
Balancing Computation and Communication in 
Distributed Sparse Matrix-Vector Multiplication

Hongli Mi, Xiangrui Yu, Xiaosong Yu, Shuangyuan Wu and Weifeng Liu 

Super Scientific Software Laboratory, China University of Petroleum-Beijing, China

3 May 2023 https://github.com/HongliMi/DistSpMV_Balanced



u Introduction

u Motivation

u Algorithm

u Experiment

u Conclusion

Outline



Outline
u Introduction

u Motivation

u Algorithm

u Experiment

u Conclusion



Introduction
• General Sparse Matrix-Vector Multiplication (SpMV) computes y =𝐴x, where 𝐴 is a sparse 

matrix, x and y are both vectors.

x
vector

length=6
A (6x6)

sparse matrix

y
vector

length=6
to be computed

× =



Introduction
• General Sparse Matrix-Vector Multiplication (SpMV) computes y =𝐴x, where 𝐴 is a sparse 

matrix, x and y are both vectors.

× =
1

x
vector

length=6
A (6x6)

sparse matrix

y
vector

length=6



Introduction
• General Sparse Matrix-Vector Multiplication (SpMV) computes y =𝐴x, where 𝐴 is a sparse 

matrix, x and y are both vectors.

× =
1

2

x
vector

length=6
A (6x6)

sparse matrix

y
vector

length=6



Introduction
• General Sparse Matrix-Vector Multiplication (SpMV) computes y =𝐴x, where 𝐴 is a sparse 

matrix, x and y are both vectors.

× =
1

2

3

x
vector

length=6
A (6x6)

sparse matrix

y
vector

length=6



Introduction
• General Sparse Matrix-Vector Multiplication (SpMV) computes y =𝐴x, where 𝐴 is a sparse 

matrix, x and y are both vectors.

× =
1

2

3

4

x
vector

length=6
A (6x6)

sparse matrix

y
vector

length=6



Introduction
• General Sparse Matrix-Vector Multiplication (SpMV) computes y =𝐴x, where 𝐴 is a sparse 

matrix, x and y are both vectors.

× =
1

5

2

3

4

x
vector

length=6
A (6x6)

sparse matrix

y
vector

length=6



Introduction
• General Sparse Matrix-Vector Multiplication (SpMV) computes y =𝐴x, where 𝐴 is a sparse 

matrix, x and y are both vectors.

× =
1

5

2

3

4

6

x
vector

length=6
A (6x6)

sparse matrix

y
vector

length=6

It is easy to see that there are no dependencies between rows throughout the execution. 
Therefore, SpMV can be paralleized through dividing the matrix into many row blocks on 
modern processors such as CPUs and GPUs. 



Distributed SpMV

0

1

2

3

4

5

6

7

matrix  A vector  x

partition

0

1

2

3

4

5

6

7

node 1

node 2

node 3

node 4

sub-matrices  sub-vectors 



0

1

2

3

4

5

6

7

node 1

node 2

node 3

node 4

sub-matrices  sub-vectors 

Distributed SpMV

0

1

2

3

4

5

6

7

vector  ysub-vectors sub-matrices  

3

4

6

7

0
1

4

5

7

6

7 3

1

communication

3
3 4

4 6

6 7

7

1

7

31

node 1

node 2

node 3

node 4

2

3

1

computation

gathering

Elements in diagonal blocks 
do not need to communicate.

Elements not in diagonal blocks 
need to communicate to obtain 
the required vector values.

Required vector values obtained 
from communication



Outline
u Introduction

u Motivation

u Algorithm

u Experiment

u Conclusion



1   2   3   4  5   6   7   8  9  10 11 12 13 14 15 16

1   2   3   4  5   6   7   8  9  10 11 12 13 14 15 16

Motivation 1: Large amount of communication

Elements in diagonal 
blocks do not need 
to communicate.

Large number of non-zero elements outside the diagonal block, which results in large mount of communication. 



After using graph partition tool 
METIS[1] as well as matrix 
rearrangement, the number of 
non-zero elements of the diagonal 
blocks increases.

Motivation 1: Large amount of communication

7   9  14 16 4  11 12 13  2   3  5  10  1  6   8  15

7  9  14  16  4  11 12 13 2  3   5  10   1  6   8  15

[1]G. Karypis and V. Kumar, “Analysis of multilevel graph partitioning,” in SC ’95, 1995, p. 29–es.

But there are still many non-zero elements that need to communicate,  which limits the 
performance of distributed SpMV.



Motivation 2:Imbalanced communication

node 0

node 1

node 2

node 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

4

4 6

4

13 14

0 1 2 98

8

82

13

12 15

5 6

4

4 12

12

12 13

13

14

4

95

0

0

5

8 10

10

10

11

1

10

11

14

15

7  9  14  16  4  11 12 13 2  3   5  10   1  6   8  157   9  14 16 4  11 12 13  2   3  5  10  1  6   8  15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Divide into different nodes



Motivation 2:Imbalanced communication

node 0

node 1

node 2

node 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

4

4 6

4

13 14

4

5

6

7

0 1 2 98

8

82

13

12 15

5 6

4

4 12

12

12 13

13

14

4

95

0

0

5

8 10

10

10

11

0

1

2

3

0

1

2

3

0

1

2

3

4

5

6

7

8

9

8

9

10

11

10

11

10

11

14

15

12

13

14

15

12

13

14

15

12

13

14

15

12

13

14

15

12

13

14

15

12

13

14

15

node 0

node 1

node 2

node 3

Communication volume is 4

Communication volume is 8

Communication volume is 6

Communication volume is 7

4

Imbalanced communication is another major factor limiting the performance of distributed SpMV.



Motivation 3:Imbalanced computation

node 0

node 1

node 2

node 3

In addition,the diversity of the sparsity patterns of matrices may lead to imbalanced calculation 
after the matrix is divided into each node. Although matrix has been reorganized after graph 
partitioning, the computational loads of each node are 16, 17, 18 and 19, respectively, and thus 
lead to imbalanced computations. 



u Introduction

u Motivation

u Algorithm

u Experiment

u Conclusion

Outline



DistSpMV_Balanced

• step 1: Preprocessing stage: 
Graph partitioning and Matrix 
rearrangement 

• step 2: Adjust the number of 
columns of the diagonal block 
and partition matrix

• step 3: Communication

• step 4: Computation and 
gather results



DistSpMV_Balanced
step 1: Preprocessing stage: Graph partitioning and Matrix rearrangement 

1. Use graph partitioning tool 
METIS [1] to partition matrix

2. Reorder vector and matrix 
based on partitioning results

• After preprocessing, the number of non zero elements within the diagonal block increases, 
which reduces communication volume to a certain extent.

[1]G. Karypis and V. Kumar, “Analysis of multilevel graph partitioning,” in SC ’95, 1995, p. 29–es.



DistSpMV_Balanced
step 2: Adjust the number of columns of the diagonal block and partition matrix

Strategy 1 ： Expand the number of non zero elements in 
diagonal blocks to further reduce communication volume.

Firstly, take the maximum number of 
non-zero elements in diagonal blocks as 
the threshold(we call it “lower_bound”)

lower_bound = 8

Secondly, move the boundary of each 
diagonal block until ① the non zero elements 
within the diagonal block are greater than or 
equal to lower_ Bound or ② move to the right 
boundary of the original matrix.

Non zero elements 
added to diagonal blocks

Finally, the matrix is divided into 
local matrix and remote matrix 
based on whether the non-zero 
elements are within the diagonal 
block

local matrix

remote matrix



DistSpMV_Balanced
step 2: Adjust the number of columns of the diagonal block and partition matrix

Strategy 2 ：Local matrix and remote matrix are processed separately.

The local matrix can be directly divided based on 
the row equalization strategy.

The remote matrix is divided based on the principle 
of non zero element averaging, further achieving 
communication and computational load balancing.



DistSpMV_Balanced

Use MPI for communication to obtain 
vector values and to extend local 
vectors

Divide nonzero elements equally into each thread.

step 3: Communication



DistSpMV_Balanced
step 4: Calculate and gather results

Calculation completed!

rearrange



u Introduction

u Motivation

u Algorithm

u Experiment

u Conclusion

Outline



Experiment
Experimental platform

AMD 32-core EPYC 7551 CPU and 128GB DRAM
Dataset  (20 representative matrices in SuiteSparse Matrix Collection[2])

[2] T. A. Davis and Y. Hu, “The university of florida sparse matrix collection,” ACM Transactions on Mathematical Software 
(TOMS), vol. 38, no. 1, pp. 1–25, 2011.



Experiment
Performance Comparison of Three Algorithms

[1] G. Karypis and V. Kumar, “Analysis of multilevel graph partitioning,” in SC ’95, 1995, p. 29–es

1. DistSpMV:  
pure distributed SpMV.

2. DistSpMV_Reordered:             
distributed SpMV using   
graph partition tool METIS[1].

3. DistSpMV_Balanced:  
our work.

• With the expansion of the 
number of processes, the 
performance of most matrices 
has been improved. 

• Although the performance of 
the other four matrices has 
decreased, the overall 
performance compared with 
the other two algorithms still 
greatly improved.

• Compared with DistSpMV and DistSpMV_Reordered, our algorithm achieves on 
average 77.20x and 5.18x (up to 460.52x and 27.50x) speedups, respectively.



Experiment
Analysis 1: Communication volume Comparison of Three Algorithms

From left to right is three heat maps of the traffic between various processes in DistSpMV, 
DistSpMV_Reordered, and DistSpMV_Balanced for matrix road_central

From left to right is three heat maps of the traffic between various processes in DistSpMV, 
DistSpMV_Reordered, and DistSpMV_Balanced for matrix inline_1



Experiment
Analysis 1: Further comparison of communication volume between 
DistSpMV_Reordered and DistSpMV_Balanced.

The data shows that DistSpMV_Balanced algorithm reduces communication 
between various processes , thus effectively solves Motivation 1: Large 
amount of communication



Experiment
Analysis 2: Computation volume of the remote matrix comparison of 
DistSpMV_Reordered and DistSpMV_Balanced

• In our algorithm, the computational load of each remote matrix tends to be straight, 
indicating that the algorithm has largely achieved communication load balancing 
and computational load balancing !

Thus DistSpMV_Balanced algorithm effectively solves Motivation 2: 
Imbalanced communication and Motivation 3: Imbalanced computation



Experiment
Comparison with Existing Work DistSpMV_Hybrid developed by Page and Kogge [2]

[2] B. A. Page and P. M. Kogge, “Scalability of hybrid sparse matrix dense vector (spmv) multiplication,” in 2018 International 
Conference on High Performance Computing & Simulation (HPCS). IEEE, 2018, pp. 406– 414

Performance comparison between DistSpMV_Balanced and 
DistSpMV _Hybrid with 256 cores (64 processes ×4 threads).

• DistSpMV_Balanced achieves an average 
acceleration ratio of 19.56x (up to 48.49x). The 
performance of all matrices has been greatly 
improved.



Experiment
Comparison of Preprocessing Overhead between 
DistSpMV_Reordered and DistSpMV_Balanced.

• the nonzero element distribution diversity of different 
matrices leads to different preprocessing time cost, and 
the cost changes of the two algorithms are roughly the 
same. 

• At the same time, overall, our optimization on top of the 
graph partitioning does not cost much additional 
overhead. 

• Among these 20 matrices, the maximum preprocessing 
cost is 1.31x that of DistSpMV_Reordered algorithm 
(at matrix ‘cant’), and the minimum preprocessing cost 
is only 1.05x (at matrix ‘italy osm’ )



u Introduction

u Motivation

u Algorithm

u Experiment

u Conclusion

Outline



Conclusion 
• We identify that matrix reordering techniques are not adequate to achieve good 

computation and communication balancing, and thus more schemes are 
required. 

• We design an algorithm called DistSpMV_Balanced that reorganizes the 
distribution of sparse matrix on compute nodes for balanced computation and 
communication. 

• We evaluate the new algorithm by using 20 representative sparse matrices on a 
256-core cluster, and bring significant speedups over existing work.



Thanks for your time!
Balancing Computation and Communication in 
Distributed Sparse Matrix-Vector Multiplication

Hongli Mi, Xiangrui Yu, Xiaosong Yu, Shuangyuan Wu and Weifeng Liu 

Super Scientific Software Laboratory, China University of Petroleum-Beijing, China

3 May 2023 https://github.com/HongliMi/DistSpMV_Balanced


