
DiggerBees: Depth First Search Leveraging
Hierarchical Block-Level Stealing on GPUs

Yuyao Niu
Barcelona Supercomputing Center

Barcelona, Spain
Universitat Politècnica de Catalunya

Barcelona, Spain
yuyao.niu@bsc.es

Yuechen Lu
SSSLab, Dept. of CST

China University of Petroleum-Beijing
Beijing, China

yuechen.lu@cup.edu.cn

Weifeng Liu
SSSLab, Dept. of CST

China University of Petroleum-Beijing
Beijing, China

weifeng.liu@cup.edu.cn

Marc Casas
Barcelona Supercomputing Center

Barcelona, Spain
Universitat Politècnica de Catalunya

Barcelona, Spain
marc.casas@bsc.es

Abstract
Depth First Search (DFS) is a fundamental graph traversal
algorithm with broad applications. While existing work-
stealing DFS approaches achieve strong performance on
CPUs, mapping them to modern GPUs faces three major
challenges: (1) limited shared memory cannot accommodate
deep stacks, (2) frequent stack operations hinder efficient
intra-block execution, and (3) irregular workloads complicate
scalable inter-block execution.
In this paper, we propose DiggerBees, a GPU-optimized

parallel DFS algorithm with hierarchical block-level stealing,
consisting of three components. First, we introduce a two-
level stack structure to mitigate shared memory limitations.
Second, we employ warp-level DFS with intra-block work
stealing to enable efficient execution within a block. Third,
we implement inter-block work stealing to achieve scalable
execution across blocks and sustain high parallelism. Exper-
imental results on the latest NVIDIA GPUs show that Dig-
gerBees outperforms existing DFS approaches, CKL-PDFS,
ACR-PDFS, and NVG-DFS, achieving average speedups of
1.37×, 1.83×, and 30.18×, respectively. Moreover, DiggerBees
even surpasses high-performance GPU BFS implementations
on graphs with deep and narrow traversal paths, and scales
efficiently across GPU generations.

CCS Concepts: •Mathematics of computing→ Graph
algorithms; • Computing methodologies → Parallel
algorithms.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
PPoPP ’26, Sydney, NSW, Australia
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2310-0/2026/01
https://doi.org/10.1145/3774934.3786457

Keywords: Depth First Search, work stealing, GPU

ACM Reference Format:
Yuyao Niu, Yuechen Lu, Weifeng Liu, and Marc Casas. 2026. Dig-
gerBees: Depth First Search Leveraging Hierarchical Block-Level
Stealing on GPUs . In Proceedings of the 31st ACM SIGPLAN An-
nual Symposium on Principles and Practice of Parallel Programming
(PPoPP ’26), January 31 – February 4, 2026, Sydney, NSW, Australia.
ACM,NewYork, NY, USA, 17 pages. https://doi.org/10.1145/3774934.
3786457

1 Introduction
Depth First Search (DFS) traverses a graph by exploring ver-
tices along one branch as deeply as possible before backtrack-
ing, generating a valid DFS tree. As a fundamental algorithm
in graph theory [45], DFS has a wide range of applications,
including structural analysis (𝑒.𝑔., strongly connected compo-
nents [92]), ordering problems (𝑒.𝑔., topological sorting [48]),
and pattern recognition (𝑒.𝑔., subgraph matching [98]).

Despite DFS and Breadth First Search (BFS) being equally
essential as the two core graph traversal primitives, research
on DFS in modern GPU platforms is far less extensive than
that on BFS [35, 59, 61, 65, 70, 96, 99, 101]. One possible rea-
son is that BFS naturally exposes parallelism through its
level-synchronous exploration, where vertices at the same
level can be processed simultaneously. In contrast, DFS’s
sequential, stack-based traversal creates dependencies be-
tween successive operations, making it difficult to parallelize.
This inherent difficulty has led to a trend of “DFS-avoidance”,
where problems are reformulated to bypass DFS. While these
approaches improve parallel scalability, they typically re-
quire more complex algorithmic designs [27]. An efficient
parallel DFS primitive is therefore essential to reclaim the
efficiency and structural insights of DFS-based designs.

Nevertheless, in most application scenarios, DFS does not
require a strict lexicographic order of traversal, making un-

https://orcid.org/0000-0001-7605-525X
https://orcid.org/0009-0008-6387-8116
https://orcid.org/0000-0002-2150-5759
https://orcid.org/0000-0003-4564-2093
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3774934.3786457
https://doi.org/10.1145/3774934.3786457
https://doi.org/10.1145/3774934.3786457

PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia Niu et al.

ordered DFS a viable and valuable direction for parallelism.
This insight has motivated extensive research efforts in par-
allel DFS. Theoretical analyses have shown that parallel
unordered DFS can achieve close-to-linear work efficiency
under ideal conditions [3, 37, 54]. Several practical imple-
mentations using work stealing techniques [10] have vali-
dated these findings, showing significant performance and
scalability improvements on CPU-based multiprocessor sys-
tems [2, 19, 76]. Nonetheless, these advances largely focus
on CPUs or distributed systems, leaving the challenges of
efficient DFS on modern GPUs largely unsolved.

Implementing work-stealing DFS on GPUs faces three ma-
jor challenges: (1) the deep, unpredictable recursion of DFS
demands substantial stack space, which often exceeds the
limited capacity of a GPU’s fast on-chip shared memory, (2)
frequent stack operations lead to inefficient execution within
a thread block, as thread-private stacks cause warp diver-
gence while shared stacks incur costly atomic operations and
synchronization, and (3) irregular workloads from varying
subgraph structures hinder scalability across multiple blocks,
making it difficult to achieve efficient inter-block execution
and full GPU utilization.
To resolve the above three challenges, we in this paper

propose DiggerBees, a GPU-optimized DFS algorithm with
hierarchical block-level stealing. First, to tackle the memory
constraint, we introduce a two-level stack structure that com-
bines a small, fast stack in shared memory with a large stack
in global memory, ensuring both efficiency and capacity. Sec-
ond, to achieve efficient intra-block execution, we employ
warps as the basic execution unit, where each warp oper-
ates DFS independently, combined with intra-block work
stealing that enables idle warps to acquire work from busy
peers, ensuring all warps remain active. Third, to enable scal-
able inter-block execution, we develop inter-block stealing
that allows idle blocks to acquire work from heavily loaded
blocks, sustaining high and balanced GPU utilization.

We evaluate DiggerBees on 234 graphs from three widely
used graph collections in the SuiteSparse Matrix Collec-
tion [22] using the latest NVIDIA A100 and H100 GPUs.
The results show that DiggerBees significantly outperforms
three existing CPU and GPU baselines: CKL-PDFS [19], ACR-
PDFS [2], and NVG-DFS [69], achieving on average 1.37×,
1.83×, and 30.18× speedups (up to 6.24×, 12.44×, and 1841.68×),
respectively. Compared with state-of-the-art GPU BFS im-
plementations Gunrock [97] and BerryBees [70], DiggerBees
delivers competitive or superior performance on represen-
tative graphs containing long and narrow traversal paths.
Furthermore, our evaluation includes the performance break-
down of DiggerBees to confirm the substantial contributions
of each proposed component to the overall speedups.

This work makes the following contributions:

• We identify and analyze three major challenges in
implementing work-stealing DFS on GPUs.

• We design a two-level stack structure that maps DFS
workloads onto the GPU memory hierarchy.
• We develop a hierarchical work-stealing mechanism
tailored specifically for DFS traversal on GPUs.
• We achieve significant performance gains over existing
approaches on the latest NVIDIA GPUs.

2 Background and Challenges
2.1 Serial DFS
DFS explores a graph by advancing as far as possible along
one branch before backtracking [20]. Given a graph 𝐺 =

(𝑉 , 𝐸) and a start vertex 𝑟 , DFS discovers all vertices reach-
able from 𝑟 and builds a DFS tree. An ordering can be derived
that reflects the sequence in which vertices are visited.
DFS can be implemented using an explicit stack. Algo-

rithm 1 presents a serial stack-based DFS on a graph stored
in compressed sparse row (CSR) format. This algorithm out-
puts two arrays: visited, marking explored vertices, and
parent, recording the DFS tree.

Algorithm 1 A pseudocode of the serial stack-based DFS
1: visited[𝑟𝑜𝑜𝑟𝑡]← 1, parent[𝑟𝑜𝑜𝑡]← −1
2: 𝑆 ← empty stack of ⟨node, next_idx⟩
3: 𝑆.push

(
⟨𝑟𝑜𝑜𝑡, row_ptr[𝑟𝑜𝑜𝑡] ⟩

)
4: while 𝑆 ≠ ∅ do
5: ⟨𝑢, 𝑖 ⟩ ← 𝑆.top()
6: if 𝑖 < row_ptr[𝑢+1] then
7: 𝑣 ← column_idx[𝑖]
8: 𝑆.updateTop

(
⟨𝑢, 𝑖 + 1⟩

)
9: if ¬ visited[𝑣] then
10: visited[𝑣]← true, parent[𝑣]← 𝑢

11: 𝑆.push
(
⟨𝑣, row_ptr[𝑣] ⟩

)
12: end if
13: else
14: 𝑆.pop()
15: end if
16: end while

Serial DFS, with its strong dependencies and enforced
lexicographic order, is 𝑃-complete [79], making it unlikely to
admit parallel solutions. As shown in Figure 1, given input
graph (a), it produces the unique lexicographically ordered
DFS tree (b) with traversal 𝑎 → 𝑏 → 𝑑 → 𝑒 → 𝑐 → 𝑓 .

2.2 Parallel DFS

Figure 1. A DFS traversal example on graph (a). Serial DFS
produces the lexicographically ordered DFS tree (b), while
parallel DFS generates a valid but non-lexicographic tree (c).

DiggerBees: Depth First Search Leveraging Hierarchical Block-Level Stealing on GPUs PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia

Parallel DFS relaxes the constraints and constructs a valid
DFS tree without enforcing lexicographic order [4].

Algorithm 2 A pseudocode of the parallel DFS
1: 𝑆𝑖 ← Local stack of processor 𝑃𝑖 ⊲ issue #1: Limited SMEM for stacks
2: while not terminated do
3: while 𝑆𝑖 ≠ ∅ do
4: Execute DFS on 𝑆𝑖 ⊲ issue #2: Inefficient intra-block execution
5: end while
6: Steal work from other processors

⊲ issue #3: Poor inter-block scalability and balance
7: Termination Check
8: end while

A common strategy for parallel DFS is work stealing.
Rao and Kumar [54, 76] were among the first to apply it to
CPU-based shared memory multiprocessors. Algorithm 2
illustrates the high-level structure of their implementation.

In this approach, each processor maintains a local stack 𝑆𝑖
(line 1 in Algorithm 2), and repeatedly checks: while 𝑆𝑖 is not
empty, it executes DFS on 𝑆𝑖 (lines 3–5). Once 𝑆𝑖 becomes
empty, it attempts to steal work from neighboring processors
(line 6). The algorithm continues until the termination is met,
𝑖 .𝑒 ., all processors have empty stacks. Figure 1(c) shows an
example of the result of such parallel DFS: one processor
traverses 𝑎 → 𝑏 → 𝑑 , while the other explores 𝑐 → 𝑒 → 𝑓 .

2.3 Challenges of parallel DFS on GPUs
While work-stealing DFS achieves good parallelism on CPU-
basedmultiprocessors [2, 19, 54, 76], mapping such a strategy
to GPUs is non-trivial. There are three major issues (high-
lighted in lines 1, 4, and 6 of Algorithm 2, respectively).
The first issue (line 1) is that GPUs provide limited on-

chip shared memory (typically tens to a few hundred KB
per streaming multiprocessor (SM)). In contrast, DFS may
require stacks as deep as the longest path in the graph. For
example, road-network graphs contain paths with tens of
thousands of vertices, demanding megabytes of stack space.
Thus, it is hard to keep the whole stack in shared memory.

The second issue (line 4) is that even when stacks fit in
the shared memory of a thread block, DFS performs frequent
push and pop operations, which creates problematic control
flow: thread-private stacks cause warp divergence as threads
follow different execution paths, while stacks shared within a
block require costly atomic operations and synchronization.
Thus, it is hard to achieve efficient intra-block execution.

The third issue (line 6) is that the GPU’s massive paral-
lelism is not fully utilized. To saturate resources, execution
must extend from single- to multi-block so that more SMs
and blocks become active. However, this requires costly inter-
block communication, and irregular DFS workloads further
complicate balanced distribution. Thus, it is hard to achieve
scalable inter-block execution while ensuring load balance.

3 DiggerBees
3.1 Overview
To resolve the above three challenges, we propose Digger-
Bees, a GPU-optimized DFS algorithm. DiggerBees addresses
each challenge through three key components:

(i) Data structure (Section 3.2): To overcome shared mem-
ory limits (issue #1), DiggerBees introduces a two-level stack
consisting of a fast HotRing in shared memory and a large
ColdSeg in global memory. This structure leverages the GPU
memory hierarchy to provide low-latency access for frequent
operations and sufficient capacity for deep traversals.

(ii) Intra-block execution (Sections 3.3 and 3.4): To achieve
efficient intra-block execution (issue #2), DiggerBees com-
bines two techniques: (1) warp-level workload, where each
warp operates DFS independently, eliminating warp diver-
gence and synchronization, and (2) intra-block stealing, which
enables idle warps to acquire work from busy peers, ensuring
all warps within a block participate actively.

(iii) Inter-block execution (Section 3.5): To achieve scalable
multi-block execution while ensuring load balance (issue
#3), DiggerBees implements inter-block work stealing. Idle
blocks can steal work from heavily loaded blocks, enabling
dynamic load redistribution across the GPU. This design
sustains high parallelism by keeping more SMs and blocks
active throughout execution.
Together, these components form a hierarchical block-

level stealing framework, enabling DiggerBees to achieve
efficient and scalable DFS on GPUs. Section 3.6 then presents
a concrete example illustrating how these techniques are
integrated in practice.

3.2 Two-Level Stack Data Structure
The two-level stack is composed of (1) a small, low-latency
HotRing and (2) a large, high-capacity ColdSeg. Figure 2 il-
lustrates the structure and its four core operations.

HotRing. The HotRing is a circular buffer in shared mem-
ory serving as the fast-access portion of the stack. Each
stack entry is organized as a ⟨𝑣𝑒𝑟𝑡𝑒𝑥 |𝑜 𝑓 𝑓 𝑠𝑒𝑡⟩ pair, where
𝑜 𝑓 𝑓 𝑠𝑒𝑡 points to the next neighbor to visit. We store them
in two arrays, hot_vertex and hot_offset, each with size
ℎ𝑜𝑡_𝑠𝑖𝑧𝑒 . Its state is tracked by two pointers: ℎ𝑒𝑎𝑑 for the
next free slot and 𝑡𝑎𝑖𝑙 for the oldest unprocessed entry. The
HotRing is empty when ℎ𝑒𝑎𝑑 = 𝑡𝑎𝑖𝑙 , and full when (ℎ𝑒𝑎𝑑 +
1)%ℎ𝑜𝑡_𝑠𝑖𝑧𝑒 = 𝑡𝑎𝑖𝑙 . Figure 2(a) illustrates this structure with
a size-4 example. In our implementation, ℎ𝑜𝑡_𝑠𝑖𝑧𝑒 = 128.
ColdSeg. The ColdSeg is a contiguous region in global

memory that serves as the large-capacity portion of the
stack. Each ColdSeg includes two arrays: cold_vertex and
cold_offset, each with size 𝑐𝑜𝑙𝑑_𝑠𝑖𝑧𝑒 = 𝑛𝑣/𝑛𝑤 , where 𝑛𝑣 is
the number of vertices and 𝑛𝑤 is the total number of warps.
Its state is also tracked by two pointers: 𝑡𝑜𝑝 and 𝑏𝑜𝑡𝑡𝑜𝑚,
and it is empty when 𝑡𝑜𝑝 = 𝑏𝑜𝑡𝑡𝑜𝑚. Figure 2(b) illustrates a
ColdSeg example with six entries.

PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia Niu et al.

4
3
2
1
0

5

in shared
memory

(a) HotRing

3

2

1

0

3

2

1

0

+

, head = 0 → 1, tail = 2

i|a

i|a+

head→

tail→

head→

tail→

3

2

1

0

3

2

1

0

, head = 0 → 3, tail = 1 -1|a

tail→

head→

tail→

head→

 -1|a

-

-

(d) Fast pop operation

head=(head+hot_size–1)%hot_size

(c) Fast push operation

head=(head+1)%hot_size

0

>

>

>

>1 2

3

in global
memory

(e) Flush operation

tail=(tail+batch)%hot_size, top=top+batch

3

2

1

0

head→

tail→

3

2

1

0tail→

head→

head = 1, tail = 2 → 0, top = 2 → 4, bottom = 0

4

3

2

1

0

5

4

3

2

1

0

5
j|b

i|a

←top

←bottom

←top

←bottom

j|b

i|a

(f) Refill operation

head=(head+batch)%hot_size, top=top-batch

3

2

1

0

h→
tail

3

2

1

0

tail→

head→

head = 1 → 3, tail = 1, top = 5 → 3, bottom = 1

4

3

2

1

0

5

4

3

2

1

0

5

j|b

i|a

←top

←bottom

←top

←bottom

j|b

i|a
head

head==tail

(b) ColdSeg

Figure 2. An example of the two-level stack structure and its
four core operations. Subfigure (a) shows the circularHotRing
in shared memory, while (b) shows the linear ColdSeg in
global memory. Subfigures (c) and (d) show the fast push
and pop operations in the HotRing. Subfigures (e) and (f)
illustrate the interaction between HotRing and ColdSeg.

Core Operations. This two-level stack supports four core
operations: (1) fast push and (2) fast pop in the HotRing, and
(3) flush and (4) refill between the HotRing and the ColdSeg.

Figure 2(c) shows the fast push operation. A new entry
is inserted into the HotRing at the ℎ𝑒𝑎𝑑 position, then ℎ𝑒𝑎𝑑
is updated as (ℎ𝑒𝑎𝑑 + 1)%ℎ𝑜𝑡_𝑠𝑖𝑧𝑒 . The example shows that
⟨𝑎 |𝑖⟩ is pushed at ℎ𝑒𝑎𝑑 = 0, with ℎ𝑒𝑎𝑑 updated to 0 + 1 = 1.
Figure 2(d) shows the fast pop operation. The top entry

is retrieved by decrementing ℎ𝑒𝑎𝑑 to (ℎ𝑒𝑎𝑑 + ℎ𝑜𝑡_𝑠𝑖𝑧𝑒 −
1)%ℎ𝑜𝑡_𝑠𝑖𝑧𝑒 . The popped entry has 𝑜 𝑓 𝑓 𝑠𝑒𝑡 = −1, indicating
the vertex has no unvisited neighbors. For example, entry
⟨𝑎 | − 1⟩ is popped and ℎ𝑒𝑎𝑑 is updated to (0 + 4 − 1)%4 = 3.
Figure 2(e) shows the flush operation. When the HotRing

is full, 𝑖 .𝑒 ., (ℎ𝑒𝑎𝑑 + 1)%ℎ𝑜𝑡_𝑠𝑖𝑧𝑒 = 𝑡𝑎𝑖𝑙 , a batch of the oldest
entries is moved to the ColdSeg. With 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 2, entries
⟨𝑎 |𝑖⟩ and ⟨𝑏 | 𝑗⟩ starting from 𝑡𝑎𝑖𝑙 = 2 are moved to positions
[2, 3] in ColdSeg. After the transfer, 𝑡𝑎𝑖𝑙 is updated to (2 +
2)%4 = 0 and 𝑡𝑜𝑝 to 2 + 2 = 4.

Figure 2(f) shows the refill operation. When the HotRing
is empty, 𝑖 .𝑒 ., ℎ𝑒𝑎𝑑 = 𝑡𝑎𝑖𝑙 , a batch is refilled from the ColdSeg.
In the example, entries ⟨𝑎 |𝑖⟩ and ⟨𝑏 | 𝑗⟩ at [3, 4] in the ColdSeg
are copied to theHotRing starting at 𝑡𝑎𝑖𝑙 = 1. After that,ℎ𝑒𝑎𝑑
is updated to (1 + 2)%4 = 3 and 𝑡𝑜𝑝 to 5 − 2 = 3.

3.3 Warp-Level Workload
In DiggerBees, the warp is the fundamental unit of execu-
tion and stack ownership. Each warp performs DFS indepen-
dently on its own HotRing, with all 32 threads in a warp fol-
lowing the same path, thereby eliminating warp divergence.
The traversal procedure follows the standard stack-based
DFS, requiring only lightweight warp-level synchronization.
The only global synchronization required is vertex-access
control using atomicCAS on the visited array to prevent
multiple warps from processing the same vertex.
A key feature of our warp-level DFS is its management

of the finite HotRing capacity. When a push operation finds
the HotRing is full, a batch of entries is flushed to the Cold-
Seg to free space for the new entry. Conversely, when the
HotRing becomes empty, a batch of entries is refilled from
the ColdSeg. We optimize flush and refill using asynchronous
copy. Contiguous batches in the HotRing are handled with
specialized instructions: cp_async_bulk for flush operations
and cuda::memcpy_asyncwith Tensor Memory Accelerator
(TMA) for refill operations. Our evaluation on the H100 GPU
indicates this TMA-driven approach yields an approximately
5% performance improvement.

We choose to flush entries starting from the 𝑡𝑎𝑖𝑙 position
for two reasons: (1) to preserve recently added entries near
the ℎ𝑒𝑎𝑑 , thereby improving locality for ongoing DFS tra-
versal, and (2) to prioritize older entries for flushing, as they
typically correspond to larger unexplored branches and are
better candidates for subsequent hierarchical work stealing.

3.4 Intra-Block Work Stealing
To ensure all warps within a block participate actively in DFS
execution, we introduce intra-block work stealing, which
operates in shared memory within a block and allows idle
warps to acquire work from heavily loaded peers.

The intra-block work-stealing mechanism contains three
steps: (1) victim selection, (2) work reservation, and (3) local
transfer. Figure 3(a) illustrates an example of this process,
and Algorithm 3 provides its pseudocode implementation.
In the first step, an idle warp, defined as having both

HotRing and ColdSeg empty, acts as a “thief” and scans
peers within the same thread block to identify a suitable
“victim”. The remaining tasks in each warp’s HotRing are
computed as ℎ𝑜𝑡_𝑟𝑒𝑠𝑡 = (ℎ𝑒𝑎𝑑 − 𝑡𝑎𝑖𝑙 + ℎ𝑜𝑡_𝑠𝑖𝑧𝑒)%ℎ𝑜𝑡_𝑠𝑖𝑧𝑒 .
To avoid excessive fine-grained stealing, we introduce a
threshold hot_cutoff . A warp is deemed a valid victim only
if its ℎ𝑜𝑡_𝑟𝑒𝑠𝑡 is the maximum among all warps and ex-
ceeds hot_cutoff (lines 4-10 in Algorithm 3). As illustrated
in Figure 3(a), both Warp1 and Warp2 are idle. Warp0 has

DiggerBees: Depth First Search Leveraging Hierarchical Block-Level Stealing on GPUs PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia

R2
C2

Warp4, idle

h=0
t=0

R2
C2

Warp4, idle

h=0
t=0

R2
C2

Warp5, idle

h=0
t=0

R2
C2

Warp4, idle

h=0
t=0

C0
H0

Warp0, active

h=2

t=0

Warp1, idle

h=0
t=0

Warp0, active

h=2

t=1

Warp1, active

t=0

Warp2, idle

h=0
t=0

0|b

1|a

step 1

step 2 H0 H1 H2

|

step 3 H0 H1 H2

|

1|a
0|b

(a) Intra-block work stealing operation

B
lo

ck
0,

 m
a

sk
:

10
0

B
lo

ck
0,

 m
a

sk
:

11
0

h=1

rest(H0)=2 rest(H1)=0 rest(H2)=0
Warp2, idle

h=0
t=0

step 1

H0

step 2

|

step 3

|

(b) Inter-block work stealing operation

B
lo

ck
0,

 m
a

sk
:

11
1

search victim block → Block0

B
lo

ck
1,

 m
a

sk
:

00
0Warp1, active

h=2

t=0

|y
|t

t=4

b=0

C0 H1 C1 H2 C2 H3 C3

Warp0, active

h=0

Warp3, idle

h=0
t=0

Warp3, active

|l

|et=2

|a
|c
|g
|n

Warp2, active

h=3

t=0
t=2

b=0

|m

|b
|f

|c

|a

h=2

t=0B
lo

ck
0,

 m
a

sk
:

11
1 Warp2, active

h=3

t=0
t=2

b=0

Warp1, active

h=2

t=0

|y
|t

t=4

b=2

Warp0, active

h=0

|l

|et=2
|g
|n |m

|b
|f

✔
✗

steal, hot_rest(R0)=2-1=1<2→fail!
✔

H0
step 4

C0 H1 C1 H2 C2 H3 C3

H1
C1

H2
C2

H1
H2

2 0 0

2 0 0

1|amove

C0
H0

C1
H1

C2
H2

C0
H0

C1
H1

C2
H2

C3
H3

C0
H0

C1
H1

C2
H2

C3
H3

rest(C0)=0 rest(C1)=4 rest(C2)=2

H3

copy
1|c

2|a

H3 0 4 2

H non-empty HotRing/ColdSegC empty HotRing/ColdSeg hot/cold_rest(): remaining entries in HotRing/ColdSeg/ mask 1/0: warp active/idle

R1(h=01), Warp1 active! R3(h=02), Warp3 active!

search victim → max(hot_rest) → R0
search victim → max(hot_rest) → R0 search victim in Block0 → max(cold_rest) → C1

steal, hot_rest(R0)≥2→success! atomicCAS R0(t=01)

steal, cold_rest(C1)≥4→success! atomicCAS C1(b=02)

Figure 3. An example of the intra-block and inter-block stealing operations. Subfigure (a) illustrates the three-step process of
an intra-block stealing operation and the states of the warps before and after. Two idle warps (Warp1 and Warp2) attempt
to steal work from the HotRing of the active warp (Warp0) within the same block, and only Warp1 succeeds. Subfigure (b)
illustrates a four-step inter-block stealing process. The leader warp (Warp3) of idle Block1 selects Block0 as the victim block
and steals work from the ColdSeg of Warp1 in Block0, successfully acquiring tasks and becoming active.

Algorithm 3 Intra-block Work Stealing (Executed by each
idle warp within a block)
1: Input: head, tail, HotRing arrays for all warps in the block
2: hot_cutoff ← threshold for HotRing depth
3: if warp 𝑤 is idle then
4: max_rest← 0, 𝑣 ← −1 ⊲ Step 1: Victim selection
5: for each warp 𝑖 in the block do
6: hot_rest←(head[𝑖] - tail[𝑖] + ℎ𝑜𝑡_𝑠𝑖𝑧𝑒)%ℎ𝑜𝑡_𝑠𝑖𝑧𝑒
7: if hot_rest > max_rest then
8: max_rest← hot_rest, 𝑣 ← 𝑖

9: end if
10: end for
11: if 𝑣 ≠ −1 and max_rest ≥ hot_cutoff then
12: ℎ_𝑠 ← hot_cutoff /2 ⊲ Step 2: Work reservation
13: 𝑜𝑙𝑑_𝑡𝑎𝑖𝑙 ← tail[𝑣]
14: 𝑛𝑒𝑤_𝑡𝑎𝑖𝑙 ← (𝑜𝑙𝑑_𝑡𝑎𝑖𝑙 + ℎ_𝑠)%ℎ𝑜𝑡_𝑠𝑖𝑧𝑒
15: if atomicCAS(tail[𝑣],𝑜𝑙𝑑_𝑡𝑎𝑖𝑙 ,𝑛𝑒𝑤_𝑡𝑎𝑖𝑙) ==𝑜𝑙𝑑_𝑡𝑎𝑖𝑙 then
16: threadfence_block() ⊲ Step 3: Local transfer
17: Copy ℎ_𝑠 entry pairs from 𝐻𝑜𝑡𝑅𝑖𝑛𝑔[𝑣] to 𝐻𝑜𝑡𝑅𝑖𝑛𝑔[𝑤]
18: head[𝑤]← (head[𝑤] + ℎ_𝑠)%ℎ𝑜𝑡_𝑠𝑖𝑧𝑒
19: Mark warp 𝑤 as active
20: end if
21: end if
22: end if

ℎ𝑜𝑡_𝑟𝑒𝑠𝑡 = 2, while Warp1 and Warp2 have ℎ𝑜𝑡_𝑟𝑒𝑠𝑡 = 0.
Since Warp0 has the maximum ℎ𝑜𝑡_𝑟𝑒𝑠𝑡 and satisfies the
threshold condition ℎ𝑜𝑡_𝑟𝑒𝑠𝑡 ≥ hot_cutoff = 2, both Warp1
and Warp2 select it as the victim. In our evaluation, we set

hot_cutoff = 32.
In the second step, the thief warp must reserve the work

from the victim. To avoid conflicts, the victim warp always
operates at the ℎ𝑒𝑎𝑑 of its HotRing, while thieves target the
𝑡𝑎𝑖𝑙 . An atomicCAS operation on the victim’s 𝑡𝑎𝑖𝑙 ensures
that only one warp can successfully claim this specific work
batch. If it succeeds, the thief reserves a batch of hot_cutoff /2
entries and updates the victim’s 𝑡𝑎𝑖𝑙 (line 14). Otherwise, it
aborts and may select a new victim. In Figure 3(a), both
Warp1 and Warp2 attempt to reserve work fromWarp0 with
competing atomicCAS operations. Warp1 succeeds, reserv-
ing one entry and updating Warp0’s 𝑡𝑎𝑖𝑙 to 1. Thus, Warp0’s
𝑟𝑒𝑠𝑡 becomes 2−1 = 1. Warp2 observes thatWarp0 no longer
satisfies 𝑟𝑒𝑠𝑡 ≥ 2 and retries the victim selection process.
In the third step, after successfully reserving work, the

thief warp issues threadfence_block() to ensure that the
victim’s updated 𝑡𝑎𝑖𝑙 is visible within the block. It then copies
the reserved batch from the victim’s HotRing into its own
HotRing (line 17 in Algorithm 3). Next, the thief warp up-
dates its ℎ𝑒𝑎𝑑 and becomes active (lines 18-19), allowing it
to immediately resume DFS traversal. In the example, Warp1
copies an entry ⟨𝑎 |1⟩ from Warp0 into its own HotRing, up-
dates its ℎ𝑒𝑎𝑑 to 0 + 1 = 1, and becomes active.

We coordinate state changes with a 32-bit mask in shared
memory, where each bit indicates whether a warp is active
(1) or idle (0). Active warps perform DFS while idle warps

PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia Niu et al.

attempt to steal. As shown in Figure 3(a), when Warp1 steals
work from Warp0, the mask is updated from ‘100’ to ‘110’.

Through dynamically redistributing the workloads among
warps, this intra-block work stealing keeps warps in a block
as active as possible, achieving high productivity at the intra-
block level.

3.5 Inter-Block Work Stealing
To fully leverage GPU’s massive parallelism, DiggerBees
scales from single-block to multi-block execution, activating
more SMs and blocks across the GPU. However, extending
DFS execution to multiple blocks introduces new challenges:
(1) how to manage the global communication overhead com-
pared to intra-block operations in shared memory, and (2)
how to achieve balanced workload distribution across blocks
when facing irregular DFS workloads.

Algorithm 4 A pseudocode of the inter-block stealing (Exe-
cuted by the leader warp of each idle block)
1: Input: top, bottom, ColdSeg arrays for all warps of all blocks
2: head, tail, HotRing arrays of idle block
3: cold_cutoff ← the threshold of ColdSeg length
4: 𝑛𝐵 ← the total number of blocks
5: if the block 𝑏 is idle then
6: 𝑤 ← the leader warp of block 𝑏 ⊲ Step1: Victim block selection
7: Randomly select two active blocks 𝑣1, 𝑣2 ∈ [0, 𝑛𝐵) , 𝑣𝑖 ≠ 𝑏

8: 𝑣𝑏 ← block with higher cumulative workload among {𝑣1, 𝑣2}
9: max_cold← 0, 𝑣𝑤 ← −1 ⊲ Step2: Victim warp selection
10: for each warp 𝑖 in block 𝑣𝑏 do
11: cold_rest← top[𝑖] - bottom[𝑖]
12: if cold_rest > max_cold then
13: max_cold← cold_rest, 𝑣𝑤 ← 𝑖

14: end if
15: end for
16: if 𝑣𝑤 ≠ −1 and max_cold ≥ cold_cutoff then
17: 𝑐_𝑠 ← cold_cutoff /2 ⊲ Step3: Work reservation
18: 𝑜𝑙𝑑_𝑏𝑡 ← bottom[𝑣𝑤]
19: 𝑛𝑒𝑤_𝑏𝑡 ← 𝑜𝑙𝑑_𝑏𝑡 + 𝑐_𝑠
20: if CAS(bottom[𝑣𝑤], 𝑜𝑙𝑑_𝑏𝑡 , 𝑛𝑒𝑤_𝑏𝑡) succeeds then
21: threadfence() ⊲ Step4: Remote transfer
22: Copy 𝑐_𝑠 entry pairs:𝐶𝑜𝑙𝑑𝑆𝑒𝑔[𝑣𝑤] → 𝐻𝑜𝑡𝑅𝑖𝑛𝑔[𝑤]
23: head[𝑤]← (head[𝑤] + 𝑐_𝑠)%ℎ𝑜𝑡_𝑠𝑖𝑧𝑒
24: Mark 𝑤, 𝑏 as active
25: end if
26: end if
27: end if

We develop an inter-block work-stealing mechanism that
enables idle blocks to acquire work from loaded blocks,
which proceeds in four steps: (1) victim block selection, (2)
victim warp selection, (3) work reservation, and (4) remote
transfer. To address challenge (1), we designate a single leader
warp per block for all inter-block communications; for chal-
lenge (2), we adopt a two-choice load-aware victim selection
strategy. Figure 3(b) illustrates this process, and Algorithm 4
provides the implementation details.

In the first step, the leader warp identifies a victim block.
Instead of scanning all blocks, we adopt a power-of-two

choices [68] with a load-aware selection strategy: the leader
warp samples two active blocks randomly and selects the
one with heavier workload as the victim (lines 6-8 in Algo-
rithm 4). This approach balances discovery efficiency with
load-balancing effectiveness. As shown in Figure 3(b), the
leader warpWarp3 of idle Block1 selects Block0 as the victim.
In the second step, the leader warp selects the warp in

the victim block with the maximum remaining entries in
its ColdSeg, computed as 𝑐𝑜𝑙𝑑_𝑟𝑒𝑠𝑡 = 𝑡𝑜𝑝 − 𝑏𝑜𝑡𝑡𝑜𝑚 (lines 9-
15 in Algorithm 4). A warp qualifies as the victim only if
its 𝑐𝑜𝑙𝑑_𝑟𝑒𝑠𝑡 exceeds cold_cutoff . In Figure 3(b), in Block0,
Warp1 has 𝑐𝑜𝑙𝑑_𝑟𝑒𝑠𝑡 = 4, while Warp2 has 𝑐𝑜𝑙𝑑_𝑟𝑒𝑠𝑡 = 2.
Thus, Warp3 selects Warp1 as the victim since it satisfies
the condition 𝑐𝑜𝑙𝑑_𝑟𝑒𝑠𝑡 ≥ cold_cutoff = 4 in this example.
In our real evaluation, we set cold_cutoff = 64.

In the third step, the leader warp must reserve work from
the victim warp’s ColdSeg. To handle contention when mul-
tiple blocks compete for the same victim, the leader warp
attempts to reserve a batch of cold_cutoff /2 entries by per-
forming an atomicCAS operation on the victim’s 𝑏𝑜𝑡𝑡𝑜𝑚
pointer (lines 17-19 in Algorithm 4). In the example, Warp3
updates Warp1’s 𝑏𝑜𝑡𝑡𝑜𝑚 from 0 to 2, reserving two entries
and reducing Warp1’s 𝑐𝑜𝑙𝑑_𝑟𝑒𝑠𝑡 to 4 − 2 = 2.
In the last step, the leader warp issues a threadfence()

(line 21 in Algorithm 4) to ensure global memory consis-
tency. It then copies the reserved entries from the victim’s
ColdSeg to its HotRing (line 22) using asynchronous copy
(cuda::memcpy_async) for efficiency. As shown in Figure 3(b),
Warp3 copies two entries ⟨𝑎 |2⟩ and ⟨𝑐 |1⟩ fromWarp1’s Cold-
Seg into its HotRing and updates its ℎ𝑒𝑎𝑑 to 0 + 2 = 2.
Together with intra-block execution, these two mecha-

nisms form our hierarchical block-level stealing that enables
DiggerBees to scale DFS across the GPU’s parallelism.

3.6 An Execution Example
Figure 4 presents an execution example that shows the com-
plete workflow of DiggerBees on a graph. The top subfigures
show a 10-step DFS tree construction process. The example
uses a two-block configuration with three warps per block
(Warp0-Warp2 in Block0, Warp3-Warp5 in Block1). Differ-
ent colored regions indicate subtrees explored by different
warps. The detailed breakdown for Steps 6–termination on
the bottom highlights the collaboration of our intra-block
and inter-block execution.
The process begins with initialization, where the root

vertex 𝑎 is pushed into Warp0’s HotRing. Then Warp0 starts
the warp-level DFS. As the traversal progresses and Warp0’s
HotRing accumulates more entries, Warp1 and Warp2 begin
stealing from Warp0 using the intra-block work stealing.
This process expands parallelism from a single active warp
to multiple cooperating warps within the block. As shown
in Figure 4, by Step6, three warps in Block0 are actively
working on different subtrees, while Block1 remains idle.

The critical transition occurs when Block0 becomes heav-

DiggerBees: Depth First Search Leveraging Hierarchical Block-Level Stealing on GPUs PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia

Figure 4. An example of the complete execution flow of DiggerBees. The top part shows the 10-step DFS tree construction
from root initialization (Step1) to the final output, where different colored regions indicate the subtrees explored by different
warps. The figure omits the final pop-only steps, as they do not affect the DFS tree structure. The bottom shows a detailed
breakdown of warp operations from Step6 to Termination. Each block maintains three warps with their two-level stack
structure, illustrating how warps and blocks collaborate to sustain parallel execution.

ily loaded while Block1 remains idle. At this point, inter-
block work stealing is triggered. As detailed in the bottom
breakdown of Figure 4, after Warp1’s HotRing1 flushes two
entries to ColdSeg1, Block1’s leader warp Warp3 identifies
Block0 as the victim block and targets ColdSeg1 for work
acquisition. In Step7, Warp3 successfully steals entries from
ColdSeg1 and transfers them to its own HotRing3, enabling
Block1 to join the parallel DFS exploration.
Once Warp3 begins processing its work, the intra-block

work stealing within Block1 is activated. Warp4 and Warp5
sequentially steal from Warp3’s HotRing3 and join the DFS
exploration during Steps 7–8. By Step8, all six warps across
both blocks are actively participating in the parallel traversal,
achieving near-optimal GPU utilization.

The execution flow continues until all blocks become idle.
At this point, the traversal reaches global termination. In
the final state of Figure 4, the last active warps pop their re-
maining entries fromHotRings, resulting in empty stacks and
termination. The effectiveness of load balancing is evident
from the final workload distribution: each warp processes
a relatively balanced number of vertices (Warp0: 5 vertices,
Warp1: 5 vertices, Warp2: 3 vertices in Block0; Warp3: 3
vertices, Warp4: 3 vertices, Warp5: 3 vertices in Block1).

Table 1. The three platforms and five evaluated methods.

Hardware Method Type

Intel Xeon Max 9462 CPU, (1)CKL-PDFS [19] DFS
2×32 cores, 2×64GB HBM, (2) ACR-PDFS [2] DFS

B/W 1 TB/s

A100 (Ampere) PCIe GPU (3) NVG-DFS [69] DFS
108 SMs, 6912 CUDA cores (4) Gunrock [97] BFS

80 GB, B/W 1.94 TB/s / BerryBees [70]
H100 (Hopper) SXM5 GPU (5) DiggerBees DFS
132 SMs, 16896 CUDA cores (this work)

64 GB, B/W 2.02 TB/s

4 Evaluation
4.1 Experimental Setup
Our experimental platform includes one CPU and two GPUs.
The CPU platform is equipped with a 64-core Intel Xeon Max
9462 processor. We use two NVIDIA GPUs: an A100 GPU
(Ampere architecture) and an H100 GPU (Hopper architec-
ture). All experiments are conducted under Ubuntu 22.04
with CUDA 12.8.

We compare DiggerBees against three DFS implemen-

PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia Niu et al.

Table 2. Output semantics of different traversal algorithms.

Method visited DFS Tree Lex-
Order

Level

CKL-PDFS ✓ N/A N/A N/A
ACR-PDFS ✓ N/A N/A N/A
NVG-DFS ✓ ✓ Ordered N/A
Gunrock/BerryBees ✓ N/A N/A ✓

DiggerBees (this
work)

✓ ✓ Unordered N/A

Table 3. Descriptions of three group collections.

Group Count Description

DIMACS10 151 Benchmark graphs from the 10th DIMACS Im-
plementation Challenge, covering clustering,
numerical simulation, and road networks.

SNAP [106] 68 Real-world networks from the Stanford Net-
work Analysis Platform, including social, cita-
tion, and web graphs.

LAW [11,
12]

15 Large-scale web graphs from the Laboratory
for Web Algorithmics, based on real web crawls
and compressed via WebGraph.

tations: CKL-PDFS [19] and ACR-PDFS [2] on CPUs, and
NVG-DFS [69] on GPUs. To the best of our knowledge, these
methods represent all publicly available parallel DFS imple-
mentations with accessible or reproducible code1. Besides,
we compare with two GPU BFS methods: Gunrock [97], a
widely used graph processing framework and BerryBees [70],
a recent high-performance BFS algorithm. Table 1 lists the
specifications of our experimental setup.
It is worth noting that different algorithms produce dif-

ferent outputs. To ensure fair comparison, we evaluate each
method using its native output semantics. Table 2 summa-
rizes the output semantics of each method.

CKL-PDFS and ACR-PDFS: These two CPU implemen-
tations report only reachability information (the visited
array) without constructing a DFS tree.

NVG-DFS: This method employs a three-phase BFS-style
algorithm to construct a lexicographic DFS ordering. We
evaluate only the tree construction phase.
Gunrock and BerryBees: These two BFS baselines out-

put reachability and level information. For our purpose, we
consider only the visited array.

DiggerBees (this work): Our method produces the stan-
dard parallel DFS result: the visited and parent arrays,
representing a valid DFS tree.
As for the dataset, we evaluate all 234 graphs from three

widely used graph collections, DIMACS10, SNAP [106], and
1We contacted the authors and confirmed that no official GPU implementa-
tion of NVG-DFS is publicly available. We reimplemented the path-based
algorithm on GPU based on the paper’s description and successfully repro-
duced the expected performance reported in the paper.

−2
−1

0
1
2
3
4

Pe
rfo

rm
an

ce
 (M

TE
PS

)
 (l

og
 sc

al
e)

CKL-PDFS
ACR-PDFS

NVG-DFS
DiggerBees (this work)

0
2
4
6
8

10

Sp
ee

du
p

vs
 C

KL
-P

DF
S

1×

0
2
4
6
8

10

Sp
ee

du
p

vs
 A

CR
-P

DF
S

1×

3 4 5 6 7 8 9
#Edges (log scale)

10−1
100
101
102
103

Sp
ee

du
p

vs
 N

VG
-D

FS

1×

Figure 5. Performance comparison of DiggerBees with three
state-of-the-art DFS methods on the H100 GPU, including
two CPU implementations (CKL-PDFS and ACR-PDFS) and
one GPU implementation (NVG-DFS). The top subplot shows
the traversal performance, while the bottom three subplots
report the speedup of DiggerBees over each baseline.

LAW [11, 12] available in the SuiteSparse Matrix Collec-
tion [22]. Specifically, our dataset includes 151 graphs from
DIMACS10, 68 from SNAP, and 15 from LAW. The descrip-
tions are summarized in Table 3. The graphs in our dataset
require between 0.08 MB and 43.61 GB of GPU memory in
CSR format. In addition, we select 12 representative graphs
for detailed analysis, as listed in Table 4.
For fair comparison across all methods, we use 64 input

vertices from the GAP benchmark suite [7] and report aver-
age performance as the ratio of traversed edges to runtime.

4.2 Comparison with Existing DFS Approaches
We evaluate the performance of DiggerBees against three
existing DFS methods: CKL-PDFS and ACR-PDFS running
on an Intel CPU, and NVG-DFS running on the H100 GPU
across all 234 graphs of our dataset. Figure 5 presents the
performance comparison of these four methods, measured
in million traversed edges per second (MTEPS). The top
subfigure shows the performance of each method, while the
bottom three subfigures present the speedup of DiggerBees
over each baseline.
As shown in Figure 5, DiggerBees outperforms all other

DFS implementations on the majority of graphs. Compared

DiggerBees: Depth First Search Leveraging Hierarchical Block-Level Stealing on GPUs PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia

eur... del... rgg... hug... aut... cit... il2... ama... web... wik... ljo... hol...

101
102
103
104

Pe
rfo

rm
an

ce
(M

TE
PS

)

DIMACS10 SNAP LAW

37
8.

6

80
5.

6

0.
0

31
3.

3

63
6.

4

30
0.

7

31
5.

9

28
2.

3

31
5.

5

78
8.

0

88
2.

1

27
37

.8

18
4.

3

45
8.

6

48
8.

2

16
2.

7

40
8.

0

28
3.

9

21
5.

2

17
5.

0

22
4.

9

59
9.

5

55
1.

9

18
05

.3

0.
0

10
31

.3

0.
0

34
4.

8

16
.2

6.
3 17
1.

4 36
.5

0.
0 0.
7

0.
0

0.
0

18
9.

1

12
08

.1

20
18

.6

34
4.

1 32
58

.8

23
58

.8

18
0.

0

56
1.

1

24
71

.0

22
35

.8

17
66

3.
9

23
89

5.
9

22
92

.4

42
81

.4

28
97

.2

19
54

.7

17
51

.6

85
3.

3

48
6.

3

60
6.

0

10
18

.1

13
28

.2

47
82

.2

57
57

.1

CKL-PDFS ACR-PDFS NVG-DFS Best BFS (Gunrock/BerryBees) DiggerBees (this work)

Figure 6. Performance comparison of four DFS methods and the best BFS baseline (the better-performing result between
Gunrock and BerryBees) across 12 representative graphs from three groups on the H100 GPU.

with the two CPU implementations, DiggerBees achieves an
average speedup (geometric mean) of 1.37× and 1.83× over
CKL-PDFS and ACR-PDFS, respectively. It is important to
note that this gain is achieved even though DiggerBees per-
forms more work by constructing a full DFS tree (visited +
parent), whereas the CPU baselines only output reachability
(visited). The highest speedups are observed on ‘hugebub-
bles’ (vs. CKL-PDFS) and ‘euro_osm’ (vs. ACR-PDFS), where
DiggerBees outperforms the CPU baselines by 6.24× and
12.44×, respectively. This performance advantage primarily
comes from the high parallelism offered by modern GPUs,
enabling thousands of concurrent DFS execution compared
to the limited parallelism of the 64-core CPU implementa-
tions, enabling DiggerBees to achieve favorable performance
on large-scale graphs.

DiggerBees achieves significantly better performance than
the GPU-based NVG-DFS, with an average speedup of 30.18×
and over 1000× on graphs such as ‘higgs-twitter’ (1841.68×)
and ‘soc-Pokec’ (1075.21×). This performance gap stems
from output semantics: NVG-DFS enforces strict lexicographic
DFS ordering, whereas DiggerBees generates a valid DFS
tree without such constraints. In practice, many graph appli-
cations require only the tree structure (𝑒.𝑔., cycle detection
or topological sorting), so strict ordering offers little bene-
fit. Moreover, NVG-DFS incurs high memory overhead due
to its path-tracking design, failing on 44 out of 234 graphs.
In contrast, DiggerBees successfully processes all graphs,
demonstrating robustness for large-scale workloads.

4.3 Comparison with GPU BFS Approaches
To provide an exhaustive evaluation, we compare Digger-
Bees with high-performance GPU BFS algorithms. We select
two representative BFS methods: Gunrock and BerryBees.
Although BFS and DFS solve different problems, compar-
ing their reachability performance provides useful insights
into the effectiveness of our approach. Figure 6 shows the
results on 12 representative graphs. For each graph, we re-
port the performance of the three DFS baselines, the better-
performing BFS method ("Best BFS"), and DiggerBees.

Surprisingly, our DiggerBees outperforms the BFS imple-
mentations on several graphs. This is particularly notewor-
thy given that BFS is typically more GPU-friendly due to its

Table 4. Detailed information of 12 representative graphs.

Group Graph |𝑉 | |𝐸 | Graph |𝑉 | |𝐸 |

DIMACS10

euro_osm 50.9M 108.1M delaunay 16.8M 100.7M
rgg 16.8M 265.1M hugebubble 21.2M 63.6M
auto 0.4M 6.6M citation 0.3M 2.3M
il2010 0.5M 2.2M

SNAP amazon 0.3M 1.2M google 0.9M 5.1M
wiki 1.8M 28.6M

LAW ljournal 5.4M 79.0M hollywood 1.1M 113.9M

level-parallel nature. Our advantage is especially evident on
road network graphs (𝑒.𝑔., ‘euro_osm’) and certain mesh-like
graphs (𝑒.𝑔., ‘hugebubbles’ and ‘delaunay’). These graphs
contain long and narrow traversal paths that require tens of
thousands of levels in BFS (𝑒.𝑔., ‘euro_osm’ requires 17,346
levels). In contrast, DiggerBees leverages hierarchical block-
level work stealing to distribute these deep paths across
warps, achieving high efficiency. On ‘euro_osm’, for instance,
DiggerBees achieves a 12.12× speedup over the Best BFS.
On the other hand, on some social network graphs like

‘ljournal’ from LAW, BFS completes in only 10 levels, allow-
ing it to process a large number of vertices in parallel at each
level. DFS traversal on such graphs, however, involves many
short paths with frequent backtracking and limited parallel
expansion, resulting in low warp occupancy. On ‘ljournal’,
DiggerBees is 3.70× slower than BFS.

Nonetheless, our results demonstrate that DFS should no
longer be considered a weak competitor on GPUs. With care-
ful hierarchical task distribution, DiggerBees not only nar-
rows the traditional performance gap but, on graphs contain-
ing long and narrow paths, even surpasses state-of-the-art
BFS implementations.

4.4 Scalability Comparison with GPU DFS
To evaluate the scalability of our approach, we compare the
performance of DiggerBees and NVG-DFS on both A100 and
H100 GPUs across 234 graphs. Figure 7 shows this compari-
son. The top subfigure shows the performance, with fitted
trend lines to visualize overall performance growth from
A100 to H100. The bottom two subplots report scalability as

PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia Niu et al.

−1

0

1

2

3

4

Pe
rfo

rm
an

ce
(M

TE
PS

) (
lo

g
sc

al
e)

NVG-DFS (A100)
NVG-DFS (H100)

DiggerBees (A100)
DiggerBees (H100)

1

2

NV
G-

DF
S

Sc
al

ab
ilit

y

3 4 5 6 7 8 9
#Edges (log scale)

1

2

Di
gg

er
Be

es
Sc

al
ab

ilit
y

Figure 7. Scalability comparison of DiggerBees and NVG-
DFS on A100 and H100 GPUs. The top subplot shows the
performance with fitted trends. The bottom two subplots
report scalability as the performance ratio (H100/A100).

the performance ratio (H100/A100) for each method.
As shown in Figure 7, DiggerBees consistently outper-

forms NVG-DFS on both A100 and H100 GPUs. In addition,
the performance gain fromA100 to H100 is more pronounced
for DiggerBees. Specifically, the geometric mean of the H100-
to-A100 speedup is 1.33× for DiggerBees, compared to only
1.18× for NVG-DFS. This scalability advantage stems from
DiggerBees’ ability to effectively utilize the increased com-
pute resources of the H100 GPU. The H100 GPU provides 132
SMs compared to 108 SMs in the A100 GPU (a 22.2% increase),
and DiggerBees achieves a performance improvement that
closely matches this hardware scaling. This demonstrates
that DiggerBees scales naturally with increased SM count,
fully exploiting the enhanced parallelism of modern GPU
generations.

4.5 Performance Breakdown
To better understand the contributions of our design, we con-
duct a breakdown analysis with four progressive versions of
DiggerBees: (v1) a one-level stack and intra-block execution,
(v2) a two-level stack and intra-block execution, (v3) a two-
level stack with 66 blocks and both intra- and inter-block
stealing, and (v4) the full implementation with 132 blocks
(one block per SM on H100). Figure 8 reports the results on
six representative graphs.
The transition from v1 to v2 demonstrates the effective-

ness of our two-level stack design. By leveraging the GPU
memory hierarchy with hot entries in shared memory, Dig-
gerBees achieves low-latency stack access. As a result, v2

v1 v2 v3 v4
0

2

×103 euro_osm

25.94×
1.77×

v1 v2 v3 v4
0

5
×103 delaunay

37.31×
1.82×

v1 v2 v3 v4
0

2
×103

hugebubbles

26.24×
1.67×

v1 v2 v3 v4
0

5

×102 amazon
9.92×1.02×

v1 v2 v3 v4
0

1
×103 google

14.04×1.12×

v1 v2 v3 v4
0

5
×103 ljournal

38.41×
1.74×

1.54×1.54× 1.53×1.53× 1.54×1.54×

1.42×1.42× 1.34×1.34× 1.15×1.15×

Pe
rfo

rm
an

ce
 (M

TE
PS

)

v1: 1-lvl stack·1 Block·Intra
v2: 2-lvl stack·1 Block·Intra

v3: 2-lvl stack·66 Blocks·Intra+Inter
v4: 2-lvl stack·132 Blocks·Intra+Inter

Figure 8. Performance breakdown of four versions of Dig-
gerBees across six representative graphs on the H100 GPU.

Baseline DiggerBees

105

euro_osm

Var.=0.54 Var.=0.28
Baseline DiggerBees

105

delaunay

Var.=0.36 Var.=0.17
Baseline DiggerBees104

105

hugebubbles

Var.=0.50 Var.=0.33

Baseline DiggerBees
100
102
104

amazon

Var.=2.48 Var.=0.72
Baseline DiggerBees

100
102
104

google

Var.=2.14 Var.=0.52
Baseline DiggerBees

104

105
ljournal

Var.=0.41 Var.=0.31
Ta

sk
s

pe
r B

lo
ck

min max

Figure 9. Block-level workload distribution for six repre-
sentative graphs, comparing Baseline (left) and DiggerBees
(right). Markers show minimum, median, and maximum
workloads. Var. denotes the coefficient of variation.

achieves approximately 45% higher throughput on average,
validating the benefits of this hierarchical data structure.

The transition from v2 to v3 shows the benefit of inter-
block work stealing. By enabling multiple blocks to work
collaboratively, DiggerBees achieves dramatic improvements.
For instance, v3 achieves 25.94× speedup on ‘euro_osm’ and
37.31× speedup on ‘delaunay’. These results demonstrate
that inter-block work stealing is essential to scale DFS across
SMs and fully utilize GPU parallelism.
Finally, the step from v3 to v4 illustrates the effect of in-

creasing the block count to match all available SMs. Most
graphs show an additional 67–82% improvement, while cer-
tain small graphs, such as ‘amazon’ and ‘google’, see limited
gains (2–12%), as their smaller workloads have been well
distributed within fewer blocks.

4.6 Block-Level Load Balance Analysis
To evaluate the effectiveness of our hierarchical block-level
work stealing in balancing workloads, we measure the distri-
bution of tasks per block. Figure 9 shows the results across
six representative graphs, comparing the baseline strategy
(random victim block selection) with DiggerBees (load-aware
two-choice strategy). The reported Var. denotes the coeffi-
cient of variation (lower is better).

As shown in Figure 9, the baseline exhibits highly uneven

DiggerBees: Depth First Search Leveraging Hierarchical Block-Level Stealing on GPUs PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia

task distribution: some blocks process substantially more
tasks while others receive very few, resulting in high vari-
ance (𝑒.𝑔., 2.48 for ‘amazon’ and 2.14 for ‘google’). In contrast,
DiggerBees narrows the spread of task counts across blocks
and consistently reduces variance by more than half. For
example, the variance on ‘amazon’ drops to 0.72, a 3.44× im-
provement over the baseline. These results confirm that by
leveraging load-aware two-choice victim selection, our hier-
archical work stealing effectively balances workloads among
blocks, thereby enhancing both scalability and performance.

4.7 Sensitivity Analysis of Cutoff Selection

16

32

64

0.74 0.88 0.98

0.84 1.00 1.01

0.81 0.89 0.97

euro_osm

0.85 0.95 0.92

0.84 1.00 0.93

0.71 0.72 0.80

delaunay

0.76 0.95 0.94

0.79 1.00 0.98

0.72 0.88 0.86

hugebubbles

32 64 128

16

32

64

1.09 1.07 0.96

1.01 1.00 0.85

0.72 0.70 0.66

amazon

32 64 128

0.95 1.00 0.80

0.97 1.00 0.81

0.73 0.72 0.67

google

32 64 128

0.84 0.86 0.85

0.96 1.00 0.95

0.86 0.93 0.91

ljournal

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

No
rm

al
ize

d
Pe

rfo
rm

an
ce

(h
ot

_c
ut
of
f=

32
, c
ol
d_
cu
to
ff

=
64

)

cold_cutoff Value

ho
t_
cu
to
ff

Va
lu

e

Figure 10. Sensitivity of DiggerBees to the hot_cutoff
and cold_cutoff parameters on six representative graphs.
Performance is normalized to the baseline configuration
(hot_cutoff = 32, cold_cutoff = 64), with darker colors indi-
cating higher performance.

To evaluate the impact of work stealing granularity, we
conduct a sensitivity analysis by varying hot_cutoff ={16,32,64}
and cold_cutoff ={32,64,128}. Figure 10 presents the perfor-
mance heatmaps, where all results are normalized to the
default configuration (hot_cutoff = 32, cold_cutoff = 64).
As shown in Figure 10, our default setting consistently

achieves near-optimal performance. When the cutoff values
are set too small, idle warps attempt to steal work more fre-
quently, which increases contention on atomic operations
(𝑒.𝑔., atomicCAS) and leads to higher synchronization over-
head. In contrast, excessively large cutoff values raise the
stealing threshold, making it harder for idle warps or blocks
to obtain new work, which reduces the reactivity of the
load-balancing mechanism and results in underutilization.
Moreover, our analysis reveals that performance is gen-

erally more sensitive to cold_cutoff than to hot_cutoff . For
example, on the graph ‘google’, setting cold_cutoff = 128
while keeping hot_cutoff = 32 leads to a performance degra-
dation of about 20%. This behavior can be attributed to the
fact that inter-block stealing requires transferring work from
global memory into shared memory. Large cold_cutoff val-

ues delay such transfers and increase the cost of remote data
movement, resulting in higher overhead and latency.

5 Related Work
DFS has long been recognized as 𝑃-complete [79] and hard
to parallelize [39, 93]. However, the practical importance of
DFS has motivated extensive research into the parallel un-
ordered DFS algorithms and theory, with early efforts on
distributed systems [28, 34, 46, 47, 75, 81, 84]. Kumar estab-
lished an analytical framework for DFS, and a series of works
with Rao and others explored parallelization across multi-
processors [52–56, 76–78]. Other studies targeted graphs
such as DAGs [23, 38], planar graphs [41, 43, 49, 85, 88], and
others [4, 50]. To improve performance on multi-core CPUs,
Cong et al. [19] and Acar et al. [2] introduced dynamic strate-
gies to redistribute DFS workloads among threads. More-
over, recent work focuses on memory efficiency. [6], variants
of Tarjan’s algorithm [60], and nearly work-efficient solu-
tions [37]. However, most of these works remain theoretical
or tied to outdated hardware, offering limited guidance for
modern parallel platforms such as GPUs.

Extensive research has explored graph traversal onGPUs,
but the majority focuses on BFS [35, 59, 61, 65, 70, 96, 99,
101]. Modern graph processing frameworks likewise pro-
vide optimized BFS implementations, including Ligra [86,
87], GBBS [25] and EGACS [104] on CPUs, as well as Gun-
rock [97], CuSha [51], Cagra [103], Tigr [72], SEP-Graph [95],
Groute [8] and Graphie [42] on GPUs. Beyond single-node
systems, BFS has been scaled to extreme levels in distributed
environments [16, 58]. In contrast, DFS remains largely unex-
plored on GPUs due to its inherently sequential nature. Nau-
mov et al. [69] approximated DFS ordering through BFS-style
traversal. Spampinato et al. [89] proposed a linear algebra
formulation of DFS, but their approach remains theoreti-
cal without practical implementation guidelines. Our work
bridges this gap by demonstrating that efficient parallel DFS
on GPUs is achievable, providing a practical solution for
applications requiring DFS semantics.

To efficiently balance irregular workloads like DFS, work
stealing has emerged as a fundamental scheduling strat-
egy [10]. Research has evolved to tackle various architectural
complexities, such as optimizations of cache locality [1, 40]
and cost-aware scheduling for irregular loops [67] on multi-
core CPUs, hierarchical designs [66, 74] and distributed pro-
tocols [26] on clusters, and affinity-aware load balancing on
heterogeneous platforms [5, 9, 31, 36]. Cong et al. [19] and
Acar et al. [2] applied dynamic workload redistribution to
DFS, while D’Antonio et al. [21] recently utilized work steal-
ing for single-source shortest path. Besides, frameworks such
as Julienne [24] andGemini [105] extend dynamic scheduling
to graph algorithms. In multi-GPU environments, mecha-
nisms for remote stealing have been proposed for large-scale
graph analytics [57, 64]. Complementary to scheduling, an-

PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia Niu et al.

other line focuses on concurrent data structures, such as
non-blocking trees [29, 30], balanced search structures [13–
15], and relaxed balancing techniques [32, 33]. In compar-
ison, DiggerBees introduces a fine-grained work-stealing
DFS specifically optimized for the GPU memory hierarchy.

The wide applicability of DFS has motivated application-
specific DFS optimizations, such as IDA* [80], branch-and-
bound [63] and puzzle-solving [62]. Recently, graph mining
and subgraph matching using DFS on GPUs have become
active [17, 18, 73, 102]. Wei and Jiang [98] introduced stack-
based DFS loops, Qiu et al. [73] designed batch-dynamic
updates for dynamic matching, and Yuan et al. [102] accel-
erated DFS-style matching with pruned expansion. Sun and
Luo [90, 91] parallelized recursive backtracking. DFS also
appears in distributed querying (aDFS [94]), dynamic algo-
rithms for directed graphs [100], and tree traversals [44, 82,
83]. These efforts remain domain-specific and do not ad-
dress general DFS traversal. In contrast, our work introduces
DiggerBees, a general-purpose DFS method on GPUs.

6 Conclusion
In this paper, we have proposed DiggerBees, a new parallel
DFS algorithm optimized for GPUs. Our method addresses
three key challenges via a two-level stack structure and
hierarchical block-level stealing. Experimental results on
NVIDIA GPUs show that DiggerBees significantly outper-
forms state-of-the-art CPU and GPU DFS implementations,
surpasses GPU BFS on specific graph types, and exhibits
robust scalability across modern GPU architectures.

Data Availability Statement
The artifact for this paper is publicly available on Zenodo [71].

Acknowledgments
We deeply appreciate the invaluable comments from all
the reviewers. We thank Weichen Cao for helpful discus-
sions during the rebuttal phases, and Yida Li, Haocheng
Lian, and Hemeng Wang for their assistance with setting
up the experimental environment. This work has been par-
tially supported by the European HiPEAC Network of Ex-
cellence and has also received funding from ‘Future of Com-
puting, a Barcelona Supercomputing Center and IBM ini-
tiative’ (2023). It has also been partially supported by the
project PID2023-146511NB-I00 funded by the Spanish Min-
istry of Science, Innovation and Universities MCIU /AEI
/10.13039/501100011033 and EU ERDF, and by the National
Natural Science Foundation of China (No. U23A20301 and
No. 62372467). Yuyao Niu is supported by Grant PRE2022-
104335, funded by MICIU/AEI/10.13039/501100011033, and
by the "ESF+" Grant CEX2021-001148-S-20-2, funded by
MICIU/AEI/10.13039/501100011033. Marc Casas is the corre-
sponding author.

References
[1] Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. 2000. The data

locality of work stealing. In SPAA ’00. 1–12. doi:10.1145/341800.341801
[2] Umut A. Acar, Arthur Charguéraud, and Mike Rainey. 2015. A work-

efficient algorithm for parallel unordered depth-first search. In SC
’15. 1–12. doi:10.1145/2807591.2807651

[3] Alok Aggarwal and Richard Anderson. 1987. A random NC algorithm
for depth first search. In STOC ’87. 325–334. doi:10.1145/28395.28430

[4] A. Aggarwal, R. J. Anderson, and M.-Y. Kao. 1989. Parallel depth-first
search in general directed graphs. In STOC ’89. 297–308. doi:10.1145/
73007.73035

[5] Matthew Agostini, Francis O’Brien, and Tarek Abdelrahman. 2020.
Balancing Graph Processing Workloads Using Work Stealing on Het-
erogeneous CPU-FPGA Systems. In ICPP ’20. Article 50, 12 pages.
doi:10.1145/3404397.3404433

[6] Tetsuo Asano, Taisuke Izumi, Masashi Kiyomi, Matsuo Konagaya,
Hirotaka Ono, Yota Otachi, Pascal Schweitzer, Jun Tarui, and Ryuhei
Uehara. 2014. Depth-First Search Using Bits. In ISAAC ’14. 553–564.
doi:10.1007/978-3-319-13075-0_44

[7] Scott Beamer, Krste Asanović, and David Patterson. 2015. The GAP
benchmark suite. arXiv preprint arXiv:1508.03619 (2015).

[8] Tal Ben-Nun, Michael Sutton, Sreepathi Pai, and Keshav Pingali.
2017. Groute: An Asynchronous Multi-GPU Programming Model for
Irregular Computations. In PPoPP ’17. 235–248. doi:10.1145/3155284.
3018756

[9] A Tarun Beri, B Sorav Bansal, and C Subodh Kumar. 2015. Locality
aware work-stealing based scheduling in hybrid CPU-GPU clusters.
In PDPTA ’15. 48.

[10] Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling multi-
threaded computations by work stealing. Journal of the ACM (JACM)
46 (Sept. 1999), 720–748. doi:10.1145/324133.324234

[11] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna.
2011. Layered Label Propagation: A Multiresolution Coordinate-Free
Ordering for Compressing Social Networks. InWWW ’11. 587–596.
doi:10.1145/1963405.1963488

[12] Paolo Boldi and Sebastiano Vigna. 2004. The WebGraph Framework I:
Compression Techniques. InWWW ’04. 595–601. doi:10.1145/988672.
988752

[13] Trevor Brown, Faith Ellen, and Eric Ruppert. 2014. A general tech-
nique for non-blocking trees. In PPoPP ’14. 329–342. doi:10.1145/
2555243.2555267

[14] Trevor Brown and Joanna Helga. 2011. Non-blocking k-ary search
trees. In OPODIS’11. 207–221. doi:10.1007/978-3-642-25873-2_15

[15] Trevor Brown, Aleksandar Prokopec, and Dan Alistarh. 2020. Non-
blocking interpolation search trees with doubly-logarithmic running
time. In PPoPP ’20. 276–291. doi:10.1145/3332466.3374542

[16] Huanqi Cao, Yuanwei Wang, Haojie Wang, Heng Lin, Zixuan Ma,
Wanwang Yin, and Wenguang Chen. 2022. Scaling graph traversal
to 281 trillion edges with 40 million cores. In PPoPP ’22. 234–245.
doi:10.1145/3503221.3508403

[17] Weichen Cao, Ke Meng, Zhiheng Lin, and Guangming Tan. 2025.
GLumin: Fast Connectivity Check Based on LUTs For Efficient Graph
Pattern Mining. In PPoPP ’25. 455–468. doi:10.1145/3710848.3710889

[18] Xuhao Chen and Arvind. 2022. Efficient and scalable graph pattern
mining on {GPUs}. In OSDI ’22. 857–877. doi:10.1109/PADSW.2018.
8644869

[19] Guojing Cong, Sreedhar Kodali, Sriram Krishnamoorthy, Doug Lea,
Vijay Saraswat, and Tong Wen. 2008. Solving Large, Irregular Graph
Problems Using Adaptive Work-Stealing. In ICPP ’08. 536–545. doi:10.
1109/ICPP.2008.88

[20] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford
Stein. 2022. Introduction to algorithms.

[21] Marco D’Antonio, Thai Son Mai, Philippas Tsigas, and Hans
Vandierendonck. 2025. Wasp: Efficient Asynchronous Single-Source

https://doi.org/10.1145/341800.341801
https://doi.org/10.1145/2807591.2807651
https://doi.org/10.1145/28395.28430
https://doi.org/10.1145/73007.73035
https://doi.org/10.1145/73007.73035
https://doi.org/10.1145/3404397.3404433
https://doi.org/10.1007/978-3-319-13075-0_44
https://doi.org/10.1145/3155284.3018756
https://doi.org/10.1145/3155284.3018756
https://doi.org/10.1145/324133.324234
https://doi.org/10.1145/1963405.1963488
https://doi.org/10.1145/988672.988752
https://doi.org/10.1145/988672.988752
https://doi.org/10.1145/2555243.2555267
https://doi.org/10.1145/2555243.2555267
https://doi.org/10.1007/978-3-642-25873-2_15
https://doi.org/10.1145/3332466.3374542
https://doi.org/10.1145/3503221.3508403
https://doi.org/10.1145/3710848.3710889
https://doi.org/10.1109/PADSW.2018.8644869
https://doi.org/10.1109/PADSW.2018.8644869
https://doi.org/10.1109/ICPP.2008.88
https://doi.org/10.1109/ICPP.2008.88

DiggerBees: Depth First Search Leveraging Hierarchical Block-Level Stealing on GPUs PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia

Shortest Path on Multicore Systems via Work Stealing. In SC ’25.
2109–2125. doi:10.1145/3712285.3759872

[22] Timothy A. Davis and Yifan Hu. 2011. The University of Florida
Sparse Matrix Collection. ACM Trans. Math. Softw. 38, 1 (2011). doi:10.
1145/2049662.2049663

[23] Pilar Delatorre and Clyde P. Kruskal. 1995. Fast Parallel Algorithms
for All-Sources Lexicographic Search and Path-Algebra Problems.
Journal of Algorithms 19, 1 (1995), 1–24. doi:10.1006/jagm.1995.1025

[24] Laxman Dhulipala, Guy Blelloch, and Julian Shun. 2017. Julienne:
A Framework for Parallel Graph Algorithms using Work-efficient
Bucketing. In SPAA ’17. 293–304. doi:10.1145/3087556.3087580

[25] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2021. Theo-
retically Efficient Parallel Graph Algorithms Can Be Fast and Scal-
able. ACM Trans. Parallel Comput. 8, 1, Article 4 (2021), 70 pages.
doi:10.1145/3434393

[26] James Dinan, D. Brian Larkins, P. Sadayappan, Sriram Krishnamoor-
thy, and Jarek Nieplocha. 2009. Scalable work stealing. In SC ’09.
11 pages. doi:10.1145/1654059.1654113

[27] Xiaojun Dong, Letong Wang, Yan Gu, and Yihan Sun. 2023. Provably
Fast and Space-Efficient Parallel Biconnectivity. In PPoPP ’23. 52–65.
doi:10.1145/3572848.3577483

[28] Ossama Ibrahim El-Dessouki and Wing H. Huen. 1980. Distributed
enumeration on between computers. IEEE Trans. Comput. 29, 09
(1980), 818–825. doi:10.1109/TC.1980.1675681

[29] Faith Ellen, Panagiota Fatourou, Joanna Helga, and Eric Ruppert. 2014.
The amortized complexity of non-blocking binary search trees. In
PODC ’14. 332–340. doi:10.1145/2611462.2611486

[30] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel.
2010. Non-blocking binary search trees. In PODC ’10. 131–140. doi:10.
1145/1835698.1835736

[31] Naila Farooqui, Rajkishore Barik, Brian T. Lewis, Tatiana Shpeis-
man, and Karsten Schwan. 2016. Affinity-aware work-stealing for
integrated CPU-GPU processors. In PPoPP ’16. Article 30, 2 pages.
doi:10.1145/2851141.2851194

[32] Panagiota Fatourou, Elias Papavasileiou, and Eric Ruppert. 2019.
Persistent Non-Blocking Binary Search Trees Supporting Wait-Free
Range Queries. In SPAA ’19. 275–286. doi:10.1145/3323165.3323197

[33] Panagiota Fatourou and Eric Ruppert. 2025. Lock-Free Augmented
Trees (Abstract). In HOPC ’25. 1–3. doi:10.1145/3746238.3746251

[34] Raphael Finkel and Udi Manber. 1987. DIB—a distributed implemen-
tation of backtracking. ACM Trans. Program. Lang. Syst. 9, 2 (1987),
235–256. doi:10.1145/22719.24067

[35] Anil Gaihre, Zhenlin Wu, Fan Yao, and Hang Liu. 2019. XBFS: eX-
ploring Runtime Optimizations for Breadth-First Search on GPUs. In
HPDC ’19. 121–131. doi:10.1145/3307681.3326606

[36] Thierry Gautier, Joao Vicente Ferreira Lima, Nicolas Maillard, and
Bruno Raffin. 2013. Locality-aware work stealing on multi-CPU and
multi-GPU architectures. In MULTIPROG ’13.

[37] Mohsen Ghaffari, Christoph Grunau, and Jiahao Qu. 2023. Nearly
Work-Efficient Parallel DFS in Undirected Graphs. In SPAA ’23.
273–283. doi:10.1145/3558481.3591094

[38] Ratan K. Ghosh and G. P. Bhattacharjee. 1984. A parallel search
algorithm for directed acyclic graphs. BIT Numerical Mathematics 24,
2 (1984), 133–150. doi:10.1007/BF01937481

[39] Raymond Greenlaw. 1992. A model classifying algorithms as inher-
ently sequential with applications to graph searching. Information and
Computation 97, 2 (1992), 133–149. doi:10.1016/0890-5401(92)90033-C

[40] Yan Gu, Zachary Napier, and Yihan Sun. 2022. Analysis of Work-
Stealing and Parallel Cache Complexity. 46–60. doi:10.1137/1.
9781611977059.4

[41] Torben Hagerup. 1990. Planar Depth-First Search in O(log𝑛) Parallel
Time. SIAM J. Comput. 19, 4 (1990), 678–704. doi:10.1137/0219047

[42] Wei Han, Daniel Mawhirter, Bo Wu, and Matthew Buland. 2017.
Graphie: Large-Scale Asynchronous Graph Traversals on Just a GPU.

In PACT ’17. 233–245. doi:10.1109/PACT.2017.41
[43] Xin He and Yaacov Yesha. 1988. A Nearly Optimal Parallel Algorithm

for Constructing Depth First Spanning Trees in Planar Graphs. SIAM
J. Comput. 17, 3 (1988), 486–491. doi:10.1137/0217028

[44] Nikhil Hegde, Jianqiao Liu, Kirshanthan Sundararajah, and Milind
Kulkarni. 2017. Treelogy: A benchmark suite for tree traversals. In
ISPASS ’17. 227–238. doi:10.1109/ISPASS.2017.7975294

[45] John Hopcroft and Robert Tarjan. 1973. Algorithm 447: efficient
algorithms for graph manipulation. Commun. ACM 16, 6 (1973),
372–378. doi:10.1145/362248.362272

[46] Masaharu Imai, Yuuji Yoshida, and Teruo Fukumura. 1979. A parallel
searching scheme for multiprocessor systems and its application to
combinatorial problems. In IJCAI’79. 416–418.

[47] Virendra K Janakiram, Dharma P Agrawal, and Ravi Mehrotra. 1987.
Randomized Parallel Algorithms for Prolog Programs and Backtrack-
ing Applications.. In ICPP ’87. 278–281.

[48] Arthur B Kahn. 1962. Topological sorting of large networks. Commun.
ACM 5, 11 (1962), 558–562. doi:10.1145/368996.369025

[49] Ming-Yang Kao. 1988. All graphs have cycle separators and pla-
nar directed depth-first search is in DNC. In Aegean Workshop on
Computing. 53–63. doi:10.1007/BFb0040373

[50] George Karypis and Vipin Kumar. 1994. Unstructured tree search
on SIMD parallel computers. IEEE Transactions on Parallel and Dis-
tributed Systems 5, 10 (1994), 1057–1072. doi:10.1109/71.313122

[51] Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N. Bhuyan.
2014. CuSha: vertex-centric graph processing on GPUs. In HPDC ’14.
239–252. doi:10.1145/2600212.2600227

[52] Vipin Kumar. 1987. Depth-first search. Encyclopaedia of Artificial
Intelligence 2 (1987), 1004–1005.

[53] Vipin Kumar, Ananth Y. Grama, and V. Nageshwara Rao. 1994. Scal-
able Load Balancing Techniques for Parallel Computers. J. Parallel
and Distrib. Comput. 22, 1 (1994), 60–79. doi:10.1006/jpdc.1994.1070

[54] Vipin Kumar and V. Nageshwara Rao. 1987. Parallel depth first search.
part ii. analysis. International Journal of Parallel Programming 16, 6
(1987), 501–519. doi:10.1007/BF01389001

[55] Vipin Kumar and V. Nageshwara Rao. 1990. Scalable parallel formu-
lations of depth-first search. 1–41. doi:10.1007/978-1-4612-3390-9_1

[56] Vipin Kumar, V. Nageshwara Rao, and K. Ramesh. 1988. Parallel
Depth First Search on the Ring Architecture. Technical Report.

[57] João V.F. Lima, Thierry Gautier, Nicolas Maillard, and Vincent Dan-
jean. 2012. Exploiting Concurrent GPU Operations for Efficient Work
Stealing on Multi-GPUs. In SBAC-PAD ’12. 75–82. doi:10.1109/SBAC-
PAD.2012.28

[58] Heng Lin, Xiaowei Zhu, Bowen Yu, Xiongchao Tang, Wei Xue, Wen-
guang Chen, Lufei Zhang, Torsten Hoefler, Xiaosong Ma, Xin Liu,
Weimin Zheng, and Jingfang Xu. 2018. ShenTu: Processing Multi-
Trillion Edge Graphs on Millions of Cores in Seconds. In SC ’18.
706–716. doi:10.1109/SC.2018.00059

[59] Hang Liu and H. Howie Huang. 2015. Enterprise: breadth-first graph
traversal on GPUs. In SC ’15. 1–12. doi:10.1145/2807591.2807594

[60] Gavin Lowe. 2016. Concurrent depth-first search algorithms based
on Tarjan’s Algorithm. Int. J. Softw. Tools Technol. Transf. 18, 2 (2016),
129–147. doi:10.1007/s10009-015-0382-1

[61] Lijuan Luo, MartinWong, andWen-mei Hwu. 2010. An effective GPU
implementation of breadth-first search. In DAC ’10. 52–55. doi:10.
1145/1837274.1837289

[62] Basel A. Mahafzah. 2014. Performance evaluation of parallel multi-
threaded A* heuristic search algorithm. Journal of Information Science
40, 3 (2014), 363–375. doi:10.1177/0165551513519212

[63] Nihar R. Mahapatra and Shantanu Dutt. 1999. Sequential and parallel
branch-and-bound search under limited-memory constraints. Insti-
tute for Mathematics and Its Applications 106 (1999), 139. doi:10.1007/
978-1-4612-1492-2_6

[64] Ke Meng, Liang Geng, Xue Li, Qian Tao, Wenyuan Yu, and Jingren

https://doi.org/10.1145/3712285.3759872
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1006/jagm.1995.1025
https://doi.org/10.1145/3087556.3087580
https://doi.org/10.1145/3434393
https://doi.org/10.1145/1654059.1654113
https://doi.org/10.1145/3572848.3577483
https://doi.org/10.1109/TC.1980.1675681
https://doi.org/10.1145/2611462.2611486
https://doi.org/10.1145/1835698.1835736
https://doi.org/10.1145/1835698.1835736
https://doi.org/10.1145/2851141.2851194
https://doi.org/10.1145/3323165.3323197
https://doi.org/10.1145/3746238.3746251
https://doi.org/10.1145/22719.24067
https://doi.org/10.1145/3307681.3326606
https://doi.org/10.1145/3558481.3591094
https://doi.org/10.1007/BF01937481
https://doi.org/10.1016/0890-5401(92)90033-C
https://doi.org/10.1137/1.9781611977059.4
https://doi.org/10.1137/1.9781611977059.4
https://doi.org/10.1137/0219047
https://doi.org/10.1109/PACT.2017.41
https://doi.org/10.1137/0217028
https://doi.org/10.1109/ISPASS.2017.7975294
https://doi.org/10.1145/362248.362272
https://doi.org/10.1145/368996.369025
https://doi.org/10.1007/BFb0040373
https://doi.org/10.1109/71.313122
https://doi.org/10.1145/2600212.2600227
https://doi.org/10.1006/jpdc.1994.1070
https://doi.org/10.1007/BF01389001
https://doi.org/10.1007/978-1-4612-3390-9_1
https://doi.org/10.1109/SBAC-PAD.2012.28
https://doi.org/10.1109/SBAC-PAD.2012.28
https://doi.org/10.1109/SC.2018.00059
https://doi.org/10.1145/2807591.2807594
https://doi.org/10.1007/s10009-015-0382-1
https://doi.org/10.1145/1837274.1837289
https://doi.org/10.1145/1837274.1837289
https://doi.org/10.1177/0165551513519212
https://doi.org/10.1007/978-1-4612-1492-2_6
https://doi.org/10.1007/978-1-4612-1492-2_6

PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia Niu et al.

Zhou. 2023. Efficient Multi-GPUGraph Processing with RemoteWork
Stealing. In ICDE ’23. 191–204. doi:10.1109/ICDE55515.2023.00022

[65] Duane Merrill, Michael Garland, and Andrew Grimshaw. 2012. Scal-
able GPU graph traversal. In PPoPP ’12. 117–128. doi:10.1145/2370036.
2145832

[66] Seung-Jai Min, Costin Iancu, and Katherine Yelick. 2011. Hierarchical
work stealing on manycore clusters. In PGAS11 ’11, Vol. 625.

[67] Prasoon Mishra and V. Krishna Nandivada. 2024. COWS for High
Performance: Cost Aware Work Stealing for Irregular Parallel Loop.
ACM Trans. Archit. Code Optim., Article 12 (2024), 26 pages. doi:10.
1145/3633331

[68] Michael Mitzenmacher. 2001. The power of two choices in random-
ized load balancing. IEEE Transactions on Parallel and Distributed
Systems 12, 10 (2001), 1094–1104. doi:10.1109/71.963420

[69] Maxim Naumov, Alysson Vrielink, and Michael Garland. 2017. Paral-
lel Depth-First Search for Directed Acyclic Graphs. In IA3’17. Article
4, 8 pages. doi:10.1145/3149704.3149764

[70] Yuyao Niu and Marc Casas. 2025. BerryBees: Breadth First Search by
Bit-Tensor-Cores. In PPoPP ’25. 339–354. doi:10.1145/3710848.3710859

[71] Yuyao Niu, Yuechen Lu, Weifeng Liu, and Marc Casas. 2025. Digger-
Bees Artifact. doi:10.5281/zenodo.18072817

[72] Amir Hossein Nodehi Sabet, Junqiao Qiu, and Zhijia Zhao. 2018. Tigr:
Transforming Irregular Graphs for GPU-Friendly Graph Processing.
In ASPLOS ’18. 622–636. doi:10.1145/3296957.3173180

[73] LinshanQiu, Lu Chen, Hailiang Jie, XiangyuKe, YunjunGao, Yang Liu,
and Zetao Zhang. 2024. GPU-Accelerated Batch-Dynamic Subgraph
Matching. In ICDE ’24’. 3204–3216. doi:10.1109/ICDE60146.2024.
00248

[74] Jean-Noël Quintin and Frédéric Wagner. 2010. Hierarchical work-
stealing. In Euro-Par ’10. 217–229. doi:10.1007/978-3-642-15277-1_21

[75] Stefan Radtke, Jens Bargfrede, and Walter Anheier. 1995. Distributed
automatic test pattern generation with a parallel FAN algorithm. In
ICCD ’95. 698–702. doi:10.1109/ICCD.1995.528944

[76] V. Nageshwara Rao and Vipin Kumar. 1987. Parallel depth first search.
part i. implementation. International Journal of Parallel Programming
16, 6 (1987), 479–499. doi:10.1007/BF01389000

[77] V. Nageshwara Rao and Vipin Kumar. 1988. Superlinear speedup in
parallel state-space search. In Foundations of Software Technology and
Theoretical Computer Science. 161–174. doi:10.1007/3-540-50517-2_79

[78] V. Nageshwara Rao and Vipin Kumar. 1993. On the efficiency of
parallel backtracking. IEEE Transactions on Parallel and Distributed
Systems 4, 4 (1993), 427–437. doi:10.1109/71.219757

[79] John H. Reif. 1985. Depth-first search is inherently sequential. Inform.
Process. Lett. 20, 5 (1985), 229–234. doi:10.1016/0020-0190(85)90024-9

[80] Alexander Reinefeld and Volker Schnecke. 1994. AIDA*-
Asynchronous Parallel IDA*. In Proceedings of the Biennial Conference-
Canadian Society for Computational Studies of Intelligence. 295–302.

[81] A. Reinefeld and V. Schnecke. 1994. Work-load balancing in highly
parallel depth-first search. In SHPCC ’94. 773–780. doi:10.1109/
SHPCC.1994.296719

[82] Laith Sakka, Kirshanthan Sundararajah, and Milind Kulkarni. 2017.
TreeFuser: a framework for analyzing and fusing general recursive
tree traversals. Proc. ACM Program. Lang., Article 76 (2017), 30 pages.
doi:10.1145/3133900

[83] Laith Sakka, Kirshanthan Sundararajah, Ryan R. Newton, and Milind
Kulkarni. 2019. Sound, fine-grained traversal fusion for heteroge-
neous trees. In PLDI 2019. 830–844. doi:10.1145/3314221.3314626

[84] Vikram A. Saletore and L. V. Kalé. 1990. Consistent linear speedups
to a first solution in parallel state-space search. In AAAI’90. 227–233.

[85] Gregory E. Shannon. 1988. A linear-processor algorithm for depth-
first search in planar graphs. Inform. Process. Lett. 29, 3 (1988), 119–123.
doi:10.1016/0020-0190(88)90048-8

[86] Julian Shun and Guy E. Blelloch. 2013. Ligra: a lightweight graph
processing framework for shared memory. In PPoPP ’13. 135–146.

doi:10.1145/2442516.2442530
[87] Julian Shun, Laxman Dhulipala, and Guy E. Blelloch. 2015. Smaller

and Faster: Parallel Processing of Compressed Graphs with Ligra+.
In DCC ’15. 403–412. doi:10.1109/DCC.2015.8

[88] Justin R. Smith. 1986. Parallel Algorithms for Depth-First Searches I.
Planar Graphs. SIAM J. Comput. 15, 3 (1986), 814–830. doi:10.1137/
0215058

[89] Daniele G. Spampinato, Upasana Sridhar, and Tze Meng Low. 2019.
Linear algebraic depth-first search. In ARRAY ’19. 93–104. doi:10.
1145/3315454.3329962

[90] Shixuan Sun, Yulin Che, Lipeng Wang, and Qiong Luo. 2019. Efficient
Parallel Subgraph Enumeration on a Single Machine. In ICDE ’19.
232–243. doi:10.1109/ICDE.2019.00029

[91] Shixuan Sun and Qiong Luo. 2018. Parallelizing Recursive Backtrack-
ing Based Subgraph Matching on a Single Machine. In ICPADS ’18.
1–9. doi:10.1109/PADSW.2018.8644869

[92] Robert Tarjan. 1972. Depth-first search and linear graph algorithms.
SIAM journal on computing 1, 2 (1972), 146–160. doi:10.1137/0201010

[93] Robert Tarjan. 1972. Depth-First Search and Linear Graph Algorithms.
SIAM J. Comput. 1, 2 (1972), 146–160.

[94] Vasileios Trigonakis, Jean-Pierre Lozi, Tomáš Faltín, Nicholas P.
Roth, Iraklis Psaroudakis, Arnaud Delamare, Vlad Haprian, Calin
Iorgulescu, Petr Koupy, Jinsoo Lee, Sungpack Hong, and Hassan
Chafi. 2021. aDFS: An Almost Depth-First-Search Distributed Graph-
Querying System. In USENIX ATC ’21. 273–287.

[95] Hao Wang, Liang Geng, Rubao Lee, Kaixi Hou, Yanfeng Zhang, and
Xiaodong Zhang. 2019. SEP-graph: finding shortest execution paths
for graph processing under a hybrid framework on GPU. In PPoPP
’19. 38–52. doi:10.1145/3293883.3295733

[96] Letong Wang, Guy Blelloch, Yan Gu, and Yihan Sun. 2025. Parallel
Cluster-BFS and Applications to Shortest Paths. InALENEX ’25. 42–55.
doi:10.1137/1.9781611978339.4

[97] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy
Riffel, and John D. Owens. 2016. Gunrock: a high-performance graph
processing library on the GPU. In PPoPP ’16. 1–12. doi:10.1145/
2851141.2851145

[98] Yihua Wei and Peng Jiang. 2022. STMatch: Accelerating Graph Pat-
tern Matching on GPU with Stack-Based Loop Optimizations. In SC
’22. 1–13. doi:10.1109/SC41404.2022.00058

[99] Hao Wen and Wei Zhang. 2019. Improving Parallelism of Breadth
First Search (BFS) Algorithm for Accelerated Performance on GPUs.
In HPEC ’19. 1–7. doi:10.1109/HPEC.2019.8916551

[100] Bohua Yang, Dong Wen, Lu Qin, Ying Zhang, Xubo Wang, and
Xuemin Lin. 2019. Fully dynamic depth-first search in directed
graphs. Proc. VLDB Endow. 13, 2 (2019), 142–154. doi:10.14778/3364324.
3364329

[101] Xizhe Yin, Zhijia Zhao, and Rajiv Gupta. 2022. Glign: Taming Mis-
aligned Graph Traversals in Concurrent Graph Processing. InASPLOS
’23. 78–92. doi:10.1145/3567955.3567963

[102] Lyuheng Yuan, Da Yan, Jiao Han, Akhlaque Ahmad, Yang Zhou, and
Zhe Jiang. 2024. Faster Depth-First Subgraph Matching on GPUs. In
ICDE ’24’. 3151–3163. doi:10.1109/ICDE60146.2024.00244

[103] Yunming Zhang, Vladimir Kiriansky, Charith Mendis, Saman Ama-
rasinghe, and Matei Zaharia. 2017. Making caches work for graph
analytics. In Big Data ’17. 293–302. doi:10.1109/BigData.2017.8257937

[104] Ruohuang Zheng and Sreepathi Pai. 2021. Efficient Execution of
Graph Algorithms on CPU with SIMD Extensions. In CGO ’21. 262–
276. doi:10.1109/CGO51591.2021.9370326

[105] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma.
2016. Gemini: A Computation-Centric Distributed Graph Processing
System. In OSDI ’16. 301–316.

[106] Marinka Zitnik, Rok Sosič, Sagar Maheshwari, and Jure Leskovec.
2018. BioSNAP Datasets: Stanford Biomedical Network Dataset Col-
lection. http://snap.stanford.edu/biodata.

https://doi.org/10.1109/ICDE55515.2023.00022
https://doi.org/10.1145/2370036.2145832
https://doi.org/10.1145/2370036.2145832
https://doi.org/10.1145/3633331
https://doi.org/10.1145/3633331
https://doi.org/10.1109/71.963420
https://doi.org/10.1145/3149704.3149764
https://doi.org/10.1145/3710848.3710859
https://doi.org/10.5281/zenodo.18072817
https://doi.org/10.1145/3296957.3173180
https://doi.org/10.1109/ICDE60146.2024.00248
https://doi.org/10.1109/ICDE60146.2024.00248
https://doi.org/10.1007/978-3-642-15277-1_21
https://doi.org/10.1109/ICCD.1995.528944
https://doi.org/10.1007/BF01389000
https://doi.org/10.1007/3-540-50517-2_79
https://doi.org/10.1109/71.219757
https://doi.org/10.1016/0020-0190(85)90024-9
https://doi.org/10.1109/SHPCC.1994.296719
https://doi.org/10.1109/SHPCC.1994.296719
https://doi.org/10.1145/3133900
https://doi.org/10.1145/3314221.3314626
https://doi.org/10.1016/0020-0190(88)90048-8
https://doi.org/10.1145/2442516.2442530
https://doi.org/10.1109/DCC.2015.8
https://doi.org/10.1137/0215058
https://doi.org/10.1137/0215058
https://doi.org/10.1145/3315454.3329962
https://doi.org/10.1145/3315454.3329962
https://doi.org/10.1109/ICDE.2019.00029
https://doi.org/10.1109/PADSW.2018.8644869
https://doi.org/10.1137/0201010
https://doi.org/10.1145/3293883.3295733
https://doi.org/10.1137/1.9781611978339.4
https://doi.org/10.1145/2851141.2851145
https://doi.org/10.1145/2851141.2851145
https://doi.org/10.1109/SC41404.2022.00058
https://doi.org/10.1109/HPEC.2019.8916551
https://doi.org/10.14778/3364324.3364329
https://doi.org/10.14778/3364324.3364329
https://doi.org/10.1145/3567955.3567963
https://doi.org/10.1109/ICDE60146.2024.00244
https://doi.org/10.1109/BigData.2017.8257937
https://doi.org/10.1109/CGO51591.2021.9370326
http://snap.stanford.edu/biodata

DiggerBees: Depth First Search Leveraging Hierarchical Block-Level Stealing on GPUs PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia

A Artifact Description
A.1 Artifact DOI
https://doi.org/10.5281/zenodo.17709254.

A.2 Prerequisites
• Operating System: Any Linux system that supports
CUDA v12.8 or above and GCC v11.3 or above.
• Libraries: This artifact includes:
– DiggerBees (this work)
– NVG-DFS
– CKL-PDFS andACR-PDFS (https://github.com/deepsea-
inria/sc15-pdfs)

– Gunrock (https://github.com/gunrock/gunrock)
– BerryBees (https://doi.org/10.5281/zenodo.14222153)
• Program: CUDA and C/C++ OpenMP code.
• Run-time environment: Ubuntu 22.04 with CUDA
v12.8 and GPU driver version 535.86.10 (as tested).
• Hardware Requirements:
– Any CUDA-enabled GPU with compute capability
8.0 or above (an NVIDIA A100 (Ampere architecture)
and an H100 (Hopper architecture) as tested).

– Any Intel CPU (Intel Xeon Max 9462 as tested).
– Disk Space: at least 600GB (for full benchmark dataset).
• Software Requirements:
– To evaluate DiggerBees: NVIDIA nvcc and GNU
GCC (v12.8 and v11.4.0, as tested, respectively).

– To evaluate other baselines: CMake (v3.30.5, as tested).
– To reproduce the figures: Python v3.7 or above with
the following libraries: numpy, pandas, seaborn, and
matplotlib.

• Input Data:
– six representative graphs in Table 4 of the paper
(rep_graphs.csv in DiggerBees_Artifact/dataset/
for quick-start testing in 30 minutes).

– 234 graphs (benchmark_list.csv in
DiggerBees_Artifact/dataset/) from the SuiteS-
parse Matrix Collection for in-depth evaluation.

• Note: Docker is provided as a convenient alternative.
A prebuilt Docker container is available, including all
dependencies, required software, six representative
graphs, and libraries.

A.3 Quick test using the Docker container
• Download Docker (if needed): Ensure the Docker
and the NVIDIA Container Toolkit are installed on
your system. For Ubuntu users, Docker can be installed
following the instructions from
https://docs.docker.com/engine/install/ubuntu/.
• Pull the prebuilt Docker image: Pull the prebuilt
Docker image from Docker Hub using the command:

$ docker pull yuyaoniu/diggerbees:latest

or load the Docker image from Zenodo using the com-
mand:

$ docker load < \
diggerbees_docker_image_latest.tar.gz

• Run the Docker container: Start a Docker container
using the pulled image with the following command:

$ docker run -it --rm \
--gpus all yuyaoniu/diggerbees:latest

• Quick start in about 40 minutes: Perform the fol-
lowing steps to run a quick test:
– Inside the container, navigate to the artifact direc-
tory:

$ cd /workspace/DiggerBees_Artifact/

The GPU architecture is configured via a centralized
configuration file:

$ vim config.mk

Set the CUDA architecture according to your GPU:

CUDA_ARCH=80 # NVIDIA A100
CUDA_ARCH=90 # NVIDIA H100

Save the file after selecting the appropriate architec-
ture.

– Run the quick test.

$ cd scripts/
$ bash run_all.sh quick_start

This script automatically compiles all required com-
ponents and runs experiments on six representative
graphs.

A.4 Expected output
Upon completing the quick start test, the evaluator should
observe the following expected outputs:
• Performance results:
(a) Verify the summary CSV files (merged results) using
the command:

$ ls ../data

– merged_dfs_perf.csv: performance results of four
DFS methods (CKL-PDFS, ACR-PDFS, NVG-DFS,
and DiggerBees v4).

– merged_bfs_perf.csv: Performance results of two
BFS baselines and selection of best-performing BFS
for each graph.

https://doi.org/10.5281/zenodo.17709254
https://github.com/deepsea-inria/sc15-pdfs
https://github.com/deepsea-inria/sc15-pdfs
https://github.com/gunrock/gunrock
https://doi.org/10.5281/zenodo.14222153
https://docs.docker.com/engine/install/ubuntu/

PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia Niu et al.

– merged_perf_rep.csv: Final summary table of all
methods (DFS + BFS) on representative graphs.

(b) Verify detailed outputs of DiggerBees using the
command:

$ ls ../DiggerBees_master/results/

– DiggerBees_v{version}_{xx}_perf.csv: Perfor-
mance results of DiggerBees v1–v4 on tested repre-
sentative graphs.

– balance_baseline/balance_{graph}.csv: Load-
balance logs (per-block task counts) for baselines.

– balance_diggerbees/balance_{graph}.csv: Load-
balance logs (per-block task counts) for DiggerBees
v4.

These files are automatically named according to GPU
type (A100, H100, etc.), graph name, and variant ver-
sion.
• Generated Figures:
Verify figures using the command:

$ ls ../figures/

– fig_5.pdf: DFS performance comparison.
– fig_6.pdf: Performance on representative graphs.
– fig_8.pdf: Performance breakdown of DiggerBees.
– fig_9.pdf: Load-balance visualization.
These figures should match the trends (not exact val-
ues) shown in the paper, verifying performance advan-
tage and improved load balancing.

Note: The quick start test does not generate Figure 7 auto-
matically. Figure 7 (Scalability comparison) requires perfor-
mance data collected from two different GPU systems (e.g.,
A100 and H100). Therefore, it is only produced in the full
evaluation workflow described in Section A.5.

A.5 Step-by-Step Instructions
A.5.1 Overview of Evaluation Goals. The purpose of
the full evaluation is to reproduce all key experimental re-
sults presented in Section 4 of the paper, based on the full
benchmark dataset. Specifically, the evaluator can expect to
reproduce the following results:

(1) DFS Performance Comparison (Figure 5 in Section 4.2):
Scatter plot comparing the performance of four DFS methods
over the full dataset.

(2) Representative Graph Performance (Figure 6 in Section
4.3: Bar chart showing the performance of four DFS methods
and the best BFS baseline on the 12 representative graphs.

(3) Scalability Comparison (Figure 7 in Section 4.4): Scatter
plot comparing the performance of two GPU DFS methods
on A100 and H100 GPUs.

(4) Performance Breakdown (Figure 8 in Section 4.5): Break-
down of four versions of DiggerBees across six graphs.

(5) Load Balance Analysis (Figure 9 in Section 4.6): Violin

plots visualizing per-block task distribution for DiggerBees
compared to baselines.

A.5.2 Detailed Steps for running the full benchmark.
The command below automatically executes the entire eval-
uation workflow, including the following steps:

$ bash run_all.sh run_bench

This script contains the entire experimental workflow and
includes the following steps:
• Dataset Preparation (Approx. 30+ hours): The script
automatically downloads all required datasets using
the following command:

$ python3 download_graphs.py run_bench

Our matrix parser supports input files in the Matrix
Market format (*.mtx). All graphs are publicly available
from the SuiteSparse Matrix Collection, which can
be accessed at https://sparse.tamu.edu/. This process
will take approximately 30 hours or more (assuming
a download speed of 6 MB/s, with a total dataset size
estimated to be 600 GB). Matrices will be stored in the
directory:
DiggerBees_Artifact/dataset/MM/
• Run Experiments (Approx. 10 hours): This step
performs the full execution of all DFS and BFSmethods.
The process is managed by:

$ bash run_experiments.sh run_bench

This workflow completes the following tasks:
– Compile and run GPU-based DFS methods: Digger-
Bees and NVG-DFS.

– Compile and run CPU-based DFS baselines: ACR-
PDFS and CKL-PDFS.
Note: Modify the -proc parameter according to the
number of CPU cores available on your system (lines
29-30 in DiggerBees_Artifact/baseline/DFS/
SC15_unordered_dfs/run_dfs_cpu.sh).

– Compile and run GPU BFS methods: Gunrock and
BerryBees.

Each method produces individual CSV files and is orga-
nized under its respective results/ folder. This pro-
cess takes approximately 12 hours to complete, de-
pending on the GPU and CPU configuration.
• Data Collection (Approx. 1 minute): This step au-
tomatically merges all results/ folders across meth-
ods, extracts performance metrics, and generates the
merged summary files in DiggerBees_Artifact/data/.
These summary files will be used in later steps to gen-
erate Figures 5 and 6.
• Figures Plotting (Approx. 15 minutes): After the
performance data has been successfully collected, all

https://sparse.tamu.edu/

DiggerBees: Depth First Search Leveraging Hierarchical Block-Level Stealing on GPUs PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia

figures in the paper can be plotted using the command:

$ python3 plot/plot_fig_{x}.py

– Figures 5 and 6: These two figures are generated
from DiggerBees_Artifact/data/merged_dfs_perf.csv
and DiggerBees_Artifact/data/merged_perf_rep.csv.

– Figure 7 (Required: Two GPUs): This figure uses data
collected from two different GPU architectures (e.g.,
A100 and H100 in the paper). It will not be generated
in single-GPU mode.

– Figure 8: This figure is generated after running all
four DiggerBees versions (v1–v4) under the run_subset
mode, which collects detailed execution time break-
down for six graphs.

– Figure 9 (Balance Logging Required): This figure is
generated after recording the balance logs using the
command:

cd ../DiggerBees_master
make balance
bash run_diggerbees.sh run_balance
make balance BALANCE_POLICY=0
bash run_diggerbees.sh run_balance

All generated figures will be saved to
DiggerBees_Artifact/figures/.

A.6 Customization & Extensibility
Users can evaluate their own graph datasets by following
the steps below.
• Place the graph files (in ‘.mtx’ format) into the
‘dataset/MM/’ directory.
• Create a CSV file containing the metadata of the added
graphs. The CSV format should follow the same struc-
ture as the provided ‘dataset/benchmark_list.csv’.
• Place the new CSV file under the ‘dataset/’ directory
(e.g., ‘dataset/user_bench.csv’).
• Register the new benchmark list in ‘scripts/run_all.sh’.

Example: Consider a user who wishes to evaluate a cus-
tom benchmark defined in ‘dataset/user_bench.csv’.

First, add a new execution mode in ‘scripts/run_all.sh’:

elif ["$MODE" == "run_user_bench"]; then
input="../dataset/user_bench.csv"
echo "[INFO] Using CSV: $input"
python3 download_graphs.py "$input"

Then run the evaluation using:

$ bash run_all.sh run_user_bench

Received 2025-09-01; accepted 2025-11-10

	Abstract
	1 Introduction
	2 Background and Challenges
	2.1 Serial DFS
	2.2 Parallel DFS
	2.3 Challenges of parallel DFS on GPUs

	3 DiggerBees
	3.1 Overview
	3.2 Two-Level Stack Data Structure
	3.3 Warp-Level Workload
	3.4 Intra-Block Work Stealing
	3.5 Inter-Block Work Stealing
	3.6 An Execution Example

	4 Evaluation
	4.1 Experimental Setup
	4.2 Comparison with Existing DFS Approaches
	4.3 Comparison with GPU BFS Approaches
	4.4 Scalability Comparison with GPU DFS
	4.5 Performance Breakdown
	4.6 Block-Level Load Balance Analysis
	4.7 Sensitivity Analysis of Cutoff Selection

	5 Related Work
	6 Conclusion
	References
	A Artifact Description
	A.1 Artifact DOI
	A.2 Prerequisites
	A.3 Quick test using the Docker container
	A.4 Expected output
	A.5 Step-by-Step Instructions
	A.6 Customization & Extensibility

