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Background

Chip Packaging Simulation

RFIC Simulation

Ø At high frequencies, S-parameters (scattering 
parameters) are commonly used to describe the 
performance of microwave and RF devices.

Ø Running time-domain analyses with them is 
computationally intensive and often leads to 
convergence issues.

Ø Macromodeling techniques are applied to 
simplify these behaviors, enhancing simulation 
efficiency and stability.
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Background

Mainstream methods typically adopt a two-step approach:

① Generate a macromodel without considering passivity constraints 
Mainstream method such as: Vector Fitting (VF)[1]

[1] B. Gustavsen and A. Semlyen, “Rational approximation of frequency domain responses by vector fitting,” 
IEEE Transactions on Power Delivery,vol. 14, no. 3, pp. 1052–1061, 1999.

Using the VF method, a set of functions 
with a given form is fitted to the known 
frequency data 𝑠! and system response
𝐻 𝑠! ∈ ℂ"×".
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Background

𝑓 𝑠! = $
"#$

%!
𝑐"

𝑠! − 𝑎"
+ 𝑑 + 𝑠!ℎ 𝐺 𝑠! = 𝐶 𝑠! ⋅ 𝐼 − 𝐴 &$𝐵 + 𝐷

Transform the rational function form into a state-space form and apply the 
EPM/RPM/LC to restore the passivity of model 𝐺 𝑠 .

𝐺 𝑠! + 𝐺' 𝑠! ≥ 0

rational function form
state-space form passivity condition

② Applying specialized algorithms to restore passivity
Such as: Eigenvalue Perturbation (EPM)[2], Residue Perturbation (RPM)[3], Local Compensation (LC)[4]

[2] S. Grivet-Talocia, “An adaptive sampling technique for passivity characterization and enforcement of large 
interconnect macromodels,” IEEE Transactions on Advanced Packaging, vol. 30, no. 2, pp. 226–237, 2007.

[3] B. Gustavsen, “Fast passivity enforcement for pole-residue models by perturbation of residue matrix 
eigenvalues,” IEEE Transactions on Power Delivery, vol. 23, no. 4, pp. 2278–2285, 2008.

[4] T. Wang and Z. Ye, “Robust passive macro-model generation with local compensation,” IEEE Transactions 
on Microwave Theory and Techniques, vol. 60, no. 8, pp. 2313–2328, 2012.
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Background

VF + EPM/RPM/LCTwo-Step Approach

compromise model accuracy
the most critical issue

Domain-Alternated Optimization (DAO) [5]

existing issues

address this issue

the proposal of a new method

[5] Ye Z, Wang T, Li Y. Domain-alternated optimization for passive macromodeling[J]. IEEE Transactions on Very Large Scale Integration 
(VLSI) Systems, 2014
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Background

min(,*∑! 𝐺 𝑠! − 𝐻 𝑠!
subject to:

𝑊 𝑠! = 𝐿 𝑠! ⋅ 𝐼 − 𝐴 &$𝐵 + 𝑄
𝐺 𝑠! = 𝑝𝑓𝑒 𝑊 𝑠!

𝑊 𝑠! = 𝐿 𝑠! ⋅ 𝐼 − 𝐴 &$𝐵 + 𝑄𝐺 𝑠! = 𝐶 𝑠! ⋅ 𝐼 − 𝐴 &$𝐵 + 𝐷

SPF

PFE

>
min+,,∑! 𝐺 𝑠! − 𝐻 𝑠!

subject to:
𝐺 𝑠! is passive

DAO introduces two key transformation operators. Based on the transformation using 
SPF and PFE, the system 𝑮 𝒔𝒌 derived from 𝑾 𝒔𝒌 is guaranteed to preserve passivity, 
and the original optimization problem can be further converted into an unconstrained 
optimization problem.

Original Optimization Problem Unconstrained Optimization Problem

Spectral Factorization (SPF)

Partial Fractional Expansion (PFE)
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Background

VF + EPM/RPM/LCThree-Step Approach

case with 21-port system

The essence of DAO is to transform the passivity-constrained 
problem into an unconstrained optimization problem, thereby 
improving macromodel accuracy while maintaining passivity 
throughout the process.

Domain-Alternated Optimization
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Background

VF + EPM/RPM/LC Domain-Alternated OptimizationThree-Step Approach

However, as the number of ports in complex integrated circuits continues to 
grow, the three-step approach increasingly reveals additional issues.

For the previously mentioned 21-port system, the iteration time of DAO is 15 
times longer than the total time of the first two steps. For a 64-port system, 
each iteration consumes an average of 22GB of memory, while for a 138-port 
system, memory usage exceeds 31.8GB.

case with 21-port system
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Background

VF + EPM/RPM/LC Domain-Alternated OptimizationThree-Step Approach

However, as the number of ports in complex integrated circuits continues to 
grow, the three-step approach increasingly reveals additional issues.

For the previously mentioned 21-port system, the iteration time of DAO is 
15 times longer than the total time of the first two steps. For a 64-port 
system, each iteration consumes an average of 22GB of memory, while for 
a 138-port system, memory usage exceeds 31.8GB.

case with 21-port system

High Memory Consumption Slow Convergence

the Two Primary Challenges
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G-SpNN Analogy to Neural Network Training

Train a network for weights 𝑤

VS

Vector 𝑥!, Label 𝑦! , Predicted Label 𝜙 𝑥! , 𝑤

min(,*∑! 𝐺 𝑠! − 𝐻 𝑠!
subject to:

𝑊 𝑠! = 𝐿 𝑠! ⋅ 𝐼 − 𝐴 &$𝐵 + 𝑄
𝐺 𝑠! = 𝑝𝑓𝑒 𝑊 𝑠!

Unconstrained Optimization Problem

Neural Network Training

The error function in unconstrained optimization can be viewed as 
analogous to the prediction error encountered in neural network training.
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G-SpNN Analogy to Neural Network Training

Train a network for weights 𝑤

VS

Vector 𝑥!, Label 𝑦! , Predicted Label 𝜙 𝑥! , 𝑤

min(,*∑! 𝐺 𝑠! − 𝐻 𝑠!
subject to:

𝑊 𝑠! = 𝐿 𝑠! ⋅ 𝐼 − 𝐴 &$𝐵 + 𝑄
𝐺 𝑠! = 𝑝𝑓𝑒 𝑊 𝑠!

Unconstrained Optimization Problem

Neural Network Training

The optimization variables 𝑳, 𝑸 in unconstrained optimization can be viewed 
as analogous to the trainable weight encountered in neural network training.
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G-SpNN Analogy to Neural Network Training

Train a network for weights 𝑤

VS

Vector 𝑥!, Label 𝑦! , Predicted Label 𝜙 𝑥! , 𝑤

min(,*∑! 𝐺 𝑠! − 𝐻 𝑠!
subject to:

𝑊 𝑠! = 𝐿 𝑠! ⋅ 𝐼 − 𝐴 &$𝐵 + 𝑄
𝐺 𝑠! = 𝑝𝑓𝑒 𝑊 𝑠!

Unconstrained Optimization Problem

Neural Network Training

𝑯 𝒔𝒌 , 𝑮 𝒔𝒌 in unconstrained optimization can be viewed as analogous to 
the label and predicted label encountered in neural network training.
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G-SpNN Analogy to Neural Network Training

min(,*∑! 𝐺 𝑠! − 𝐻 𝑠!
subject to:

𝑊 𝑠! = 𝐿 𝑠! ⋅ 𝐼 − 𝐴 &$𝐵 + 𝑄
𝐺 𝑠! = 𝑝𝑓𝑒 𝑊 𝑠!

Unconstrained Optimization Problem

Solve a set of parameters for macromodel
with 𝑤 = (𝐿, 𝑄)

Neural Network Training

The two optimization frameworks share a fundamental similarity ,making it possible 
to leverage neural network techniques to accelerate macromodeling optimization.
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G-SpNN Loss Function

To make the neural network training process more efficient, the objective function 
can be reformulated to reduce computational complexity.

Error = 𝒎𝒊𝒏
𝑪,𝑫

∑𝒌 𝑮 𝒔𝒌 −𝑯 𝒔𝒌

Error_vec = |𝐹𝑦 − ℎ|

𝑦 = vec(𝐶)
vec(𝐷) F! = kron 𝑠!𝐼 − 𝐴 "#, 𝐼$ 𝐼%&

ℎ =

Vec 𝑅e 𝐻 𝑠#
⋮

Vec 𝑅e 𝐻 𝑠'
Vec 𝐼𝑚 𝐻 𝑠#

⋮
Vec 𝐼𝑚 𝐻 𝑠'

𝐹 =

𝑅e 𝐹#
⋮

𝑅𝑒 𝐹'
𝐼𝑚 𝐹#

⋮
𝐼𝑚 𝐹'

𝐹 = 𝑄(𝑅(

𝑏 = 𝑄()ℎ, 𝛿& = ℎ)ℎ − 𝑏)𝑏

loss = Error = 𝑹𝑭𝒚 − 𝒃 𝑻 𝑹𝑭𝒚 − 𝒃 + 𝜹𝟐

Original Objective Function Reformulated Objective Function

Intermediate Computation Steps

The summation of errors over k 
terms increases computational 
complexity.
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G-SpNN Loss Function

To make the neural network training process more efficient, the objective function can be reformulated 
to reduce computational complexity.

Error = 𝒎𝒊𝒏
𝑪,𝑫

∑𝒌 𝑮 𝒔𝒌 −𝑯 𝒔𝒌

Error_vec = |𝐹𝑦 − ℎ|

𝑦 =
vec(𝐶)
vec(𝐷) F! = kron 𝑠!𝐼 − 𝐴 "#, 𝐼$ 𝐼%&

ℎ =

Vec 𝑅e 𝐻 𝑠#
⋮

Vec 𝑅e 𝐻 𝑠'
Vec 𝐼𝑚 𝐻 𝑠#

⋮
Vec 𝐼𝑚 𝐻 𝑠'

𝐹 =

𝑅e 𝐹#
⋮

𝑅𝑒 𝐹'
𝐼𝑚 𝐹#

⋮
𝐼𝑚 𝐹'

𝐹 = 𝑄(𝑅(𝑏 = 𝑄()ℎ, 𝛿& = ℎ)ℎ − 𝑏)𝑏

loss = Error_vec = 𝑹𝑭𝒚 − 𝒃 𝑻 𝑹𝑭𝒚 − 𝒃 + 𝜹𝟐

Original Objective Function Reformulated Objective Function

Intermediate Computation Steps

min(,*∑! 𝐺 𝑠! − 𝐻 𝑠!
subject to:

𝑊 𝑠! = 𝐿 𝑠! ⋅ 𝐼 − 𝐴 &$𝐵 + 𝑄
𝐺 𝑠! = 𝑝𝑓𝑒 𝑊 𝑠!

>
min+,,∑! 𝐺 𝑠! − 𝐻 𝑠!

subject to:
𝐺 𝑠! is passive

Original Optimization Problem Unconstrained Optimization Problem

variable: 𝐿, 𝑄
min: 𝑓(𝑦) = 𝑅.𝑦 − 𝑏 / 𝑅.𝑦 − 𝑏 + 𝛿0

subject to:

𝑥 = vec(𝐿)
vec(𝑄)

𝑦 = 𝑝𝑓𝑒(𝑥)
Reformulated Optimization Problem

Based on the new definition of the loss function, optimization problem 
can be further reformulated.

The reformulated optimization problem can also be analogized to neural network 
training for solution.
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G-SpNN Further Analysis of the Main Challenges

min(,*∑! 𝐺 𝑠! − 𝐻 𝑠!
subject to:

𝑊 𝑠! = 𝐿 𝑠! ⋅ 𝐼 − 𝐴 &$𝐵 + 𝑄
𝐺 𝑠! = 𝑝𝑓𝑒 𝑊 𝑠!

Unconstrained Optimization Problem

Gradient Vector
Hessian Matrix

High Memory Consumption

High Time Complexity
High Space Complexity

Slow Convergence

For the transformed unconstrained optimization problem, it can be solved by computing 
the gradient vector and Hessian matrix, but this is also the main source of the challenges.

𝜕𝑦
𝜕𝑥

=

𝜕𝑦*
𝜕𝑥+

𝜕𝑦*
𝜕𝑥,

𝜕𝑦-
𝜕𝑥+

𝜕𝑦-
𝜕𝑥,

=
−𝐽*.𝑀"#𝒩+ 𝐿 +𝒦, 𝑄 𝒦+ 𝐿

0 𝒩, 𝑄

𝜕&𝑦
𝜕𝑥/&

=
𝜕&𝑦
𝜕𝑥& 𝐞/ =

𝜕
𝜕𝑥

𝜕𝑦
𝜕𝑥 𝐞/ =

−𝐽*.𝑀"#𝒩+ 𝐿/ + 𝐾, 𝑄/ 𝐾+ 𝐿/
0 𝒩, 𝑄/

𝜕𝑓
𝜕𝑥 =

𝜕𝑓
𝜕𝑦
𝜕𝑦
𝜕𝑥

𝜕&𝑓
𝜕𝑥&

=
𝜕
𝜕𝑥

𝜕𝑓
𝜕𝑥

)
=
𝜕
𝜕𝑥

𝜕𝑓
𝜕𝑦
𝜕𝑦
𝜕𝑥

)
=

𝜕𝑦
𝜕𝑥

) 𝜕&𝑓
𝜕𝑦&

𝜕𝑦
𝜕𝑥

+
𝜕&𝑦
𝜕𝑥&

𝜕𝑓
𝜕𝑦

)

Simplified Computational Steps

!"
!#

= 2𝐸$𝑅 !!"
!#!

= 2𝑅$𝑅

(involves matrix inversion and dense matrix multiplication)
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G-SpNN Further Optimization for Memory and Time Consumption

As previously mentioned, the full computation of the Hessian matrix incurs significant memory and time 
overhead; therefore, we adopt the LBFGS method to approximate the inverse of the Hessian matrix.

𝐻!1$ = 𝐻! −
𝐻!Δ𝑔!Δ𝑔!/𝐻!
Δ𝑔!/Δ𝑥!

+
Δ𝑥!Δ𝑥!/

Δ𝑥!/Δ𝑔!
Where:

1) 𝐻! is the Hessian inverse approximation at iteration 𝑘
2) 𝛥𝑔! =

23
24 !1$

− 23
24 !

is the change in the gradient
3) 𝛥𝑥! = 𝑥!1$ − 𝑥! is the change in the parameter

The update formula in LBFGS method

The essence of LBFGS is to efficiently approximate the inverse of the Hessian matrix by 
retaining information from the most recent iterations, thereby accelerating the convergence 
of large-scale optimization problems.



21

G-SpNN Further Optimization for Memory and Time Consumption

! = #
$ % = &

' ()** = +(%)

.+

.! =
.+
.%

.%

.!

.!+

.!! ≈ 0"

1 2

3
4

5

PFE

Backwa
rd

Update

LBFGS

+ % = 1#% − 3 $ 1#% − 3 + 5!

Build

Computational Graph with LBFGS Method

Step 1:  𝒙 undergoes the 𝑷𝑭𝑬 operation to generate 
parameters 𝒚 (the passive system 𝑮(𝒔)).

Step 2：Construct the loss function.

Step 3：Use automatic differentiation to perform
backpropagation via the chain rule and compute the 
first-order derivative of the loss function with respect 
to the network weights 𝒙.

Step 4：Use the LBFGS method to approximate the inverse       
of the Hessian matrix.

Step 5： Update the parameters L and Q of the initial passive 
system.
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G-SpNN The Overall Framework

Starting with a given passive system 𝑮𝟏(𝒔𝒌), an unconstrained system 𝑾(𝒔𝒌) is first derived
by SPF transformation and represented as a layer in the neural network.

①
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G-SpNN The Overall Framework

Next, the PFE transformation is applied to generate a new network layer 𝑮(𝒔𝒌), corresponding
to a passive system. This reformulates the problem as a neural network training task.

②
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G-SpNN The Overall Framework

During forward propagation, the system, together with the tabulated data 𝑯(𝒔𝒌), is used to
compute the loss value.

③
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G-SpNN The Overall Framework

For efficient training, the LBFGS method is futher incorporated with backpropagation to
compute gradients and update the network parameters. Once the iteration stopping criteria
are satisfied, the optimized passive system is obtained.

④
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Experiment Experimental Setup

1https://www.github.com/yezuochang/pmm

Experimental Environment

Ø We implement and test the proposed G-SpNN
on an i7-14700KF @5.6GHz CPU with 32GB
of memory, and a GeForce RTX 4070 SUPER
GPU with 12GB of VRAM.

Ø G-SpNN is implemented based on PyTorch
and compared against the framework DAO,
which is implemented in MATLAB and is open-
sourced on GitHub.

Touchstone files information

Fitting results of VF and LC
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Experiment Convergence Speed and Memory Usage

Comparison of G-SpNN and DAO. The “–” indicates memory overrun during execution.

G-SpNN vs. DAO in memory consumption.Ø G-SpNN achieves an average speedup of 7.63× compared to DAO.

Ø DAO’s average memory consumption is
171.3x that of G-SpNN.

Ø Keeping the memory usage almost constant
with an increasing number of ports.
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Experiment Convergence Speed and Memory Usage

Comparison of G-SpNN and DAO. The “–” indicates memory overrun during execution.

More Detailed Explanation
For Case 1, although the runtime of DAO appears shorter, the comparison of the 
final loss and steady-state error shows that DAO actually experiences pseudo-

convergence and does not reach the optimal solution.
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Experiment Convergence Speed and Memory Usage

Comparison of G-SpNN and DAO. The “–” indicates memory overrun during execution.

More Detailed Explanation
Ø For Case 3 and Case 4, it should be noted that the DAO method is forcibly

terminated during the iteration process due to memory overflow and does not
reach the predefined convergence criterion.

Ø For Case 5, DAO experiences a memory overflow during the first iteration and
could not complete the iteration.
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Experiment Convergence Speed and Memory Usage

Comparison of G-SpNN and DAO. The “–” indicates memory overrun during execution.

More Detailed Explanation
Due to the high time and space complexity of the DAO method, we limit the 

number of poles in the VF method for cases 3-5 to ensure computational feasibility, 
which leads to higher SS Error and limits the reduction in loss.



Memory Usage 
increases in DAO
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Experiment Convergence Speed and Memory Usage

G-SpNN vs. DAO in loss and memory over time (Case 3 and Case 4).

Gradient Explosion 
occurs in DAO

Ø Using Case 3 and Case 4 as examples, figure shows the loss and memory usage
variations during iterations.

Ø G-SpNN has a smoother convergence process with better performance, achieving lower
loss compared to DAO.
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Experiment Compare with Adam

Loss over time for G-SpNN with Adam and with LBFGS (Case 3).

The LBFGS method enables G-SpNN to progress steadily 
toward convergence, owing to second-order information 
guiding more effective update directions.
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Conclusion

l Casting the passive macromodeling problem to neural network training,
thus leveraging GPU acceleration.

l Using the LBFGS method to efficiently approximate the Hessian inverse
matrix, efficiently decrease the memory cost and time overhead. Keeping
the memory usage almost constant with an increasing number of ports.

l Experimental results show that G-SpNN not only converges more stably
and quickly than DAO, with an average speedup of 7.63×, its memory
usage can be reduced by two orders of magnitude in test cases.
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