
WC: A New GPU Programming Model

1

Ang Li, Pacific Northwest National Laboratory (PNNL)

Weifeng Liu (Norwegian University of Science and Technology)

Linnan Wang (Brown University)

Kevin Barker and Shuaiwen Leon Song (PNNL)

The Missing Warp in CUDA

2

CUDA’s 2-level programming model

Thread-block SM, Thread CUDA core

GPU Hardware’s 3-level execution model

SM, warp, SIMD-lane

CUDA programming/execution model mismatch

Warp cannot be simply ignored

Warp divergence

Inter-warp synchronization

Inter-warp Synchronization

3

Explicit Synchronization

Implicit Synchronization

End

Access Shared MemoryExplicit barrier Implicit barrier

W0

W1

W2

12% (up to 90%) explicit stalls, 4.4% implicit stalls for

80 GPGPUs applications on P100

Issues with CUDA Programming Model

Difficult to program

Setting kernel configuration <<<grid(x,y,z), block(x,y,z)>>>

Related to resources allocation: register, shared-mem, warp-slots

Difficult to optimize

Without knowing “warp” it’s hard to achieve optimal performance

Thinking about warp, program about warp, but never express warp

Synchronization overhead

Warp divergence/unbalancing

Explicit warp synchronization

Implicit warp syncrhonization

CUDA’s

programming/execution

model mismatch

Large & correlated

design space

How to resolve the “mismatch” issue?

5

Warp-Consolidation Model

5 advantages over CUDA model

3 code examples

2 drawbacks & solution

2 comparisons with other techniques

Evaluation

Settings

Results

Potential Extension

Active context switch

Volta

Warp Consolidation Model

6

WC Model
Unify TB and warp: 1-warp/thread-
block

2-level programming/execution
model

Motivates novel SMT-like programming concept for GPU
Partition computation space into multiple independent warp based jobs. A
job is handled by a warp

Threads in a TB/warp can efficiently sync, cooperate and communicate

Combine the advantages
thread-block(free resource allocation)

warp (fast communication, synchronization and cooperation)

Adv 1: No synchronization & barrier

7

EndTB0/W0

TB1/W1

TB2/W2

End

End

End

Access Shared MemoryExplicit barrier Implicit barrier

W0

W1

W2

TB

CUDA:

WC: New Job

Adv 2: Simplified Design Space

8

WC Programming Model

Fixed block configuration <<<grid(x,y,z), 32>>>

Fixed per-warp resources No correlated resource allocation

Significantly reduces design space

CPU-like programming: simultaneous multi-threaded SSE code

CUDA Programming Model

Large design space <<<grid(x,y,z), block(x,y,z)>>>

Correlated resources usage: register, shared-mem, warp-
slots, etc.

Hard to program

Easy to program

Adv 3: Register fast communication

9

Shared memory communication:

regwritesyncreadreg

Register shuffle communication:

regshufflereg

Very flexible

Communication

CUDA: collective shared
memory communication

WC: distributive message
passing communication

Flexible Shuffle

Adv 4: Fine-grained cooperation

10

__any()

__all()

__ballot()

__ffs()

__clz()

__popc()

Warp-aggregated Atomics

[1] M. Bauer et al, Singe: Leveraging warp specialization for high performance on GPUs, PPoPP-14

[2] Andy Adinets, Optimizing Filtering with Warp-Aggregated Atomics, https://devblogs.nvidia.com/cuda-pro-tip-

optimized-filtering-warp-aggregated-atomics/

Adv 5: Extended Register Space

11

Register spilling in shared memory
Register shuffling relax the usage of shared memory as comm buffer

Shared memory allocation is now private a warp

No shared memory bank conflict

Exp 1: How to program in WC

12

Synchronization is removed

Shared memory allocate as volatile

Thread block configuration == 32

Exp 2: How to transform legacy code

13

Exp 3: How to communicate via reg

14

Stencil from Parboil Benchmark Suite.

Shuffle is very flexible (up, down, shfl)

Be careful when shuffle with warp divergence

No synchronization required

Drawback 1: Occupancy degradation

15

GPU Architecture SMs Thread-Blocks/SM Warps/SM

Tesla-K80 Kepler 15 16 64

Tesla-M40 Maxwell 24 32 64

Tesla-P100 Pascal 56 32 64

Tesla-V100 Volta 80 32 64

Occupancy is at maximum 0.5

Resolved by warp-delegation (a variant of [1])

CUDA Best Practice Guide (50% occupancy is sufficient)

We hope TBs/SM == Warps/SM in future GPUs

[1] A. Li et al. ”Locality-Aware CTA Clustering for Modern GPUs." in ASPLOS-17, ACM

Drawback 2: Shared Mem/Reg usage

16

Extra shared mem usage

Ideally can be mitigated & released by
register shuffling

Otherwise, multiplexing can be an alternative
solution[1]

Extra register usage

Our experiment show that reg usage not
increase much

Can be resolved by shared memory spilling

[1] Y. Yang et al. ”Shared memory multiplexing: a novel way to improve GPGPU throughput" in PACT-12, ACM

Comparison 1: Thread Coarsening

17

Fuse multi-threads so per-thread workload increases but
thread number decrease

Increase ILP

Register reuse

Reduce auxiliary inst

Coarsening factor

An approach to reduce

warps/TB to 1 for

legacy CUDA code

Coarsening === 1

Thread Coarsening Warp Consolidation

Comparison 2: Warp Specialization

18

[1] M. Bauer et al. ”Singe: leveraging warp specialization for high performance on GPUs." in PPoPP-14, ACM

[2] S. Hong et al. “Accelerating CUDA graph algorithms at maximum warp” in PPoPP-11, ACM.

How to resolve the “mismatch” issue?

19

Warp-Consolidation Model

5 advantages over CUDA

3 examples

2 drawbacks & solution

2 comparisons with other techniques

Evaluation

Settings

Results

Potential Extension

Active context switch

Volta

Evaluation Settings

20

Tesla-P100

Pascal

Tesla-V100

Volta

Tesla-K80

Kepler

Tesla-M40

Maxwell

32 Applications from commonly

used GPGPU benchmark suits

Evaluation Results

21

On average 1.7x, 2.3x, 1.5x and 1.2x over Tesla K80

(Kepler), M40 (Maxwell), P100 (Pascal) and V100 (Volta)

Performance gain is not directly from cache by reducing

sync, communication and cooperation (SCC) overhead

How to resolve the “mismatch” issue?

22

Warp-Consolidation Model

5 advantages over CUDA

3 examples

2 drawbacks & solution

2 comparisons with other techniques

Evaluation

Settings

Results

Potential Extension

Active context switch

Volta

Extension 1: Active context switch

23

Weifeng Liu et al. Fast synchronization-free algorithms for parallel sparse triangular solves with multiple right-

hand sides. Concurrency and Computation: Practice and Experience, 2017.

Not a deadlock if contains

“clock()” which appear to

signal warp context switch

Exploit intra-TB and inter-TB data reuse

 Invoke clock() after memory fetch when there is more inter-TB
locality

Extension 2: Volta opportunities

24

Threads in a warp can proceed in sub-warp granularity

 Benefit: more flexible warp sync, communication and cooperation

 Issue: threads in a warp has to synchronize

Extension 2: Volta opportunities

25

How can the WC model behaves to be more

efficiently operates the Tensor Core!

Summary

26

Warp-Consolidation: a GPU Programming and Execution
model that

Unifies warp and thread block (no explicit & implicit sync)

Communicates via register while cooperates via warp voting

Applicability:

Simplified programming model than CUDA

SCC (sync, communication, cooperation) applications

1.7x, 2.3x, 1.5x and 1.2x average speedups across 32
GPGPU applications on Kepler, Maxwell, Pascal and Volta
GPUs, respectively

WC: A New GPGPU Programming Model

27

Ang Li, Pacific Northwest National Laboratory (PNNL)

Weifeng Liu (Norwegian University of Science and Technology)

Linnan Wang (Brown University)

Kevin Barker and Shuaiwen Leon Song (PNNL)

