
China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 1

Trojan Horse: Aggregate-and-Batch for
Scaling Up Sparse Direct Solvers on GPU Clusters

Yida Li, Siwei Zhang, Yiduo Niu, Yang Du, Qingxiao Sun, Zhou Jin, Weifeng Liu

Super Scientific Software Laboratory (SSSLab)

China University of Petroleum-Beijing

Sydney, Australia

Feb. 3, 2026

PPoPP 2026

Outline

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 2

• Background

① Sparse LU Factorisation

② Task Dependencies Restrict Concurrency

③ Single Task Is Too Small For a GPU
• Motivations

① Aggregate: to Prepare More Tasks for a GPU

② Batch: to Selectively Run the Tasks in Parallel
• Trojan Horse

① Overview

② An Example to Use the Trojan Horse

③ Functional Modules of the Trojan Horse (Priortizer, Container, Collector & Executor)
• Experiments

① Experimental Setup

② Scale-Up Evaluation

③ Scale-Out Evaluation

④ Comparison with CPU solvers
• Conclusion

Outline

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 3

• Background

① Sparse LU Factorisation

② Task Dependencies Restrict Concurrency

③ Single Task Is Too Small For a GPU
• Motivations

① Aggregate: to Prepare More Tasks for a GPU

② Batch: to Selectively Run the Tasks in Parallel
• Trojan Horse

① Overview

② An Example to Use the Trojan Horse

③ Functional Modules of the Trojan Horse (Priortizer, Container, Collector & Executor)
• Experiments

① Experimental Setup

② Scale-Up Evaluation

③ Scale-Out Evaluation

④ Comparison with CPU solvers
• Conclusion

Sparse LU factorisation includes three major phases: reordering, symbolic
and numeric factorisation.

Three Phases of Sparse LU Factorisation

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 4

The reordering phase aims to permute the matrix A to
reduce fill-in elements.

Reordering

Symbolic
The symbolic factorisation phase identifies the
structures of the sparse factor matrices L and U.

Numeric
The numeric factorisation phase determines the value of
L and U, which is generally the only stage processing a
large amount of floating point operations.

Three Phases of Sparse LU Factorisation

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 5

The numeric phase spends most of the time, which motivates us to investigate
a strategy for optimising the numeric phase on heterogeneous GPU clusters.

Sparse direct solver: SuperLU 9.1.0
CPU: AMD Ryzen 9 9950X (one core)

Time Breakdown of Sparse LU factorisation

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 6

The numeric factorisation
phase spends most
execution time, on average
97%, and is almost the only
phase that scales to a large
amount of compute nodes.

Outline

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 7

• Background

① Sparse LU Factorisation

② Task Dependencies Restrict Concurrency

③ Single Task Is Too Small For a GPU
• Motivations

① Aggregate: to Prepare More Tasks for a GPU

② Batch: to Selectively Run the Tasks in Parallel
• Trojan Horse

① Overview

② An Example to Use the Trojan Horse

③ Functional Modules of the Trojan Horse (Priortizer, Container, Collector & Executor)
• Experiments

① Experimental Setup

② Scale-Up Evaluation

③ Scale-Out Evaluation

④ Comparison with CPU solvers
• Conclusion

Task Dependencies Restrict Concurrency

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 8

There are three task types (LU factorisation, triangular solve and Schur complement) in sparse
LU factorisation. This figure shows the task dependency of factorising a 6-by-6 blocked matrix.

Fristly, task ‘1F’ starts.

Task Dependencies Restrict Concurrency

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 9

There are three task types (LU factorisation, triangular solve and Schur complement) in sparse
LU factorisation. This figure shows the task dependency of factorising a 6-by-6 blocked matrix.

Fristly, task ‘1F’ starts.

Then, four triangular
solve tasks can be
executed, depending on
the result of ‘1F’.

Task Dependencies Restrict Concurrency

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 10

There are three task types (LU factorisation, triangular solve and Schur complement) in sparse
LU factorisation. This figure shows the task dependency of factorising a 6-by-6 blocked matrix.

Fristly, task ‘1F’ starts.

Then, four triangular
solve tasks can be
executed, depending on
the result of ‘1F’.

After this, four Schur
complement tasks can
be executed, depending
on previous results.

Task Dependencies Restrict Concurrency

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 11

There are three task types (LU factorisation, triangular solve and Schur complement) in sparse
LU factorisation. This figure shows the task dependency of factorising a 6-by-6 blocked matrix.

Fristly, task ‘1F’ starts.

Then, four triangular
solve tasks can be
executed, depending on
the result of ‘1F’.

After this, four Schur
complement tasks can
be executed, depending
on previous results.

The dependencies
between tasks are
complex in sparse LU
factorisation, which
restricts concurrency.

Task Dependencies Restrict Concurrency

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 12

There are three task types (LU factorisation, triangular solve and Schur complement) in sparse
LU factorisation. This figure shows the task dependency of factorising a 6-by-6 blocked matrix.

Fristly, task ‘1F’ starts.

Then, four triangular
solve tasks can be
executed, depending on
the result of ‘1F’.

After this, four Schur
complement tasks can
be executed, depending
on previous results.

The dependencies
between tasks are
complex in sparse LU
factorisation, which
restricts concurrency.

Task Dependencies Restrict Concurrency

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 13

There are three task types (LU factorisation, triangular solve and Schur complement) in sparse
LU factorisation. This figure shows the task dependency of factorising a 6-by-6 blocked matrix.

Fristly, task ‘1F’ starts.

Then, four triangular
solve tasks can be
executed, depending on
the result of ‘1F’.

After this, four Schur
complement tasks can
be executed, depending
on previous results.

The dependencies
between tasks are
complex in sparse LU
factorisation, which
restricts concurrency.

Task Dependencies Restrict Concurrency

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 14

There are three task types (LU factorisation, triangular solve and Schur complement) in sparse
LU factorisation. This figure shows the task dependency of factorising a 6-by-6 blocked matrix.

Fristly, task ‘1F’ starts.

Then, four triangular
solve tasks can be
executed, depending on
the result of ‘1F’.

After this, four Schur
complement tasks can
be executed, depending
on previous results.

The dependencies
between tasks are
complex in sparse LU
factorisation, which
restricts concurrency.

Outline

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 15

• Background

① Sparse LU Factorisation

② Task Dependencies Restrict Concurrency

③ Single Task Is Too Small For a GPU
• Motivations

① Aggregate: to Prepare More Tasks for a GPU

② Batch: to Selectively Run the Tasks in Parallel
• Trojan Horse

① Overview

② An Example to Use the Trojan Horse

③ Functional Modules of the Trojan Horse (Priortizer, Container, Collector & Executor)
• Experiments

① Experimental Setup

② Scale-Up Evaluation

③ Scale-Out Evaluation

④ Comparison with CPU solvers
• Conclusion

Single Task Is Too Small For a GPU

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 16

Existing methods break the matrix into small blocks and generate small tasks.

Supernodal / Multifrontal Methods:
The input of each task is generally
very small, typically on the order of
10 on average.

Sparse Blocking Methods:
The input of each task is generally bigger,
typically on the order of 512, with a sparsity
of approximately 0.05 on average.

The small scale of
individual tasks limits
the effective utilisation
of GPU parallelism.

Outline

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 17

• Background

① Sparse LU Factorisation

② Task Dependencies Restrict Concurrency

③ Single Task Is Too Small For a GPU
• Motivations

① Aggregate: to Prepare More Tasks for a GPU

② Batch: to Selectively Run the Tasks in Parallel
• Trojan Horse

① Overview

② An Example to Use the Trojan Horse

③ Functional Modules of the Trojan Horse (Priortizer, Container, Collector & Executor)
• Experiments

① Experimental Setup

② Scale-Up Evaluation

③ Scale-Out Evaluation

④ Comparison with CPU solvers
• Conclusion

In the numeric factorisation stage, some tasks
are mutually independent and they can be
executed concurrently.
We conduct a static analysis on the task DAGs
from SuperLU and PanguLU, recording the
parallelisable task count.

Aggregate: to Prepare More Tasks for a GPU

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 18

In the violin plots, the width at each
vertical position indicates the count of
occurrences for a specific batch size.
The height of each violin indicates the
maximum parallelisable task count.

SuperLU

PanguLU

Aggregate: to Prepare More Tasks for a GPU

Taking the matrix ‘Ga41As41H72’ highlighted,
the highest number of tasks can run in parallel
are 1047 and 199 in SuperLU and PanguLU.
The observation brings the potential to run
the tasks in a batch mode.

Prepare
adequate

 tasks

Obey
dependency
constraints

Consider
task

priority

Considerations

SuperLU

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 19

We will design the Aggregate stage with two modules
called Prioritizer and Container in Trojan Horse.

PanguLU

Outline

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 20

• Background

① Sparse LU Factorisation

② Task Dependencies Restrict Concurrency

③ Single Task Is Too Small For a GPU
• Motivations

① Aggregate: to Prepare More Tasks for a GPU

② Batch: to Selectively Run the Tasks in Parallel
• Trojan Horse

① Overview

② An Example to Use the Trojan Horse

③ Functional Modules of the Trojan Horse (Priortizer, Container, Collector & Executor)
• Experiments

① Experimental Setup

② Scale-Up Evaluation

③ Scale-Out Evaluation

④ Comparison with CPU solvers
• Conclusion

Batch: to Selectively Run the Tasks in Parallel

This figure shows the parallelisable tasks when factorising a 6-by-6 sparse matrix, assuming
a GPU can process two tasks in parallel. It leads to a requirement to batch diverse tasks.

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 21

Batch: to Selectively Run the Tasks in Parallel

This figure shows the parallelisable tasks when factorising a 6-by-6 sparse matrix, assuming
a GPU can process two tasks in parallel. It leads to a requirement to batch diverse tasks.

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 22

Batch: to Selectively Run the Tasks in Parallel

This figure shows the parallelisable tasks when factorising a 6-by-6 sparse matrix, assuming
a GPU can process two tasks in parallel. It leads to a requirement to batch diverse tasks.

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 23

Batch: to Selectively Run the Tasks in Parallel

This figure shows the parallelisable tasks when factorising a 6-by-6 sparse matrix, assuming
a GPU can process two tasks in parallel. It leads to a requirement to batch diverse tasks.

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 24

Batch: to Selectively Run the Tasks in Parallel

This figure shows the parallelisable tasks when factorising a 6-by-6 sparse matrix, assuming
a GPU can process two tasks in parallel. It leads to a requirement to batch diverse tasks.

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 25

Batch: to Selectively Run the Tasks in Parallel

This figure shows the parallelisable tasks when factorising a 6-by-6 sparse matrix, assuming
a GPU can process two tasks in parallel. It leads to a requirement to batch diverse tasks.

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 26

Batch: to Selectively Run the Tasks in Parallel

This figure shows the parallelisable tasks when factorising a 6-by-6 sparse matrix, assuming
a GPU can process two tasks in parallel. It leads to a requirement to batch diverse tasks.

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 27

Batch: to Selectively Run the Tasks in Parallel

This figure shows the parallelisable tasks when factorising a 6-by-6 sparse matrix, assuming
a GPU can process two tasks in parallel. It leads to a requirement to batch diverse tasks.

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 28

Batch: to Selectively Run the Tasks in Parallel

This figure shows the parallelisable tasks when factorising a 6-by-6 sparse matrix, assuming
a GPU can process two tasks in parallel. It leads to a requirement to batch diverse tasks.

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 29

Batch: to Selectively Run the Tasks in Parallel

Tasks ‘5F’ (LU factorisation on block 5) and ‘8S0’ (Schur update
on block 8) are triggered by different diagonal blocks (blocks 1
and 5) and can be batched, despite involving different kernels.

Tasks ‘9S0’ (Schur update on block 9, triggered by the 0th diagonal block 1) and ‘9S1’ (Schur update on block 8 , triggered by the
1st diagonal block 5) can be batched. Both task compute Schur update on block 9. Batching them will bring write conflict,
therefore needs atomic operations.

The Batch stage would receive
• tasks on different blocks,
• tasks of different types, and
• tasks triggered by different diagonal blocks.
For different tasks in one batched execution,

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 30

• their inputs may be dense or sparse blocks, and

• they may write the same block.

Tasks ‘3T’ (triangular solve on block 3, sparse) and ‘8T’
(triangular solve on block 8, dense) can be batched, despite
one is sparse and the other is dense.

• their kernel may be different,

Trojan Horse: to
aggregate and batch small
tasks for saturating GPUs.

Outline

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 31

• Background

① Sparse LU Factorisation

② Task Dependencies Restrict Concurrency

③ Single Task Is Too Small For a GPU
• Motivations

① Aggregate: to Prepare More Tasks for a GPU

② Batch: to Selectively Run the Tasks in Parallel
• Trojan Horse

① Overview

② An Example to Use the Trojan Horse

③ Functional Modules of the Trojan Horse (Priortizer, Container, Collector & Executor)
• Experiments

① Experimental Setup

② Scale-Up Evaluation

③ Scale-Out Evaluation

④ Comparison with CPU solvers
• Conclusion

Overview
The Trojan Horse focuses on
(1) Scaling up the execution efficiency of a single GPU in a cluster, and
(2) Scaling out to multiple GPUs, and integrating to distributed solvers.

Two stages:
• Aggregate
• Batch

Four functional modules:
• Prioritizer
• Container
• Collector
• Executor

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 32

1 Aggregate + Batch
2 Input Tasks
3 Prioritizer, High/Low prio
4 Collector + red
5 Container + green
6 Container -> Collector
7 Collector -> Executor
8 to other proc

Overview

Two stages:
• Aggregate
• Batch

Four functional modules:
• Prioritizer
• Container
• Collector
• Executor

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 33

1 Aggregate + Batch
2 Input Tasks
3 Prioritizer, High/Low prio
4 Collector + red
5 Container + green
6 Container -> Collector
7 Collector -> Executor
8 to other proc

The Trojan Horse focuses on
(1) Scaling up the execution efficiency of a single GPU in a cluster, and
(2) Scaling out to multiple GPUs, and integrating to distributed solvers.

Overview

Two stages:
• Aggregate
• Batch

Four functional modules:
• Prioritizer
• Container
• Collector
• Executor

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 34

1 Aggregate + Batch
2 Input Tasks
3 Prioritizer, High/Low prio
4 Collector + red
5 Container + green
6 Container -> Collector
7 Collector -> Executor
8 to other proc

The Trojan Horse focuses on
(1) Scaling up the execution efficiency of a single GPU in a cluster, and
(2) Scaling out to multiple GPUs, and integrating to distributed solvers.

Overview

Two stages:
• Aggregate
• Batch

Four functional modules:
• Prioritizer
• Container
• Collector
• Executor

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 35

1 Aggregate + Batch
2 Input Tasks
3 Prioritizer, High/Low prio
4 Collector + red
5 Container + green
6 Container -> Collector
7 Collector -> Executor
8 to other proc

The Trojan Horse focuses on
(1) Scaling up the execution efficiency of a single GPU in a cluster, and
(2) Scaling out to multiple GPUs, and integrating to distributed solvers.

Overview

Two stages:
• Aggregate
• Batch

Four functional modules:
• Prioritizer
• Container
• Collector
• Executor

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 36

1 Aggregate + Batch
2 Input Tasks
3 Prioritizer, High/Low prio
4 Collector + red
5 Container + green
6 Container -> Collector
7 Collector -> Executor
8 to other proc

The Trojan Horse focuses on
(1) Scaling up the execution efficiency of a single GPU in a cluster, and
(2) Scaling out to multiple GPUs, and integrating to distributed solvers.

Overview

Two stages:
• Aggregate
• Batch

Four functional modules:
• Prioritizer
• Container
• Collector
• Executor

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 37

1 Aggregate + Batch
2 Input Tasks
3 Prioritizer, High/Low prio
4 Collector + red
5 Container + green
6 Container -> Collector
7 Collector -> Executor
8 to other proc

The Trojan Horse focuses on
(1) Scaling up the execution efficiency of a single GPU in a cluster, and
(2) Scaling out to multiple GPUs, and integrating to distributed solvers.

Overview

Two stages:
• Aggregate
• Batch

Four functional modules:
• Prioritizer
• Container
• Collector
• Executor

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 38

1 Aggregate + Batch
2 Input Tasks
3 Prioritizer, High/Low prio
4 Collector + red
5 Container + green
6 Container -> Collector
7 Collector -> Executor
8 to other proc

The Trojan Horse focuses on
(1) Scaling up the execution efficiency of a single GPU in a cluster, and
(2) Scaling out to multiple GPUs, and integrating to distributed solvers.

Overview

Two stages:
• Aggregate
• Batch

Four functional modules:
• Prioritizer
• Container
• Collector
• Executor

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 39

1 Aggregate + Batch
2 Input Tasks
3 Prioritizer, High/Low prio
4 Collector + red
5 Container + green
6 Container -> Collector
7 Collector -> Executor
8 to other proc

The Trojan Horse focuses on
(1) Scaling up the execution efficiency of a single GPU in a cluster, and
(2) Scaling out to multiple GPUs, and integrating to distributed solvers.

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 40

Overview

Outline

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 41

• Background

① Sparse LU Factorisation

② Task Dependencies Restrict Concurrency

③ Single Task Is Too Small For a GPU
• Motivations

① Aggregate: to Prepare More Tasks for a GPU

② Batch: to Selectively Run the Tasks in Parallel
• Trojan Horse

① Overview

② An Example to Use the Trojan Horse

③ Functional Modules of the Trojan Horse (Priortizer, Container, Collector & Executor)
• Experiments

① Experimental Setup

② Scale-Up Evaluation

③ Scale-Out Evaluation

④ Comparison with CPU solvers
• Conclusion

An Example to Use the Trojan Horse

We prepare an example of factorising a 6-order
blocked matrix using a solver integrated with
the Trojan Horse.

Each number on the blocked matrix labels a
nonzero block.

An elimination tree, or a DAG, of the numeric
factorisation phase.

The complete dependencies of all 48 tasks:
• 5 diagonal LU factorisation
• 10 triangular solve
• 7 Schur complement
These tasks are divided into 5 parts by the
diagonal blocks 0-4 triggering them.

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 42

An Example to Use the Trojan Horse

The timeline (11 time units) of PanguLU using four processes.
PanguLU executes tasks based on priority and without batching.

The timeline (only 8 time units) of SuperLU or PanguLU with the
Trojan Horse using four processes.
Solver with Trojan Horse can batch:
• Tasks of different blocks
• Tasks of different types
• Tasks triggered by different diagonal blocks

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 43

The timeline (10 time units) of SuperLU using four processes.
SuperLU can batch:
• Tasks of the same type
• Tasks from the same elimination tree level.

Assume the GPU can execute two tasks simultaneously.

Outline

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 44

• Background

① Sparse LU Factorisation

② Task Dependencies Restrict Concurrency

③ Single Task Is Too Small For a GPU
• Motivations

① Aggregate: to Prepare More Tasks for a GPU

② Batch: to Selectively Run the Tasks in Parallel
• Trojan Horse

① Overview

② An Example to Use the Trojan Horse

③ Functional Modules of the Trojan Horse (Priortizer, Container, Collector & Executor)
• Experiments

① Experimental Setup

② Scale-Up Evaluation

③ Scale-Out Evaluation

④ Comparison with CPU solvers
• Conclusion

Aggregate Stage: Module 1: Prioritizer

The Prioritizer is designed to
Tag executable tasks and separate them into high- and low-priority tasks.
→ Ensure the high-priority tasks be executed earlier.

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 45

Aggregate Stage: Module 1: Prioritizer
② Prioritize

executable tasks
① Receive

executable tasks

Example:
After the execution of ‘1F’ and ‘4F’, '2T', '3T', '8T', and '16T' are the executable tasks.

① The Prioritizer needs to receive executable tasks.

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 46

③Provide
executable tasks

Aggregate Stage: Module 1: Prioritizer

② The Prioritizer determines the urgency of each task.

The closer a block is to the diagonal block, the higher its urgency.

② Prioritize
executable tasks

① Receive
executable tasks

③Provide
executable tasks

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 47

Aggregate Stage: Module 1: Prioritizer

For example,
‘8T’ is the closest to the diagonal block (the most urgent), and
‘3T’ is the farthest from the diagonal block (the least urgent).

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 48

② Prioritize
executable tasks

① Receive
executable tasks

③Provide
executable tasks

Aggregate Stage: Module 1: Prioritizer

Example:
2nd Time Step
· 8T → Collector
· 2T, 16T→ Container
· 3T → Container

③ The Prioritizer will provide executable tasks to Collector and Container
according to the task priorities.

② Prioritize
executable tasks

① Receive
executable tasks

③Provide
executable tasks

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 49

Aggregate Stage: Module 2: Container
The Container is designed to:
Serve as a temporary buffer for tasks with relatively lower priority.
→ Give some tasks for batched run when GPU is not that saturated.

Tasks in the Container do not need to be executed immediately, therefore can be deferred to
saturate the GPU when high-priority tasks are not enough in later timesteps.

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 50

The count of the tasks collected by the Collector
is dynamically determined:
• While the Executor runs tasks, the Collector

will collect one more group of tasks.
• The Collector will collect more tasks on faster

GPUs, and less tasks for slower GPUs.

The Collector is designed to :
Assemble a group of tasks and dispatch them to the GPU.
→ Schedule workload to saturate the GPU’s resources.

Batch Stage: Module 3: Collector

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 51

Batch Stage: Module 3: Collector

Two phases of task collecting

The Collector is designed to :
Assemble a group of tasks and dispatch them to the GPU.
→ Schedule workload to saturate the GPU’s resources.

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 52

Batch Stage: Module 3: Collector

Two phases of task collecting

Receive tasks from
Prioritizer

The Collector is designed to :
Assemble a group of tasks and dispatch them to the GPU.
→ Schedule workload to saturate the GPU’s resources.

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 53

Batch Stage: Module 3: Collector

Two phases of task collecting

Receive tasks from
Prioritizer

Fetch tasks from
Container

The Collector is designed to :
Assemble a group of tasks and dispatch them to the GPU.
→ Schedule workload to saturate the GPU’s resources.

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 54

Batch Stage: Module 3: Collector

To ensure the most urgent tasks are considered first.

The Collector is designed to :
Assemble a group of tasks and dispatch them to the GPU.
→ Schedule workload to saturate the GPU’s resources.

Two phases of task collecting

Receive tasks from
Prioritizer

Fetch tasks from
Container

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 55

Batch Stage: Module 4: Executor

The heterogeneity of the tasks is reflected in:
① Each task can execute different types of kernels:

• GETRF (LU factorisation)
• TSTRF/GESSM (triangular solve)
• SSSSM (Schur complement matrix multiplication)

② Each matrix block can be dense or sparse.
③ Whether or not need to handle write conflicts.

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 56

The Executor is designed to:
Provide a flexible batched kernel.
→ Let heterogeneous tasks run simultaneously.

Batch Stage: Module 4: Executor

To execute multiple tasks in one CUDA kernel,
we map tasks to CUDA blocks.
Before launching the kernel, we prepare an
array to store each task's starting block index.

① Each task can execute different types of
kernels: GETRF, TSTRF, GESSM, SSSSM

③ Configurable whether to enable atomic
operations to resolve write conflicts.

② Each block can be dense or sparse.

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 57

Batch Stage: Module 4: Executor

To execute multiple tasks in one CUDA kernel,
we map tasks to CUDA blocks.
Before launching the kernel, we prepare an
array to store each task's starting block index.

① Each task can execute different types of
kernels: GETRF, TSTRF, GESSM, SSSSM

③ Configurable whether to enable atomic
operations to resolve write conflicts.

② Each block can be dense or sparse.

During execution, CUDA blocks use their
block indices to identify their tasks.

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 58

Batch Stage: Module 4: Executor

The SSSSM tasks employ a column-column multiplication
method, where each element of matrix B independently
multiplies an entire column of matrix A.

The GETRF tasks assign one CUDA block per column,
adopting a synchronisation-free left-looking approach
for LU factorisation.

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 59

Batch Stage: Module 4: Executor

The TSTRF tasks assign each CUDA block to a row of B.
Each thread holds an element in column of U and
multiply it with corresponding row element of B.

The GESSM tasks assign each CUDA block to a column of
B. Each thread holds an element in row of L and multiply
it with corresponding column element of B.

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 60

Outline

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 61

• Background

① Sparse LU Factorisation

② Task Dependencies Restrict Concurrency

③ Single Task Is Too Small For a GPU
• Motivations

① Aggregate: to Prepare More Tasks for a GPU

② Batch: to Selectively Run the Tasks in Parallel
• Trojan Horse

① Overview

② An Example to Use the Trojan Horse

③ Functional Modules of the Trojan Horse (Priortizer, Container, Collector & Executor)
• Experiments

① Experimental Setup

② Scale-Up Evaluation

③ Scale-Out Evaluation

④ Comparison with CPU solvers
• Conclusion

Experimental Setup

62

We evaluate these solver variants (in double precision):
(1) SuperLU_DIST 9.1.0 without/with Trojan Horse (max supernode size : 256)
(2) PanguLU 5.0.0 without/with Trojan Horse (block size: 512)
(3) PanguLU 5.0.0 with multiple CUDA streams (block size: 512)
(4) PaStiX 6.4.0 with StarPU 1.4.8
(5) MUMPS 5.6.0

We compiled above solvers with three major libraries:
(1) CUDA 12.8 (on NVIDIA GPUs) / ROCm 4.3 (on AMD GPUs)
(2) Intel MPI 2021.1
(3) OpenBLAS 0.3.29

The evaluation is conducted in three parts:
(1) Scale-up, on a single GPU (NVIDIA RTX 5060Ti, RTX 5090 and A100)
(2) Scale-out, on distributed multiple GPUs (16-card NVIDIA H100 and 16-card AMD MI50)
(3) Comparison with modern CPU (32-core Intel Xeon Gold 6462C)

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 62

Outline

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 63

• Background

① Sparse LU Factorisation

② Task Dependencies Restrict Concurrency

③ Single Task Is Too Small For a GPU
• Motivations

① Aggregate: to Prepare More Tasks for a GPU

② Batch: to Selectively Run the Tasks in Parallel
• Trojan Horse

① Overview

② An Example to Use the Trojan Horse

③ Functional Modules of the Trojan Horse (Priortizer, Container, Collector & Executor)
• Experiments

① Experimental Setup

② Scale-Up Evaluation

③ Scale-Out Evaluation

④ Comparison with CPU solvers
• Conclusion

Scale-Up: Experimental Setup

GPU #CUDA Cores FP64 peak Memory B/W

RTX 5060Ti 4,608 0.37 TFlops 16 GB 0.45 TB/s

RTX 5090 21,760 1.64 TFlops 32 GB 1.79 TB/s

A100 PCIe 6,912 9.75 TFlops 40 GB 1.56 TB/s

GPU platforms: RTX 5060Ti and RTX 5090 GPUs share the same architecture but differ in
theoretical performance (~4x FP64 peak performance difference, and ~4x memory
bandwidth difference), enabling an effective scale-up evaluation.

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 64

Scale-Up: Experimental Setup

Matrix n(A) nnz(A)
SuperLU

nnz(L + U)
PanguLU

nnz(L + U)

c-71 76.6K 860K 49.4M 24.9M

cage12 130K 2.03M 550M 537M

para-8 156K 2.09M 187M 178M

Lin 256K 1.77M 216M 194M

The four matrices used are from SuiteSparse, and were selected in prior SuperLU and
PanguLU benchmarks. These matrices are of moderate size, sufficient for GPU parallelism,
yet small enough to be tested on a single GPU.

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 65

Performance Evaluation of Kernels

We trace the numeric factorisation phase of SuperLU and PanguLU without (blue lines) and with
(red lines) the Trojan Horse. The performance of each kernel execution are shown in these figures.

GPU: RTX 5090

Kernel Speedup
Average: 1.2x

Maximum: 2.0x

Kernel Speedup
Average: 2.5x

Maximum: 2.8x

The solvers integrated with
Trojan Horse has higher
average performance (y-axis)
and completes factorisation
faster (x-axis).

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 66

Scale-Up Evaluation on RTX 5060Ti and 5090

The following figure illustrates the performance of different solvers on four example matrices.

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 67

SuperLU Without Trojan Horse: 1.09x,
SuperLU With Trojan Horse: 1.94x.

PanguLU Without Trojan Horse: 1.57x,
PanguLU With Trojan Horse: 3.25x.

Trojan Horse improve the
performance gain attained
from faster GPUs.

Reduction in the Count of Kernel Executions

Our aggregate stage reduces the kernel execution count, providing substantial tasks to batch.

Matrix
Kernel count

w/o Trojan Horse
Kernel count

w/ Trojan Horse
Rate

c-71 12,991,278 110,227 0.85%

cage12 28,722,440 80,157 0.28%

para-8 2,241,384 40,627 1.81%

Lin 3,345,581 112,727 3.37%

Geomean 1.10%

Matrix
Kernel count

w/o Trojan Horse
Kernel count

w/ Trojan Horse
Rate

c-71 17,678 515 2.91%

cage12 226,568 847 0.37%

para-8 47,617 1,009 2.12%

Lin 81,844 1,699 2.08%

Geomean 1.48%

SuperLU PanguLU

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 68

For both SuperLU and PanguLU, the number of kernel
execution decrease by about two orders of magnitude.

Reduction in Kernel Runtime of SuperLU

An average reduction of 97.9%

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 69

The Trojan Horse batched kernel reduces the kernel execution time. The comparison of
kernel execution times between SuperLU without and with Trojan Horse is shown below.

Reduction in Kernel Runtime of PanguLU

An average reduction of 77.1%

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 70

The Trojan Horse batched kernel reduces the kernel execution time. The comparison of
kernel execution times between PanguLU without and with Trojan Horse is shown below.

Scale-Up Evaluation on 200 Matrices

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 71

Performance evaluation of Trojan Horse on 200 square matrices from SuiteSparse (GPU: an NVIDIA A100)

We conduct further performance evaluations on an NVIDIA A100 GPU using 200 square
matrices from the SuiteSparse. These matrices cover 31 different kinds, a wide range of sizes,
nonzeros in L+U, and flop counts. Trojan Horse yields an average (Geomean) speedup of 5.47x
(up to 418.79x) for SuperLU, and 2.84x (up to 5.59x) for PanguLU.

Outline

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 72

• Background

① Sparse LU Factorisation

② Task Dependencies Restrict Concurrency

③ Single Task Is Too Small For a GPU
• Motivations

① Aggregate: to Prepare More Tasks for a GPU

② Batch: to Selectively Run the Tasks in Parallel
• Trojan Horse

① Overview

② An Example to Use the Trojan Horse

③ Functional Modules of the Trojan Horse (Priortizer, Container, Collector & Executor)
• Experiments

① Experimental Setup

② Scale-Up Evaluation

③ Scale-Out Evaluation

④ Comparison with CPU solvers
• Conclusion

Scale-Out: Experimental Setup

16 GPUs #CUDA Cores FP64 peak Memory B/W

H100 SXM 14592 25.61 TFlops 80 GB 2.04 TB/s

MI50 PCIe 3840 6.71 TFlops 16 GB 1.02 TB/s

The hardware configuration is shown below. The 16-card H100 GPUs are evenly distributed
on two nodes, and the 16-card MI50 GPUs are evenly distributed on four nodes.

The six matrices used are from SuiteSparse and have been widely employed in existing
works on SuperLU and PanguLU.

Matrix n(A) nnz(A)
SuperLU

nnz(L + U)
PanguLU

nnz(L + U)

Ga41As41H72 268K 18.5M 4.61G 4.59G

RM07R 381K 37.4M 2.68G 2.14G

cage13 445K 7.48M 4.68G 4.66G

audikw_1 943K 77.6M 2.46G 2.43G

nlpkkt80 1.06M 28.1M 3.80G 3.28G

Serena 1.39M 64.1M 5.42G 5.38G

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 73

Scale-Out Evaluation

Both SuperLU and PanguLU with Trojan Horse continue to deliver strong performance gains
as the number of GPUs increases, despite the workload per GPU is reduced.

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 74

Speedup on 16-card H100

SuperLU w/ Trojan Horse
Avg. 3.5x, Max. 24.6x

PanguLU w/ Trojan Horse
Avg. 1.9x, Max. 2.3x

On 16-card AMD MI50

SuperLU
• Average: 4.7x
• Maximum: 12.8x

PanguLU
• Average: 1.3x
• Maximum: 1.4x

Average Maximum

SuperLU w/ Trojan Horse

3.5x 24.6x

PanguLU w/ Trojan Horse

1.9x 2.3x

Speedup on 16-card MI50

Average Maximum

SuperLU w/ Trojan Horse

4.7x 12.8x

PanguLU w/ Trojan Horse

1.3x 1.4x

Outline

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 75

• Background

① Sparse LU Factorisation

② Task Dependencies Restrict Concurrency

③ Single Task Is Too Small For a GPU
• Motivations

① Aggregate: to Prepare More Tasks for a GPU

② Batch: to Selectively Run the Tasks in Parallel
• Trojan Horse

① Overview

② An Example to Use the Trojan Horse

③ Functional Modules of the Trojan Horse (Priortizer, Container, Collector & Executor)
• Experiments

① Experimental Setup

② Scale-Up Evaluation

③ Scale-Out Evaluation

④ Comparison with CPU solvers
• Conclusion

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 76

Comparison with CPU solvers

GPU CPU
Peak FP64 Performance: ~25 Tflops

Memory B/W: ~2 TB/s
Peak FP64 Performance: ~3 Tflops

Memory B/W: ~0.2 TB/s

The memory B/W and peak
FP64 performance of a GPU
are higher than a CPU by
about an order of magnitude.

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 77

As shown in the red box, over the past twenty years, sparse direct methods are far from
saturating modern GPUs because of highly independent small tasks. Sparse direct methods
on GPU has been slower than CPU methods.

Comparison with CPU solvers

For each matrix, underlined and bold represents the fastest result, and bold represents the second-fastest result.
CPU: Intel Xeon Gold 6462C (32 cores) GPU: NVIDIA H100

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 78

As shown in the red box, today, SuperLU_DIST and PanguLU on GPU with Trojan Horse are
comparable to or faster than CPU methods.

Comparison with CPU solvers

For each matrix, underlined and bold represents the fastest result, and bold represents the second-fastest result.
CPU: Intel Xeon Gold 6462C (32 cores) GPU: NVIDIA H100

Outline

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 79

• Background

① Sparse LU Factorisation

② Task Dependencies Restrict Concurrency

③ Single Task Is Too Small For a GPU
• Motivations

① Aggregate: to Prepare More Tasks for a GPU

② Batch: to Selectively Run the Tasks in Parallel
• Trojan Horse

① Overview

② An Example to Use the Trojan Horse

③ Functional Modules of the Trojan Horse (Priortizer, Container, Collector & Executor)
• Experiments

① Experimental Setup

② Scale-Up Evaluation

③ Scale-Out Evaluation

④ Comparison with CPU solvers
• Conclusion

Conclusion

1. We propose the Trojan Horse strategy for efficiently aggregating and batching fine-grained
small tasks to saturate high-end GPUs;

2. We integrate the Trojan Horse strategy into SuperLU_DIST and PanguLU to effectively
improve their task management and kernel performance;

3. We bring SuperLU_DIST and PanguLU obviously better scale-up throughput and comparable
scale-out performance.

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 80

We believe that more advanced scheduling techniques and faster kernels can further
accelerate sparse direct solvers on GPUs. Therefore, the work presented in this paper
serves only as a starting point and opens the door to a broader Renaissance of sparse
direct solvers on GPUs.

China University of Petroleum-Beijing PPoPP 2026, Sydney, Australia Feb. 3, 2026 81

Trojan Horse：Aggregate-and-Batch for
Scaling Up Sparse Direct Solvers on GPU Clusters

Open-sourced on Github: https://github.com/SuperScientificSoftwareLaboratory/TrojanHorse

Yida Li, Siwei Zhang, Yiduo Niu, Yang Du, Qingxiao Sun, Zhou Jin, Weifeng Liu

Super Scientific Software Laboratory (SSSLab)

China University of Petroleum-Beijing

PPoPP 2026

https://github.com/SuperScientificSoftwareLaboratory/TrojanHorse

	Slide 1: Trojan Horse: Aggregate-and-Batch for Scaling Up Sparse Direct Solvers on GPU Clusters
	Slide 2: Outline
	Slide 3: Outline
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Outline
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Outline
	Slide 16
	Slide 17: Outline
	Slide 18
	Slide 19
	Slide 20: Outline
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Outline
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41: Outline
	Slide 42
	Slide 43
	Slide 44: Outline
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61: Outline
	Slide 62
	Slide 63: Outline
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72: Outline
	Slide 73
	Slide 74
	Slide 75: Outline
	Slide 76
	Slide 77
	Slide 78
	Slide 79: Outline
	Slide 80
	Slide 81

