DiggerBees: Depth First Search Leveraging
Hierarchical Block-Level Stealing on GPUs

Yuyao Niu
Barcelona Supercomputing Center
Barcelona, Spain
Universitat Politécnica de Catalunya
Barcelona, Spain
yuyao.niu@bsc.es

Weifeng Liu
SSSLab, Dept. of CST
China University of Petroleum-Beijing
Beijing, China
weifeng.liu@cup.edu.cn

Abstract

Depth First Search (DFS) is a fundamental graph traversal
algorithm with broad applications. While existing work-
stealing DFS approaches achieve strong performance on
CPUs, mapping them to modern GPUs faces three major
challenges: (1) limited shared memory cannot accommodate
deep stacks, (2) frequent stack operations hinder efficient
intra-block execution, and (3) irregular workloads complicate
scalable inter-block execution.

In this paper, we propose DiggerBees, a GPU-optimized
parallel DFS algorithm with hierarchical block-level stealing,
consisting of three components. First, we introduce a two-
level stack structure to mitigate shared memory limitations.
Second, we employ warp-level DFS with intra-block work
stealing to enable efficient execution within a block. Third,
we implement inter-block work stealing to achieve scalable
execution across blocks and sustain high parallelism. Exper-
imental results on the latest NVIDIA GPUs show that Dig-
gerBees outperforms existing DFS approaches, CKL-PDFS,
ACR-PDFS, and NVG-DFS, achieving average speedups of
1.37x, 1.83%, and 30.18X, respectively. Moreover, DiggerBees
even surpasses high-performance GPU BES implementations
on graphs with deep and narrow traversal paths, and scales
efficiently across GPU generations.

CCS Concepts: « Mathematics of computing — Graph
algorithms; - Computing methodologies — Parallel
algorithms.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

PPoPP 26, Sydney, NSW, Australia

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2310-0/2026/01
https://doi.org/10.1145/3774934.3786457

Yuechen Lu
SSSLab, Dept. of CST
China University of Petroleum-Beijing
Beijing, China
yuechen.lu@cup.edu.cn

Marc Casas
Barcelona Supercomputing Center
Barcelona, Spain
Universitat Politécnica de Catalunya
Barcelona, Spain
marc.casas@bsc.es

Keywords: Depth First Search, work stealing, GPU

ACM Reference Format:

Yuyao Niu, Yuechen Lu, Weifeng Liu, and Marc Casas. 2026. Dig-
gerBees: Depth First Search Leveraging Hierarchical Block-Level
Stealing on GPUs . In Proceedings gf the 31st ACM SIGPLAN An-
nual Symposium on Principles and Practice of Parallel Programming
(PPoPP °26), January 31 — February 4, 2026, Sydney, NSW, Australia.
ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/3774934.
3786457

1 Introduction

Depth First Search (DFS) traverses a graph by exploring ver-
tices along one branch as deeply as possible before backtrack-
ing, generating a valid DFS tree. As a fundamental algorithm
in graph theory [45], DFS has a wide range of applications,
including structural analysis (e.g., strongly connected compo-
nents [92]), ordering problems (e.g., topological sorting [48]),
and pattern recognition (e.g., subgraph matching [98]).
Despite DFS and Breadth First Search (BFS) being equally
essential as the two core graph traversal primitives, research
on DFS in modern GPU platforms is far less extensive than
that on BFS [35, 59, 61, 65, 70, 96, 99, 101]. One possible rea-
son is that BFS naturally exposes parallelism through its
level-synchronous exploration, where vertices at the same
level can be processed simultaneously. In contrast, DFS’s
sequential, stack-based traversal creates dependencies be-
tween successive operations, making it difficult to parallelize.
This inherent difficulty has led to a trend of “DFS-avoidance”,
where problems are reformulated to bypass DFS. While these
approaches improve parallel scalability, they typically re-
quire more complex algorithmic designs [27]. An efficient
parallel DFS primitive is therefore essential to reclaim the
efficiency and structural insights of DFS-based designs.
Nevertheless, in most application scenarios, DFS does not
require a strict lexicographic order of traversal, making un-

https://orcid.org/0000-0001-7605-525X
https://orcid.org/0009-0008-6387-8116
https://orcid.org/0000-0002-2150-5759
https://orcid.org/0000-0003-4564-2093
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3774934.3786457
https://doi.org/10.1145/3774934.3786457
https://doi.org/10.1145/3774934.3786457

PPoPP 26, January 31 - February 4, 2026, Sydney, NSW, Australia

ordered DFS a viable and valuable direction for parallelism.
This insight has motivated extensive research efforts in par-
allel DFS. Theoretical analyses have shown that parallel
unordered DFS can achieve close-to-linear work efficiency
under ideal conditions [3, 37, 54]. Several practical imple-
mentations using work stealing techniques [10] have vali-
dated these findings, showing significant performance and
scalability improvements on CPU-based multiprocessor sys-
tems [2, 19, 76]. Nonetheless, these advances largely focus
on CPUs or distributed systems, leaving the challenges of
efficient DFS on modern GPUs largely unsolved.

Implementing work-stealing DFS on GPUs faces three ma-
jor challenges: (1) the deep, unpredictable recursion of DFS
demands substantial stack space, which often exceeds the
limited capacity of a GPU’s fast on-chip shared memory, (2)
frequent stack operations lead to inefficient execution within
a thread block, as thread-private stacks cause warp diver-
gence while shared stacks incur costly atomic operations and
synchronization, and (3) irregular workloads from varying
subgraph structures hinder scalability across multiple blocks,
making it difficult to achieve efficient inter-block execution
and full GPU utilization.

To resolve the above three challenges, we in this paper
propose DiggerBees, a GPU-optimized DFS algorithm with
hierarchical block-level stealing. First, to tackle the memory
constraint, we introduce a two-level stack structure that com-
bines a small, fast stack in shared memory with a large stack
in global memory, ensuring both efficiency and capacity. Sec-
ond, to achieve efficient intra-block execution, we employ
warps as the basic execution unit, where each warp oper-
ates DFS independently, combined with intra-block work
stealing that enables idle warps to acquire work from busy
peers, ensuring all warps remain active. Third, to enable scal-
able inter-block execution, we develop inter-block stealing
that allows idle blocks to acquire work from heavily loaded
blocks, sustaining high and balanced GPU utilization.

We evaluate DiggerBees on 234 graphs from three widely
used graph collections in the SuiteSparse Matrix Collec-
tion [22] using the latest NVIDIA A100 and H100 GPUs.
The results show that DiggerBees significantly outperforms
three existing CPU and GPU baselines: CKL-PDFS [19], ACR-
PDFS [2], and NVG-DFS [69], achieving on average 1.37X,
1.83%, and 30.18% speedups (up to 6.24X, 12.44%, and 1841.68X%),
respectively. Compared with state-of-the-art GPU BFS im-
plementations Gunrock [97] and BerryBees [70], DiggerBees
delivers competitive or superior performance on represen-
tative graphs containing long and narrow traversal paths.
Furthermore, our evaluation includes the performance break-
down of DiggerBees to confirm the substantial contributions
of each proposed component to the overall speedups.

This work makes the following contributions:

e We identify and analyze three major challenges in
implementing work-stealing DFS on GPUs.

Niu et al.

e We design a two-level stack structure that maps DFS
workloads onto the GPU memory hierarchy.

e We develop a hierarchical work-stealing mechanism
tailored specifically for DFS traversal on GPUs.

e We achieve significant performance gains over existing
approaches on the latest NVIDIA GPUs.

2 Background and Challenges
2.1 Serial DFS

DFS explores a graph by advancing as far as possible along
one branch before backtracking [20]. Given a graph G =
(V,E) and a start vertex r, DFS discovers all vertices reach-
able from r and builds a DFS tree. An ordering can be derived
that reflects the sequence in which vertices are visited.

DEFS can be implemented using an explicit stack. Algo-
rithm 1 presents a serial stack-based DFS on a graph stored
in compressed sparse row (CSR) format. This algorithm out-
puts two arrays: visited, marking explored vertices, and
parent, recording the DFS tree.

Algorithm 1 A pseudocode of the serial stack-based DFS

1: visited[roort] « 1, parent[root] « —1
2: S « empty stack of (node, next_idx)
3: S.push((root, row_ptr{root]))
4: while S # 0 do
5: (u,i) « S.top()
6: if i < row_ptr[u+1] then
7: 0 « column_idx[i]
8: S.updateTop ((u,i + 1))
9: if - visited[v] then
10: visited[o] « true, parent[v] « u
11: S.push({o, row_ptr[o]))
12: end if
13: else
14: S.pop()
15: end if

16: end while

Serial DFS, with its strong dependencies and enforced
lexicographic order, is P-complete [79], making it unlikely to
admit parallel solutions. As shown in Figure 1, given input
graph (a), it produces the unique lexicographically ordered
DFS tree (b) with traversala > b —-d - e —» ¢ — f.

2.2 Parallel DFS

(a) Input graph | |(b) Lex-Ordered DFS tree| | (c) Non-Lex DFS tree

SRS %

o | @ @

Figure 1. A DFS traversal example on graph (a). Serial DFS
produces the lexicographically ordered DFS tree (b), while
parallel DFS generates a valid but non-lexicographic tree (c).

DiggerBees: Depth First Search Leveraging Hierarchical Block-Level Stealing on GPUs PPoPP ’26, January 31 - February 4, 2026, Sydney, NSW, Australia

Parallel DFS relaxes the constraints and constructs a valid
DFS tree without enforcing lexicographic order [4].

Algorithm 2 A pseudocode of the parallel DFS

1: S; « Local stack of processor P; > issue #1: Limited SMEM for stacks
2: while not terminated do
3: while S; # 0 do
4: Execute DFS on S; > issue #2: Inefficient intra-block execution
5: end while
6 Steal work from other processors

> issue #3: Poor inter-block scalability and balance

7: Termination Check
8: end while

A common strategy for parallel DFS is work stealing.
Rao and Kumar [54, 76] were among the first to apply it to
CPU-based shared memory multiprocessors. Algorithm 2
illustrates the high-level structure of their implementation.

In this approach, each processor maintains a local stack S;
(line 1 in Algorithm 2), and repeatedly checks: while S; is not
empty, it executes DFS on S; (lines 3-5). Once S; becomes
empty, it attempts to steal work from neighboring processors
(line 6). The algorithm continues until the termination is met,
i.e., all processors have empty stacks. Figure 1(c) shows an
example of the result of such parallel DFS: one processor
traverses a — b — d, while the other explores ¢ — e — f.

2.3 Challenges of parallel DFS on GPUs

While work-stealing DFS achieves good parallelism on CPU-
based multiprocessors [2, 19, 54, 76], mapping such a strategy
to GPUs is non-trivial. There are three major issues (high-
lighted in lines 1, 4, and 6 of Algorithm 2, respectively).
The first issue (line 1) is that GPUs provide limited on-
chip shared memory (typically tens to a few hundred KB
per streaming multiprocessor (SM)). In contrast, DFS may
require stacks as deep as the longest path in the graph. For
example, road-network graphs contain paths with tens of
thousands of vertices, demanding megabytes of stack space.
Thus, it is hard to keep the whole stack in shared memory.
The second issue (line 4) is that even when stacks fit in
the shared memory of a thread block, DFS performs frequent
push and pop operations, which creates problematic control
flow: thread-private stacks cause warp divergence as threads
follow different execution paths, while stacks shared within a
block require costly atomic operations and synchronization.
Thus, it is hard to achieve efficient intra-block execution.
The third issue (line 6) is that the GPU’s massive paral-
lelism is not fully utilized. To saturate resources, execution
must extend from single- to multi-block so that more SMs
and blocks become active. However, this requires costly inter-
block communication, and irregular DFS workloads further
complicate balanced distribution. Thus, it is hard to achieve
scalable inter-block execution while ensuring load balance.

3 DiggerBees
3.1 Overview

To resolve the above three challenges, we propose Digger-
Bees, a GPU-optimized DFS algorithm. DiggerBees addresses
each challenge through three key components:

(i) Data structure (Section 3.2): To overcome shared mem-
ory limits (issue #1), DiggerBees introduces a two-level stack
consisting of a fast HotRing in shared memory and a large
ColdSeg in global memory. This structure leverages the GPU
memory hierarchy to provide low-latency access for frequent
operations and sufficient capacity for deep traversals.

(ii) Intra-block execution (Sections 3.3 and 3.4): To achieve
efficient intra-block execution (issue #2), DiggerBees com-
bines two techniques: (1) warp-level workload, where each
warp operates DFS independently, eliminating warp diver-
gence and synchronization, and (2) intra-block stealing, which
enables idle warps to acquire work from busy peers, ensuring
all warps within a block participate actively.

(iii) Inter-block execution (Section 3.5): To achieve scalable
multi-block execution while ensuring load balance (issue
#3), DiggerBees implements inter-block work stealing. Idle
blocks can steal work from heavily loaded blocks, enabling
dynamic load redistribution across the GPU. This design
sustains high parallelism by keeping more SMs and blocks
active throughout execution.

Together, these components form a hierarchical block-
level stealing framework, enabling DiggerBees to achieve
efficient and scalable DFS on GPUs. Section 3.6 then presents
a concrete example illustrating how these techniques are
integrated in practice.

3.2 Two-Level Stack Data Structure

The two-level stack is composed of (1) a small, low-latency
HotRing and (2) a large, high-capacity ColdSeg. Figure 2 il-
lustrates the structure and its four core operations.

HotRing. The HotRing is a circular buffer in shared mem-
ory serving as the fast-access portion of the stack. Each
stack entry is organized as a (vertex|of fset) pair, where
of fset points to the next neighbor to visit. We store them
in two arrays, hot_vertex and hot_offset, each with size
hot_size. Its state is tracked by two pointers: head for the
next free slot and tail for the oldest unprocessed entry. The
HotRing is empty when head = tail, and full when (head +
1)%hot_size = tail. Figure 2(a) illustrates this structure with
a size-4 example. In our implementation, hot_size = 128.

ColdSeg. The ColdSeg is a contiguous region in global
memory that serves as the large-capacity portion of the
stack. Each ColdSeg includes two arrays: cold_vertex and
cold_offset, each with size cold_size = n,/n.,,, where n, is
the number of vertices and n,, is the total number of warps.
Its state is also tracked by two pointers: top and bottom,
and it is empty when top = bottom. Figure 2(b) illustrates a
ColdSeg example with six entries.

PPoPP 26, January 31 - February 4, 2026, Sydney, NSW, Australia

(a) HotRing (b) ColdSeg
5
in shared 1 2 3‘ in global
memory 3 % memory
0

(c) Fast push operation A+
head=(head+1)%hot_size

(d) Fast pop operation v -
head=(head+hot_size—1)%hot_size

3(:) 3(:] 3[®!—1]head—x’i[i'%iil'i?i]
tail—2 .]Lail;»Zl .) 2(]_2[
4
1)

)
I T
tail—1(] tail1()
head—0[:77277) o777
+(@[i),head =0 — 1,tail =2 v-([@I-1), head =0 — 3, tail =1

(head+1)% (e) Flush operation
hot_size==tail/tail=(tail+batch)%hot_size, top=top+batch

3@3 4 3 | oo
tail—»Z@B)\p 2 NG
head—1[Z277 f 2e1toP head— ? @li

0 0[__J-bottomail—0 0 J—bottom

n
o

head =1, tail =2 — 0, top = 2 — 4, bottom

(f) Refill operation
head=(head+batch)%hot_size, top=top-batch
oo OP head g7 0Lz

head==tail
EMPTY!

tail—1 @l i
—bottom —

1 —bottom

head =1 — 3, tail=1, top =5 — 3, bottom = 1

Figure 2. An example of the two-level stack structure and its
four core operations. Subfigure (a) shows the circular HotRing
in shared memory, while (b) shows the linear ColdSeg in
global memory. Subfigures (c) and (d) show the fast push
and pop operations in the HotRing. Subfigures (e) and (f)
illustrate the interaction between HotRing and ColdSeg.

Core Operations. This two-level stack supports four core
operations: (1) fast push and (2) fast pop in the HotRing, and
(3) flush and (4) refill between the HotRing and the ColdSeg.

Figure 2(c) shows the fast push operation. A new entry
is inserted into the HotRing at the head position, then head
is updated as (head + 1)%hot_size. The example shows that
(ali) is pushed at head = 0, with head updated to 0 + 1 = 1.

Figure 2(d) shows the fast pop operation. The top entry
is retrieved by decrementing head to (head + hot_size —
1)%hot_size. The popped entry has of fset = —1, indicating
the vertex has no unvisited neighbors. For example, entry

{a| — 1) is popped and head is updated to (0 + 4 — 1)%4 = 3.

Figure 2(e) shows the flush operation. When the HotRing
is full, i.e., (head + 1)%hot_size = tail, a batch of the oldest
entries is moved to the ColdSeg. With batch_size = 2, entries
(aliy and (b|j) starting from tail = 2 are moved to positions
[2, 3] in ColdSeg. After the transfer, tail is updated to (2 +
2)%4 =0and topto2+2 =4.

Niu et al.

Figure 2(f) shows the refill operation. When the HotRing
is empty, i.e., head = tail, a batch is refilled from the ColdSeg.
In the example, entries (ali) and (b|j) at [3, 4] in the ColdSeg
are copied to the HotRing starting at tail = 1. After that, head
is updated to (1 + 2)%4 = 3 and top to 5 — 2 = 3.

3.3 Warp-Level Workload

In DiggerBees, the warp is the fundamental unit of execu-
tion and stack ownership. Each warp performs DFS indepen-
dently on its own HotRing, with all 32 threads in a warp fol-
lowing the same path, thereby eliminating warp divergence.
The traversal procedure follows the standard stack-based
DFS, requiring only lightweight warp-level synchronization.
The only global synchronization required is vertex-access
control using atomicCAS on the visited array to prevent
multiple warps from processing the same vertex.

A key feature of our warp-level DFS is its management
of the finite HotRing capacity. When a push operation finds
the HotRing is full, a batch of entries is flushed to the Cold-
Seg to free space for the new entry. Conversely, when the
HotRing becomes empty, a batch of entries is refilled from
the ColdSeg. We optimize flush and refill using asynchronous
copy. Contiguous batches in the HotRing are handled with
specialized instructions: cp_async_bulk for flush operations
and cuda: :memcpy_async with Tensor Memory Accelerator
(TMA) for refill operations. Our evaluation on the H100 GPU
indicates this TMA-driven approach yields an approximately
5% performance improvement.

We choose to flush entries starting from the tail position
for two reasons: (1) to preserve recently added entries near
the head, thereby improving locality for ongoing DFS tra-
versal, and (2) to prioritize older entries for flushing, as they
typically correspond to larger unexplored branches and are
better candidates for subsequent hierarchical work stealing.

3.4 Intra-Block Work Stealing

To ensure all warps within a block participate actively in DFS
execution, we introduce intra-block work stealing, which
operates in shared memory within a block and allows idle
warps to acquire work from heavily loaded peers.

The intra-block work-stealing mechanism contains three
steps: (1) victim selection, (2) work reservation, and (3) local
transfer. Figure 3(a) illustrates an example of this process,
and Algorithm 3 provides its pseudocode implementation.

In the first step, an idle warp, defined as having both
HotRing and ColdSeg empty, acts as a “thief” and scans
peers within the same thread block to identify a suitable
“victim”. The remaining tasks in each warp’s HotRing are
computed as hot_rest = (head — tail + hot_size)%hot_size.
To avoid excessive fine-grained stealing, we introduce a
threshold hot_cutoff. A warp is deemed a valid victim only
if its hot_rest is the maximum among all warps and ex-
ceeds hot_cutoff (lines 4-10 in Algorithm 3). As illustrated
in Figure 3(a), both Warp1 and Warp2 are idle. Warp0 has

DiggerBees: Depth First Search Leveraging Hierarchical Block-Level Stealing on GPUs PPoPP ’26, January 31 - February 4, 2026, Sydney, NSW, Australia

(a) Intra-block work stealing operation

(b) Inter-block work stealing operation

{'Warp0, active : { WarpT,idle "} { Warp2,idie "}
rest(H0)=2 CO | irest(H1)=0 C1 | | rest(H2)=0/C2 |
HO H1 H2]

100

Block0, mask: 111

Block0, mask:

{ Warp0, active } {
irest(C0)=0CO '
| HO

Warp1, active
rest(C1)=4 C1
HA1

Warp2, active
rest(C2)=2C2
H2

steal, hot_rest(R0)=2—success! atomicCAS RO(t=01
step@® HO<———T&HI1 H2
steal, hot_rest(R0)=2-1=1<2—fail!

-«

i Warp2, idle
c2 |
s
s

Block0, mask: 111

T | |Blocko, mask: 110

/ C non-empty HotRing/ColdSeg

empty HotRing/ColdSeg hot/cold_rest(): remaining entries in HotRing/ColdSeg mask 1/0: warp active/idle

Figure 3. An example of the intra-block and inter-block stealing operations. Subfigure (a) illustrates the three-step process of
an intra-block stealing operation and the states of the warps before and after. Two idle warps (Warp1 and Warp2) attempt
to steal work from the HotRing of the active warp (Warp0) within the same block, and only Warp1 succeeds. Subfigure (b)
illustrates a four-step inter-block stealing process. The leader warp (Warp3) of idle Block1 selects Block0 as the victim block
and steals work from the ColdSeg of Warp1 in Block0, successfully acquiring tasks and becoming active.

Algorithm 3 Intra-block Work Stealing (Executed by each
idle warp within a block)

1: Input: head, tail, HotRing arrays for all warps in the block
2: hot_cutoff « threshold for HotRing depth
3: if warp wis idle then

4: max_rest « 0,0 < -1 > Step 1: Victim selection

5 for each warp i in the block do

6: hot_rest «(head[i] - tail[i] + hot_size)%hot_size

7: if hot_rest > max_rest then

8 max_rest « hot_rest, v « i

9: end if
10: end for
11: if v # —1 and max_rest > hot_cutoff then
12: h_s « hot_cutoff /2 > Step 2: Work reservation
13: old_tail « tail[v]
14: new_tail < (old_tail + h_s)%hot_size
15: if atomicCAS(tail[v], old_tail, new_tail) == old_tail then
16: threadfence_block() > Step 3: Local transfer
17: Copy h_s entry pairs from HotRing[v] to HotRing[w]
18: head[w] « (head[w] + h_s)%hot_size
19: Mark warp w as active
20: end if
21: end if
22: end if

hot_rest = 2, while Warp1l and Warp2 have hot_rest = 0.

Since Warp0 has the maximum hot_rest and satisfies the
threshold condition hot_rest > hot_cutoff = 2, both Warp1
and Warp2 select it as the victim. In our evaluation, we set

hot_cutoff = 32.

In the second step, the thief warp must reserve the work
from the victim. To avoid conflicts, the victim warp always
operates at the head of its HotRing, while thieves target the
tail. An atomicCAS operation on the victim’s tail ensures
that only one warp can successfully claim this specific work
batch. If it succeeds, the thief reserves a batch of hot_cutoff /2
entries and updates the victim’s tail (line 14). Otherwise, it
aborts and may select a new victim. In Figure 3(a), both
Warp1 and Warp2 attempt to reserve work from Warp0 with
competing atomicCAS operations. Warp1 succeeds, reserv-
ing one entry and updating Warp0’s tail to 1. Thus, Warp0’s
rest becomes 2—1 = 1. Warp2 observes that Warp0 no longer
satisfies rest > 2 and retries the victim selection process.

In the third step, after successfully reserving work, the
thief warp issues threadfence_block() to ensure that the
victim’s updated tail is visible within the block. It then copies
the reserved batch from the victim’s HotRing into its own
HotRing (line 17 in Algorithm 3). Next, the thief warp up-
dates its head and becomes active (lines 18-19), allowing it
to immediately resume DFS traversal. In the example, Warp1
copies an entry (a|1) from Warp0 into its own HotRing, up-
dates its head to 0 + 1 = 1, and becomes active.

We coordinate state changes with a 32-bit mask in shared
memory, where each bit indicates whether a warp is active
(1) or idle (0). Active warps perform DFS while idle warps

PPoPP 26, January 31 - February 4, 2026, Sydney, NSW, Australia

attempt to steal. As shown in Figure 3(a), when Warp1 steals
work from Warp0, the mask is updated from ‘100’ to ‘110”.
Through dynamically redistributing the workloads among
warps, this intra-block work stealing keeps warps in a block
as active as possible, achieving high productivity at the intra-

block level.

3.5 Inter-Block Work Stealing

To fully leverage GPU’s massive parallelism, DiggerBees
scales from single-block to multi-block execution, activating
more SMs and blocks across the GPU. However, extending
DFS execution to multiple blocks introduces new challenges:
(1) how to manage the global communication overhead com-
pared to intra-block operations in shared memory, and (2)
how to achieve balanced workload distribution across blocks
when facing irregular DFS workloads.

Algorithm 4 A pseudocode of the inter-block stealing (Exe-
cuted by the leader warp of each idle block)

1: Input: top, bottom, ColdSeg arrays for all warps of all blocks
2: head, tail, HotRing arrays of idle block
3: cold_cutoff « the threshold of ColdSeg length
4: nB « the total number of blocks
5: if the block b is idle then
6: w « the leader warp of block b > Step1: Victim block selection
7: Randomly select two active blocks vy, v, € [0,nB), v; # b
8: vb « block with higher cumulative workload among {v;, v }
9: max_cold « 0,ow «— —1 > Step2: Victim warp selection
10: for each warp i in block vb do
11: cold_rest « top[i] - bottom[i]
12: if cold_rest > max_cold then
13: max_cold « cold_rest, ow « i
14: end if
15: end for
16: if ow # —1 and max_cold > cold_cutoff then
17: c_s « cold_cutoff /2 > Step3: Work reservation
18: old_bt « bottom[ow]
19: new_bt «— old_bt +c_s
20: if CAS(bottom[ow], old_bt, new_bt) succeeds then
21: threadfence() > Step4: Remote transfer
22: Copy c_s entry pairs: ColdSeg|vw] — HotRing[w]
23: head[w] « (head[w] + c_s)%hot_size
24: Mark w, b as active
25: end if
26: end if
27: end if

We develop an inter-block work-stealing mechanism that
enables idle blocks to acquire work from loaded blocks,
which proceeds in four steps: (1) victim block selection, (2)
victim warp selection, (3) work reservation, and (4) remote
transfer. To address challenge (1), we designate a single leader
warp per block for all inter-block communications; for chal-
lenge (2), we adopt a two-choice load-aware victim selection
strategy. Figure 3(b) illustrates this process, and Algorithm 4
provides the implementation details.

In the first step, the leader warp identifies a victim block.
Instead of scanning all blocks, we adopt a power-of-two

Niu et al.

choices [68] with a load-aware selection strategy: the leader
warp samples two active blocks randomly and selects the
one with heavier workload as the victim (lines 6-8 in Algo-
rithm 4). This approach balances discovery efficiency with
load-balancing effectiveness. As shown in Figure 3(b), the
leader warp Warp3 of idle Block1 selects Block0 as the victim.

In the second step, the leader warp selects the warp in
the victim block with the maximum remaining entries in
its ColdSeg, computed as cold_rest = top — bottom (lines 9-
15 in Algorithm 4). A warp qualifies as the victim only if
its cold_rest exceeds cold_cutoff. In Figure 3(b), in Blocko,
Warp1 has cold_rest = 4, while Warp2 has cold_rest = 2.
Thus, Warp3 selects Warp1 as the victim since it satisfies
the condition cold_rest > cold_cutoff = 4 in this example.
In our real evaluation, we set cold_cutoff = 64.

In the third step, the leader warp must reserve work from
the victim warp’s ColdSeg. To handle contention when mul-
tiple blocks compete for the same victim, the leader warp
attempts to reserve a batch of cold_cutoff /2 entries by per-
forming an atomicCAS operation on the victim’s bottom
pointer (lines 17-19 in Algorithm 4). In the example, Warp3
updates Warp1’s bottom from 0 to 2, reserving two entries
and reducing Warp1’s cold_rest to4 —2 = 2.

In the last step, the leader warp issues a threadfence()
(line 21 in Algorithm 4) to ensure global memory consis-
tency. It then copies the reserved entries from the victim’s
ColdSeg to its HotRing (line 22) using asynchronous copy
(cuda: :memcpy_async) for efficiency. As shown in Figure 3(b),
Warp3 copies two entries (a|2) and (c|1) from Warp1’s Cold-
Seg into its HotRing and updates its head to 0 + 2 = 2.

Together with intra-block execution, these two mecha-
nisms form our hierarchical block-level stealing that enables
DiggerBees to scale DFS across the GPU’s parallelism.

3.6 An Execution Example

Figure 4 presents an execution example that shows the com-
plete workflow of DiggerBees on a graph. The top subfigures
show a 10-step DFS tree construction process. The example
uses a two-block configuration with three warps per block
(Warp0-Warp2 in Block0, Warp3-Warp5 in Block1). Differ-
ent colored regions indicate subtrees explored by different
warps. The detailed breakdown for Steps 6—-termination on
the bottom highlights the collaboration of our intra-block
and inter-block execution.

The process begins with initialization, where the root
vertex a is pushed into Warp0’s HotRing. Then Warp0 starts
the warp-level DFS. As the traversal progresses and Warp0’s
HotRing accumulates more entries, Warp1l and Warp2 begin
stealing from Warp0 using the intra-block work stealing.
This process expands parallelism from a single active warp
to multiple cooperating warps within the block. As shown
in Figure 4, by Step6, three warps in Block0 are actively
working on different subtrees, while Block1 remains idle.

The critical transition occurs when Block0 becomes heav-

DiggerBees: Depth First Search Leveraging Hierarchical Block-Level Stealing on GPUs PPoPP ’26, January 31 - February 4, 2026, Sydney, NSW, Australia

Sl

(xé) “@ § %) A+@ [0}
0 [ColdSeg3] [ColdSeg4] [ColdSegs]| @ [ColdSeg3] [ColdSeg4] [ColdSegs| [coldsega| [coldseg4] [Coldsegs|
Warp3 Warp4 Warp5 Warp3 Warp4 Warp5 Warp3 Warp4 Warp5

HotRing3 pushes entry }) :
HotRing4 & HotRing5 steal from HotRing3 S:ItrI;lng3 & HotRing4 & HotRingS pop

HotRing4 & HotRing5 push entry

Block1

HotRing3 steals from ColdSeg1l
HotRing3 pushes entry

: Detailed Breakdown of Steps 6-Termination WarpO0 Warpl Warp2 Warp3 Warp4 Warp5
| HotRing0 & HotRing2 pop entry HotRing0 & HotRing2 push visited HotRing1 & HotRing2 pop entry |
HotRing1 flushes entries to ColdSegl entry, skip 1
! HotRing1 pushes entry HotRing1 pops entry]
! Z0) o) 20} o &) o @ “® |
! o [HotRing0] [HotRing1] [HotRing2) o [HotRingd] [HotRing1) [HotRing2) o [HotRing0] [HotRing1] [HotRing2)
I S < < =|
S [ushE) 8 8 Si
: o |Co|dSegO| |CoIdSegl\ \ColdSegZ\ o |Co|dSego| ICoIdSegll |CoIdSeg2| o |COIdSeg0| |CoIdSegl| |Co|dSeg2| '.=|
I‘g- Warp0 Warpl 'E_ 08_ Warp0 Warpl Warp2 g|
|8 A g] 2
|UJ 14 (7] ~ h | n =
(HotRing3) (HotRing4) (HotRing5) (HotRing3) (HotRing4) (HotRing5) (HotRing3] (HotRing4] (HotRing5) o,
I v-@ v-@ v-© =
I
|
|
|
I

Figure 4. An example of the complete execution flow of DiggerBees. The top part shows the 10-step DFS tree construction
from root initialization (Step1) to the final output, where different colored regions indicate the subtrees explored by different
warps. The figure omits the final pop-only steps, as they do not affect the DFS tree structure. The bottom shows a detailed
breakdown of warp operations from Step6 to Termination. Each block maintains three warps with their two-level stack
structure, illustrating how warps and blocks collaborate to sustain parallel execution.

ily loaded while Block1 remains idle. At this point, inter- Table 1. The three platforms and five evaluated methods.

block work stealing is triggered. As detailed in the bottom

breakdown of Figure 4, after Warp1’s HotRing1 flushes two Hardware Method Type
entries to ColdS.eg.I, Block1’s leader warp Warp3 identifies Intel Xeon Max 9462 CPU, (1)CKL-PDFS [19] DFS
Block0 as the victim block and targets ColdSeg1 for work 2x32 cores, 2x64GB HBM, (2) ACR-PDFS [2] DFS
acquisition. In Step7, Warp3 successfully steals entries from B/W 1 TB/s

ColdSeg1 and transfers them to its own HotRing3, enabling A100 (Ampere) PCle GPU (3) NVG-DFS [69] DFS
Block1 to join the parallel DFS exploration. 108 SMs, 6912 CUDA cores (4) Gunrock [97] BFS

Once Warp3 begins processing its work, the intra-block 80 GB, B/W 1.94 TB/s / BerryBees [70]
work stealing within Block1 is activated. Warp4 and Warp5 H100 (Hopper) SXM5 GPU (5) DiggerBees DFS
132 SMs, 16896 CUDA cores (this work)

sequentially steal from Warp3’s HotRing3 and join the DFS
exploration during Steps 7-8. By Step8, all six warps across
both blocks are actively participating in the parallel traversal,
achieving near-optimal GPU utilization.

The execution flow continues until all blocks become idle.
At this point, the traversal reaches global termination. In

64 GB, B/W 2.02 TB/s

4 Evaluation
4.1 Experimental Setup

the final state of Figure 4, the last active warps pop their re-
maining entries from HotRings, resulting in empty stacks and
termination. The effectiveness of load balancing is evident
from the final workload distribution: each warp processes
a relatively balanced number of vertices (Warp0: 5 vertices,
Warpl: 5 vertices, Warp2: 3 vertices in Block0; Warp3: 3
vertices, Warp4: 3 vertices, Warp5: 3 vertices in Block1).

Our experimental platform includes one CPU and two GPUs.
The CPU platform is equipped with a 64-core Intel Xeon Max
9462 processor. We use two NVIDIA GPUs: an A100 GPU
(Ampere architecture) and an H100 GPU (Hopper architec-
ture). All experiments are conducted under Ubuntu 22.04
with CUDA 12.8.

We compare DiggerBees against three DFS implemen-

PPoPP 26, January 31 - February 4, 2026, Sydney, NSW, Australia

Table 2. Output semantics of different traversal algorithms.

Method visited DFS Tree Lex- Level
Order

CKL-PDFS v N/A N/A N/A
ACR-PDFS v N/A N/A N/A
NVG-DFS v v Ordered N/A
Gunrock/BerryBees v N/A N/A v
DiggerBees (this v v Unordered N/A
work)

Table 3. Descriptions of three group collections.

Group Count Description

DIMACS10 151 Benchmark graphs from the 10th DIMACS Im-
plementation Challenge, covering clustering,

numerical simulation, and road networks.

SNAP [106] 68 Real-world networks from the Stanford Net-
work Analysis Platform, including social, cita-

tion, and web graphs.

LAW [11, 15 Large-scale web graphs from the Laboratory
12] for Web Algorithmics, based on real web crawls
and compressed via WebGraph.

tations: CKL-PDFS [19] and ACR-PDFS [2] on CPUs, and
NVG-DFS [69] on GPUs. To the best of our knowledge, these
methods represent all publicly available parallel DFS imple-
mentations with accessible or reproducible code’. Besides,
we compare with two GPU BFS methods: Gunrock [97], a
widely used graph processing framework and BerryBees [70],
a recent high-performance BFS algorithm. Table 1 lists the
specifications of our experimental setup.

It is worth noting that different algorithms produce dif-
ferent outputs. To ensure fair comparison, we evaluate each
method using its native output semantics. Table 2 summa-
rizes the output semantics of each method.

CKL-PDFS and ACR-PDFS: These two CPU implemen-
tations report only reachability information (the visited
array) without constructing a DFS tree.

NVG-DFS: This method employs a three-phase BFS-style
algorithm to construct a lexicographic DFS ordering. We
evaluate only the tree construction phase.

Gunrock and BerryBees: These two BFS baselines out-
put reachability and level information. For our purpose, we
consider only the visited array.

DiggerBees (this work): Our method produces the stan-
dard parallel DFS result: the visited and parent arrays,
representing a valid DFS tree.

As for the dataset, we evaluate all 234 graphs from three
widely used graph collections, DIMACS10, SNAP [106], and

'We contacted the authors and confirmed that no official GPU implementa-
tion of NVG-DFS is publicly available. We reimplemented the path-based
algorithm on GPU based on the paper’s description and successfully repro-
duced the expected performance reported in the paper.

Niu et al.

CKL-PDFS a
= ACR-PDFS .

NVG-DFS
DiggerBees (this work)

(log scale)

Performance (MTEPS)

Speedup

Speedup Speedup
vs NVG-DFS vs ACR-PDFS vs CKL-PDFS

3 4 5 6 7 8 9
#Edges (log scale)

Figure 5. Performance comparison of DiggerBees with three

state-of-the-art DFS methods on the H100 GPU, including

two CPU implementations (CKL-PDFS and ACR-PDFS) and

one GPU implementation (NVG-DFS). The top subplot shows

the traversal performance, while the bottom three subplots
report the speedup of DiggerBees over each baseline.

LAW [11, 12] available in the SuiteSparse Matrix Collec-
tion [22]. Specifically, our dataset includes 151 graphs from
DIMACS10, 68 from SNAP, and 15 from LAW. The descrip-
tions are summarized in Table 3. The graphs in our dataset
require between 0.08 MB and 43.61 GB of GPU memory in
CSR format. In addition, we select 12 representative graphs
for detailed analysis, as listed in Table 4.

For fair comparison across all methods, we use 64 input
vertices from the GAP benchmark suite [7] and report aver-
age performance as the ratio of traversed edges to runtime.

4.2 Comparison with Existing DFS Approaches

We evaluate the performance of DiggerBees against three
existing DFS methods: CKL-PDFS and ACR-PDFS running
on an Intel CPU, and NVG-DFS running on the H100 GPU
across all 234 graphs of our dataset. Figure 5 presents the
performance comparison of these four methods, measured
in million traversed edges per second (MTEPS). The top
subfigure shows the performance of each method, while the
bottom three subfigures present the speedup of DiggerBees
over each baseline.

As shown in Figure 5, DiggerBees outperforms all other
DFS implementations on the majority of graphs. Compared

DiggerBees: Depth First Search Leveraging Hierarchical Block-Level Stealing on GPUs PPoPP ’26, January 31 - February 4, 2026, Sydney, NSW, Australia

[CKL-PDFS I ACR-PDFS [NVG-DFS [Best BFS (Gunrock/BerryBees) Il DiggerBees (this work)
8 _ 104 1] DIMACS10 SNAP 'HITAW _ .
£ 102 3 3 RS e N F: 5
& o = =
=] =) -) -
del... rgg... hug... ljo hol

Figure 6. Performance comparison of four DFS methods and the best BFS baseline (the better-performing result between
Gunrock and BerryBees) across 12 representative graphs from three groups on the H100 GPU.

with the two CPU implementations, DiggerBees achieves an
average speedup (geometric mean) of 1.37x and 1.83X over
CKL-PDFS and ACR-PDFS, respectively. It is important to
note that this gain is achieved even though DiggerBees per-
forms more work by constructing a full DFS tree (visited +
parent), whereas the CPU baselines only output reachability
(visited). The highest speedups are observed on ‘hugebub-
bles’ (vs. CKL-PDFS) and ‘euro_osm’ (vs. ACR-PDFS), where
DiggerBees outperforms the CPU baselines by 6.24x and
12.44x, respectively. This performance advantage primarily
comes from the high parallelism offered by modern GPUs,
enabling thousands of concurrent DFS execution compared
to the limited parallelism of the 64-core CPU implementa-
tions, enabling DiggerBees to achieve favorable performance
on large-scale graphs.

DiggerBees achieves significantly better performance than
the GPU-based NVG-DFS, with an average speedup of 30.18x
and over 1000X on graphs such as ‘higgs-twitter’ (1841.68x)
and ‘soc-Pokec’ (1075.21%). This performance gap stems
from output semantics: NVG-DFS enforces strict lexicographic
DFS ordering, whereas DiggerBees generates a valid DFS
tree without such constraints. In practice, many graph appli-
cations require only the tree structure (e.g., cycle detection
or topological sorting), so strict ordering offers little bene-
fit. Moreover, NVG-DFS incurs high memory overhead due
to its path-tracking design, failing on 44 out of 234 graphs.
In contrast, DiggerBees successfully processes all graphs,
demonstrating robustness for large-scale workloads.

4.3 Comparison with GPU BFS Approaches

To provide an exhaustive evaluation, we compare Digger-
Bees with high-performance GPU BFS algorithms. We select
two representative BFS methods: Gunrock and BerryBees.
Although BFS and DFS solve different problems, compar-
ing their reachability performance provides useful insights
into the effectiveness of our approach. Figure 6 shows the
results on 12 representative graphs. For each graph, we re-
port the performance of the three DFS baselines, the better-
performing BFS method ("Best BFS"), and DiggerBees.
Surprisingly, our DiggerBees outperforms the BFS imple-
mentations on several graphs. This is particularly notewor-
thy given that BES is typically more GPU-friendly due to its

Table 4. Detailed information of 12 representative graphs.

Group Graph 4] |E| Graph V] |E|
euro_osm 50.9M 108.1M delaunay 16.8M 100.7M
rgg 16.8M 265.1M hugebubble 21.2M 63.6M
DIMACS10 auto 0.4M 6.6M citation 0.3M 2.3M
12010 0.5M 2.2M
SNAP amazon 03M 12M google 09M 5.1M

wiki 1.8M 28.6M

LAW ljournal 54M 79.0M hollywood 1.1M 113.9M

level-parallel nature. Our advantage is especially evident on
road network graphs (e.g., ‘euro_osm’) and certain mesh-like
graphs (e.g., ‘hugebubbles’ and ‘delaunay’). These graphs
contain long and narrow traversal paths that require tens of
thousands of levels in BFS (e.g., ‘euro_osm’ requires 17,346
levels). In contrast, DiggerBees leverages hierarchical block-
level work stealing to distribute these deep paths across
warps, achieving high efficiency. On ‘euro_osm’, for instance,
DiggerBees achieves a 12.12X speedup over the Best BFS.

On the other hand, on some social network graphs like
‘Tljournal’ from LAW, BFS completes in only 10 levels, allow-
ing it to process a large number of vertices in parallel at each
level. DFS traversal on such graphs, however, involves many
short paths with frequent backtracking and limited parallel
expansion, resulting in low warp occupancy. On ‘ljournal’,
DiggerBees is 3.70x slower than BFS.

Nonetheless, our results demonstrate that DFS should no
longer be considered a weak competitor on GPUs. With care-
ful hierarchical task distribution, DiggerBees not only nar-
rows the traditional performance gap but, on graphs contain-
ing long and narrow paths, even surpasses state-of-the-art
BFS implementations.

4.4 Scalability Comparison with GPU DFS

To evaluate the scalability of our approach, we compare the
performance of DiggerBees and NVG-DFS on both A100 and
H100 GPUs across 234 graphs. Figure 7 shows this compari-
son. The top subfigure shows the performance, with fitted
trend lines to visualize overall performance growth from
A100 to H100. The bottom two subplots report scalability as

PPoPP 26, January 31 - February 4, 2026, Sydney, NSW, Australia

NVG-DFS (A100)
—— NVG-DFS (H100)

DiggerBees (A100)
—e— DiggerBees (H100)

—_~ 4-
Q
© 4
g3’
CV)
mg’ 2 1
E=]
eh
—
GJ& 0
TE
= 14
QLZ2 ;
D|‘6 o e
U — on s0vas gl SO G M oo |
S ®© o e
zR : : —
%]
$22
Q=
ggl- 77777 . ~~mmw. "wfi.‘OO °
©
(*)]
28 ; ; i ; ;

3 4 5 6 7 8 9
#Edges (log scale)

Figure 7. Scalability comparison of DiggerBees and NVG-
DFS on A100 and H100 GPUs. The top subplot shows the
performance with fitted trends. The bottom two subplots
report scalability as the performance ratio (H100/A100).

the performance ratio (H100/A100) for each method.

As shown in Figure 7, DiggerBees consistently outper-
forms NVG-DFS on both A100 and H100 GPUs. In addition,
the performance gain from A100 to H100 is more pronounced
for DiggerBees. Specifically, the geometric mean of the H100-
to-A100 speedup is 1.33% for DiggerBees, compared to only
1.18% for NVG-DFS. This scalability advantage stems from
DiggerBees’ ability to effectively utilize the increased com-
pute resources of the H100 GPU. The H100 GPU provides 132
SMs compared to 108 SMs in the A100 GPU (a 22.2% increase),
and DiggerBees achieves a performance improvement that
closely matches this hardware scaling. This demonstrates
that DiggerBees scales naturally with increased SM count,
fully exploiting the enhanced parallelism of modern GPU
generations.

4.5 Performance Breakdown

To better understand the contributions of our design, we con-
duct a breakdown analysis with four progressive versions of
DiggerBees: (v1) a one-level stack and intra-block execution,
(v2) a two-level stack and intra-block execution, (v3) a two-
level stack with 66 blocks and both intra- and inter-block
stealing, and (v4) the full implementation with 132 blocks
(one block per SM on H100). Figure 8 reports the results on
six representative graphs.

The transition from v1 to v2 demonstrates the effective-
ness of our two-level stack design. By leveraging the GPU
memory hierarchy with hot entries in shared memory, Dig-
gerBees achieves low-latency stack access. As a result, v2

Niu et al.

[vi: 1-lvl stack-1 BlockIntra
_ 3 v2: 2-lvl stack-1 Block-Intra

[v3: 2-lvl stack-66 Blocks:Intra+Inter
I v4: 2-lvl stack-132 Blocks:Intra+Inter

g hugebubbles
W x10° _euro_osm x10° delaunay x10°
[- - I.77% 5 1.823% 2= - 1.67%
22— P 25.00x 1 T 26.2ax

o |- -

ol ol ol

©c vl v2 v3 v4 vl v2 v3 v4 vl v2 v3 v4
£ x10> amazon x10° google x10° ljournal

o [9.92x1.02% _ [2R o T T
2| oA S Wl o s
o

0+ 0+ 0

Figure 8. Performance breakdown of four versions of Dig-
gerBees across six representative graphs on the H100 GPU.

Y min A max
euro_osm delaunay hugebubbles

145 105 10°
? Varg0.54 Var.=0.28 Var.§0.36 Var.=0.17 104 Varg0.50 Var.=0.33
8 Baseline DiggerBees Baseline DiggerBees Baseline DiggerBees
_(Q amazon google ljournal
0104 104 10°
g —— ——

10 102

00 Var.=0.72 100 Var.32.14 Var.=0.52 | 104| Var®0.41 Var.§0.31

Baseline DiggerBees Baseline DiggerBees Baseline DiggerBees

Figure 9. Block-level workload distribution for six repre-
sentative graphs, comparing Baseline (left) and DiggerBees
(right). Markers show minimum, median, and maximum
workloads. Var. denotes the coefficient of variation.

achieves approximately 45% higher throughput on average,
validating the benefits of this hierarchical data structure.

The transition from v2 to v3 shows the benefit of inter-
block work stealing. By enabling multiple blocks to work
collaboratively, DiggerBees achieves dramatic improvements.
For instance, v3 achieves 25.94x speedup on ‘euro_osm’ and
37.31x speedup on ‘delaunay’. These results demonstrate
that inter-block work stealing is essential to scale DFS across
SMs and fully utilize GPU parallelism.

Finally, the step from v3 to v4 illustrates the effect of in-
creasing the block count to match all available SMs. Most
graphs show an additional 67-82% improvement, while cer-
tain small graphs, such as ‘amazon’ and ‘google’, see limited
gains (2-12%), as their smaller workloads have been well
distributed within fewer blocks.

4.6 Block-Level Load Balance Analysis

To evaluate the effectiveness of our hierarchical block-level
work stealing in balancing workloads, we measure the distri-
bution of tasks per block. Figure 9 shows the results across
six representative graphs, comparing the baseline strategy
(random victim block selection) with DiggerBees (load-aware
two-choice strategy). The reported Var. denotes the coeffi-
cient of variation (lower is better).

As shown in Figure 9, the baseline exhibits highly uneven

DiggerBees: Depth First Search Leveraging Hierarchical Block-Level Stealing on GPUs PPoPP ’26, January 31 - February 4, 2026, Sydney, NSW, Australia

task distribution: some blocks process substantially more
tasks while others receive very few, resulting in high vari-
ance (e.g., 2.48 for ‘amazon’ and 2.14 for ‘google’). In contrast,
DiggerBees narrows the spread of task counts across blocks
and consistently reduces variance by more than half. For
example, the variance on ‘amazon’ drops to 0.72, a 3.44X im-
provement over the baseline. These results confirm that by
leveraging load-aware two-choice victim selection, our hier-
archical work stealing effectively balances workloads among
blocks, thereby enhancing both scalability and performance.

4.7 Sensitivity Analysis of Cutoff Selection

euro_osm delaunay hugebubbles

16 4 0.85
g
1.05 ©
32 40.84 g Il
S
(0] 100 € O
> o3
S 641 {071 072 0.80 0ss E 3,
> £x
t . 090 g Qo
IS} amazon google ljournal a
"S 0.85 O (N
316 {084 086 085 _&"TI’
4_JI 0.80 7% =
8 0.75 g 8
32 "o 3
z 9
0.70 —
644 0.72 0.70 0.66 0.73 0.72 0.67 U g

32 64 128 32 64 128 32 64 128
cold_cutoff Value

Figure 10. Sensitivity of DiggerBees to the hot_cutoff
and cold_cutoff parameters on six representative graphs.
Performance is normalized to the baseline configuration
(hot_cutoff = 32, cold_cutoff = 64), with darker colors indi-
cating higher performance.

To evaluate the impact of work stealing granularity, we
conduct a sensitivity analysis by varying hot_cutoff={16,32,64}
and cold_cutoff={32,64,128}. Figure 10 presents the perfor-
mance heatmaps, where all results are normalized to the
default configuration (hot_cutoff = 32, cold_cutoff = 64).

As shown in Figure 10, our default setting consistently
achieves near-optimal performance. When the cutoff values
are set too small, idle warps attempt to steal work more fre-
quently, which increases contention on atomic operations
(e.g., atomicCAS) and leads to higher synchronization over-
head. In contrast, excessively large cutoff values raise the
stealing threshold, making it harder for idle warps or blocks
to obtain new work, which reduces the reactivity of the
load-balancing mechanism and results in underutilization.

Moreover, our analysis reveals that performance is gen-
erally more sensitive to cold_cutoff than to hot_cutoff. For
example, on the graph ‘google’, setting cold_cutoff = 128
while keeping hot_cutoff = 32 leads to a performance degra-
dation of about 20%. This behavior can be attributed to the
fact that inter-block stealing requires transferring work from
global memory into shared memory. Large cold_cutoff val-

ues delay such transfers and increase the cost of remote data
movement, resulting in higher overhead and latency.

5 Related Work

DFS has long been recognized as P-complete [79] and hard
to parallelize [39, 93]. However, the practical importance of
DFS has motivated extensive research into the parallel un-
ordered DFS algorithms and theory, with early efforts on
distributed systems [28, 34, 46, 47, 75, 81, 84]. Kumar estab-
lished an analytical framework for DFS, and a series of works
with Rao and others explored parallelization across multi-
processors [52-56, 76—78]. Other studies targeted graphs
such as DAGs [23, 38], planar graphs [41, 43, 49, 85, 88], and
others [4, 50]. To improve performance on multi-core CPUs,
Cong et al. [19] and Acar et al. [2] introduced dynamic strate-
gies to redistribute DFS workloads among threads. More-
over, recent work focuses on memory efficiency. [6], variants
of Tarjan’s algorithm [60], and nearly work-efficient solu-
tions [37]. However, most of these works remain theoretical
or tied to outdated hardware, offering limited guidance for
modern parallel platforms such as GPUs.

Extensive research has explored graph traversal on GPUs,
but the majority focuses on BFS [35, 59, 61, 65, 70, 96, 99,
101]. Modern graph processing frameworks likewise pro-
vide optimized BFS implementations, including Ligra [86,
87], GBBS [25] and EGACS [104] on CPUs, as well as Gun-
rock [97], CuSha [51], Cagra [103], Tigr [72], SEP-Graph [95],
Groute [8] and Graphie [42] on GPUs. Beyond single-node
systems, BFS has been scaled to extreme levels in distributed
environments [16, 58]. In contrast, DFS remains largely unex-
plored on GPUs due to its inherently sequential nature. Nau-
mov et al. [69] approximated DFS ordering through BFS-style
traversal. Spampinato et al. [89] proposed a linear algebra
formulation of DFS, but their approach remains theoreti-
cal without practical implementation guidelines. Our work
bridges this gap by demonstrating that efficient parallel DFS
on GPUs is achievable, providing a practical solution for
applications requiring DFS semantics.

To efficiently balance irregular workloads like DFS, work
stealing has emerged as a fundamental scheduling strat-
egy [10]. Research has evolved to tackle various architectural
complexities, such as optimizations of cache locality [1, 40]
and cost-aware scheduling for irregular loops [67] on multi-
core CPUs, hierarchical designs [66, 74] and distributed pro-
tocols [26] on clusters, and affinity-aware load balancing on
heterogeneous platforms [5, 9, 31, 36]. Cong et al. [19] and
Acar et al. [2] applied dynamic workload redistribution to
DFS, while D’Antonio et al. [21] recently utilized work steal-
ing for single-source shortest path. Besides, frameworks such
as Julienne [24] and Gemini [105] extend dynamic scheduling
to graph algorithms. In multi-GPU environments, mecha-
nisms for remote stealing have been proposed for large-scale
graph analytics [57, 64]. Complementary to scheduling, an-

PPoPP 26, January 31 - February 4, 2026, Sydney, NSW, Australia

other line focuses on concurrent data structures, such as
non-blocking trees [29, 30], balanced search structures [13—
15], and relaxed balancing techniques [32, 33]. In compar-
ison, DiggerBees introduces a fine-grained work-stealing
DFS specifically optimized for the GPU memory hierarchy.
The wide applicability of DFS has motivated application-
specific DFS optimizations, such as IDA* [80], branch-and-
bound [63] and puzzle-solving [62]. Recently, graph mining
and subgraph matching using DFS on GPUs have become
active [17, 18, 73, 102]. Wei and Jiang [98] introduced stack-
based DFS loops, Qiu et al. [73] designed batch-dynamic
updates for dynamic matching, and Yuan et al. [102] accel-
erated DFS-style matching with pruned expansion. Sun and
Luo [90, 91] parallelized recursive backtracking. DFS also
appears in distributed querying (aDFS [94]), dynamic algo-
rithms for directed graphs [100], and tree traversals [44, 82,
83]. These efforts remain domain-specific and do not ad-
dress general DFS traversal. In contrast, our work introduces
DiggerBees, a general-purpose DFS method on GPUs.

6 Conclusion

In this paper, we have proposed DiggerBees, a new parallel
DFS algorithm optimized for GPUs. Our method addresses
three key challenges via a two-level stack structure and
hierarchical block-level stealing. Experimental results on
NVIDIA GPUs show that DiggerBees significantly outper-
forms state-of-the-art CPU and GPU DFS implementations,
surpasses GPU BFS on specific graph types, and exhibits
robust scalability across modern GPU architectures.

Data Availability Statement
The artifact for this paper is publicly available on Zenodo [71].

Acknowledgments

We deeply appreciate the invaluable comments from all
the reviewers. We thank Weichen Cao for helpful discus-
sions during the rebuttal phases, and Yida Li, Haocheng
Lian, and Hemeng Wang for their assistance with setting
up the experimental environment. This work has been par-
tially supported by the European HiPEAC Network of Ex-
cellence and has also received funding from ‘Future of Com-
puting, a Barcelona Supercomputing Center and IBM ini-
tiative’ (2023). It has also been partially supported by the
project PID2023-146511NB-100 funded by the Spanish Min-
istry of Science, Innovation and Universities MCIU /AEI
/10.13039/501100011033 and EU ERDF, and by the National
Natural Science Foundation of China (No. U23A20301 and
No. 62372467). Yuyao Niu is supported by Grant PRE2022-
104335, funded by MICIU/AEI/10.13039/501100011033, and
by the "ESF+" Grant CEX2021-001148-S-20-2, funded by
MICIU/AEI/10.13039/501100011033. Marc Casas is the corre-
sponding author.

Niu et al.

References

[1] Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. 2000. The data
locality of work stealing. In SPAA °00. 1-12. doi:10.1145/341800.341801

[2] Umut A. Acar, Arthur Charguéraud, and Mike Rainey. 2015. A work-
efficient algorithm for parallel unordered depth-first search. In SC
’15. 1-12. doi:10.1145/2807591.2807651

[3] Alok Aggarwal and Richard Anderson. 1987. A random NC algorithm
for depth first search. In STOC °87. 325-334. do0i:10.1145/28395.28430

[4] A. Aggarwal, R.]J. Anderson, and M.-Y. Kao. 1989. Parallel depth-first
search in general directed graphs. In STOC ’89. 297-308. doi:10.1145/
73007.73035

[5] Matthew Agostini, Francis O’Brien, and Tarek Abdelrahman. 2020.
Balancing Graph Processing Workloads Using Work Stealing on Het-
erogeneous CPU-FPGA Systems. In ICPP °20. Article 50, 12 pages.
doi:10.1145/3404397.3404433

[6] Tetsuo Asano, Taisuke Izumi, Masashi Kiyomi, Matsuo Konagaya,
Hirotaka Ono, Yota Otachi, Pascal Schweitzer, Jun Tarui, and Ryuhei
Uehara. 2014. Depth-First Search Using Bits. In ISAAC ’14. 553-564.
do0i:10.1007/978-3-319-13075-0_44

[7] Scott Beamer, Krste Asanovi¢, and David Patterson. 2015. The GAP
benchmark suite. arXiv preprint arXiv:1508.03619 (2015).

[8] Tal Ben-Nun, Michael Sutton, Sreepathi Pai, and Keshav Pingali.
2017. Groute: An Asynchronous Multi-GPU Programming Model for
Irregular Computations. In PPoPP ’17. 235-248. doi:10.1145/3155284.
3018756

[9] A Tarun Beri, B Sorav Bansal, and C Subodh Kumar. 2015. Locality
aware work-stealing based scheduling in hybrid CPU-GPU clusters.
In PDPTA ’15. 48.

[10] Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling multi-
threaded computations by work stealing. Journal of the ACM (JACM)
46 (Sept. 1999), 720-748. doi:10.1145/324133.324234

[11] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna.
2011. Layered Label Propagation: A Multiresolution Coordinate-Free
Ordering for Compressing Social Networks. In WWW ’11. 587-596.
doi:10.1145/1963405.1963488

[12] Paolo Boldi and Sebastiano Vigna. 2004. The WebGraph Framework I:
Compression Techniques. In WWW ’04. 595-601. doi:10.1145/988672.
988752

[13] Trevor Brown, Faith Ellen, and Eric Ruppert. 2014. A general tech-
nique for non-blocking trees. In PPoPP ’14. 329-342. doi:10.1145/
2555243.2555267

[14] Trevor Brown and Joanna Helga. 2011. Non-blocking k-ary search
trees. In OPODIS’11. 207-221. doi:10.1007/978-3-642-25873-2_15

[15] Trevor Brown, Aleksandar Prokopec, and Dan Alistarh. 2020. Non-
blocking interpolation search trees with doubly-logarithmic running
time. In PPoPP ’20. 276-291. doi:10.1145/3332466.3374542

[16] Huangi Cao, Yuanwei Wang, Haojie Wang, Heng Lin, Zixuan Ma,
Wanwang Yin, and Wenguang Chen. 2022. Scaling graph traversal
to 281 trillion edges with 40 million cores. In PPoPP °22. 234-245.
doi:10.1145/3503221.3508403

[17] Weichen Cao, Ke Meng, Zhiheng Lin, and Guangming Tan. 2025.
GLumin: Fast Connectivity Check Based on LUTs For Efficient Graph
Pattern Mining. In PPoPP ’25. 455-468. doi:10.1145/3710848.3710889

[18] Xuhao Chen and Arvind. 2022. Efficient and scalable graph pattern
mining on {GPUs}. In OSDI °22. 857-877. doi:10.1109/PADSW.2018.
8644869

[19] Guojing Cong, Sreedhar Kodali, Sriram Krishnamoorthy, Doug Lea,
Vijay Saraswat, and Tong Wen. 2008. Solving Large, Irregular Graph
Problems Using Adaptive Work-Stealing. In ICPP "08. 536-545. doi:10.
1109/1CPP.2008.88

[20] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford
Stein. 2022. Introduction to algorithms.

[21] Marco D’Antonio, Thai Son Mai, Philippas Tsigas, and Hans
Vandierendonck. 2025. Wasp: Efficient Asynchronous Single-Source

https://doi.org/10.1145/341800.341801
https://doi.org/10.1145/2807591.2807651
https://doi.org/10.1145/28395.28430
https://doi.org/10.1145/73007.73035
https://doi.org/10.1145/73007.73035
https://doi.org/10.1145/3404397.3404433
https://doi.org/10.1007/978-3-319-13075-0_44
https://doi.org/10.1145/3155284.3018756
https://doi.org/10.1145/3155284.3018756
https://doi.org/10.1145/324133.324234
https://doi.org/10.1145/1963405.1963488
https://doi.org/10.1145/988672.988752
https://doi.org/10.1145/988672.988752
https://doi.org/10.1145/2555243.2555267
https://doi.org/10.1145/2555243.2555267
https://doi.org/10.1007/978-3-642-25873-2_15
https://doi.org/10.1145/3332466.3374542
https://doi.org/10.1145/3503221.3508403
https://doi.org/10.1145/3710848.3710889
https://doi.org/10.1109/PADSW.2018.8644869
https://doi.org/10.1109/PADSW.2018.8644869
https://doi.org/10.1109/ICPP.2008.88
https://doi.org/10.1109/ICPP.2008.88

DiggerBees: Depth First Search Leveraging Hierarchical Block-Level Stealing on GPUs PPoPP ’26, January 31 - February 4, 2026, Sydney, NSW, Australia

Shortest Path on Multicore Systems via Work Stealing. In SC ’25.

2109-2125. doi:10.1145/3712285.3759872 [43
[22] Timothy A. Davis and Yifan Hu. 2011. The University of Florida

Sparse Matrix Collection. ACM Trans. Math. Softw. 38, 1 (2011). doi:10.

1145/2049662.2049663 [44
[23] Pilar Delatorre and Clyde P. Kruskal. 1995. Fast Parallel Algorithms

for All-Sources Lexicographic Search and Path-Algebra Problems.

Journal of Algorithms 19, 1 (1995), 1-24. doi:10.1006/jagm.1995.1025 [45
[24] Laxman Dhulipala, Guy Blelloch, and Julian Shun. 2017. Julienne:

In PACT ’17. 233-245. doi:10.1109/PACT.2017.41

Xin He and Yaacov Yesha. 1988. A Nearly Optimal Parallel Algorithm
for Constructing Depth First Spanning Trees in Planar Graphs. SIAM
J. Comput. 17, 3 (1988), 486—491. doi:10.1137/0217028

Nikhil Hegde, Jianqiao Liu, Kirshanthan Sundararajah, and Milind
Kulkarni. 2017. Treelogy: A benchmark suite for tree traversals. In
ISPASS ’17. 227-238. doi:10.1109/ISPASS.2017.7975294

John Hopcroft and Robert Tarjan. 1973. Algorithm 447: efficient

=

=

=

—

= =

A Framework for Parallel Graph Algorithms using Work-efficient
Bucketing. In SPAA ’17. 293-304. doi:10.1145/3087556.3087580
Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2021. Theo-
retically Efficient Parallel Graph Algorithms Can Be Fast and Scal-
able. ACM Trans. Parallel Comput. 8, 1, Article 4 (2021), 70 pages.
doi:10.1145/3434393

[26] James Dinan, D. Brian Larkins, P. Sadayappan, Sriram Krishnamoor-

thy, and Jarek Nieplocha. 2009. Scalable work stealing. In SC "09.
11 pages. doi:10.1145/1654059.1654113

Xiaojun Dong, Letong Wang, Yan Gu, and Yihan Sun. 2023. Provably
Fast and Space-Efficient Parallel Biconnectivity. In PPoPP 23. 52—65.
doi:10.1145/3572848.3577483

Ossama Ibrahim El-Dessouki and Wing H. Huen. 1980. Distributed
enumeration on between computers. IEEE Trans. Comput. 29, 09
(1980), 818—825. do0i:10.1109/TC.1980.1675681

Faith Ellen, Panagiota Fatourou, Joanna Helga, and Eric Ruppert. 2014.
The amortized complexity of non-blocking binary search trees. In
PODC ’14. 332-340. doi:10.1145/2611462.2611486

Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel.
2010. Non-blocking binary search trees. In PODC °10. 131-140. doi:10.
1145/1835698.1835736

Naila Farooqui, Rajkishore Barik, Brian T. Lewis, Tatiana Shpeis-
man, and Karsten Schwan. 2016. Affinity-aware work-stealing for
integrated CPU-GPU processors. In PPoPP ’16. Article 30, 2 pages.
doi:10.1145/2851141.2851194

Panagiota Fatourou, Elias Papavasileiou, and Eric Ruppert. 2019.
Persistent Non-Blocking Binary Search Trees Supporting Wait-Free
Range Queries. In SPAA °19. 275-286. doi:10.1145/3323165.3323197
Panagiota Fatourou and Eric Ruppert. 2025. Lock-Free Augmented
Trees (Abstract). In HOPC °25. 1-3. doi:10.1145/3746238.3746251
Raphael Finkel and Udi Manber. 1987. DIB—a distributed implemen-
tation of backtracking. ACM Trans. Program. Lang. Syst. 9, 2 (1987),
235-256. doi:10.1145/22719.24067

Anil Gaihre, Zhenlin Wu, Fan Yao, and Hang Liu. 2019. XBFS: eX-
ploring Runtime Optimizations for Breadth-First Search on GPUs. In
HPDC ’19. 121-131. doi:10.1145/3307681.3326606

Thierry Gautier, Joao Vicente Ferreira Lima, Nicolas Maillard, and
Bruno Raffin. 2013. Locality-aware work stealing on multi-CPU and
multi-GPU architectures. In MULTIPROG ’13.

Mohsen Ghaffari, Christoph Grunau, and Jiahao Qu. 2023. Nearly
Work-Efficient Parallel DFS in Undirected Graphs. In SPAA °23.
273-283. doi:10.1145/3558481.3591094

Ratan K. Ghosh and G. P. Bhattacharjee. 1984. A parallel search
algorithm for directed acyclic graphs. BIT Numerical Mathematics 24,

=

—

= =

=

—

-

[l

=

—

=

algorithms for graph manipulation. Commun. ACM 16, 6 (1973),
372-378. doi:10.1145/362248.362272

Masaharu Imai, Yuuji Yoshida, and Teruo Fukumura. 1979. A parallel
searching scheme for multiprocessor systems and its application to
combinatorial problems. In IJCAI'79. 416-418.

Virendra K Janakiram, Dharma P Agrawal, and Ravi Mehrotra. 1987.
Randomized Parallel Algorithms for Prolog Programs and Backtrack-
ing Applications.. In ICPP ’87. 278-281.

Arthur B Kahn. 1962. Topological sorting of large networks. Commun.
ACM 5, 11 (1962), 558-562. doi:10.1145/368996.369025

Ming-Yang Kao. 1988. All graphs have cycle separators and pla-
nar directed depth-first search is in DNC. In Aegean Workshop on
Computing. 53-63. doi:10.1007/BFb0040373

George Karypis and Vipin Kumar. 1994. Unstructured tree search
on SIMD parallel computers. IEEE Transactions on Parallel and Dis-
tributed Systems 5, 10 (1994), 1057-1072. doi:10.1109/71.313122
Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N. Bhuyan.
2014. CuSha: vertex-centric graph processing on GPUs. In HPDC ’14.
239-252. doi:10.1145/2600212.2600227

Vipin Kumar. 1987. Depth-first search. Encyclopaedia of Artificial
Intelligence 2 (1987), 1004-1005.

Vipin Kumar, Ananth Y. Grama, and V. Nageshwara Rao. 1994. Scal-
able Load Balancing Techniques for Parallel Computers. J. Parallel
and Distrib. Comput. 22, 1 (1994), 60-79. do0i:10.1006/jpdc.1994.1070
Vipin Kumar and V. Nageshwara Rao. 1987. Parallel depth first search.
part ii. analysis. International Journal of Parallel Programming 16, 6
(1987), 501-519. doi:10.1007/BF01389001

Vipin Kumar and V. Nageshwara Rao. 1990. Scalable parallel formu-
lations of depth-first search. 1-41. doi:10.1007/978-1-4612-3390-9_1
Vipin Kumar, V. Nageshwara Rao, and K. Ramesh. 1988. Parallel
Depth First Search on the Ring Architecture. Technical Report.

Jodo VF. Lima, Thierry Gautier, Nicolas Maillard, and Vincent Dan-
jean. 2012. Exploiting Concurrent GPU Operations for Efficient Work
Stealing on Multi-GPUs. In SBAC-PAD ’12. 75-82. doi:10.1109/SBAC-
PAD.2012.28

Heng Lin, Xiaowei Zhu, Bowen Yu, Xiongchao Tang, Wei Xue, Wen-
guang Chen, Lufei Zhang, Torsten Hoefler, Xiaosong Ma, Xin Liu,
Weimin Zheng, and Jingfang Xu. 2018. ShenTu: Processing Multi-
Trillion Edge Graphs on Millions of Cores in Seconds. In SC ’18.
706-716. doi:10.1109/SC.2018.00059

Hang Liu and H. Howie Huang. 2015. Enterprise: breadth-first graph
traversal on GPUs. In SC ’15. 1-12. doi:10.1145/2807591.2807594
Gavin Lowe. 2016. Concurrent depth-first search algorithms based
on Tarjan’s Algorithm. Int. J. Softw. Tools Technol. Transf. 18, 2 (2016),
129-147. doi:10.1007/s10009-015-0382- 1

2 (1984), 133-150. doi:10.1007/BF01937481 [61
[39] Raymond Greenlaw. 1992. A model classifying algorithms as inher-

ently sequential with applications to graph searching. Information and

Computation 97, 2 (1992), 133-149. doi:10.1016/0890-5401(92)90033-C [62
[40] Yan Gu, Zachary Napier, and Yihan Sun. 2022. Analysis of Work-

Stealing and Parallel Cache Complexity. 46-60. doi:10.1137/1.

9781611977059.4 [63
[41] Torben Hagerup. 1990. Planar Depth-First Search in O (log n) Parallel

Time. SIAM §. Comput. 19, 4 (1990), 678-704. doi:10.1137/0219047
[42] Wei Han, Daniel Mawhirter, Bo Wu, and Matthew Buland. 2017.

Graphie: Large-Scale Asynchronous Graph Traversals on Just a GPU.

—

Lijuan Luo, Martin Wong, and Wen-mei Hwu. 2010. An effective GPU
implementation of breadth-first search. In DAC °10. 52-55. doi:10.
1145/1837274.1837289

Basel A. Mahafzah. 2014. Performance evaluation of parallel multi-
threaded A* heuristic search algorithm. Journal of Information Science
40, 3 (2014), 363-375. doi:10.1177/0165551513519212

Nihar R. Mahapatra and Shantanu Dutt. 1999. Sequential and parallel
branch-and-bound search under limited-memory constraints. Insti-
tute for Mathematics and Its Applications 106 (1999), 139. doi:10.1007/
978-1-4612-1492-2_6

[64] Ke Meng, Liang Geng, Xue Li, Qian Tao, Wenyuan Yu, and Jingren

—

[t

https://doi.org/10.1145/3712285.3759872
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1006/jagm.1995.1025
https://doi.org/10.1145/3087556.3087580
https://doi.org/10.1145/3434393
https://doi.org/10.1145/1654059.1654113
https://doi.org/10.1145/3572848.3577483
https://doi.org/10.1109/TC.1980.1675681
https://doi.org/10.1145/2611462.2611486
https://doi.org/10.1145/1835698.1835736
https://doi.org/10.1145/1835698.1835736
https://doi.org/10.1145/2851141.2851194
https://doi.org/10.1145/3323165.3323197
https://doi.org/10.1145/3746238.3746251
https://doi.org/10.1145/22719.24067
https://doi.org/10.1145/3307681.3326606
https://doi.org/10.1145/3558481.3591094
https://doi.org/10.1007/BF01937481
https://doi.org/10.1016/0890-5401(92)90033-C
https://doi.org/10.1137/1.9781611977059.4
https://doi.org/10.1137/1.9781611977059.4
https://doi.org/10.1137/0219047
https://doi.org/10.1109/PACT.2017.41
https://doi.org/10.1137/0217028
https://doi.org/10.1109/ISPASS.2017.7975294
https://doi.org/10.1145/362248.362272
https://doi.org/10.1145/368996.369025
https://doi.org/10.1007/BFb0040373
https://doi.org/10.1109/71.313122
https://doi.org/10.1145/2600212.2600227
https://doi.org/10.1006/jpdc.1994.1070
https://doi.org/10.1007/BF01389001
https://doi.org/10.1007/978-1-4612-3390-9_1
https://doi.org/10.1109/SBAC-PAD.2012.28
https://doi.org/10.1109/SBAC-PAD.2012.28
https://doi.org/10.1109/SC.2018.00059
https://doi.org/10.1145/2807591.2807594
https://doi.org/10.1007/s10009-015-0382-1
https://doi.org/10.1145/1837274.1837289
https://doi.org/10.1145/1837274.1837289
https://doi.org/10.1177/0165551513519212
https://doi.org/10.1007/978-1-4612-1492-2_6
https://doi.org/10.1007/978-1-4612-1492-2_6

PPoPP 26, January 31 - February 4, 2026, Sydney, NSW, Australia

[65]

[66]

(67]

(68]

[69]

[70]
(71]

(72]

(73]

(74]

[75]

[76]

(7]

(78]

(79]

(80]

(81]

(82]

(83]

(84]

(85]

(86]

Zhou. 2023. Efficient Multi-GPU Graph Processing with Remote Work
Stealing. In ICDE ’23. 191-204. doi:10.1109/ICDE55515.2023.00022
Duane Merrill, Michael Garland, and Andrew Grimshaw. 2012. Scal-
able GPU graph traversal. In PPoPP ’12. 117-128. doi:10.1145/2370036.
2145832

Seung-Jai Min, Costin Iancu, and Katherine Yelick. 2011. Hierarchical
work stealing on manycore clusters. In PGAS11 ’11, Vol. 625.
Prasoon Mishra and V. Krishna Nandivada. 2024. COWS for High
Performance: Cost Aware Work Stealing for Irregular Parallel Loop.
ACM Trans. Archit. Code Optim., Article 12 (2024), 26 pages. doi:10.
1145/3633331

Michael Mitzenmacher. 2001. The power of two choices in random-
ized load balancing. IEEE Transactions on Parallel and Distributed
Systems 12, 10 (2001), 1094-1104. doi:10.1109/71.963420

Maxim Naumov, Alysson Vrielink, and Michael Garland. 2017. Paral-
lel Depth-First Search for Directed Acyclic Graphs. In IA3’17. Article
4, 8 pages. doi:10.1145/3149704.3149764

Yuyao Niu and Marc Casas. 2025. BerryBees: Breadth First Search by
Bit-Tensor-Cores. In PPoPP °25. 339-354. doi:10.1145/3710848.3710859
Yuyao Niu, Yuechen Lu, Weifeng Liu, and Marc Casas. 2025. Digger-
Bees Artifact. doi:10.5281/zenodo.18072817

Amir Hossein Nodehi Sabet, Junqiao Qiu, and Zhijia Zhao. 2018. Tigr:
Transforming Irregular Graphs for GPU-Friendly Graph Processing.
In ASPLOS ’18. 622—636. d0i:10.1145/3296957.3173180

Linshan Qiu, Lu Chen, Hailiang Jie, Xiangyu Ke, Yunjun Gao, Yang Liu,
and Zetao Zhang. 2024. GPU-Accelerated Batch-Dynamic Subgraph
Matching. In ICDE °24’. 3204-3216. doi:10.1109/ICDE60146.2024.
00248

Jean-Noél Quintin and Frédéric Wagner. 2010. Hierarchical work-
stealing. In Euro-Par ’10. 217-229. doi:10.1007/978-3-642-15277-1_21
Stefan Radtke, Jens Bargfrede, and Walter Anheier. 1995. Distributed
automatic test pattern generation with a parallel FAN algorithm. In
ICCD ’95. 698-702. doi:10.1109/1CCD.1995.528944

V. Nageshwara Rao and Vipin Kumar. 1987. Parallel depth first search.
part i. implementation. International Journal of Parallel Programming
16, 6 (1987), 479-499. doi:10.1007/BF01389000

V. Nageshwara Rao and Vipin Kumar. 1988. Superlinear speedup in
parallel state-space search. In Foundations of Software Technology and
Theoretical Computer Science. 161-174. doi:10.1007/3-540-50517-2_79
V. Nageshwara Rao and Vipin Kumar. 1993. On the efficiency of
parallel backtracking. IEEE Transactions on Parallel and Distributed
Systems 4, 4 (1993), 427-437. doi:10.1109/71.219757

John H. Reif. 1985. Depth-first search is inherently sequential. Inform.
Process. Lett. 20, 5 (1985), 229-234. doi:10.1016/0020-0190(85)90024-9
Alexander Reinefeld and Volker Schnecke. 1994. AIDA*-
Asynchronous Parallel IDA*. In Proceedings of the Biennial Conference-
Canadian Society for Computational Studies of Intelligence. 295-302.
A. Reinefeld and V. Schnecke. 1994. Work-load balancing in highly
parallel depth-first search. In SHPCC *94. 773-780. do0i:10.1109/
SHPCC.1994.296719

Laith Sakka, Kirshanthan Sundararajah, and Milind Kulkarni. 2017.
TreeFuser: a framework for analyzing and fusing general recursive
tree traversals. Proc. ACM Program. Lang., Article 76 (2017), 30 pages.
doi:10.1145/3133900

Laith Sakka, Kirshanthan Sundararajah, Ryan R. Newton, and Milind
Kulkarni. 2019. Sound, fine-grained traversal fusion for heteroge-
neous trees. In PLDI 2019. 830-844. doi:10.1145/3314221.3314626
Vikram A. Saletore and L. V. Kalé. 1990. Consistent linear speedups
to a first solution in parallel state-space search. In AAAI’90. 227-233.
Gregory E. Shannon. 1988. A linear-processor algorithm for depth-
first search in planar graphs. Inform. Process. Lett. 29, 3 (1988), 119-123.
doi:10.1016/0020-0190(88)90048-8

Julian Shun and Guy E. Blelloch. 2013. Ligra: a lightweight graph
processing framework for shared memory. In PPoPP ’13. 135-146.

(87]

(88]

(89]

[92
[93

[94

[t e

[95]

[96

[97

[98

[99

[100

[101

[102

[103

[104

[105

[106

—

—

]

]

=

—

—

—_

[l

=

=

Niu et al.

doi:10.1145/2442516.2442530

Julian Shun, Laxman Dhulipala, and Guy E. Blelloch. 2015. Smaller
and Faster: Parallel Processing of Compressed Graphs with Ligra+.
In DCC ’15. 403-412. doi:10.1109/DCC.2015.8

Justin R. Smith. 1986. Parallel Algorithms for Depth-First Searches I.
Planar Graphs. SIAM J. Comput. 15, 3 (1986), 814-830. doi:10.1137/
0215058

Daniele G. Spampinato, Upasana Sridhar, and Tze Meng Low. 2019.
Linear algebraic depth-first search. In ARRAY ’19. 93-104. doi:10.
1145/3315454.3329962

Shixuan Sun, Yulin Che, Lipeng Wang, and Qiong Luo. 2019. Efficient
Parallel Subgraph Enumeration on a Single Machine. In ICDE ’19.
232-243. doi:10.1109/ICDE.2019.00029

Shixuan Sun and Qiong Luo. 2018. Parallelizing Recursive Backtrack-
ing Based Subgraph Matching on a Single Machine. In ICPADS ’18.
1-9. doi:10.1109/PADSW.2018.8644869

Robert Tarjan. 1972. Depth-first search and linear graph algorithms.
SIAM journal on computing 1, 2 (1972), 146-160. doi:10.1137/0201010
Robert Tarjan. 1972. Depth-First Search and Linear Graph Algorithms.
SIAM J. Comput. 1, 2 (1972), 146-160.

Vasileios Trigonakis, Jean-Pierre Lozi, Tomas Faltin, Nicholas P.
Roth, Iraklis Psaroudakis, Arnaud Delamare, Vlad Haprian, Calin
Torgulescu, Petr Koupy, Jinsoo Lee, Sungpack Hong, and Hassan
Chafi. 2021. aDFS: An Almost Depth-First-Search Distributed Graph-
Querying System. In USENIX ATC ’21. 273-287.

Hao Wang, Liang Geng, Rubao Lee, Kaixi Hou, Yanfeng Zhang, and
Xiaodong Zhang. 2019. SEP-graph: finding shortest execution paths
for graph processing under a hybrid framework on GPU. In PPoPP
’19. 38-52. doi:10.1145/3293883.3295733

Letong Wang, Guy Blelloch, Yan Gu, and Yihan Sun. 2025. Parallel
Cluster-BFS and Applications to Shortest Paths. In ALENEX ’25. 42-55.
doi:10.1137/1.9781611978339.4

Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy
Riffel, and John D. Owens. 2016. Gunrock: a high-performance graph
processing library on the GPU. In PPoPP ’16. 1-12. doi:10.1145/
2851141.2851145

Yihua Wei and Peng Jiang. 2022. STMatch: Accelerating Graph Pat-
tern Matching on GPU with Stack-Based Loop Optimizations. In SC
’22.1-13. doi:10.1109/SC41404.2022.00058

Hao Wen and Wei Zhang. 2019. Improving Parallelism of Breadth
First Search (BFS) Algorithm for Accelerated Performance on GPUs.
In HPEC ’19. 1-7. doi:10.1109/HPEC.2019.8916551

Bohua Yang, Dong Wen, Lu Qin, Ying Zhang, Xubo Wang, and
Xuemin Lin. 2019. Fully dynamic depth-first search in directed
graphs. Proc. VLDB Endow. 13, 2 (2019), 142-154. doi:10.14778/3364324.
3364329

Xizhe Yin, Zhijia Zhao, and Rajiv Gupta. 2022. Glign: Taming Mis-
aligned Graph Traversals in Concurrent Graph Processing. In ASPLOS
’23.78-92. d0i:10.1145/3567955.3567963

Lyuheng Yuan, Da Yan, Jiao Han, Akhlaque Ahmad, Yang Zhou, and
Zhe Jiang. 2024. Faster Depth-First Subgraph Matching on GPUs. In
ICDE °24’. 3151-3163. doi:10.1109/ICDE60146.2024.00244

Yunming Zhang, Vladimir Kiriansky, Charith Mendis, Saman Ama-
rasinghe, and Matei Zaharia. 2017. Making caches work for graph
analytics. In Big Data ’17. 293-302. doi:10.1109/BigData.2017.8257937
Ruohuang Zheng and Sreepathi Pai. 2021. Efficient Execution of
Graph Algorithms on CPU with SIMD Extensions. In CGO ’21. 262-
276. doi:10.1109/CG0O51591.2021.9370326

Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma.
2016. Gemini: A Computation-Centric Distributed Graph Processing
System. In OSDI ’16. 301-316.

Marinka Zitnik, Rok Sosi¢, Sagar Maheshwari, and Jure Leskovec.
2018. BioSNAP Datasets: Stanford Biomedical Network Dataset Col-
lection. http://snap.stanford.edu/biodata.

https://doi.org/10.1109/ICDE55515.2023.00022
https://doi.org/10.1145/2370036.2145832
https://doi.org/10.1145/2370036.2145832
https://doi.org/10.1145/3633331
https://doi.org/10.1145/3633331
https://doi.org/10.1109/71.963420
https://doi.org/10.1145/3149704.3149764
https://doi.org/10.1145/3710848.3710859
https://doi.org/10.5281/zenodo.18072817
https://doi.org/10.1145/3296957.3173180
https://doi.org/10.1109/ICDE60146.2024.00248
https://doi.org/10.1109/ICDE60146.2024.00248
https://doi.org/10.1007/978-3-642-15277-1_21
https://doi.org/10.1109/ICCD.1995.528944
https://doi.org/10.1007/BF01389000
https://doi.org/10.1007/3-540-50517-2_79
https://doi.org/10.1109/71.219757
https://doi.org/10.1016/0020-0190(85)90024-9
https://doi.org/10.1109/SHPCC.1994.296719
https://doi.org/10.1109/SHPCC.1994.296719
https://doi.org/10.1145/3133900
https://doi.org/10.1145/3314221.3314626
https://doi.org/10.1016/0020-0190(88)90048-8
https://doi.org/10.1145/2442516.2442530
https://doi.org/10.1109/DCC.2015.8
https://doi.org/10.1137/0215058
https://doi.org/10.1137/0215058
https://doi.org/10.1145/3315454.3329962
https://doi.org/10.1145/3315454.3329962
https://doi.org/10.1109/ICDE.2019.00029
https://doi.org/10.1109/PADSW.2018.8644869
https://doi.org/10.1137/0201010
https://doi.org/10.1145/3293883.3295733
https://doi.org/10.1137/1.9781611978339.4
https://doi.org/10.1145/2851141.2851145
https://doi.org/10.1145/2851141.2851145
https://doi.org/10.1109/SC41404.2022.00058
https://doi.org/10.1109/HPEC.2019.8916551
https://doi.org/10.14778/3364324.3364329
https://doi.org/10.14778/3364324.3364329
https://doi.org/10.1145/3567955.3567963
https://doi.org/10.1109/ICDE60146.2024.00244
https://doi.org/10.1109/BigData.2017.8257937
https://doi.org/10.1109/CGO51591.2021.9370326
http://snap.stanford.edu/biodata

DiggerBees: Depth First Search Leveraging Hierarchical Block-Level Stealing on GPUs PPoPP ’26, January 31 - February 4, 2026, Sydney, NSW, Australia

A Artifact Description
A1 Artifact DOI mand:
https://doi.org/10.5281/zenodo.17709254.

or load the Docker image from Zenodo using the com-

A.2 Prerequisites

e Operating System: Any Linux system that supports
CUDA v12.8 or above and GCC v11.3 or above.

e Libraries: This artifact includes:
- DiggerBees (this work)
- NVG-DFS

— CKL-PDFS and ACR-PDFS (https://github.com/deepsea-

inria/sc15-pdfs)
- Gunrock (https://github.com/gunrock/gunrock)
- BerryBees (https://doi.org/10.5281/zenodo.14222153)
e Program: CUDA and C/C++ OpenMP code.
¢ Run-time environment: Ubuntu 22.04 with CUDA
v12.8 and GPU driver version 535.86.10 (as tested).
e Hardware Requirements:

— Any CUDA-enabled GPU with compute capability
8.0 or above (an NVIDIA A100 (Ampere architecture)
and an H100 (Hopper architecture) as tested).

— Any Intel CPU (Intel Xeon Max 9462 as tested).

— Disk Space: at least 600 GB (for full benchmark dataset).

¢ Software Requirements:
- To evaluate DiggerBees: NVIDIA nvcc and GNU
GCC (v12.8 and v11.4.0, as tested, respectively).
— To evaluate other baselines: CMake (v3.30.5, as tested).
— To reproduce the figures: Python v3.7 or above with
the following libraries: numpy, pandas, seaborn, and
matplotlib.
e Input Data:
— six representative graphs in Table 4 of the paper

(rep_graphs.csvinDiggerBees_Artifact/dataset/

for quick-start testing in 30 minutes).

— 234 graphs (benchmark_list.csv in
DiggerBees_Artifact/dataset/) from the SuiteS-
parse Matrix Collection for in-depth evaluation.

e Note: Docker is provided as a convenient alternative.

$ docker load < \
diggerbees_docker_image_latest.tar.gz

e Run the Docker container: Start a Docker container
using the pulled image with the following command:

$ docker run -it --rm \
--gpus all yuyaoniu/diggerbees:latest

¢ Quick start in about 40 minutes: Perform the fol-
lowing steps to run a quick test:
— Inside the container, navigate to the artifact direc-
tory:

$ cd /workspace/DiggerBees_Artifact/

The GPU architecture is configured via a centralized
configuration file:

$ vim config.mk
Set the CUDA architecture according to your GPU:

NVIDIA A100
NVIDIA H100

CUDA_ARCH=80
CUDA_ARCH=90

Save the file after selecting the appropriate architec-
ture.
- Run the quick test.

$ cd scripts/
$ bash run_all.sh quick_start

This script automatically compiles all required com-
ponents and runs experiments on six representative

graphs.

A prebuilt Docker container is available, including all A.4 Expected output
dependencies, required software, six representative

graphs, and libraries.

Upon completing the quick start test, the evaluator should
observe the following expected outputs:

e Performance results:

A3 Quick test using the Docker container (a) Verify the summary CSV files (merged results) using

e Download Docker (if needed): Ensure the Docker
and the NVIDIA Container Toolkit are installed on
your system. For Ubuntu users, Docker can be installed
following the instructions from
https://docs.docker.com/engine/install/ubuntu/.

e Pull the prebuilt Docker image: Pull the prebuilt
Docker image from Docker Hub using the command:

$ docker pull yuyaoniu/diggerbees:latest

the command:

$ 1s ../data

— merged_dfs_perf.csv: performance results of four
DFS methods (CKL-PDFS, ACR-PDFS, NVG-DFS,
and DiggerBees v4).

— merged_bfs_perf.csv: Performance results of two
BFS baselines and selection of best-performing BFS
for each graph.

https://doi.org/10.5281/zenodo.17709254
https://github.com/deepsea-inria/sc15-pdfs
https://github.com/deepsea-inria/sc15-pdfs
https://github.com/gunrock/gunrock
https://doi.org/10.5281/zenodo.14222153
https://docs.docker.com/engine/install/ubuntu/

PPoPP 26, January 31 - February 4, 2026, Sydney, NSW, Australia

— merged_perf_rep.csv: Final summary table of all
methods (DFS + BFS) on representative graphs.

(b) Verify detailed outputs of DiggerBees using the

command:

$ 1s ../DiggerBees_master/results/

— DiggerBees_v{version}_{xx}_perf.csv: Perfor-
mance results of DiggerBees v1-v4 on tested repre-
sentative graphs.

— balance_baseline/balance_{graph}.csv: Load-
balance logs (per-block task counts) for baselines.

— balance_diggerbees/balance_{graph}.csv:Load-

balance logs (per-block task counts) for DiggerBees
v4.
These files are automatically named according to GPU
type (A100, H100, etc.), graph name, and variant ver-
sion.
¢ Generated Figures:
Verify figures using the command:

$ 1s ../figures/

fig_5.pdf: DFS performance comparison.
fig_6.pdf: Performance on representative graphs.
fig_8.pdf: Performance breakdown of DiggerBees.
— fig_9.pdf: Load-balance visualization.

These figures should match the trends (not exact val-
ues) shown in the paper, verifying performance advan-
tage and improved load balancing.

Note: The quick start test does not generate Figure 7 auto-
matically. Figure 7 (Scalability comparison) requires perfor-
mance data collected from two different GPU systems (e.g.,
A100 and H100). Therefore, it is only produced in the full
evaluation workflow described in Section A.5.

A.5 Step-by-Step Instructions

A.5.1 Overview of Evaluation Goals. The purpose of
the full evaluation is to reproduce all key experimental re-
sults presented in Section 4 of the paper, based on the full
benchmark dataset. Specifically, the evaluator can expect to
reproduce the following results:

(1) DFS Performance Comparison (Figure 5 in Section 4.2):
Scatter plot comparing the performance of four DFS methods
over the full dataset.

(2) Representative Graph Performance (Figure 6 in Section
4.3: Bar chart showing the performance of four DFS methods
and the best BFS baseline on the 12 representative graphs.

(3) Scalability Comparison (Figure 7 in Section 4.4): Scatter
plot comparing the performance of two GPU DFS methods
on A100 and H100 GPUs.

(4) Performance Breakdown (Figure 8 in Section 4.5): Break-
down of four versions of DiggerBees across six graphs.

(5) Load Balance Analysis (Figure 9 in Section 4.6): Violin

Niu et al.

plots visualizing per-block task distribution for DiggerBees
compared to baselines.

A.5.2 Detailed Steps for running the full benchmark.
The command below automatically executes the entire eval-
uation workflow, including the following steps:

$ bash run_all.sh run_bench

This script contains the entire experimental workflow and
includes the following steps:

¢ Dataset Preparation (Approx. 30+ hours): The script
automatically downloads all required datasets using
the following command:

$ python3 download_graphs.py run_bench

Our matrix parser supports input files in the Matrix
Market format (*.mtx). All graphs are publicly available
from the SuiteSparse Matrix Collection, which can
be accessed at https://sparse.tamu.edu/. This process
will take approximately 30 hours or more (assuming
a download speed of 6 MB/s, with a total dataset size
estimated to be 600 GB). Matrices will be stored in the
directory:
DiggerBees_Artifact/dataset/MM/

¢ Run Experiments (Approx. 10 hours): This step
performs the full execution of all DFS and BFS methods.
The process is managed by:

$ bash run_experiments.sh run_bench

This workflow completes the following tasks:

— Compile and run GPU-based DFS methods: Digger-
Bees and NVG-DFS.

— Compile and run CPU-based DFS baselines: ACR-
PDFS and CKL-PDFS.
Note: Modify the -proc parameter according to the
number of CPU cores available on your system (lines
29-30 in DiggerBees_Artifact/baseline/DFS/
SC15_unordered_dfs/run_dfs_cpu.sh).

— Compile and run GPU BFS methods: Gunrock and
BerryBees.

Each method produces individual CSV files and is orga-

nized under its respective results/ folder. This pro-

cess takes approximately 12 hours to complete, de-

pending on the GPU and CPU configuration.

Data Collection (Approx. 1 minute): This step au-

tomatically merges all results/ folders across meth-

ods, extracts performance metrics, and generates the

merged summary filesin DiggerBees_Artifact/data/.

These summary files will be used in later steps to gen-

erate Figures 5 and 6.

o Figures Plotting (Approx. 15 minutes): After the
performance data has been successfully collected, all

https://sparse.tamu.edu/

DiggerBees: Depth First Search Leveraging Hierarchical Block-Level Stealing on GPUs PPoPP ’26, January 31 - February 4, 2026, Sydney, NSW, Australia

figures in the paper can be plotted using the command: A.6 Customization & Extensibility

Users can evaluate their own graph datasets by following
the steps below.

— Figures 5 and 6: These two figures are generated e Place the graph files (in “mtx’ format) into the

from DiggerBees_Artifact/data/merged_dfs_perf.csy dataset/MM/ directory.
and DiggerBees_Artifact/data/me rged_perf_rep .CcSv. ® Create a CSV file containing the metadata of the added

$ python3 plot/plot_fig_{x}.py

— Figure 7 (Required: Two GPUs): This figure uses data graphs. The CSV format should follow the same struc-
collected from two different GPU architectures (e.g., ture as the provided ‘dataset/benchmark_list.csv’.
A100 and H100 in the paper). It will not be generated o Place the new CSV file under the ‘dataset/’ directory
in single-GPU mode. (e.g., ‘dataset/user_bench.csv’).

— Figure 8: This figure is generated after running all e Register the new benchmark list in ‘scripts/run_all.sh’.
four DiggerBees versions (v1-v4) under the run_subset Example: Consider a user who wishes to evaluate a cus-
mode, which collects detailed execution time break- tom benchmark defined in ‘dataset/user_bench.csv’.
down for six graphs. First, add a new execution mode in ‘scripts/run_all.sh’:

— Figure 9 (Balance Logging Required): This figure is
generated after recording the balance logs using the elif ["$MODE" == "run_user_bench" J; then
command: input="../dataset/user_bench.csv"

echo "[INFO] Using CSV: $input"
cd ../DiggerBees_master python3 download_graphs.py "$input"

make balance
bash run_diggerbees.sh run_balance))
make balance BALANCE_POLICY=0 Then run the evaluation using:

bash run_diggerbees.sh run_balance $ bash run_all.sh run_user_bench

All generated figures will be saved to
DiggerBees_Artifact/figures/. Received 2025-09-01; accepted 2025-11-10

	Abstract
	1 Introduction
	2 Background and Challenges
	2.1 Serial DFS
	2.2 Parallel DFS
	2.3 Challenges of parallel DFS on GPUs

	3 DiggerBees
	3.1 Overview
	3.2 Two-Level Stack Data Structure
	3.3 Warp-Level Workload
	3.4 Intra-Block Work Stealing
	3.5 Inter-Block Work Stealing
	3.6 An Execution Example

	4 Evaluation
	4.1 Experimental Setup
	4.2 Comparison with Existing DFS Approaches
	4.3 Comparison with GPU BFS Approaches
	4.4 Scalability Comparison with GPU DFS
	4.5 Performance Breakdown
	4.6 Block-Level Load Balance Analysis
	4.7 Sensitivity Analysis of Cutoff Selection

	5 Related Work
	6 Conclusion
	References
	A Artifact Description
	A.1 Artifact DOI
	A.2 Prerequisites
	A.3 Quick test using the Docker container
	A.4 Expected output
	A.5 Step-by-Step Instructions
	A.6 Customization & Extensibility

