

IEEE/ACM 2024 INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN 43rd Edition

Pseudo Adjoint Optimization: Harnessing the Solution Curve for SPICE Acceleration

Jiatai Sun¹, Xiaru Zha¹, Chao Wang², Xiao Wu³, Dan Niu², Wei Xing⁴ and <u>Zhou Jin¹</u>

¹Super Scientific Software Laboratory, China University of Petroleum-Beijing

²School of Automation, Southeast University

³Huada Empyrean Software Co. Ltd

⁴SoMaS, The University of Sheffield

jinzhou@cup.edu.cn

Outline

Background and related work

Soda-PTA: Harnessing the Solution Curve for SPICE Acceleration

Soda-PTA Framework Forward Process Design Backward Process Design GCN Design

• Experiment

Fitting Solution Curve Effect of Neural ODE Optimization Performance of Soda-PTA Convergence Performance of Soda-PTA Optimization Performance of Soda-PTA with GCN Optimization Performance of Soda-PTA with RL-S

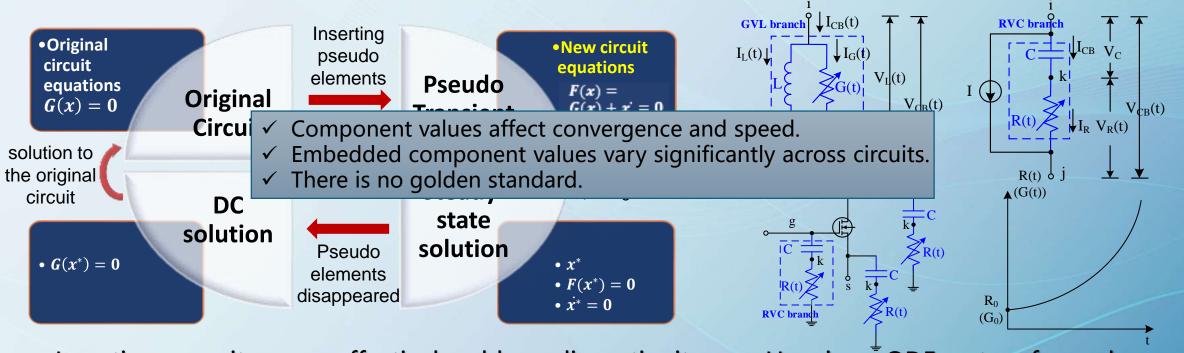
28 October 2024

Outline

Background and related work

Soda-PTA: Harnessing the Solution Curve for SPICE Acceleration

Soda-PTA Framework Forward Process Design Backward Process Design GCN Design

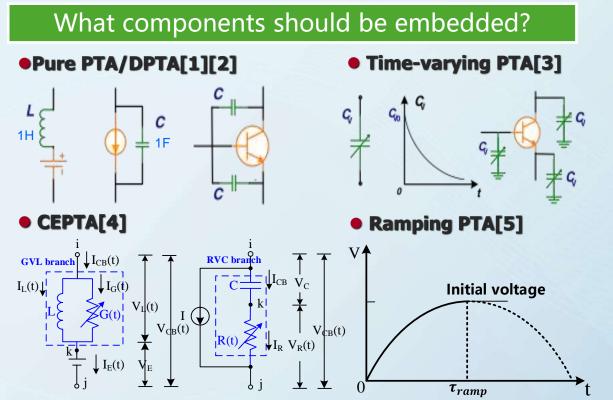

• Experiment

Fitting Solution Curve Effect of Neural ODE Optimization Performance of Soda-PTA Convergence Performance of Soda-PTA Optimization Performance of Soda-PTA with GCN Optimization Performance of Soda-PTA with RL-S

28 October 2024

Background: PTA Methods

Pseudo Transient Analysis (PTA) is currently the <u>most powerful and promising</u> numerical solving algorithm in SPICE circuit simulation for DC analysis, as it is easy to implement and has **good continuity and convergence**.



Inserting capacitors can effectively address discontinuity
Horissues, but it introduces oscillation problems and increases
un computation time.

 How is an ODE system formed under the PTA method?

28 October 2024

Related Work: More Easily Solvable System

What parameters should be embedded

An adaptive dynamic-element PTA method for solving nonlinear DC operating point of transistor circuits[6]

The algorithm inserts dynamic pseudo-elements for each transistor, with values that change independently and automatically based on the simulation state.

BoA-PTA: A Bayesian Optimization Accelerated PTA Solver for SPICE Simulation[7]

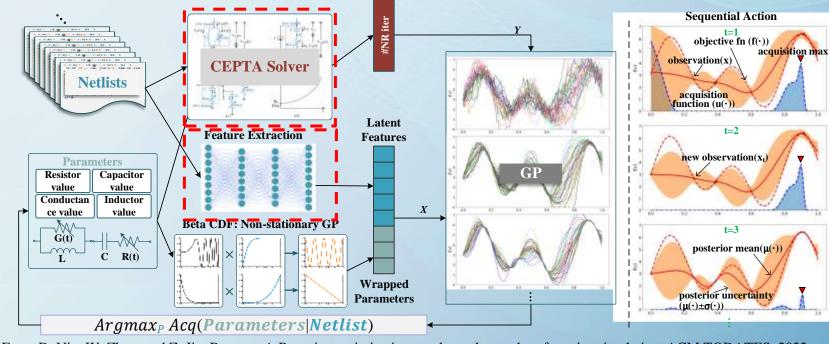
The PTA algorithm based on Bayesian optimization is the first application of machine learning in SPICE Solvers.

[1] W. Weeks, A. Jimenez, G. Mahoney, D. Mehta, H. Qassemzadeh and T. Scott, Algorithms for ASTAP--A network-analysis program, IEEE Trans. Circuits Theory, 1973. [2] X. Wu, Z. Jin, and Y. Inoue. Numerical integration algorithms with artificial damping for the pta method applied to dc analysis of nonlinear circuits. In ICCCAS, 2013.

[3] R. Wilton, Supplementary algorithms for DC convergence, IEE Colloquium, SPICE: Surviving Problems in Circuit Evaluation, 1993.

[4] H. Yu, Y. Inoue, K. Sako, X. Hu, and Z. Huang. An effective spice3 implementation of the compound element pseudo-transient algorithm. IEICE Trans. Fundam. Electron. Commun. Comput. Sci, 2007.

[5] Z. Jin, X. Wu, Y. Inoue, and N. Dan. A ramping method combined with the damped pta algorithm to find the dc operating points for nonlinear circuits. In ISIC, 2014.


[6] Z. Jin, M. Liu, and X. Wu. An adaptive dynamic-element pta method for solving nonlinear dc operating point of transistor circuits. In MWSCAS, 2018.

[7] W. W. Xing, X. Jin, T. Feng, D. Niu, W. Zhao, and Z. Jin. Boa-pta: A Bayesian optimization accelerated pta solver for spice simulation. ACM TODATES, 2022.

28 October 2024

Related Work: BOA-PTA

- BoA-PTA[1]: A Bayesian Optimization Accelerated PTA Solver for SPICE Simulation Drawbacks:
 - Treat the SPICE simulation process as a black box, without utilizing key information from the simulation process.
 - Only a simple neural network was used for circuit feature extraction, and the circuit topology information was not captured.

[1] W. W. Xing, X. Jin, T. Feng, D. Niu, W. Zhao, and Z. Jin. Boa-pta: A Bayesian optimization accelerated pta solver for spice simulation. ACM TODATES, 2022.
28 October 2024 Zhou Jin / China University of Petroleum-Beijing, China

IEEE/ACM CONFERENCE ON CONFERENCE ON COMPUTER-AIDED DESIGN 43rd Edition

Outline

 Background and related work
Soda-PTA: Harnessing the Solution Curve for SPICE Acceleration Soda-PTA Framework
Forward Process Design
Backward Process Design

GCN Design

• Experiment

Fitting Solution Curve Effect of Neural ODE Optimization Performance of Soda-PTA Convergence Performance of Soda-PTA Optimization Performance of Soda-PTA with GCN Optimization Performance of Soda-PTA with RL-S

28 October 2024

Soda-PTA: Core Idea

Soda-PTA *uses Neural ODE to model the PTA process, thereby approximating it as a surrogate to obtain gradient information on the simulation performance with respect to the PTA parameters*.

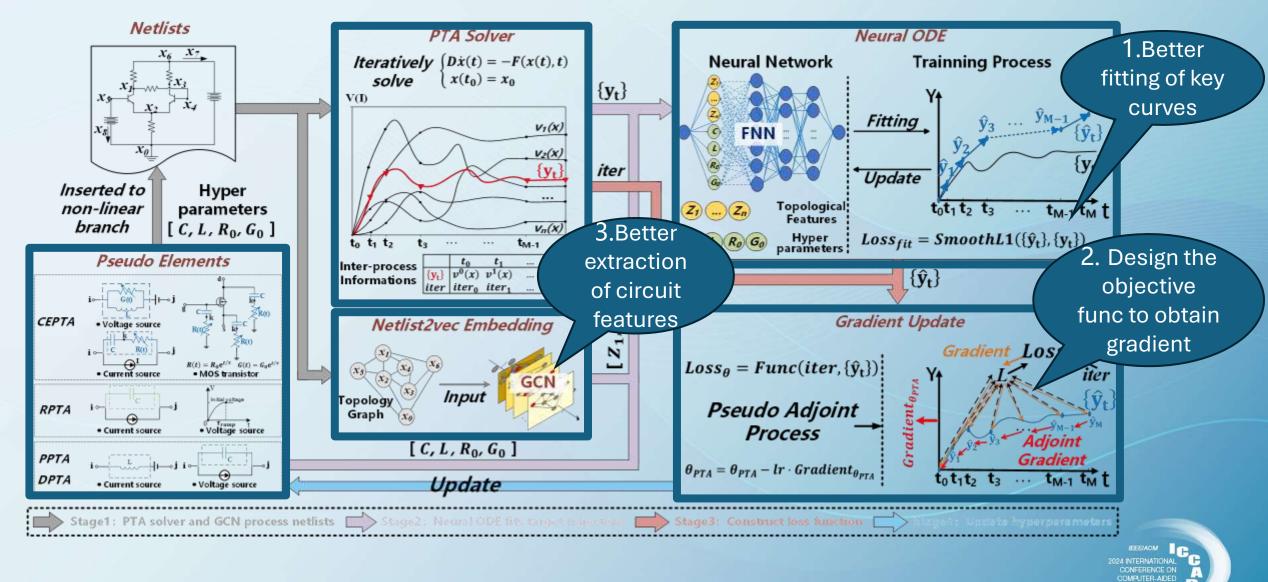
In SPICE circuit simulation, we can describe the PTA method as:

 $(NR_iters; M; \{x_t\}_{t=1}^M) = PTA(\xi, \theta)$

Characte r term	Meaning
$PTA(\cdot)$	PTA solver, PTA execution process
ξ	circuit netlist
θ	Parameters inserted in the PTA process, PTA hyperparameters
М	Total number of steps for discrete numerical integration in PTA
х	Solution vector of the ODE system at each time point during the PTA
NR_iters	Total number of NR iterations during the PTA, the key performance metric

V(I) Schematic diagram of the PTA process V₁(x) dj V₂(x) Ca or an N

For any circuit ξ , how to adjust θ to minimize *NR_iters*?


Can we use gradient information to guide the PTA hyperparameter updates to minimize $v_n(x)$ NR_{iters} ?

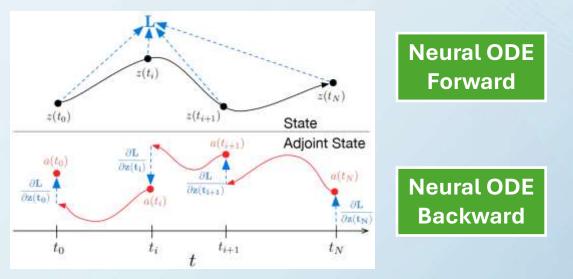
 $t_0 t_1 t_2 t_3 \cdots t_{M-1} t_M$ The PTA(·) process is difficult to trace, and deriving gradient information with-in it is a challenge.

- > BoA-PTA Bayesian optimization uses Gaussian processes as a surrogate model to learn the relationship between θ and *NR_iters*. Useful information from { x_t } is ignored.
- Soda-PTA Use Neural ODE as a surrogate model to approximate *PTA*(·).

28 October 2024

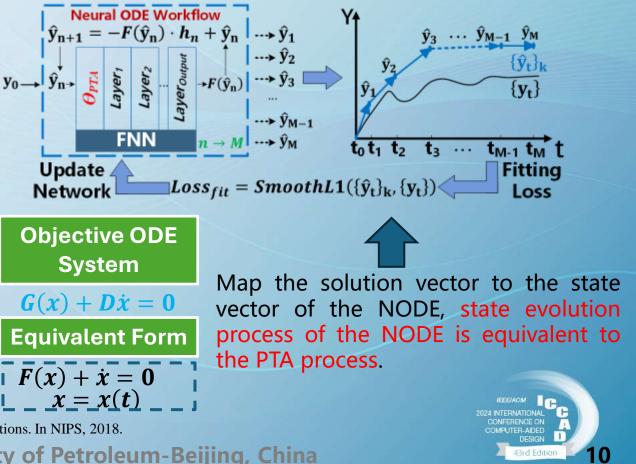
Soda-PTA: Framework

28 October 2024

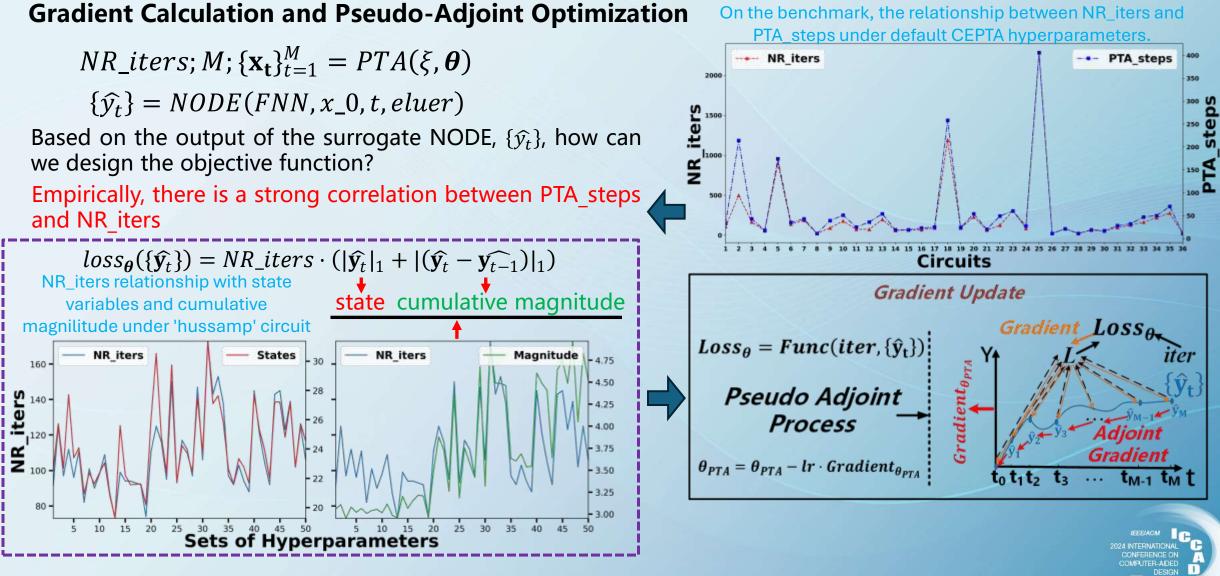

Soda-PTA: Forward Process Design

Process Modeling and Target Curve Fitting

Neural ODE[1] is a neural network that learns the derivative of the hidden layer state with respect to time.


$$\dot{z}(t) = f_w(z(t), t)$$

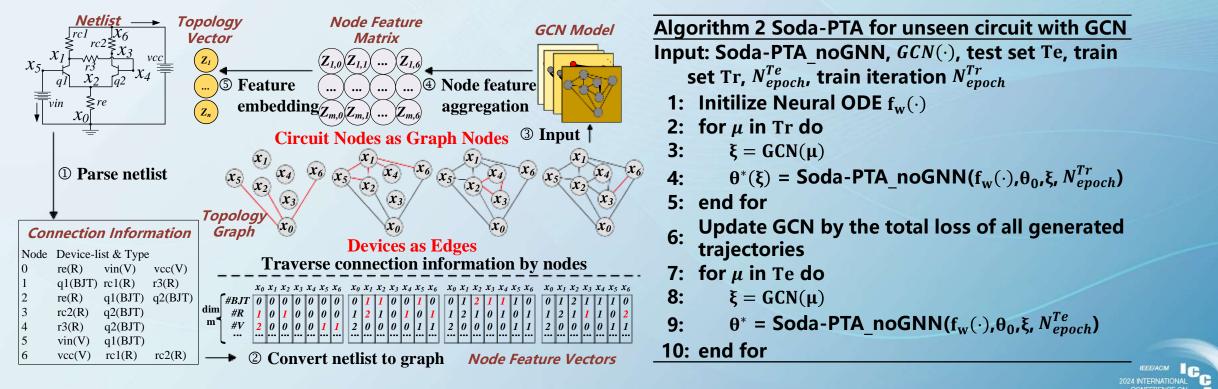
Where, z(t) is the hidden layer state, \dot{z} is the derivative of z with respect to time, and f_w is a neural network model parameterized by w.



[1] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neural ordinary differential equations. In NIPS, 2018.
28 October 2024 Zhou Jin / China University of Petroleum-Beijing, China

The key to forward design is fitting the target simulation curve to imitate the behavior of the PTA solver, thereby approximating it as a surrogate.

Soda-PTA: Backward Process Design



28 October 2024

Soda-PTA: GCN Design

Circuit Feature Recognition and Accelerated Parameter Selection

- For any circuit, Soda-PTA_noGNN always starts optimizing PTA hyperparameters from scratch.
- Soda-PTA_noGNN cannot utilize historical experience from similar circuit types.
- Graph Convolutional Networks (GCNs) can enable better results.
 - Circuit nodes as vertices. The feature vector represents a node's connected devices. Devices as edges.

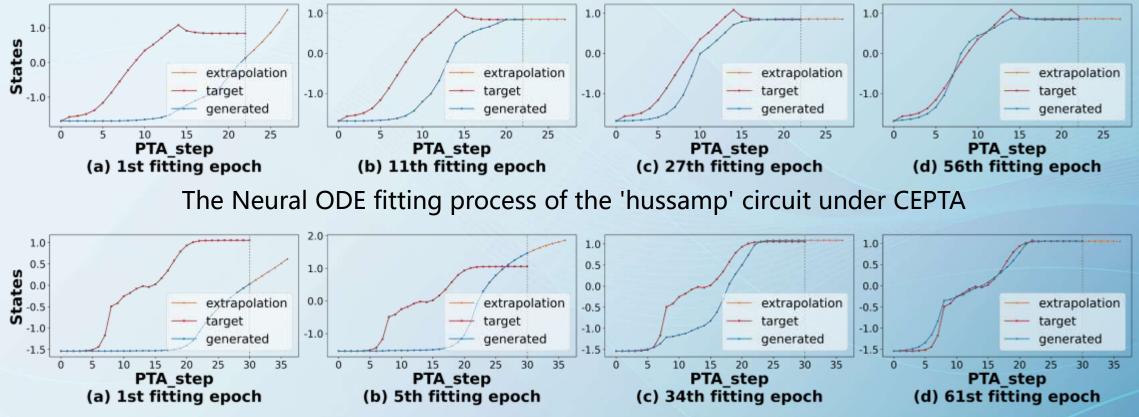
28 October 2024

Outline

Background and related work

Soda-PTA: Harnessing the Solution Curve for SPICE Acceleration

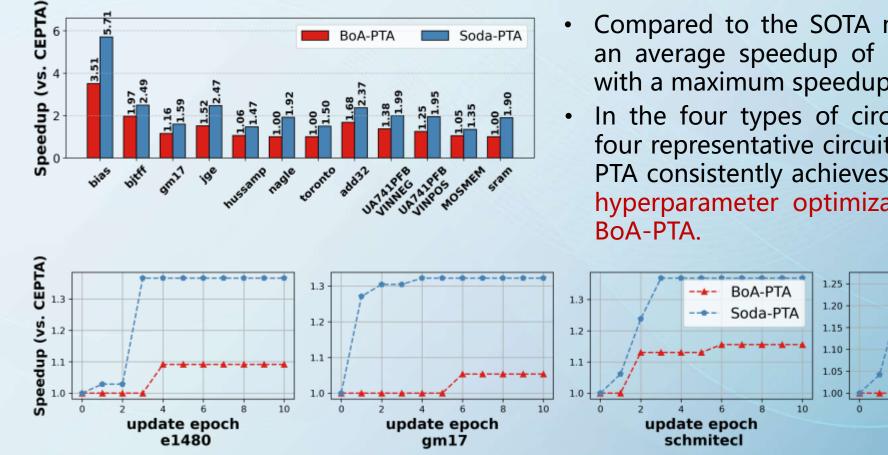
Soda-PTA Framework Forward Process Design Backward Process Design GCN Design


• Experiment

Fitting Solution Curve Effect of Neural ODE Optimization Performance of Soda-PTA Convergence Performance of Soda-PTA Optimization Performance of Soda-PTA with GCN Optimization Performance of Soda-PTA with RL-S

28 October 2024

Experiment: Fitting Solution Curve Effect


The Neural ODE fitting process of the '6stageLimAmp' circuit under DPTA

The red curve represents the solution curve of the PTA process in the SPICE simulator, the blue line represents the curve obtained after training the NODE, and the yellow represents the extrapolated results from the NODE.

28 October 2024

Experiment: Optimization Performance

Comparison with BOA-PTA under CEPTA

 Compared to the SOTA method BoA-PTA, it achieves an average speedup of 1.53x across 12 test circuits, with a maximum speedup of 1.9x.

In the four types of circuits in the benchmark (with four representative circuits shown in the figure), Soda-PTA consistently achieves a better speedup with fewer hyperparameter optimization iterations compared to BoA-PTA.

update epoch

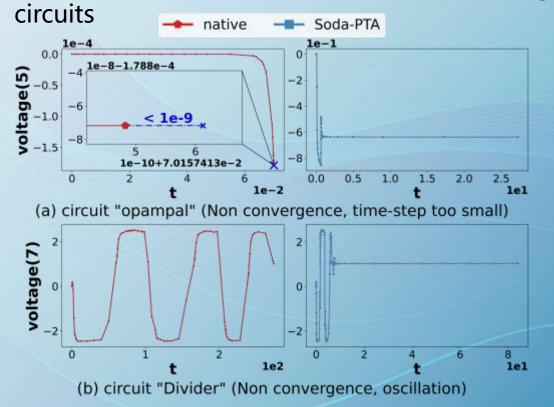
add32

28 October 2024

Experiment: Optimization Performance

		NR iters											In the table, bold
circuits	C	CEPTA	F	PPTA	<u>Г</u>	OPTA	F	RPTA		Sper	edup		
	navie	Soda-PTA	navie	Soda-PTA	navie	Soda-PTA	navie	Soda-PTA	v.CEPTA	v.PPTA	v.DPTA	v.RPTA	<i>italics</i> indicate the
ab_opamp	150	110	-83	-	2417	146	2408	127	1.36x		16.55x	18.96x	best results among
astabl	55	45	108	64	81	43	75	41	1.22x	1.69x	1.88x	1.83x	
bias	839	147	—	899	755	607	498	110	5.71x		1.24x	4.53x	the four PTA algo-
bjtinv	186	53	125	77	155	51	101	101	3.51x	1.62x	3.04x	1.00x	rithms after Soda-
cram	91	88	_	-	130	100	128	81	1.03x		1.30x	1.58x	
gm6	69	42	—	_	110	55	107	38	1.64x	—	2.00x	2.82x	PTA optimization,
hussamp	91	62	—	_	209	87	240	71	1.47x	-	2.40x	3.38x	all outperforming
mosrect	65	51	251	53	838	63	837	55	1.27x	4.74x	13.30x	15.22x	
nand	83	53	—	32	_	142	_	76	1.57x	-		- /	the original CEPTA.
schmitfast	82	59	71	30	5681	106	5678	92	1.39x	2.37x	53.59x	61.72x	This shows that
6stageLimAmp	137	51	69	38	135	73	137	51	2.69x	1.82x	1.85x	2.69x	
add32	173	73	—	—	1765	234	1970	70	2.37x		7.54x	28.14x	Soda-PTA consis-
DCOSC	126	78	108	91	116	98	136	100	1.62x	1.19x	1.18x	1.36x	
DIFFPAIR	148	57	101	71	114	109	137	47	2.60x	1.42x	1.05x	2.91x	tently guides opti-
MOSAMP1	122	82	—	139	158	96	162	69	1.49x	—	1.65x	2.35x	mal parameter sel-
MOSBandgap	153	85			342	113	341	104	1.80x		3.03x	3.28x	
MOSMEM	127	94	253	98	26029	171	26037	101	1.35x	2.58x	152.22x	257.79x	ection, regardless
TADEGLOW	103	63	151	51	164	66	86	60	1.63x	2.96x	2.48x	1.43x	of the PTA algori-
UA709	407	110	311	143	2985	219	3270	887	3.70x	2.17x	13.63x	3.69x	
Multiplier		105			232	92	225	94	-		2.52x	2.39x	thm chosen.
Average									2.11x	2.26x	14.77x	22.12x	

> The performance of Soda-PTA under four different PTA methods

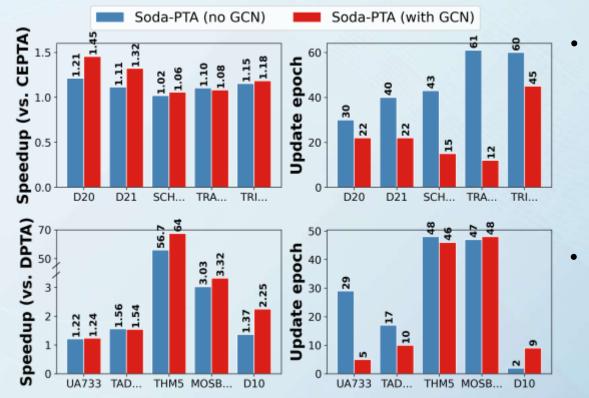

28 October 2024

Experiment: Convergence Performance

Convergence tests of Soda-PTA and BoA-PTA in three PTA algorithms

PTA Methods	Circuits -	NR iters					
PTA Methous	Circuits	navie	BoA-PTA	Soda-PTA			
	opampal	time-step	635	317			
CEPTA	D10	too small	65	60			
	loc	timeout	—	328			
	ram2k	timeout	188	158			
	gm17		N/A	304			
	gm19		N/A	160			
DPTA	REGULATO R	timeout	N/A	644			
	Divider		N/A	511			
	Schmitslow		N/A	4507			
RPTA	bjtff	timeout	N/A	1458			
NPIA	toronto	timeout	N/A	1484			
	sram		N/A	2341			

Comparison of simulation curves before and after Soda-PTA optimization for two non-convergent

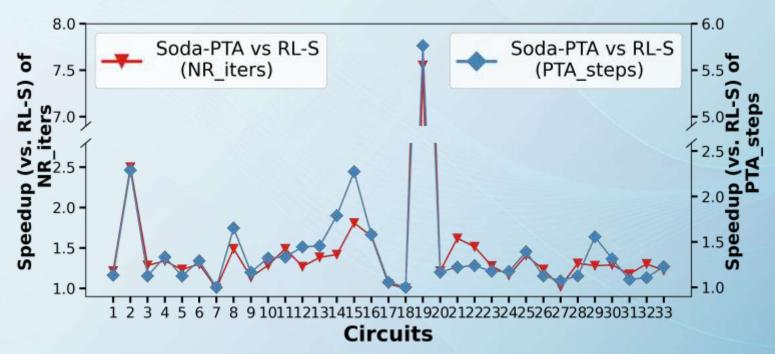

Soda-PTA offers consistently superior convergence capability compared to BoA-PTA.

LEEFACM C 2024 INTERNATIONAL C CONFERENCE ON A COMPUTER-AIDED D DESIGN D 43rd Edition

28 October 2024

Experiment: Optimization with GCN

Convergence tests of Soda-PTA and BoA-PTA in three PTA algorithms


- The left subfigure shows tests on CEPTA. Circuits 'D20' and 'D21' indicate that GCN enhances optimization results while reducing parameter update iterations. For the 'TRACKTorig' circuit, fewer iterations are needed without significantly changing the optimization results. The same conclusion is observed under DPTA.
- GCN provides a stable mapping from circuit descriptions to vector space, guiding parameter gradient updates and ensuring optimization quality.

28 October 2024

Experiment: Optimization with RL-S

> Experimental comparison under the SOTA time step control strategy RL-S[1]

- RL-S is the SOTA time step control optimization strategy in PTA methods. The above figure shows that applying Soda-PTA to RL-S results in average improvements of 1.53x (max 7.55x) in NR_iters and 1.46x (max 5.76x) in PTA_steps.
- The synergistic use of both offers potential value for further optimizing PTA methods.

[1] Z. Jin, H. Pei, Y. Dong, X. Jin, X. Wu, W. W. Xing, and D. Niu. Accelerating nonlinear dc circuit simulation with reinforcement learning. In DAC, 2022.**28 October 2024Zhou Jin / China University of Petroleum-Beijing, China**

Summary

- This paper proposes a parameter optimization framework that maps the PTA solving process to the Neural ODE training process, deriving effective gradient information for PTA hyperparameters to address the performance dependence on hyperparameters in PTA algorithms.
- The framework is equipped with a GCN model to capture circuit topology features, enhancing the quality of the parameter optimization process.
- Compared to the SOTA method BoA-PTA, Soda-PTA achieves an average improvement of 1.53x and a maximum of 1.90x under CEPTA, while also ensuring better convergence capability. Similarly, significant performance improvements are observed in other PTA algorithms, with an average of 14.77x under the DPTA algorithm.

28 October 2024

https://github.com/SuperScientificSoftwareLaboratory/Soda-PTA

WELCOME TO COOPERATE WITH US!

Email: jinzhou@cup.edu.cn

