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Introduction

Conclusion

Iterative solvers are foundational for large-scale scientific computing, enabling 
solutions to sparse linear systems critical in simulations, machine learning, and 
optimization. However, traditional von Neumann architectures suffer from the 
"memory wall" due to data movement bottlenecks. ReRAM-based Process-In-
Memory (PIM) architectures offer a breakthrough by integrating computation within 
memory, enabling matrix operations at O(1) complexity. This poster surveys 
advances in ReRAM-PIM for iterative solvers, categorizing key innovations and 
outlining future challenges.

• Data Movement Overhead: Frequent transfers between CPU and memory limit 
performance.

• Precision vs. Efficiency Trade-off: High-precision floating-point arithmetic strains 
conventional hardware.

• Sparsity and Irregularity: Sparse matrix operations require non-deterministic 
memory access, degrading efficiency.

• Scalability: Analog ReRAM non-idealities (e.g., conductance drift) hinder large-
scale deployment.

TABLE I: Summary of ReRAM based PIM accelerators for iterative solvers.

Fig. 4: Implement SpMV on ReRAM, including Compression, Loading, Search, and Computation Phases
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Category Citatio
n Solver Baseline Speedup Energy 

Efficiency
Iteration Sparsity Year

Mixedprecision 
strategy

[17] CG NVIDIA Tesla K10 GPU 1500× 8.5× √ √ 2015

[18] GMRES IBM POWER8 CPU, 
NVIDIA P100 GPU

6.3−17.5× (CPU), 3.6−7.8× 
(GPU) 6.8 − 24× √ √ 2018

[19]
Block-Jacobi 

preconditioned 
flexible GMRES

2.3 GHz 8-Core Intel i9 
machine equipped with
GB of system memory

FGMRES required 2× to 4× 
fewer FLOPS than PGMRES 

+ ILU
—— √ × 2023

Based on the 
feedback circuit 

theory

[20] —— —— O(1) —— × × 2019

[21] —— —— O(logN) or O(1) (model 
covariance), O((1/λmin))

—— × √ 2020

[22] Eigenvector —— O(1) —— × × 2020

[23] Jacobi iterative 
method NVIDIA Tesla P40 GPU 100× 1000× × √ 2021

[24] Least-Squares Fitting NVIDIA K40m GPU 132−3282× 8201−9673
8× × × 2022

[25] —— original AMC —— 1.6 − 1.67× × × 2024

Enabling 
floating-point 
computations

[26] CG, BiCG NVIDIA Tesla P100 GPU 10.3× 10.9× √ √ 2018

[27] CG, BiCGSTAB NVIDIA Tesla V100
GPU, PIM accelerator [26]

12.59× (CG GPU), 
12.94× (CG PIM), 

13.34× (BiCGSTAB GPU),
15.98× (BiCGSTAB PIM)

—— √ √ 2023

Dealing with 
irregularity
and sparsity 
with CAM

[28] AMG
AMD 2nd EPYC 7702
CPU, NVIDIA Tesla

A100 GPU
10× (CPU), 100× (GPU)

100× 
(CPU), 
1000× 
(GPU)

√ × 2023

[29] JPCG

AMD 2nd EPYC 7702
CPU, NVIDIA Tesla
A100 GPU, Xilinx
Alveo U280 FPGA

1000× (CPU), 10× (GPU), 
10× (FPGA)

100× 
(CPU), 100× 
(GPU), 10× 

(FPGA)

√ √ 2024

ReRAM-PIM Contributions

1. Mixed-Precision Strategy
• Method: Hybrid analog-digital workflows for iterative solvers.
• Richter et al. : ReRAM-based preconditioning for Conjugate Gradient (CG).
• Kalantzis et al. : Block-Jacobi preconditioning for GMRES using ReRAM/PCM 

arrays.
• Le Gallo et al. : Mixed-precision GMRES with analog matrix-vector multiplication.
• Advantage: Combines ReRAM’s low-precision analog acceleration with CPU-based 

high-precision refinement to balance efficiency and accuracy.
• Performance:
• CG: 1500× speedup, 8.5× energy efficiency vs. NVIDIA Tesla K10 GPU.
• GMRES: 6.3–17.5× (CPU) / 3.6–7.8× (GPU) speedup, 6.8–24× energy efficiency.
• Flexible GMRES: 2–4× FLOPS reduction vs. ILU-preconditioned GMRES.

2. Based on the Feedback Circuit Theory
• Method: Circuit-level equation solving via Ohm-Kirchhoff laws.
• Sun et al. : Linear system/eigenvector solving in O(1)/O(logN) time.
• Song et al. : Closed-loop Jacobi iteration mapped to ReRAM crossbars.
• Chen et al. : Least-squares solver using analog matrix inversion.
• Pan et al. : BlockAMC architecture for scalable analog matrix computation.
• Advantage: Eliminates iterative steps by leveraging analog circuit equilibrium.
• Performance:
• Jacobi: 100× speedup, 1000× energy efficiency vs. NVIDIA Tesla P40 GPU.
• Least-squares: 132–3282× speedup, 8201–96,738× energy efficiency vs. NVIDIA 

K40m GPU.
• BlockAMC: 1.6–1.67× throughput improvement vs. baseline AMC.

3. Enabling Floating-Point Computations
• Method: Hardware-software co-design for high-precision arithmetic.
• Feinberg et al. : Exponent truncation with mantissa padding for CG/BiCG.
• Song et al. : ReFloat data format with exponent locality optimization.
• Advantage: Enables scientific-grade precision on ReRAM arrays.
• Performance:
• CG/BiCG: 10.3× speedup, 10.9× energy efficiency vs. NVIDIA Tesla P100 GPU.
• ReFloat: 12.59–15.98× speedup vs. NVIDIA V100 GPU and prior ReRAM designs.

4. Dealing with Irregularity and Sparsity with CAM
• Method: Content-addressable memory (CAM) for irregular/sparse operations.
• Fan et al. : AmgR architecture for Algebraic Multigrid (AMG).
• Fan et al. : ReCG framework for sparse Conjugate Gradient.
• Advantage: Parallel pattern-matching resolves unstructured data access.
• Performance:
• AMG: 10× (CPU) / 100× (GPU) speedup, 100–1000× energy efficiency.
• ReCG: 1000× (CPU) / 10× (GPU/FPGA) speedup, 100–10× energy efficiency.

ReRAM-PIM architectures revolutionize iterative solvers by merging computation 
and memory, achieving orders-of-magnitude gains in speed and energy efficiency. 
Critical advancements in mixed-precision, feedback circuits, floating-point support, 
and CAM-based sparsity handling lay the groundwork for broader adoption in 
scientific computing. Future work must address precision, scalability, and operator 
complexity to unlock ReRAM’s full potential. 
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