)

② Each matrix block can be dense or sparse.
③ Whether or not need to handle write conflicts.
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The Executor is designed to:
Provide a flexible batched kernel.
→ Let heterogeneous tasks run simultaneously.



Batch Stage: Module 4: Executor

To execute multiple tasks in one CUDA kernel, 
we map tasks to CUDA blocks. 
Before launching the kernel, we prepare an 
array to store each task's starting block index.

① Each task can execute different types of
kernels: GETRF, TSTRF, GESSM, SSSSM

③ Configurable whether to enable atomic
operations to resolve write conflicts.

② Each block can be dense or sparse.
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Batch Stage: Module 4: Executor

To execute multiple tasks in one CUDA kernel, 
we map tasks to CUDA blocks. 
Before launching the kernel, we prepare an 
array to store each task's starting block index.

① Each task can execute different types of
kernels: GETRF, TSTRF, GESSM, SSSSM

③ Configurable whether to enable atomic
operations to resolve write conflicts.

② Each block can be dense or sparse.

During execution, CUDA blocks use their 
block indices to identify their tasks. 
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Batch Stage: Module 4: Executor

The SSSSM tasks employ a column-column multiplication
method, where each element of matrix B independently
multiplies an entire column of matrix A.

The GETRF tasks assign one CUDA block per column,
adopting a synchronisation-free left-looking approach
for LU factorisation.
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Batch Stage: Module 4: Executor

The TSTRF tasks assign each CUDA block to a row of B.
Each thread holds an element in column of U and
multiply it with corresponding row element of B.

The GESSM tasks assign each CUDA block to a column of 
B. Each thread holds an element in row of L and multiply
it with corresponding column element of B.
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Experimental Setup

62

We evaluate these solver variants (in double precision):
(1) SuperLU_DIST 9.1.0 without/with Trojan Horse (max supernode size : 256)
(2) PanguLU 5.0.0 without/with Trojan Horse (block size: 512)
(3) PanguLU 5.0.0 with multiple CUDA streams (block size: 512)
(4) PaStiX 6.4.0 with StarPU 1.4.8
(5) MUMPS 5.6.0

We compiled above solvers with three major libraries:
(1) CUDA 12.8 (on NVIDIA GPUs) / ROCm 4.3 (on AMD GPUs)
(2) Intel MPI 2021.1
(3) OpenBLAS 0.3.29 

The evaluation is conducted in three parts:
(1)  Scale-up, on a single GPU (NVIDIA RTX 5060Ti, RTX 5090 and A100)
(2) Scale-out, on distributed multiple GPUs (16-card NVIDIA H100 and 16-card AMD MI50)
(3) Comparison with modern CPU (32-core Intel Xeon Gold 6462C)
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Scale-Up: Experimental Setup

GPU #CUDA Cores FP64 peak Memory B/W

RTX 5060Ti 4,608 0.37 TFlops 16 GB 0.45 TB/s

RTX 5090 21,760 1.64 TFlops 32 GB 1.79 TB/s

A100 PCIe 6,912 9.75 TFlops 40 GB 1.56 TB/s

GPU platforms: RTX 5060Ti and RTX 5090 GPUs share the same architecture but differ in 
theoretical performance (~4x FP64 peak performance difference, and ~4x memory 
bandwidth difference), enabling an effective scale-up evaluation.
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Scale-Up: Experimental Setup

Matrix n(A) nnz(A)
SuperLU

nnz(L + U)
PanguLU

nnz(L + U)

c-71 76.6K 860K 49.4M 24.9M

cage12 130K 2.03M 550M 537M

para-8 156K 2.09M 187M 178M

Lin 256K 1.77M 216M 194M

The four matrices used are from SuiteSparse, and were selected in prior SuperLU and 
PanguLU benchmarks. These matrices are of moderate size, sufficient for GPU parallelism, 
yet small enough to be tested on a single GPU.
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Performance Evaluation of Kernels

We trace the numeric factorisation phase of SuperLU and PanguLU without (blue lines) and with
(red lines) the Trojan Horse. The performance of each kernel execution are shown in these figures.

GPU: RTX 5090

Kernel Speedup
Average: 1.2x

Maximum: 2.0x

Kernel Speedup
Average: 2.5x

Maximum: 2.8x

The solvers integrated with 
Trojan Horse has higher 
average performance (y-axis)
and completes factorisation
faster (x-axis).
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Scale-Up Evaluation on RTX 5060Ti and 5090

The following figure illustrates the performance of different solvers on four example matrices.
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SuperLU Without Trojan Horse: 1.09x,
SuperLU With Trojan Horse: 1.94x.

PanguLU Without Trojan Horse: 1.57x,
PanguLU With Trojan Horse: 3.25x.

Trojan Horse improve the 
performance gain attained 
from faster GPUs.



Reduction in the Count of Kernel Executions

Our aggregate stage reduces the kernel execution count, providing substantial tasks to batch.

Matrix
Kernel count

w/o Trojan Horse
Kernel count

w/ Trojan Horse
Rate

c-71 12,991,278 110,227 0.85%

cage12 28,722,440 80,157 0.28%

para-8 2,241,384 40,627 1.81%

Lin 3,345,581 112,727 3.37%

Geomean 1.10%

Matrix
Kernel count

w/o Trojan Horse
Kernel count

w/ Trojan Horse
Rate

c-71 17,678 515 2.91%

cage12 226,568 847 0.37%

para-8 47,617 1,009 2.12%

Lin 81,844 1,699 2.08%

Geomean 1.48%

SuperLU PanguLU
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For both SuperLU and PanguLU, the number of kernel 
execution decrease by about two orders of magnitude. 



Reduction in Kernel Runtime of SuperLU

An average reduction of 97.9% 
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The Trojan Horse batched kernel reduces the kernel execution time. The comparison of 
kernel execution times between SuperLU without and with Trojan Horse is shown below.



Reduction in Kernel Runtime of PanguLU

An average reduction of 77.1%
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The Trojan Horse batched kernel reduces the kernel execution time. The comparison of 
kernel execution times between PanguLU without and with Trojan Horse is shown below.



Scale-Up Evaluation on 200 Matrices
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Performance evaluation of Trojan Horse on 200 square matrices from SuiteSparse (GPU: an NVIDIA A100)

We conduct further performance evaluations on an NVIDIA A100 GPU using 200 square 
matrices from the SuiteSparse. These matrices cover 31 different kinds, a wide range of sizes, 
nonzeros in L+U, and flop counts. Trojan Horse yields an average (Geomean) speedup of 5.47x
(up to 418.79x) for SuperLU, and 2.84x (up to 5.59x) for PanguLU.
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Scale-Out: Experimental Setup

16 GPUs #CUDA Cores FP64 peak Memory B/W

H100 SXM 14592 25.61 TFlops 80 GB 2.04 TB/s

MI50 PCIe 3840 6.71 TFlops 16 GB 1.02 TB/s

The hardware configuration is shown below. The 16-card H100 GPUs are evenly distributed 
on two nodes, and the 16-card MI50 GPUs are evenly distributed on four nodes.

The six matrices used are from SuiteSparse and have been widely employed in existing 
works on SuperLU and PanguLU.

Matrix n(A) nnz(A)
SuperLU

nnz(L + U)
PanguLU

nnz(L + U)

Ga41As41H72 268K 18.5M 4.61G 4.59G

RM07R 381K 37.4M 2.68G 2.14G

cage13 445K 7.48M 4.68G 4.66G

audikw_1 943K 77.6M 2.46G 2.43G

nlpkkt80 1.06M 28.1M 3.80G 3.28G

Serena 1.39M 64.1M 5.42G 5.38G
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Scale-Out Evaluation

Both SuperLU and PanguLU with Trojan Horse continue to deliver strong performance gains 
as the number of GPUs increases, despite the workload per GPU is reduced.
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Speedup on 16-card H100

SuperLU w/ Trojan Horse
Avg. 3.5x, Max. 24.6x

PanguLU w/ Trojan Horse
Avg. 1.9x, Max. 2.3x

On 16-card AMD MI50

SuperLU
• Average: 4.7x
• Maximum: 12.8x

PanguLU
• Average: 1.3x
• Maximum: 1.4x

Average Maximum

SuperLU w/ Trojan Horse

3.5x 24.6x

PanguLU w/ Trojan Horse

1.9x 2.3x

Speedup on 16-card MI50

Average Maximum

SuperLU w/ Trojan Horse

4.7x 12.8x

PanguLU w/ Trojan Horse

1.3x 1.4x
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Comparison with CPU solvers

GPU CPU
Peak FP64 Performance: ~25 Tflops

Memory B/W: ~2 TB/s
Peak FP64 Performance: ~3 Tflops

Memory B/W: ~0.2 TB/s

The memory B/W and peak 
FP64 performance of a GPU 
are higher than a CPU by 
about an order of magnitude. 
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As shown in the red box, over the past twenty years, sparse direct methods are far from 
saturating modern GPUs because of highly independent small tasks. Sparse direct methods 
on GPU has been slower than CPU methods.

Comparison with CPU solvers

For each matrix, underlined and bold represents the fastest result, and bold represents the second-fastest result.
CPU: Intel Xeon Gold 6462C (32 cores)  GPU: NVIDIA H100
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As shown in the red box, today, SuperLU_DIST and PanguLU on GPU with Trojan Horse are 
comparable to or faster than CPU methods.

Comparison with CPU solvers

For each matrix, underlined and bold represents the fastest result, and bold represents the second-fastest result.
CPU: Intel Xeon Gold 6462C (32 cores)  GPU: NVIDIA H100
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Conclusion

1. We propose the Trojan Horse strategy for efficiently aggregating and batching fine-grained 
small tasks to saturate high-end GPUs;

2. We integrate the Trojan Horse strategy into SuperLU_DIST and PanguLU to effectively 
improve their task management and kernel performance;

3. We bring SuperLU_DIST and PanguLU obviously better scale-up throughput and comparable 
scale-out performance.
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We believe that more advanced scheduling techniques and faster kernels can further 
accelerate sparse direct solvers on GPUs. Therefore, the work presented in this paper 
serves only as a starting point and opens the door to a broader Renaissance of sparse 
direct solvers on GPUs.
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Trojan Horse：Aggregate-and-Batch for 
Scaling Up Sparse Direct Solvers on GPU Clusters

Open-sourced on Github: https://github.com/SuperScientificSoftwareLaboratory/TrojanHorse

Yida Li, Siwei Zhang, Yiduo Niu, Yang Du, Qingxiao Sun, Zhou Jin, Weifeng Liu

Super Scientific Software Laboratory (SSSLab)

China University of Petroleum-Beijing

PPoPP 2026

https://github.com/SuperScientificSoftwareLaboratory/TrojanHorse
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