
G-SpNN: GPU-Accelerated Passivity Enforcement
for S-Parameter Modeling with Neural Networks

Lijie Zeng1, Jiatai Sun1, Xiao Wu2, Dan Niu3, Tianshi Wang4, Yibo Lin5, Zuochang Ye6, Zhou Jin7
1SSSLab, China University of Petroleum-Beijing, China, 2Huada Empyrean Software Co. Ltd, China,

3School of Automation, Southeast University, China, 4HiSilicon Technologies Co. Ltd,
5School of Integrated Circuits, Peking University, Beijing, 6School of Integrated Circuits, Tsinghua University,

7College of Integrated Circuits, Zhejiang University, China

Email: z.jin@zju.edu.cn

2

OUTLINE

1 Background

2

3 Experiment

4 Conclusion

G-SpNN

3

OUTLINE

1 Background

2

3 Experiment

4 Conclusion

G-SpNN

4

Background

Chip Packaging Simulation

RFIC Simulation

Ø At high frequencies, S-parameters (scattering
parameters) are commonly used to describe the
performance of microwave and RF devices.

Ø Running time-domain analyses with them is
computationally intensive and often leads to
convergence issues.

Ø Macromodeling techniques are applied to
simplify these behaviors, enhancing simulation
efficiency and stability.

5

Background

Mainstream methods typically adopt a two-step approach:

① Generate a macromodel without considering passivity constraints
Mainstream method such as: Vector Fitting (VF)[1]

[1] B. Gustavsen and A. Semlyen, “Rational approximation of frequency domain responses by vector fitting,”
IEEE Transactions on Power Delivery,vol. 14, no. 3, pp. 1052–1061, 1999.

Using the VF method, a set of functions
with a given form is fitted to the known
frequency data 𝑠! and system response
𝐻 𝑠! ∈ ℂ"×".

6

Background

𝑓 𝑠! = $
"#$

%!
𝑐"

𝑠! − 𝑎"
+ 𝑑 + 𝑠!ℎ 𝐺 𝑠! = 𝐶 𝑠! ⋅ 𝐼 − 𝐴 &$𝐵 + 𝐷

Transform the rational function form into a state-space form and apply the
EPM/RPM/LC to restore the passivity of model 𝐺 𝑠 .

𝐺 𝑠! + 𝐺' 𝑠! ≥ 0

rational function form
state-space form passivity condition

② Applying specialized algorithms to restore passivity
Such as: Eigenvalue Perturbation (EPM)[2], Residue Perturbation (RPM)[3], Local Compensation (LC)[4]

[2] S. Grivet-Talocia, “An adaptive sampling technique for passivity characterization and enforcement of large
interconnect macromodels,” IEEE Transactions on Advanced Packaging, vol. 30, no. 2, pp. 226–237, 2007.

[3] B. Gustavsen, “Fast passivity enforcement for pole-residue models by perturbation of residue matrix
eigenvalues,” IEEE Transactions on Power Delivery, vol. 23, no. 4, pp. 2278–2285, 2008.

[4] T. Wang and Z. Ye, “Robust passive macro-model generation with local compensation,” IEEE Transactions
on Microwave Theory and Techniques, vol. 60, no. 8, pp. 2313–2328, 2012.

7

Background

VF + EPM/RPM/LCTwo-Step Approach

compromise model accuracy
the most critical issue

Domain-Alternated Optimization (DAO) [5]

existing issues

address this issue

the proposal of a new method

[5] Ye Z, Wang T, Li Y. Domain-alternated optimization for passive macromodeling[J]. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 2014

8

Background

min(,*∑! 𝐺 𝑠! − 𝐻 𝑠!
subject to:

𝑊 𝑠! = 𝐿 𝑠! ⋅ 𝐼 − 𝐴 &$𝐵 + 𝑄
𝐺 𝑠! = 𝑝𝑓𝑒 𝑊 𝑠!

𝑊 𝑠! = 𝐿 𝑠! ⋅ 𝐼 − 𝐴 &$𝐵 + 𝑄𝐺 𝑠! = 𝐶 𝑠! ⋅ 𝐼 − 𝐴 &$𝐵 + 𝐷

SPF

PFE

>
min+,,∑! 𝐺 𝑠! − 𝐻 𝑠!

subject to:
𝐺 𝑠! is passive

DAO introduces two key transformation operators. Based on the transformation using
SPF and PFE, the system 𝑮 𝒔𝒌 derived from 𝑾 𝒔𝒌 is guaranteed to preserve passivity,
and the original optimization problem can be further converted into an unconstrained
optimization problem.

Original Optimization Problem Unconstrained Optimization Problem

Spectral Factorization (SPF)

Partial Fractional Expansion (PFE)

9

Background

VF + EPM/RPM/LCThree-Step Approach

case with 21-port system

The essence of DAO is to transform the passivity-constrained
problem into an unconstrained optimization problem, thereby
improving macromodel accuracy while maintaining passivity
throughout the process.

Domain-Alternated Optimization

10

Background

VF + EPM/RPM/LC Domain-Alternated OptimizationThree-Step Approach

However, as the number of ports in complex integrated circuits continues to
grow, the three-step approach increasingly reveals additional issues.

For the previously mentioned 21-port system, the iteration time of DAO is 15
times longer than the total time of the first two steps. For a 64-port system,
each iteration consumes an average of 22GB of memory, while for a 138-port
system, memory usage exceeds 31.8GB.

case with 21-port system

11

Background

VF + EPM/RPM/LC Domain-Alternated OptimizationThree-Step Approach

However, as the number of ports in complex integrated circuits continues to
grow, the three-step approach increasingly reveals additional issues.

For the previously mentioned 21-port system, the iteration time of DAO is
15 times longer than the total time of the first two steps. For a 64-port
system, each iteration consumes an average of 22GB of memory, while for
a 138-port system, memory usage exceeds 31.8GB.

case with 21-port system

High Memory Consumption Slow Convergence

the Two Primary Challenges

12

OUTLINE

1 Background

2

3 Experiment

4 Conclusion

G-SpNN

13

G-SpNN Analogy to Neural Network Training

Train a network for weights 𝑤

VS

Vector 𝑥!, Label 𝑦! , Predicted Label 𝜙 𝑥! , 𝑤

min(,*∑! 𝐺 𝑠! − 𝐻 𝑠!
subject to:

𝑊 𝑠! = 𝐿 𝑠! ⋅ 𝐼 − 𝐴 &$𝐵 + 𝑄
𝐺 𝑠! = 𝑝𝑓𝑒 𝑊 𝑠!

Unconstrained Optimization Problem

Neural Network Training

The error function in unconstrained optimization can be viewed as
analogous to the prediction error encountered in neural network training.

14

G-SpNN Analogy to Neural Network Training

Train a network for weights 𝑤

VS

Vector 𝑥!, Label 𝑦! , Predicted Label 𝜙 𝑥! , 𝑤

min(,*∑! 𝐺 𝑠! − 𝐻 𝑠!
subject to:

𝑊 𝑠! = 𝐿 𝑠! ⋅ 𝐼 − 𝐴 &$𝐵 + 𝑄
𝐺 𝑠! = 𝑝𝑓𝑒 𝑊 𝑠!

Unconstrained Optimization Problem

Neural Network Training

The optimization variables 𝑳, 𝑸 in unconstrained optimization can be viewed
as analogous to the trainable weight encountered in neural network training.

15

G-SpNN Analogy to Neural Network Training

Train a network for weights 𝑤

VS

Vector 𝑥!, Label 𝑦! , Predicted Label 𝜙 𝑥! , 𝑤

min(,*∑! 𝐺 𝑠! − 𝐻 𝑠!
subject to:

𝑊 𝑠! = 𝐿 𝑠! ⋅ 𝐼 − 𝐴 &$𝐵 + 𝑄
𝐺 𝑠! = 𝑝𝑓𝑒 𝑊 𝑠!

Unconstrained Optimization Problem

Neural Network Training

𝑯 𝒔𝒌 , 𝑮 𝒔𝒌 in unconstrained optimization can be viewed as analogous to
the label and predicted label encountered in neural network training.

16

G-SpNN Analogy to Neural Network Training

min(,*∑! 𝐺 𝑠! − 𝐻 𝑠!
subject to:

𝑊 𝑠! = 𝐿 𝑠! ⋅ 𝐼 − 𝐴 &$𝐵 + 𝑄
𝐺 𝑠! = 𝑝𝑓𝑒 𝑊 𝑠!

Unconstrained Optimization Problem

Solve a set of parameters for macromodel
with 𝑤 = (𝐿, 𝑄)

Neural Network Training

The two optimization frameworks share a fundamental similarity ,making it possible
to leverage neural network techniques to accelerate macromodeling optimization.

17

G-SpNN Loss Function

To make the neural network training process more efficient, the objective function
can be reformulated to reduce computational complexity.

Error = 𝒎𝒊𝒏
𝑪,𝑫

∑𝒌 𝑮 𝒔𝒌 −𝑯 𝒔𝒌

Error_vec = |𝐹𝑦 − ℎ|

𝑦 = vec(𝐶)
vec(𝐷) F! = kron 𝑠!𝐼 − 𝐴 "#, 𝐼$ 𝐼%&

ℎ =

Vec 𝑅e 𝐻 𝑠#
⋮

Vec 𝑅e 𝐻 𝑠'
Vec 𝐼𝑚 𝐻 𝑠#

⋮
Vec 𝐼𝑚 𝐻 𝑠'

𝐹 =

𝑅e 𝐹#
⋮

𝑅𝑒 𝐹'
𝐼𝑚 𝐹#

⋮
𝐼𝑚 𝐹'

𝐹 = 𝑄(𝑅(

𝑏 = 𝑄()ℎ, 𝛿& = ℎ)ℎ − 𝑏)𝑏

loss = Error = 𝑹𝑭𝒚 − 𝒃 𝑻 𝑹𝑭𝒚 − 𝒃 + 𝜹𝟐

Original Objective Function Reformulated Objective Function

Intermediate Computation Steps

The summation of errors over k
terms increases computational
complexity.

18

G-SpNN Loss Function

To make the neural network training process more efficient, the objective function can be reformulated
to reduce computational complexity.

Error = 𝒎𝒊𝒏
𝑪,𝑫

∑𝒌 𝑮 𝒔𝒌 −𝑯 𝒔𝒌

Error_vec = |𝐹𝑦 − ℎ|

𝑦 =
vec(𝐶)
vec(𝐷) F! = kron 𝑠!𝐼 − 𝐴 "#, 𝐼$ 𝐼%&

ℎ =

Vec 𝑅e 𝐻 𝑠#
⋮

Vec 𝑅e 𝐻 𝑠'
Vec 𝐼𝑚 𝐻 𝑠#

⋮
Vec 𝐼𝑚 𝐻 𝑠'

𝐹 =

𝑅e 𝐹#
⋮

𝑅𝑒 𝐹'
𝐼𝑚 𝐹#

⋮
𝐼𝑚 𝐹'

𝐹 = 𝑄(𝑅(𝑏 = 𝑄()ℎ, 𝛿& = ℎ)ℎ − 𝑏)𝑏

loss = Error_vec = 𝑹𝑭𝒚 − 𝒃 𝑻 𝑹𝑭𝒚 − 𝒃 + 𝜹𝟐

Original Objective Function Reformulated Objective Function

Intermediate Computation Steps

min(,*∑! 𝐺 𝑠! − 𝐻 𝑠!
subject to:

𝑊 𝑠! = 𝐿 𝑠! ⋅ 𝐼 − 𝐴 &$𝐵 + 𝑄
𝐺 𝑠! = 𝑝𝑓𝑒 𝑊 𝑠!

>
min+,,∑! 𝐺 𝑠! − 𝐻 𝑠!

subject to:
𝐺 𝑠! is passive

Original Optimization Problem Unconstrained Optimization Problem

variable: 𝐿, 𝑄
min: 𝑓(𝑦) = 𝑅.𝑦 − 𝑏 / 𝑅.𝑦 − 𝑏 + 𝛿0

subject to:

𝑥 = vec(𝐿)
vec(𝑄)

𝑦 = 𝑝𝑓𝑒(𝑥)
Reformulated Optimization Problem

Based on the new definition of the loss function, optimization problem
can be further reformulated.

The reformulated optimization problem can also be analogized to neural network
training for solution.

19

G-SpNN Further Analysis of the Main Challenges

min(,*∑! 𝐺 𝑠! − 𝐻 𝑠!
subject to:

𝑊 𝑠! = 𝐿 𝑠! ⋅ 𝐼 − 𝐴 &$𝐵 + 𝑄
𝐺 𝑠! = 𝑝𝑓𝑒 𝑊 𝑠!

Unconstrained Optimization Problem

Gradient Vector
Hessian Matrix

High Memory Consumption

High Time Complexity
High Space Complexity

Slow Convergence

For the transformed unconstrained optimization problem, it can be solved by computing
the gradient vector and Hessian matrix, but this is also the main source of the challenges.

𝜕𝑦
𝜕𝑥

=

𝜕𝑦*
𝜕𝑥+

𝜕𝑦*
𝜕𝑥,

𝜕𝑦-
𝜕𝑥+

𝜕𝑦-
𝜕𝑥,

=
−𝐽*.𝑀"#𝒩+ 𝐿 +𝒦, 𝑄 𝒦+ 𝐿

0 𝒩, 𝑄

𝜕&𝑦
𝜕𝑥/&

=
𝜕&𝑦
𝜕𝑥& 𝐞/ =

𝜕
𝜕𝑥

𝜕𝑦
𝜕𝑥 𝐞/ =

−𝐽*.𝑀"#𝒩+ 𝐿/ + 𝐾, 𝑄/ 𝐾+ 𝐿/
0 𝒩, 𝑄/

𝜕𝑓
𝜕𝑥 =

𝜕𝑓
𝜕𝑦
𝜕𝑦
𝜕𝑥

𝜕&𝑓
𝜕𝑥&

=
𝜕
𝜕𝑥

𝜕𝑓
𝜕𝑥

)
=
𝜕
𝜕𝑥

𝜕𝑓
𝜕𝑦
𝜕𝑦
𝜕𝑥

)
=

𝜕𝑦
𝜕𝑥

) 𝜕&𝑓
𝜕𝑦&

𝜕𝑦
𝜕𝑥

+
𝜕&𝑦
𝜕𝑥&

𝜕𝑓
𝜕𝑦

)

Simplified Computational Steps

!"
!#

= 2𝐸$𝑅 !!"
!#!

= 2𝑅$𝑅

(involves matrix inversion and dense matrix multiplication)

20

G-SpNN Further Optimization for Memory and Time Consumption

As previously mentioned, the full computation of the Hessian matrix incurs significant memory and time
overhead; therefore, we adopt the LBFGS method to approximate the inverse of the Hessian matrix.

𝐻!1$ = 𝐻! −
𝐻!Δ𝑔!Δ𝑔!/𝐻!
Δ𝑔!/Δ𝑥!

+
Δ𝑥!Δ𝑥!/

Δ𝑥!/Δ𝑔!
Where:

1) 𝐻! is the Hessian inverse approximation at iteration 𝑘
2) 𝛥𝑔! =

23
24 !1$

− 23
24 !

is the change in the gradient
3) 𝛥𝑥! = 𝑥!1$ − 𝑥! is the change in the parameter

The update formula in LBFGS method

The essence of LBFGS is to efficiently approximate the inverse of the Hessian matrix by
retaining information from the most recent iterations, thereby accelerating the convergence
of large-scale optimization problems.

21

G-SpNN Further Optimization for Memory and Time Consumption

! = #
$ % = &

' ()** = +(%)

.+

.! =
.+
.%

.%

.!

.!+

.!! ≈ 0"

1 2

3
4

5

PFE

Backwa
rd

Update

LBFGS

+ % = 1#% − 3 $ 1#% − 3 + 5!

Build

Computational Graph with LBFGS Method

Step 1: 𝒙 undergoes the 𝑷𝑭𝑬 operation to generate
parameters 𝒚 (the passive system 𝑮(𝒔)).

Step 2：Construct the loss function.

Step 3：Use automatic differentiation to perform
backpropagation via the chain rule and compute the
first-order derivative of the loss function with respect
to the network weights 𝒙.

Step 4：Use the LBFGS method to approximate the inverse
of the Hessian matrix.

Step 5： Update the parameters L and Q of the initial passive
system.

22

G-SpNN The Overall Framework

Starting with a given passive system 𝑮𝟏(𝒔𝒌), an unconstrained system 𝑾(𝒔𝒌) is first derived
by SPF transformation and represented as a layer in the neural network.

①

23

G-SpNN The Overall Framework

Next, the PFE transformation is applied to generate a new network layer 𝑮(𝒔𝒌), corresponding
to a passive system. This reformulates the problem as a neural network training task.

②

24

G-SpNN The Overall Framework

During forward propagation, the system, together with the tabulated data 𝑯(𝒔𝒌), is used to
compute the loss value.

③

25

G-SpNN The Overall Framework

For efficient training, the LBFGS method is futher incorporated with backpropagation to
compute gradients and update the network parameters. Once the iteration stopping criteria
are satisfied, the optimized passive system is obtained.

④

26

OUTLINE

1 Background

2

3 Experiment

4 Conclusion

G-SpNN

27

Experiment Experimental Setup

1https://www.github.com/yezuochang/pmm

Experimental Environment

Ø We implement and test the proposed G-SpNN
on an i7-14700KF @5.6GHz CPU with 32GB
of memory, and a GeForce RTX 4070 SUPER
GPU with 12GB of VRAM.

Ø G-SpNN is implemented based on PyTorch
and compared against the framework DAO,
which is implemented in MATLAB and is open-
sourced on GitHub.

Touchstone files information

Fitting results of VF and LC

28

Experiment Convergence Speed and Memory Usage

Comparison of G-SpNN and DAO. The “–” indicates memory overrun during execution.

G-SpNN vs. DAO in memory consumption.Ø G-SpNN achieves an average speedup of 7.63× compared to DAO.

Ø DAO’s average memory consumption is
171.3x that of G-SpNN.

Ø Keeping the memory usage almost constant
with an increasing number of ports.

29

Experiment Convergence Speed and Memory Usage

Comparison of G-SpNN and DAO. The “–” indicates memory overrun during execution.

More Detailed Explanation
For Case 1, although the runtime of DAO appears shorter, the comparison of the
final loss and steady-state error shows that DAO actually experiences pseudo-

convergence and does not reach the optimal solution.

30

Experiment Convergence Speed and Memory Usage

Comparison of G-SpNN and DAO. The “–” indicates memory overrun during execution.

More Detailed Explanation
Ø For Case 3 and Case 4, it should be noted that the DAO method is forcibly

terminated during the iteration process due to memory overflow and does not
reach the predefined convergence criterion.

Ø For Case 5, DAO experiences a memory overflow during the first iteration and
could not complete the iteration.

31

Experiment Convergence Speed and Memory Usage

Comparison of G-SpNN and DAO. The “–” indicates memory overrun during execution.

More Detailed Explanation
Due to the high time and space complexity of the DAO method, we limit the

number of poles in the VF method for cases 3-5 to ensure computational feasibility,
which leads to higher SS Error and limits the reduction in loss.

Memory Usage
increases in DAO

32

Experiment Convergence Speed and Memory Usage

G-SpNN vs. DAO in loss and memory over time (Case 3 and Case 4).

Gradient Explosion
occurs in DAO

Ø Using Case 3 and Case 4 as examples, figure shows the loss and memory usage
variations during iterations.

Ø G-SpNN has a smoother convergence process with better performance, achieving lower
loss compared to DAO.

33

Experiment Compare with Adam

Loss over time for G-SpNN with Adam and with LBFGS (Case 3).

The LBFGS method enables G-SpNN to progress steadily
toward convergence, owing to second-order information
guiding more effective update directions.

34

OUTLINE

1 Background

2

3 Experiment

4 Conclusion

G-SpNN

35

Conclusion

l Casting the passive macromodeling problem to neural network training,
thus leveraging GPU acceleration.

l Using the LBFGS method to efficiently approximate the Hessian inverse
matrix, efficiently decrease the memory cost and time overhead. Keeping
the memory usage almost constant with an increasing number of ports.

l Experimental results show that G-SpNN not only converges more stably
and quickly than DAO, with an average speedup of 7.63×, its memory
usage can be reduced by two orders of magnitude in test cases.

Thanks for Listening
Any Questions?

Email: z.jin@zju.edu.cn

