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Background: PTA Methods
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• Inserting capacitors can effectively address discontinuity 
issues, but it introduces oscillation problems and increases 
computation time.

• 𝒙∗

• 𝑭(𝒙∗) = 𝟎

• ሶ𝒙∗ = 𝟎

• 𝑮 𝒙∗ = 𝟎

•New circuit 
equations

•Original 
circuit 
equations
𝑮 𝒙 = 𝟎 Original 

Circuit
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solution to 
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Pseudo Transient Analysis (PTA) is currently the most powerful and promising numerical 
solving algorithm in SPICE circuit simulation for DC analysis, as it is easy to implement and has 
good continuity and convergence.
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• How is an ODE system formed 
under the PTA method?

✓ Component values affect convergence and speed.
✓ Embedded component values vary significantly across circuits.
✓ There is no golden standard.



Related Work: More Easily Solvable System
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⚫Pure PTA/DPTA[1][2] ⚫ Time-varying PTA[3]

⚫ CEPTA[4] ⚫ Ramping PTA[5]

What components should be embedded?

➢ An adaptive dynamic-element PTA method for 
solving nonlinear DC operating point of transistor 
circuits[6]
The algorithm inserts dynamic pseudo-elements 
for each transistor, with values that change 
independently and automatically based on the 
simulation state.

➢ BoA-PTA：A Bayesian Optimization Accelerated 
PTA Solver for SPICE Simulation[7]

The PTA algorithm based on Bayesian optimization 
is the first application of machine learning in SPICE 
Solvers.

What parameters should be embedded

[1] W. Weeks, A. Jimenez, G. Mahoney, D. Mehta, H. Qassemzadeh and T. Scott, Algorithms for ASTAP--A network-analysis program, IEEE Trans. Circuits Theory, 1973.

[2] X. Wu, Z. Jin, and Y. Inoue. Numerical integration algorithms with artificial damping for the pta method applied to dc analysis of nonlinear circuits. In ICCCAS, 2013.

[3] R. Wilton, Supplementary algorithms for DC convergence, IEE Colloquium, SPICE: Surviving Problems in Circuit Evaluation, 1993. 

[4] H. Yu, Y. Inoue, K. Sako, X. Hu, and Z. Huang. An effective spice3 implementation of the compound element pseudo-transient algorithm. IEICE Trans. Fundam. Electron. Commun. Comput. Sci, 2007.

[5] Z. Jin, X. Wu, Y. Inoue, and N. Dan. A ramping method combined with the damped pta algorithm to find the dc operating points for nonlinear circuits. In ISIC, 2014.

[6] Z. Jin, M. Liu, and X. Wu. An adaptive dynamic-element pta method for solving nonlinear dc operating point of transistor circuits. In MWSCAS, 2018.

[7] W. W. Xing, X. Jin, T. Feng, D. Niu, W. Zhao, and Z. Jin. Boa-pta: A Bayesian optimization accelerated pta solver for spice simulation. ACM TODATES, 2022.
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Related Work: BOA-PTA
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➢ BoA-PTA[1]：A Bayesian Optimization Accelerated PTA Solver for SPICE Simulation 

• Treat the SPICE simulation process as a black box, without utilizing key information from the simulation 
process.

• Only a simple neural network was used for circuit feature extraction, and the circuit topology 
information was not captured.

Drawbacks:

[1] W. W. Xing, X. Jin, T. Feng, D. Niu, W. Zhao, and Z. Jin. Boa-pta: A Bayesian optimization accelerated pta solver for spice simulation. ACM TODATES, 2022.
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Soda-PTA: Core Idea
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In SPICE circuit simulation, we can describe the PTA method as:

Characte
r term Meaning

PTA ⋅ PTA solver, PTA execution process

𝝃 circuit netlist

𝜽
Parameters inserted in the PTA 
process, PTA hyperparameters

M
Total number of steps for discrete 

numerical integration in PTA

x
Solution vector of the ODE system at 

each time point during the PTA

NR_iters
Total number of NR iterations during 
the PTA, the key performance metric

For any circuit 𝜉, how to a-
djust 𝜃 to minimize 𝑁𝑅_𝑖𝑡𝑒𝑟𝑠?

➢ BoA-PTA Bayesian optimization uses Gaussian processes as 
a surrogate model to learn the relationship between 𝜽
and 𝑵𝑹_𝒊𝒕𝒆𝒓𝒔.

Can we use gradient informati-
on to guide the PTA hyperpar-
ameter updates to minimize 
𝑁𝑅_𝑖𝑡𝑒𝑟𝑠 ?

➢ Soda-PTA

Useful information from 𝒙𝒕 is ignored.

The PTA(⋅) process is difficult to trace, and deriving 
gradient information with-in it is a challenge.

Use Neural ODE as a surrogate model to

Soda-PTA uses Neural ODE to model the PTA process, thereby approximating it as a surrogate to obtain 
gradient information on the simulation performance with respect to the PTA parameters.

𝑁𝑅_𝑖𝑡𝑒𝑟𝑠;𝑀; 𝑥𝑡 𝑡=1
𝑀 = 𝑃𝑇𝐴 ξ, θ

V(I)

t
t1 t2 t3 tM-1 tM

v1(x)

v2(x)

...

...

t0
...

vn(x)

Schematic diagram of 
the PTA process

approximate 𝑃𝑇𝐴 ⋅ .



Soda-PTA: Framework

Zhou Jin /  China University of Petroleum-Beijing, China 928 October 2024

1.Better 
fitting of key 

curves

2. Design the 
objective 

func to obtain 
gradient

3.Better 
extraction 
of circuit 
features



Soda-PTA: Forward Process Design
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The key to forward design is fitting the target simulati-
on curve to imitate the behavior of the PTA solver, 
thereby approximating it as a surrogate.

Neural ODE[1] is a neural network that learns the 
derivative of the hidden layer state with respect 
to time.

Where, 𝒛 𝒕  is the hidden layer state, ሶ𝒛 is the 
derivative of 𝒛 with respect to time, and 𝒇𝒘 is a 
neural network model parameterized by 𝒘.

Neural ODE 
Forward 

Neural ODE 
Backward

𝑮 𝒙 + 𝑫 ሶ𝒙 = 𝟎

𝑭 𝒙 + ሶ𝒙 = 𝟎
𝒙 = 𝒙 𝒕

Objective ODE 
System

Equivalent Form

Map the solution vector to the state 
vector of the NODE, state evolution 
process of the NODE is equivalent to 
the PTA process.

Process Modeling and Target Curve Fitting

ሶ𝑧 𝑡 = 𝑓𝑤 𝑧 𝑡 , 𝑡

[1] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neural ordinary differential equations. In NIPS, 2018.



Soda-PTA: Backward Process Design
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𝑁𝑅_𝑖𝑡𝑒𝑟𝑠;𝑀; {𝐱𝐭}𝑡=1
𝑀 = 𝑃𝑇𝐴(𝜉,𝜽) 

ෝ𝑦𝑡 = 𝑁𝑂𝐷𝐸 𝐹𝑁𝑁, 𝑥_0, 𝑡, 𝑒𝑙𝑢𝑒𝑟

Based on the output of the surrogate NODE, ෝ𝑦𝑡 , how can 
we design the objective function?

Empirically, there is a strong correlation between PTA_steps 
and NR_iters

𝑙𝑜𝑠𝑠𝜽({𝐲𝑡ෝ }) = 𝑁𝑅_𝑖𝑡𝑒𝑟𝑠 ⋅ (|𝐲𝑡ෝ |1 + |(𝐲𝑡ෝ − 𝐲𝑡−1 )|1) 

Gradient Calculation and Pseudo-Adjoint Optimization

cumulative magnitudestate

On the benchmark, the relationship between NR_iters and 
PTA_steps under default CEPTA hyperparameters.

NR_iters relationship with state 
variables and cumulative 

magnilitude under 'hussamp' circuit



Soda-PTA: GCN Design
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Connection Information

x5

x1

x2

x4
x6

x3

x0

x5

x1

x2

x4
x6

x3

x0

x5

x1

x2

x4

x3

x0

x6 x5

x1

x2

x4
x6

x3

x0

l Input

Devices as Edges

Circuit Nodes as Graph Nodes

Traverse connection information by nodes

Algorithm 2 Soda-PTA for unseen circuit with GCN
Input: Soda-PTA_noGNN, 𝑮𝑪𝑵 ⋅ , test set 𝐓ⅇ, train 
      set 𝐓𝐫, 𝑵𝒆𝒑𝒐𝒄𝒉

𝑻𝒆 , train iteration 𝑵𝒆𝒑𝒐𝒄𝒉
𝑻𝒓

1: Initilize Neural ODE 𝐟𝐰 ⋅
2: for 𝝁 in 𝐓𝐫 do
3: 𝛏 = 𝐆𝐂𝐍 𝛍

4: 𝛉∗ 𝛏  = Soda-PTA_noGNN(𝐟𝐰 ⋅ ,𝛉𝟎,𝛏, 𝑵𝒆𝒑𝒐𝒄𝒉
𝑻𝒓 )

5: end for

6:
Update GCN by the total loss of all generated 
trajectories

7: for 𝝁 in 𝐓ⅇ do
8: 𝛏 = 𝐆𝐂𝐍 𝛍

9: 𝛉∗ = Soda-PTA_noGNN(𝐟𝐰 ⋅ ,𝛉𝟎,𝛏, 𝑵𝒆𝒑𝒐𝒄𝒉
𝑻𝒆 )

10: end for

➢ For any circuit, Soda-PTA_noGNN always starts optimizing PTA hyperparameters from scratch.
➢ Soda-PTA_noGNN cannot utilize historical experience from similar circuit types.
➢ Graph Convolutional Networks (GCNs) can enable better results.

Circuit Feature Recognition and Accelerated Parameter Selection

• The feature vector represents a node's connected devices.• Circuit nodes as vertices. • Devices as edges.
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Experiment: Fitting Solution Curve Effect
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The Neural ODE fitting process of the 'hussamp' circuit under CEPTA

The Neural ODE fitting process of the '6stageLimAmp' circuit under DPTA

The red curve represents the solution curve of the PTA process in the SPICE simulator, the 
blue line represents the curve obtained after training the NODE, and the yellow represents 
the extrapolated results from the NODE.



Experiment: Optimization Performance
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➢ Comparison with BOA-PTA under CEPTA

• Compared to the SOTA method BoA-PTA, it achieves 
an average speedup of 1.53x across 12 test circuits, 
with a maximum speedup of 1.9x.

• In the four types of circuits in the benchmark (with 
four representative circuits shown in the figure), Soda-
PTA consistently achieves a better speedup with fewer 
hyperparameter optimization iterations compared to 
BoA-PTA.



Experiment: Optimization Performance
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circuits
NR_iters

Speedup
CEPTA PPTA DPTA RPTA

navie Soda-PTA navie Soda-PTA navie Soda-PTA navie Soda-PTA v.CEPTA v.PPTA v.DPTA v.RPTA
ab_opamp 150 110 — — 2417 146 2408 127 1.36x — 16.55x 18.96x 

astabl 55 45 108 64 81 43 75 41 1.22x 1.69x 1.88x 1.83x 
bias 839 147 — 899 755 607 498 110 5.71x — 1.24x 4.53x 

bjtinv 186 53 125 77 155 51 101 101 3.51x 1.62x 3.04x 1.00x 
cram 91 88 — — 130 100 128 81 1.03x — 1.30x 1.58x 
gm6 69 42 — — 110 55 107 38 1.64x — 2.00x 2.82x

hussamp 91 62 — — 209 87 240 71 1.47x — 2.40x 3.38x
mosrect 65 51 251 53 838 63 837 55 1.27x 4.74x 13.30x 15.22x 

nand 83 53 — 32 — 142 — 76 1.57x — — —
schmitfast 82 59 71 30 5681 106 5678 92 1.39x 2.37x 53.59x 61.72x 

6stageLimAmp 137 51 69 38 135 73 137 51 2.69x 1.82x 1.85x 2.69x 
add32 173 73 — — 1765 234 1970 70 2.37x — 7.54x 28.14x 

DCOSC 126 78 108 91 116 98 136 100 1.62x 1.19x 1.18x 1.36x 
DIFFPAIR 148 57 101 71 114 109 137 47 2.60x 1.42x 1.05x 2.91x 

MOSAMP1 122 82 — 139 158 96 162 69 1.49x — 1.65x 2.35x 
MOSBandgap 153 85 — — 342 113 341 104 1.80x — 3.03x 3.28x 

MOSMEM 127 94 253 98 26029 171 26037 101 1.35x 2.58x 152.22x 257.79x 
TADEGLOW 103 63 151 51 164 66 86 60 1.63x 2.96x 2.48x 1.43x 

UA709 407 110 311 143 2985 219 3270 887 3.70x 2.17x 13.63x 3.69x 
Multiplier — 105 — — 232 92 225 94 — — 2.52x 2.39x 
Average 2.11x 2.26x 14.77x 22.12x 

➢ The performance of Soda-PTA under four different PTA methods

In the table, bold 
italics indicate the 
best results among 
the four PTA algo-
rithms after Soda-
PTA optimization, 
all outperforming 
the original CEPTA. 
This shows that 
Soda-PTA consis-
tently guides opti-
mal parameter sel-
ection, regardless 
of the PTA algori-
thm chosen.



Experiment: Convergence Performance
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➢ Convergence tests of Soda-PTA and BoA-PTA in 
three PTA algorithms

PTA Methods Circuits
NR_iters

navie BoA-PTA Soda-PTA

CEPTA

opampal time-step 635 317
D10 too small 65 60
loc

timeout
— 328

ram2k 188 158

DPTA

gm17

timeout

N/A 304
gm19 N/A 160

REGULATO
R

N/A 644

Divider N/A 511

RPTA

Schmitslow

timeout

N/A 4507
bjtff N/A 1458

toronto N/A 1484
sram N/A 2341

➢ Comparison of simulation curves before and after 
Soda-PTA optimization for two non-convergent 
circuits

Soda-PTA offers consistently superior convergence capability compared to BoA-PTA.



Experiment: Optimization with GCN
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➢ Convergence tests of Soda-PTA and BoA-PTA in three PTA algorithms

• The left subfigure shows tests on CEPTA. Circuits 
'D20' and 'D21' indicate that GCN enhances 
optimization results while reducing parameter 
update iterations. For the 'TRACKTorig' circuit, fewer 
iterations are needed without significantly changing 
the optimization results. The same conclusion is 
observed under DPTA.

• GCN provides a stable mapping from circuit 
descriptions to vector space, guiding parameter 
gradient updates and ensuring optimization quality.



Experiment: Optimization with RL-S
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➢ Experimental comparison under the SOTA time step control strategy RL-S[1]

• RL-S is the SOTA time step control optimization strategy in PTA methods. The above figure 
shows that applying Soda-PTA to RL-S results in average improvements of 1.53x (max 
7.55x) in NR_iters and 1.46x (max 5.76x) in PTA_steps.

• The synergistic use of both offers potential value for further optimizing PTA methods.

[1] Z. Jin, H. Pei, Y. Dong, X. Jin, X. Wu, W. W. Xing, and D. Niu. Accelerating nonlinear dc circuit simulation with reinforcement learning. In DAC, 2022.
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• This paper proposes a parameter optimization framework that maps the PTA solving process to 
the Neural ODE training process, deriving effective gradient information for PTA 
hyperparameters to address the performance dependence on hyperparameters in PTA 
algorithms.

• The framework is equipped with a GCN model to capture circuit topology features, enhancing 
the quality of the parameter optimization process.

• Compared to the SOTA method BoA-PTA, Soda-PTA achieves an average improvement of 1.53x 
and a maximum of 1.90x under CEPTA, while also ensuring better convergence capability. 
Similarly, significant performance improvements are observed in other PTA algorithms, with an 
average of 14.77x under the DPTA algorithm.
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