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Transient sensitivity analysis calculates the sensitivity (or gradient) of any target function of the solution with
respect to given parameters. It plays a vital role in various domains, including circuit optimization ,
performance modeling, and yield estimation.



Background — Sensitivity Analysis

5

Transient sensitivity analysis calculates the sensitivity (or gradient) of any target function of the solution with
respect to given parameters. It plays a vital role in various domains, including circuit optimization ,
performance modeling, and yield estimation.
Ø The performance of a circuit is influenced by numerous critical parameters, such as transistor dimensions,

parasitic resistances, capacitances, and more. Sensitivity analysis is a valuable tool for examining the
impact of these factors on system output.

Ø The conventional direct method falls short when dealing with a large number of parameters; as a result, the
adjoint method has become the standard in modern circuit simulations.

Transistor Dimension Parasitic Resistances and Capacitances Adjoint System and Original System
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A major drawback of the adjoint method is its high memory overhead.

ü In large-scale simulations, this approach incurs substantial spatial and temporal costs.

Ø During the forward solution process, it is necessary to store critical historical information at each time
step, such as the state vectors and matrices, to construct differential equations during the adjoint
process.

Memory cost of storing the history Jacobian matrices
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A major drawback of the adjoint method is its high memory overhead.

ü In large-scale simulations, this approach incurs substantial spatial and temporal costs.

Ø During the forward solution process, it is necessary to store critical historical information at each time
step, such as the state vectors, to construct differential equations during the adjoint process.

Memory cost of storing the history Jacobian matrices

A potential approach to reduce memory overhead is to use 
advanced data compression techniques.



Background — Lossy Compression

8

Error-bounded lossy compression, a current research hotspot in the field of high-performance computing
(HPC), can significantly reduce data size while ensuring accuracy. It is widely regarded as the best
solution for addressing the challenges posed by large-scale scientific data.
Ø Traditional lossless compression algorithms are less effective for domain-specific data due to low

compression ratios.
Ø Lossy methods offer compression ratios 1 to 2 orders of magnitude higher than lossless ones.
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Data-prediction-based compression model

Domain-transform-based compression model

[1]P. Lindstrom and M. Isenburg, “Fast and Efficient Compression of Floating-Point Data,” IEEE
Transactions on Visualization and Computer Graphics, 2006.
[2]S. Di and F. Cappello, "Fast Error-Bounded Lossy HPC Data Compression with SZ," IEEE
International Parallel and Distributed Processing Symposium (IPDPS), 2016.
[3]P. Liakos, K. Papakonstantinopoulou, and Y. Kotidis, “Chimp: Efficient Lossless Floating Point
Compression for Time Series Databases,” Proceedings of the VLDB Endowment, 2022.

[1]P. Lindstrom, “Fixed-rate Compressed Floating-point Arrays,” IEEE Transactions on Visualization and
Computer Graphics, 2014.
[2]R. Ballester-Ripoll, P. Lindstrom, and R. Pajarola, “TTHRESH: Tensor Compression for
Multidimensional Visual Data,” IEEE Transactions on Visualization and Computer Graphics, 2019.
[3]N. Sasaki, K. Sato, T. Endo, and S. Matsuoka, “Exploration of Lossy Compression for Application-level
Checkpoint/Restart,” IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2015.
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Not fully leveraging the data characteristics in circuit 
simulation renders them unsuitable.

Data-prediction-based compression model
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The matrices and vectors generated by circuit simulation at each time step are spiky data with very low
spatial autocorrelation. Existing compressors mostly rely on the smoothness of the data, so their
performance will be greatly reduced on circuit simulation datasets.

ü Therefore, enhancing the smoothness of data in the spatial dimension is essential for simulation data
compression.

Ø For example, ZFP, its domain transformation will lose effectiveness on simulation data, thus
leading to low compression ratio.
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Circuit simulation, particularly during sensitivity
analysis, requires high precision.

ü Therefore, there is an urgent need to develop
lossy compression algorithms that reduce data
size while preserving the precision necessary for
reliable simulations.

Ø While lossy compression algorithms like SZ
improve compression ratios, they introduce
significant errors that accumulate over time,
compromising simulation accuracy. Moreover, the
varying error levels across different lossy
compression methods underscore the challenge
of maintaining data integrity.
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The workflow of the proposed compression algorithm is mainly composed of the following three steps:
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characteristics;
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The workflow of the proposed compression algorithm is mainly composed of the following three steps:

Ø efficiently smooth the spiky simulation data using reference sorting;
Ø apply RLE-FP or polynomial interpolation predictors to decorrelate data based on regional

characteristics;
Ø quantize floating-point data within a user specified error bound and encode it, achieving a significant

data reduction.
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Data smoothing consists of three steps:
Ø sort the floating-point queue in an ascending order at the initial time step, record the sorting indices, and

use this sorting as a reference;
Ø reorder the data in subsequent time steps based on the reference sorting;
Ø for longer integration processes, set validity check points to reinsert invalid data points into the sorted

queue and update the reference sorting.

This approach is based on three key observations:
ü in circuits, nodes with large admittance (or small impedance) connections typically have identical or

similar potentials. Sorting the state vector groups these corresponding floating-point values together.
ü for matrices, elements with similar parameters contribute stamping values that are also similar, and

sorting naturally clusters these corresponding floating-point values.
ü in time series data, values at adjacent time points are often similar or identical, leading to overall

similarity in sorting across time steps.
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Ø After smoothing the simulation data, the compressor
applies a hybrid predictor to decorrelate the dataset.

Smoothed simulation data

Hybrid Predictor



MemSens — Hybrid Predictors

20

Ø After smoothing the simulation data, the compressor
applies a hybrid predictor to decorrelate the dataset.

Smoothed simulation data

Hybrid Predictor

Ø The smoothed dataset contains both long numerical
stable regions and short regions with sharp
numerical increases.
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Ø After smoothing the simulation data, the compressor
applies a hybrid predictor to decorrelate the dataset.

Smoothed simulation data

Hybrid Predictor

Ø The smoothed dataset contains both long numerical
stable regions and short regions with sharp
numerical increases.
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Smoothed simulation data

Hybrid Predictor

Ø The compressor organizes the entire dataset into
different regions (or blocks) and applies different
data prediction techniques according to the data
characteristics within each region.
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Smoothed simulation data

Hybrid Predictor

Ø The compressor organizes the entire dataset into
different regions (or blocks) and applies different
data prediction techniques according to the data
characteristics within each region.
ü In the stable regions, this work introduces the

RLE-FP technique to effectively decorrelate the
data. Its core idea is to record the length of
floating-point sequences that remain within the
same error range consecutively.
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Smoothed simulation data

Hybrid Predictor

Ø The compressor organizes the entire dataset into
different regions (or blocks) and applies different
data prediction techniques according to the data
characteristics within each region.
ü In the stable regions, this work introduces the

RLE-FP technique to effectively decorrelate the
data. Its core idea is to record the length of
floating-point sequences that remain within the
same error range consecutively.

ü In the sharply changing regions, this work
employs a polynomial interpolation predictor to
effectively decorrelate the data. The polynomial
interpolation predictor is a prediction technique
based on polynomial functions, which predicts
future values according to historical points.
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We provide both absolute error bounds (denoted as 𝜖) and relative error bounds (denoted as 𝛿). To ensure
simulation accuracy, both of these error bounds must be satisfied simultaneously. Therefore, there is a
requirement between the true value 𝑉 and the predicted value #𝑉 (which is also the decompressed value):

𝑉 − $𝑉 ≤ 𝜖 𝑎𝑛𝑑
𝑉 − $𝑉
𝑉

≤ 𝛿

So the final error bound 𝑒 specified by the user is:

𝑒 = 𝑚𝑖𝑛 ϵ, δ 𝑉

Clearly, when 𝑉 < !
"
, we focus solely on relative error; in contrast, we pay more attention to absolute error.

Error boundary setting:
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A quantizer is responsible for quantizing the error between predicted values and true values, as well as
handling unpredictable values. It significantly reduces the entropy of the original data while respecting the
user-specified error boundaries.

Ø Calculate the error between the predicted value and the true value.
Ø If the result falls within the error bound e, the quantizer replaces the true value with the predicted value.
Ø Otherwise, the quantizer treats this true value as an unpredictable value.

ü Truncate the insignificant bit planes of floating-point numbers based on absolute or relative error
bounds.

ü Further reduce the data size based on XOR lossless floating-point compression.

Ø Finally, the data size can be further reduced by using the advanced lossless compressor ZSTD.

𝑅!"# = #
0, 𝑝 𝑉 − 𝑝 𝜖 < 0
52, 𝑝 𝑉 − 𝑝 𝜖 > 52
𝑝 𝑉 − 𝑝 𝜖 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑅$%& = −𝑝 δ



MemSens — Simulation Integration

27

We integrate the proposed error-bounded lossy
compression algorithm into the simulation process,
effectively reducing memory usage during both
forward and backward propagation.

Ø In transient analysis, after successfully solving
each time step, we store all the necessary state
variables (e.g., state vectors and Jacobian
matrices), denoted as D, and compress them to
reduce storage.
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We integrate the proposed error-bounded lossy
compression algorithm into the simulation process,
effectively reducing memory usage during both
forward and backward propagation.

Ø In transient analysis, after successfully solving
each time step, we store all the necessary state
variables (e.g., state vectors and Jacobian
matrices), denoted as D, and compress them to
reduce storage.

Ø Subsequently, during the adjoint process, these
variables are decompressed at the necessary
moments to reconstruct the differential equations.
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Platform and software. We implement our proposed compression algorithm in C++ and integrate it into the
adjoint sensitivity simulation. The platform used is Xyce, an open-source, SPICE-compatible circuit simulator
from Sandia National Laboratories. The experiments are conducted on an AMD Ryzen 7 4800H CPU operating
at a clock speed of 2.9 GHz.
Datasets. We evaluate the proposed error-bounded lossy compression algorithm on six datasets, consisting of
vector and matrix data generated from simulations of both linear and nonlinear circuits. As shown in the table,
the first column represents the name of the circuit and whether it is vector data or matrix data, the second
column is the type of the circuit, the third column indicates the number of elements in the circuit, and the fourth
and fifth columns respectively represent the dimensions and size of the data.
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Baselines. We compare the proposed algorithm with the state-of-the-art lossless compressor ZSTD, the
lossless compression algorithm MASC specifically designed for matrices, and two cutting-edge lossy
compressors, ZFP and SZ. All algorithms use the latest versions.

Configuration. In scientific computing, the absolute and relative error bounds for lossy compression are
typically set to 10#$ and 10#% , respectively, providing sufficient accuracy while significantly reducing
simulation memory overhead. We adopt this configuration for our experiment as well.

ZSTD: ZHENG L, WU Y, ZHU M, et al. Design and optimization of Zstandard algorithm based on concurrent streaming of multiple
hash tables[C] // Proceedings of the International Conference on Laser, Optics and Optoelectronic Technology. Bellingham: SPIE,
2022.

SZ: DI S, CAPPELLO F. Fast error-bounded lossy HPC data compression with SZ[C]// Proceedings of the IEEE International Parallel
and Distributed Processing Symposium. Piscataway: IEEE, 2016.

ZFP: LINDSTROM P. Fixed-rate compressed floating-point arrays[J]. IEEE Transactions on Visualization and Computer Graphics,
2014, 20(12).

MASC: LI C, ZHANG B, DUAN Y, LI Y, YE Z, LIU W, TAO D, JIN Z. MASC: A Memory-Efficient Adjoint Sensitivity Analysis through
Compression Using Novel Spatiotemporal Prediction[C]// Proceedings of the 61th ACM/IEEE Design Automation Conference (DAC).
Piscataway: IEEE, 2024.
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We compare the proposed error-bounded lossy compression algorithm with the aforementioned
compression methods.

Ø In terms of compression ratio, our algorithm achieves average ratios of 23.70x and 39.07x
higher than the state-of-the-art lossless compression methods ZSTD and MASC, respectively.

Ø When compared to advanced lossy compression methods such as ZFP and SZ, the proposed
algorithm achieves compression ratios of 36.24x and 2.44x higher, respectively.
ü This improvement can be attributed to the algorithm's effective exploitation of the

characteristics of circuit simulation data.
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We integrate the proposed error-bounded lossy
compression algorithm into the adjoint sensitivity
simulation to analyze the impact of floating-point
errors introduced by lossy compression on the
accuracy of sensitivity simulation results. The
absolute error bound is set to 10#$ and the relative
error bound to 10#%.

Ø It can be observed that the sensitivity analysis
results at each time point remained within the
predefined error bounds after integrating the lossy
compression.

ü This is attributed to the proposed algorithm's strict
quantization of errors introduced during the
compression process.
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This work introduces the first error-bounded lossy compression algorithm capable of efficiently compressing
both vector and matrix data in circuit simulations. This approach significantly reduces memory overhead in
adjoint sensitivity simulations.

Ø Based on the characteristics of data in circuit simulations, we propose an effective smoothing method
tailored for simulation data.

Ø Subsequently, we design different data prediction algorithms for regions with distinct properties.

Ø Finally, through rigorous error quantization and efficient data encoding, the proposed approach
significantly reduces the data size while preserving accuracy.

Lossy compression is valuable for reducing the overhead 
of circuit simulation.
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