
Segmented Merge: A New Primitive for
Parallel Sparse Matrix Computations

Haonan Ji1, Huimin Song1, Shibo Lu2, Zhou Jin1, Guangming Tan3
and Weifeng Liu1

1. Super Scientific Software Laboratory, China University of Petroleum-Beijing
2. Northeastern University
3. State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of

Sciences

 ICPP 2022
51st International Conference on Parallel Processing

August 29 - September 1, 2022.

TileSpMSpV: A Tiled Algorithm for Sparse
Matrix-Sparse Vector Multiplication on GPUs

OUTLINE

Introduction

TileSpMSpV

TileBFS

Performance Evaluation

Conclusion

01

02

03

04

05

Part I Introduction

Introduction

SpMSpV

Sparse Matrix-Sparse Vector Multiplication (SpMSpV)
Sparse Matrix-Sparse Vector Multiplication (SpMSpV) operation multiplies a
sparse matrix A with a sparse vector x and obtains a resulting sparse vector y.

Introduction

Row-wise SpMSpV

Row-wise SpMSpV
Each element of the resulting vector y is obtained by computing the dot product
of the corresponding row of matrix A with the vector x.

Introduction

Column-wise SpMSpV

Column-wise SpMSpV
Each nonzero in x finds the corresponding column in the matrix, scales the
nonzeros in the column, and merges the results into y.

Introduction

An example of running the first iteration of BFS on the graph
(left) by using SpMSpV (right).

BFS
BFS is one of the most basic traversal algorithms in graph computations. The
algorithm starts from a source vertex in the graph and accesses all reachable
vertices through multi-layer traversal.

Introduction

Carl Yang, Yangzihao Wang and John Owens. “Fast Sparse Matrix and Sparse Vector Multiplication Algorithm on the GPU”. In
IPDPSW '15, 2015, pp. 841-847.

Ariful Azad and Aydin Buluç. “A Work-Efficient Parallel Sparse Matrix Sparse Vector Multiplication Algorithm”. In IPDPS ’17,
2017, pp. 688-697.

Leonid Yavits and Ran Ginosar. “Accelerator for Sparse Machine Learning”. In IEEE Computer Architecture Letters, 2018, pp.
21-24.

Min Li, Yulong Ao, and Chao Yang. “Adaptive SpMV/SpMSpV on GPUs for Input Vectors of Varied Sparsity”. In IEEE
Transactions on Parallel and Distributed Systems, 2021, pp. 1842–1853.

Paul Burkhardt. “Optimal Algebraic Breadth-First Search for Sparse Graphs”. In ACM Transactions on Knowledge Discovery
from Data, 2021, pp. 1-19.

• Existing work ignored exploiting local sparsity in the input sparse matrix
and vector largely.

Motivation 1

Introduction

• No one matrix storage formulation works for any sparsity structure.

Motivation 2

TileSpMSpVPart II

TileSpMSpV

:

Using CSR, COO, ELL,
HYB, dense, dense

row and dense
column to store non-

empty tiles.

Yuyao Niu, Zhengyang Lu, Meichen Dong, Zhou Jin, Weifeng Liu, and Guangming Tan. “TileSpMV: A Tiled Algorithm for Sparse Matrix-Vector Multiplication on
GPUs”. IPDPS ’21, 2021.

TileSpMSpV divides the input sparse matrix into several sparse matrix tiles of
size nt-by-nt, where nt can be 16, 32 or 64.

Storage structure of sparse matrix

TileSpMSpV

TileSpMSpV divides the input sparse vector into several sparse matrix tiles of
size nt-by-1, then uses index and value arrays to mark the non-empty tiles
information, and realizes the access of O(1) time complexity.

Storage structure of sparse vector

x_ptr: An index array that
records the type and

location of vector tiles.
x_tile: A value array that
stores the elements of
non-empty vector tiles.

TileSpMSpV

• Load the corresponding matrix tile into the GPU shared memory.
TileSpMSpV algorithm

TileSpMSpV

• Load the corresponding matrix tile into the GPU shared memory.
• Find the actual storage position of the corresponding vector tile called

x_tile_id. If x_tile_id=-1, skip the calculation, otherwise, obtain the vector
tile information.

TileSpMSpV algorithm

TileSpMSpV

• Load the corresponding matrix tile into the GPU shared memory.
• Find the actual storage position of the corresponding vector tile called

x_tile_id. If x_tile_id=-1, skip the calculation, otherwise, obtain the vector
tile information.

• Different kernel calculations are selected according to different formats of
matrix tiles.

TileSpMSpV algorithm

TileSpMSpV

• Load the corresponding matrix tile into the GPU shared memory.
• Find the actual storage position of the corresponding vector tile called

x_tile_id. If x_tile_id=-1, skip the calculation, otherwise, obtain the vector
tile information.

• Different kernel calculations are selected according to different formats of
matrix tiles.

TileSpMSpV: vector tile is not empty

Multiply the two non-empty tiles �00 and
�02 of the first row tile by the vector tiles
�0 and �2, and add the resulting vectors to

obtain �0, that is, the first tile of �.

TileSpMSpV

• Load the corresponding matrix tile into the GPU shared memory.
• Find the actual storage position of the corresponding vector tile called

x_tile_id. If x_tile_id=-1, skip the calculation, otherwise, obtain the vector
tile information.

• Different kernel calculations are selected according to different formats of
matrix tiles.

TileSpMSpV: vector tile is empty

The non-empty tile �11 of the second row
tile is matched to the second vector tile �1.
According to its index, it is judged that �1 is
a zero tile, so there is no need to calculate.

TileBFSPart III

TileBFS

Auxiliary data structure for TileBFS

The non-empty tiles use a
binary bitmask to record
whether the elements in a
tile are zero.

TileBFS

Auxiliary data structure for TileBFS

16: unsigned char
32: unsigned int

64: unsigned long long

The non-empty tiles use a
binary bitmask to record
whether the elements in a
tile are zero.

Adaptive selection of tile
size (nt = 16, 32, or 64).

TileBFS

Auxiliary data structure for TileBFS

The non-empty tiles use a
binary bitmask to record
whether the elements in a
tile are zero.

Adaptive selection of tile
size (nt = 16, 32, or 64).

In tile format of row-wise
and column-wise SpMSpV.

TileBFS

The non-empty tiles use a
binary bitmask to record
whether the elements in a
tile are zero.

Auxiliary data structure for TileBFS

Adaptive selection of tile
size (nt = 16, 32, or 64).

In tile format of row-wise
and column-wise SpMSpV.

Vectors are stored as dense
tiled vectors.

The vector m marks
whether the vertex has

been visited.

TileBFS

• A single operation
method is difficult to
maintain high
performance when
dealing with vectors with
different sparsity.

• TileBFS designs three
types of SpMSpV
methods: Push-CSC,
Push-CSR and Pull-CSC.

Direction optimization of BFS

TileBFS

According to the non-empty
element position of the input
vector, several corresponding
matrix columns are found,
and then the corresponding
matrix columns are merged
into the result vector.

Direction optimization of BFS——Push-CSC (First layer)

When the sparsity of the
x is less than 0.01 and
the number of unvisited
vertices is large, we will
use Push-CSC.

TileBFS

By multiplying each row tile
of the matrix by the
corresponding vector tile, the
resulting vector tile is
obtained.

Direction optimization of BFS——Push-CSR (Second layer)

When the sparsity of the
input vector x is greater
than or equal to 0.01 and
the number of unvisited
vertices is large, we will
use Push-CSR.

TileBFS

• Calculate the input vector.
• Find the corresponding

matrix columns.
• AND the selected matrix

columns with the mask
vector.

• Update mask vector
according to AND result.

Direction optimization of BFS——Pull-CSC (Third layer)

When the number
of unvisited vertices
is small, we will use
Pull-CSC.

Performance
Evaluation

Part IV

Performance Evaluation

Experimental setup Information of the representative
matrices

Dataset
The dataset of SpMSpV contains all 2757
sparse matrices from the SuiteSparse
Matrix Collection. Inside the dataset, 2081
sparse matrices are square and are used
for testing BFS.

Yuyao Niu, Zhengyang Lu, Meichen Dong, Zhou Jin, Weifeng Liu, and
Guangming Tan. “TileSpMV: A Tiled Algorithm for Sparse Matrix-Vector
Multiplication on GPUs”. IPDPS ’21, 2021.

Ariful Azad and Aydin Buluç. “A Work-Efficient Parallel Sparse Matrix
Sparse Vector Multiplication Algorithm”. In IPDPS ’17, 2017.

Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel,
and John D. Owens. “Gunrock: A High-Performance Graph Processing
Library on the GPU”. In PPoPP ’16, 2016.

Ke Meng, Jiajia Li, Guangming Tan, and Ninghui Sun. “A Pattern Based
Algorithmic Autotuner for Graph Processing on GPUs.” In PPoPP ’19, 2019.

Performance Evaluation

SpMSpV performance comparison of four methods with different sparsity

TileSpMSpV achieves speedups of on average 1.83x (up to 7.68x) over TileSpMV, 17.18 (up to
1050.02x) over cuSPARSE and 17.20x (up to 235.90x) over CombBLAS at vector sparsity of 0.1,
0.01, 0.001 and 0.0001 on RTX 3090.

Performance Evaluation

BFS performance comparison

On RTX 3060, the average speedups over Gunrock and GSwitch are 3.03x and 4.35x,
the best speedups are 21.70x and 837.36x, respectively.
On RTX 3090, the average speedups over Gunrock and GSwitch are 2.74x and 20.01x,
the best speedups are 4.69x and 1164.35x, respectively.

Performance Evaluation

Comparison over Gunrock and GSwitch

Performance comparison of 12 representative matrices on RTX 3090 GPU.

Performance Evaluation

Directional optimization analysis

Comparison of BFS performance using three direction optimization step by step of
the representative matrices. The performance improvement of kernel conversion
is significant.

Push-CSC (K1)
Push-CSR (K2)
Pull-CSC (K3)

Performance Evaluation

Iteration time analysis

On RTX 3090, the iteration time
comparison of Gunrock, GSwitch and
TileBFS.
• Suppress peak execution time(see

the matrices ‘in-2004’ and
‘msdoor’)

• Invalid kernel switch(see the
matrices ‘msdoor’ and ‘cant’)

Performance Evaluation

Format conversion overhead

Performance comparison of 6 representative
matrices on RTX 3090 GPU. The average
speedup is 1.39x, and the maximum speedup
is 2.31x.

Comparison over Enterprise

Comparison of preprocessing time and a BFS time
of the all matrices on RTX 3090. The time for
format conversion does not exceed a single BFS
processing time in most cases.

Hang Liu and H. Howie Huang. “Enterprise: Breadth-First Graph Traversal on GPUs”. In SC ’15, 2015.

ConclusionPart V

Conclusion

We develop tiled storage structures for the sparse matrix and vectors involved in
SpMSpV.

Conclusion

We develop tiled storage structures for the sparse matrix and vectors involved in
SpMSpV.

We design a tiled sparse algorithm called TileSpMSpV and a directional optimization
BFS algorithm called TileBFS.

Conclusion

We develop tiled storage structures for the sparse matrix and vectors involved in
SpMSpV.

We design a tiled sparse algorithm called TileSpMSpV and a directional optimization
BFS algorithm called TileBFS.

We evaluate our algorithms on latest NVIDIA GPU and significantly outperform existing
work.

Segmented Merge: A New Primitive for
Parallel Sparse Matrix Computations

Haonan Ji1, Huimin Song1, Shibo Lu2, Zhou Jin1, Guangming Tan3
and Weifeng Liu1

1. Super Scientific Software Laboratory, China University of Petroleum-Beijing
2. Northeastern University
3. State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of

Sciences

 ICPP 2022

TileSpMSpV: A Tiled Algorithm for Sparse
Matrix-Sparse Vector Multiplication on GPUs

Thanks for your time!

