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Part I Introduction



Introduction

SpMSpV

Sparse Matrix-Sparse Vector Multiplication (SpMSpV)
Sparse Matrix-Sparse Vector Multiplication (SpMSpV) operation multiplies a 
sparse matrix A with a sparse vector x and obtains a resulting sparse vector y. 
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Row-wise SpMSpV

Row-wise SpMSpV
Each element of the resulting vector y is obtained by computing the dot product 
of the corresponding row of matrix A with the vector x. 
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Column-wise SpMSpV

Column-wise SpMSpV
Each nonzero in x finds the corresponding column in the matrix, scales the 
nonzeros in the column, and merges the results into y.
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An example of running the first iteration of BFS on the graph 
(left) by using SpMSpV (right).

BFS
BFS is one of the most basic traversal algorithms in graph computations. The 
algorithm starts from a source vertex in the graph and accesses all reachable 
vertices through multi-layer traversal. 
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• Existing work ignored exploiting local sparsity in the input sparse matrix 
and vector largely.

Motivation 1
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• No one matrix storage formulation works for any sparsity structure.

Motivation 2
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TileSpMSpV

: 

Using CSR, COO, ELL, 
HYB, dense, dense 

row and dense 
column to store non-

empty tiles.

Yuyao Niu, Zhengyang Lu, Meichen Dong, Zhou Jin, Weifeng Liu, and Guangming Tan. “TileSpMV: A Tiled Algorithm for Sparse Matrix-Vector Multiplication on 
GPUs”. IPDPS ’21, 2021.

TileSpMSpV divides the input sparse matrix into several sparse matrix tiles of 
size nt-by-nt, where nt can be 16, 32 or 64.

Storage structure of sparse matrix



TileSpMSpV

TileSpMSpV divides the input sparse vector into several sparse matrix tiles of 
size nt-by-1, then uses index and value arrays to mark the non-empty tiles 
information, and realizes the access of O(1) time complexity.

Storage structure of sparse vector

x_ptr: An index array that 
records the type and 

location of vector tiles.
x_tile: A value array that 
stores the elements of 
non-empty vector tiles.



TileSpMSpV

• Load the corresponding matrix tile into the GPU shared memory.
TileSpMSpV algorithm



TileSpMSpV

• Load the corresponding matrix tile into the GPU shared memory.
• Find the actual storage position of the corresponding vector tile called 

x_tile_id. If x_tile_id=-1, skip the calculation, otherwise, obtain the vector 
tile information.

TileSpMSpV algorithm



TileSpMSpV

• Load the corresponding matrix tile into the GPU shared memory.
• Find the actual storage position of the corresponding vector tile called 

x_tile_id. If x_tile_id=-1, skip the calculation, otherwise, obtain the vector 
tile information.

• Different kernel calculations are selected according to different formats of 
matrix tiles.

TileSpMSpV algorithm



TileSpMSpV

• Load the corresponding matrix tile into the GPU shared memory.
• Find the actual storage position of the corresponding vector tile called 

x_tile_id. If x_tile_id=-1, skip the calculation, otherwise, obtain the vector 
tile information.

• Different kernel calculations are selected according to different formats of 
matrix tiles.

TileSpMSpV: vector tile is not empty

Multiply the two non-empty tiles �00 and 
�02 of the first  row tile by the vector tiles 
�0 and �2, and add the resulting vectors to 

obtain �0, that is, the first tile of �.



TileSpMSpV

• Load the corresponding matrix tile into the GPU shared memory.
• Find the actual storage position of the corresponding vector tile called 

x_tile_id. If x_tile_id=-1, skip the calculation, otherwise, obtain the vector 
tile information.

• Different kernel calculations are selected according to different formats of 
matrix tiles.

TileSpMSpV: vector tile is empty

The non-empty tile �11 of the second row 
tile is matched to the second vector tile �1. 
According to its index, it is judged that �1 is 
a zero tile, so there is no need to calculate.
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TileBFS

Auxiliary data structure for TileBFS

The non-empty tiles use a 
binary bitmask to record 
whether the elements in a 
tile are zero.



TileBFS

Auxiliary data structure for TileBFS

16: unsigned char
32: unsigned int

64: unsigned long long

The non-empty tiles use a 
binary bitmask to record 
whether the elements in a 
tile are zero.

Adaptive selection of tile 
size (nt = 16, 32, or 64).



TileBFS

Auxiliary data structure for TileBFS

The non-empty tiles use a 
binary bitmask to record 
whether the elements in a 
tile are zero.

Adaptive selection of tile 
size (nt = 16, 32, or 64).

In tile format of row-wise 
and column-wise SpMSpV.



TileBFS

The non-empty tiles use a 
binary bitmask to record 
whether the elements in a 
tile are zero.

Auxiliary data structure for TileBFS

Adaptive selection of tile 
size (nt = 16, 32, or 64).

In tile format of row-wise 
and column-wise SpMSpV.

Vectors are stored as dense 
tiled vectors.

The vector m marks 
whether the vertex has 

been visited.  



TileBFS

• A single operation 
method is difficult to 
maintain high 
performance when 
dealing with vectors with 
different sparsity.

• TileBFS designs three 
types of SpMSpV 
methods: Push-CSC, 
Push-CSR and Pull-CSC.

Direction optimization of BFS



TileBFS

According to the non-empty 
element position of the input 
vector, several corresponding 
matrix columns are found, 
and then the corresponding 
matrix columns are merged 
into the result vector.

Direction optimization of BFS——Push-CSC (First layer)

When the sparsity of the 
x is less than 0.01 and 
the number of unvisited 
vertices is large, we will 
use Push-CSC.



TileBFS

By multiplying each row tile 
of the matrix by the 
corresponding vector tile, the 
resulting vector tile is 
obtained.

Direction optimization of BFS——Push-CSR (Second layer)

When the sparsity of the 
input vector x is greater 
than or equal to 0.01 and 
the number of unvisited 
vertices is large, we will 
use Push-CSR.



TileBFS

• Calculate the input vector. 
• Find the corresponding 

matrix columns.
• AND the selected matrix 

columns with the mask 
vector. 

• Update mask vector 
according to AND result.

Direction optimization of BFS——Pull-CSC (Third layer)

When the number 
of unvisited vertices 
is small, we will use 
Pull-CSC.



Performance 
Evaluation

Part IV 



Performance Evaluation

Experimental setup Information of the representative 
matrices

Dataset
The dataset of SpMSpV contains all 2757 
sparse matrices from the SuiteSparse 
Matrix Collection. Inside the dataset, 2081 
sparse matrices are square and are used 
for testing BFS.

Yuyao Niu, Zhengyang Lu, Meichen Dong, Zhou Jin, Weifeng Liu, and 
Guangming Tan. “TileSpMV: A Tiled Algorithm for Sparse Matrix-Vector 
Multiplication on GPUs”. IPDPS ’21, 2021.

Ariful Azad and Aydin Buluç. “A Work-Efficient Parallel Sparse Matrix 
Sparse Vector Multiplication Algorithm”. In IPDPS ’17, 2017.

Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, 
and John D. Owens. “Gunrock: A High-Performance Graph Processing 
Library on the GPU”. In PPoPP ’16, 2016.

Ke Meng, Jiajia Li, Guangming Tan, and Ninghui Sun. “A Pattern Based 
Algorithmic Autotuner for Graph Processing on GPUs.” In PPoPP ’19, 2019.



Performance Evaluation

SpMSpV performance comparison of four methods with different sparsity 

TileSpMSpV achieves speedups of on average 1.83x (up to 7.68x) over TileSpMV, 17.18 (up to 
1050.02x) over cuSPARSE and 17.20x (up to 235.90x) over CombBLAS at vector sparsity of 0.1, 
0.01, 0.001 and 0.0001 on RTX 3090.



Performance Evaluation

BFS performance comparison

On RTX 3060, the average speedups over Gunrock and GSwitch are 3.03x and 4.35x,
the best speedups are 21.70x and 837.36x, respectively.
On RTX 3090, the average speedups over Gunrock and GSwitch are 2.74x and 20.01x,
the best speedups are 4.69x and 1164.35x, respectively.



Performance Evaluation

Comparison over Gunrock and GSwitch

Performance comparison of 12 representative matrices on RTX 3090 GPU.



Performance Evaluation

Directional optimization analysis

Comparison of BFS performance using three direction optimization step by step of 
the representative matrices. The performance improvement of kernel conversion 
is significant.

Push-CSC (K1) 
Push-CSR (K2) 
Pull-CSC (K3)



Performance Evaluation

Iteration time analysis

On RTX 3090, the iteration time 
comparison of Gunrock, GSwitch and 
TileBFS.
• Suppress peak execution time(see 

the matrices ‘in-2004’ and 
‘msdoor’)

• Invalid kernel switch(see the 
matrices ‘msdoor’ and ‘cant’)



Performance Evaluation

Format conversion overhead

Performance comparison of 6 representative 
matrices on RTX 3090 GPU. The average 
speedup is 1.39x, and the maximum speedup 
is 2.31x.

Comparison over Enterprise

Comparison of preprocessing time and a BFS time 
of the all matrices on RTX 3090. The time for 
format conversion does not exceed a single BFS 
processing time in most cases.

Hang Liu and H. Howie Huang. “Enterprise: Breadth-First Graph Traversal on GPUs”. In SC  ’15, 2015.
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Conclusion

We develop tiled storage structures for the sparse matrix and vectors involved in 
SpMSpV.



Conclusion

We develop tiled storage structures for the sparse matrix and vectors involved in 
SpMSpV.

We design a tiled sparse algorithm called TileSpMSpV and a directional optimization 
BFS algorithm called TileBFS.



Conclusion

We develop tiled storage structures for the sparse matrix and vectors involved in 
SpMSpV.

We design a tiled sparse algorithm called TileSpMSpV and a directional optimization 
BFS algorithm called TileBFS.

We evaluate our algorithms on latest NVIDIA GPU and significantly outperform existing 
work.
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