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Introduction 3. Enabling Floating-Point Computations

 Method: Hardware-software co-design for high-precision arithmetic.

Iterative solvers are foundational for large-scale scientific computing, enabling * Feinberg et al. : Exponent truncation with mantissa padding for CG/BiCG.
solutions to sparse linear systems critical in simulations, machine learning, and  Song et al. : ReFloat data format with exponent locality optimization.
optimization. However, traditional von Neumann architectures suffer from the * Advantage: Enables scientific-grade precision on ReRAM arrays.

"memory wall" due to data movement bottlenecks. ReRAM-based Process-In- * Performance:

Memory (PIM) architectures offer a breakthrough by integrating computation within * CG/BiCG: 10.3% speedup, 10.9% energy efficiency vs. NVIDIA Tesla P100 GPU.
memory, enabling matrix operations at O(1) complexity. This poster surveys  ReFloat: 12.59-15.98x% speedup vs. NVIDIA V100 GPU and prior ReRAM designs.

advances in ReRAM-PIM for iterative solvers, categorizing key innovations and
outlining future challenges.

 Data Movement Overhead: Frequent transfers between CPU and memory limit
performance.

* Precision vs. Efficiency Trade-off: High-precision floating-point arithmetic strains
conventional hardware.

e Sparsity and Irregularity: Sparse matrix operations require non-deterministic
memory access, degrading efficiency.

e Scalability: Analog ReRAM non-idealities (e.g., conductance drift) hinder large-
scale deployment.
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TABLE I: Summary of ReRAM based PIM accelerators for iterative solvers.
Fig. 3: The architecture of AmgR [28].
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Conclusion

ReRAM-PIM Contributions ReRAM-PIM architectures revolutionize iterative solvers by merging computation
and memory, achieving orders-of-magnitude gains in speed and energy efficiency.
Critical advancements in mixed-precision, feedback circuits, floating-point support,
and CAM-based sparsity handling lay the groundwork for broader adoption in
scientific computing. Future work must address precision, scalability, and operator
complexity to unlock ReRAM'’s full potential.

1. Mixed-Precision Strategy

 Method: Hybrid analog-digital workflows for iterative solvers.

* Richter et al. : ReRAM-based preconditioning for Conjugate Gradient (CG).

* Kalantzis et al. : Block-Jacobi preconditioning for GMRES using ReRAM/PCM
arrays.
Le Gallo et al. : Mixed-precision GMRES with analog matrix-vector multiplication.

Advantage: Combines ReRAM’s low-precision analog acceleration with CPU-based

high-precision refinement to balance efficiency and accuracy. ACknOWIEdgmentS:

Performance: Supported by NSFC (U23A20301, 62234010), State Key Lab of Computer Architecture.
CG: 1500% speedup, 8.5% energy efficiency vs. NVIDIA Tesla K10 GPU.
GMRES: 6.3—17.5% (CPU) / 3.6-7.8% (GPU) speedup, 6.8—24% energy efficiency. Contact:

Flexible GMRES: 2—4% FLOPS reduction vs. ILU-preconditioned GMRES. Zhou Jin (z.jin@zju.edu.cn)
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