Balancing Computation and Communication in Distributed Sparse Matrix-Vector Multiplication

Hongli Mi, Xiangrui Yu, Xiaosong Yu, Shuangyuan Wu and Weifeng Liu
Super Scientific Software Laboratory, China University of Petroleum-Beijing, China

- Introduction

- Motivation

Outline

- Algorithm
- Experiment

Conclusion

Introduction

- General Sparse Matrix-Vector Multiplication (SpMV) computes $y=A x$, where A is a sparse matrix, x and y are both vectors.

A (6x6)
sparse matrix

x
vector
length $=6$

$$
\begin{gathered}
y \\
\text { vector }
\end{gathered}
$$

length=6
to be computed

Introduction

- General Sparse Matrix-Vector Multiplication (SpMV) computes $y=A x$, where A is a sparse matrix, x and y are both vectors.

Introduction

- General Sparse Matrix-Vector Multiplication (SpMV) computes $y=A x$, where A is a sparse matrix, x and y are both vectors.

A (6x6)
sparse matrix

$$
\begin{array}{cc}
x & y \\
\text { vector } & \text { vector } \\
\text { length=6 } & \text { length=6 }
\end{array}
$$

Introduction

- General Sparse Matrix-Vector Multiplication (SpMV) computes $y=A x$, where A is a sparse matrix, x and y are both vectors.

A (6x6)
sparse matrix

$$
\begin{array}{cc}
x & y \\
\text { vector } & \text { vector } \\
\text { length=6 } & \text { length=6 }
\end{array}
$$

Introduction

- General Sparse Matrix-Vector Multiplication (SpMV) computes $y=A x$, where A is a sparse matrix, x and y are both vectors.

A (6x6)
sparse matrix

$$
\begin{array}{cc}
x & y \\
\text { vector } & \text { vector } \\
\text { length=6 } & \text { length=6 }
\end{array}
$$

Introduction

- General Sparse Matrix-Vector Multiplication (SpMV) computes $y=A x$, where A is a sparse matrix, x and y are both vectors.

A (6x6)
sparse matrix

$$
\begin{array}{cc}
x & y \\
\text { vector } & \text { vector } \\
\text { length=6 } & \text { length=6 }
\end{array}
$$

Introduction

- General Sparse Matrix-Vector Multiplication (SpMV) computes $y=A x$, where A is a sparse matrix, x and y are both vectors.

It is easy to see that there are no dependencies between rows throughout the execution. Therefore, SpMV can be paralleized through dividing the matrix into many row blocks on modern processors such as CPUs and GPUs.

Distributed SpMV

$\bigcirc \square \square \bigcirc \bigcirc \square \bigcirc \bigcirc$ node $1 \quad \bigcirc \bigcirc \square \bigcirc \bigcirc \square \bigcirc \bigcirc$

(1)
(2)

node 4

Distributed SpMV

Elements in diagonal blocks do not need to communicate.

Elements not in diagonal blocks need to communicate to obtain the required vector values.

Motivation 1: Large amount of communication

Large number of non-zero elements outside the diagonal block, which results in large mount of communication.

Motivation 1: Large amount of communication

But there are still many non-zero elements that need to communicate, which limits the performance of distributed SpMV.


```
rearrangement, the number of
non-zero elements of the diagonal
blocks increases.
```


Motivation 2:Imbalanced communication

\square O
©

Motivation 2:Imbalanced communication

Communication volume is 4

Communication volume is 8

Imbalanced communication is another major factor limiting the performance of distributed SpMV.
node 2

Motivation 3:Imbalanced computation

node 0

In addition,the diversity of the sparsity patterns of matrices may lead to imbalanced calculation after the matrix is divided into each node. Although matrix has been reorganized after graph partitioning, the computational loads of each node are 16, 17, 18 and 19, respectively, and thus lead to imbalanced computations.

DistSpMV_Balanced

- step 1: Preprocessing stage: Graph partitioning and Matrix rearrangement
- step 2: Adjust the number of columns of the diagonal block and partition matrix
- step 3: Communication
- step 4: Computation and gather results

DistSpMV_Balanced

step 1: Preprocessing stage: Graph partitioning and Matrix rearrangement

(a) The original vector and the matrix

1. Use graph partitioning tool METIS [1] to partition matrix
2. Reorder vector and matrix based on partitioning results

(b)Graph partitioning and rearrangement of vectors and matrix

- After preprocessing, the number of non zero elements within the diagonal block increases, which reduces communication volume to a certain extent.

```
[1]G. Karypis and V. Kumar, "Analysis of multilevel graph partitioning," in SC '95, 1995, p. 29-es.
```


DistSpMV_Balanced

step 2: Adjust the number of columns of the diagonal block and partition matrix

Strategy 1 : Expand the number of non zero elements in diagonal blocks to further reduce communication volume.

Secondly, move the boundary of each

Firstly, take the maximum number of non-zero elements in diagonal blocks as the threshold(we call it "lower_bound")
diagonal block until (1) the non zero elements within the diagonal block are greater than or equal to lower_ Bound or (2) move to the right boundary of the original matrix.

Finally, the matrix is divided into local matrix and remote matrix based on whether the non-zero elements are within the diagonal block

DistSpMV_Balanced

step 2: Adjust the number of columns of the diagonal block and partition matrix
Strategy 2 : Local matrix and remote matrix are processed separately.

The local matrix can be directly divided based on the row equalization strategy.

The remote matrix is divided based on the principle of non zero element averaging, further achieving communication and computational load balancing.

DistSpMV_Balanced

step 3: Communication

Divide nonzero elements equally into each thread.

DistSpMV_Balanced

step 4: Calculate and gather results

Experiment

Experimental platform

AMD 32-core EPYC 7551 CPU and 128GB DRAM
Dataset (20 representative matrices in SuiteSparse Matrix Collection[2])

Matrix	Plot	Size	$n n z$	Matrix	Plot	Size	$n n z$
cant		$62.4 \mathrm{~K} \times 62.4 \mathrm{~K}$	4M	inline_1		$503.7 \mathrm{~K} \times 503.7 \mathrm{~K}$	36.8 M
bone010		$986.7 \mathrm{~K} \times 986.7 \mathrm{~K}$	47.8 M	hugebubbles00000		$18.3 \times 18.3 \mathrm{M}$	54.9 M
rajat31		$4.6 \mathrm{M} \times 4.6 \mathrm{M}$	20.3 M	germany_osm		$11.5 \mathrm{M} \times 11.5 \mathrm{M}$	24.7 M
ecology1		$1 \mathrm{M} \times 1 \mathrm{M}$	4.9 M	italy_osm		$6.6 \mathrm{M} \times 6.6 \mathrm{M}$	14M
asia_osm		$11.9 \mathrm{M} \times 11.9 \mathrm{M}$	25.4 M	adaptive		$6.8 \mathrm{M} \times 6.8 \mathrm{M}$	27.2 M
ldoor		$852.2 \mathrm{~K} \times 952.2 \mathrm{~K}$	42.4 M	vas_stokes_1M		$1 \mathrm{M} \times 1 \mathrm{M}$	34.7 M
nlpkkt80		$1 \mathrm{M} \times 1 \mathrm{M}$	28.1M	AS365		$3.7 \mathrm{M} \times 3.7 \mathrm{M}$	22.7 M
dielFilterV2real		$1.1 \mathrm{M} \times 1.1 \mathrm{M}$	48.5M	M6		$3.5 \mathrm{M} \times 3.5 \mathrm{M}$	21M
rgg_n_2_21_s0		$2 \mathrm{M} \times 2 \mathrm{M}$	28.9 M	NLR		$4.1 \mathrm{M} \times 4.1 \mathrm{M}$	24.9 M
road_central		$14 \mathrm{M} \times 14 \mathrm{M}$	33.8 M	audikw_1		$943.6 \mathrm{~K} \times 943.6 \mathrm{~K}$	77.6M

[2] T. A. Davis and Y. Hu, "The university of florida sparse matrix collection," ACM Transactions on Mathematical Software (TOMS), vol. 38, no. 1, pp. 1-25, 2011.

Experiment
Performance Comparison of Three Algorithms

- Compared with DistSpMV and DistSpMV_Reordered, our algorithm achieves on average 77.20x and 5.18x (up to 460.52x and 27.50x) speedups, respectively.
[1] G. Karypis and V. Kumar, "Analysis of multilevel graph partitioning," in SC '95, 1995, p. 29-es

Experiment

Analysis 1: Communication volume Comparison of Three Algorithms

From left to right is three heat maps of the traffic between various processes in DistSpMV, DistSpMV_Reordered, and DistSpMV_Balanced for matrix road_central

From left to right is three heat maps of the traffic between various processes in DistSpMV, DistSpMV_Reordered, and DistSpMV_Balanced for matrix inline_1

Experiment

Analysis 1: Further comparison of communication volume between DistSpMV_Reordered and DistSpMV_Balanced.

The data shows that DistSpMV_Balanced algorithm reduces communication between various processes, thus effectively solves Large amount of communication

Experiment

Analysis 2: Computation volume of the remote matrix comparison of DistSpMV_Reordered and DistSpMV_Balanced

Thus DistSpMV_Balanced algorithm effectively solves Imbalanced communication and

- In our algorithm, the computational load of each remote matrix tends to be straight, indicating that the algorithm has largely achieved communication load balancing and computational load balancing !

Experiment

Comparison with Existing Work DistSpMV_Hybrid developed by Page and Kogge [2]

- DistSpMV_Balanced achieves an average acceleration ratio of 19.56x (up to 48.49x). The performance of all matrices has been greatly improved.

Performance comparison between DistSpMV_Balanced and DistSpMV _Hybrid with 256 cores (64 processes $\times 4$ threads).
[2] B. A. Page and P. M. Kogge, "Scalability of hybrid sparse matrix dense vector (spmv) multiplication," in 2018 International Conference on High Performance Computing \& Simulation (HPCS). IEEE, 2018, pp. 406-414

Experiment

Comparison of Preprocessing Overhead between DistSpMV_Reordered and DistSpMV_Balanced.

- the nonzero element distribution diversity of different matrices leads to different preprocessing time cost, and the cost changes of the two algorithms are roughly the same.
- At the same time, overall, our optimization on top of the graph partitioning does not cost much additional overhead.
- Among these 20 matrices, the maximum preprocessing cost is $1.31 x$ that of DistSpMV_Reordered algorithm (at matrix 'cant'), and the minimum preprocessing cost is only $1.05 x$ (at matrix 'italy osm')

Conclusion

- We identify that matrix reordering techniques are not adequate to achieve good computation and communication balancing, and thus more schemes are required.
- We design an algorithm called DistSpMV_Balanced that reorganizes the distribution of sparse matrix on compute nodes for balanced computation and communication.
- We evaluate the new algorithm by using 20 representative sparse matrices on a 256 -core cluster, and bring significant speedups over existing work.

Thanks for your time!

Balancing Computation and Communication in Distributed Sparse Matrix-Vector Multiplication

Hongli Mi, Xiangrui Yu, Xiaosong Yu, Shuangyuan Wu and Weifeng Liu

Super Scientific Software Laboratory, China University of Petroleum-Beijing, China

