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Abstract
Matrix multiplication units (MMUs) in modern parallel pro-

cessors enable efficient execution of tiled matrix multipli-

cations at varying precisions. While their effectiveness in

AI workloads has been well demonstrated, their utility in

scientific computing lacks systematic analysis. In this work,

we characterize MMUs across a broad range of scientific

computing patterns by evaluating performance, power con-

sumption, numerical precision, and memory access behavior.

To support this analysis, we develop Cubie, a comprehensive

benchmark suite comprising ten MMU-optimized kernels of

key parallel patterns. We also categorize MMU utilization

patterns into four quadrants and identify the MMU limita-

tions that arise in scientific computing. Through detailed

comparisons with vector units, we provide nine key observa-

tions on the behavior and implications of MMUs in general

scientific workloads, offering valuable insights for architec-

ture, algorithm, and application researchers.

CCS Concepts: •General and reference→ Performance;
Evaluation; • Computing methodologies → Parallel
programming languages.

Keywords: Matrixmultiplication unit, Parallel pattern, Bench-

mark suite
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1 Introduction
As computational demands have steadily increased over time,

the evolution of compute units, ranging from scalar [16] to

vector [49] architectures, has continuously advanced. Re-

cently, matrix multiplication units (MMUs) processing gen-

eral matrix-matrix multiplication (GEMM) have emerged

as a key in significantly enhancing performance in modern

processors. Representative MMUs include NVIDIA’s Tensor

Core [15], AMD’s Matrix Core [78], Intel’s XMX [34] and

AMX [58], as well as ARM’s SME [94] and Google TPU’s

systolic matrix multipliers [36]. The latest Top500 list [1]

also reveals that the top ten supercomputers are all equipped

with MMUs from NVIDIA, AMD, and Intel GPUs.

MMUs significantly outperform vector units when mul-

tiplying matrices in a variety of precisions [60–63], and its

low-precision computation has been proven to be highly ef-

fective in deep learning [9, 24, 29, 30, 33, 35, 40, 42, 84, 90, 91].

But, although offering 2× double precision peak performance

over vector units, their effectiveness in scientific computing

is not yet well understood. This mainly arises from the di-

verse computational patterns in scientific workloads, which

make MMU utilization more complex than in deep learn-

ing. Fortunately, recent efforts leveraged NVIDIA’s tensor

cores for stencil [11, 28, 43, 48, 102], FFT [23, 41, 76], re-

duction and scan [17], particle in cell [57], dense matrix

factorization [39, 88, 101], general sparse matrix multipli-

cation [44, 51, 53, 73, 80, 99], and breadth-first search [59],

demonstrating improved performance of scientific kernels.

However, existing studies examine MMUs mainly in ma-

chine learning or isolated GEMM settings [21, 54, 78], and

current GPU benchmark suites [4, 8, 18, 20, 85, 92] such as

Rodinia [8] and SHOC [18] remain designed for vector based
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execution without support for evaluating MMU based op-

erations. There lacks a systematic way to analyze MMUs

in general scientific workloads, which limits hardware ar-

chitecture researchers, parallel algorithm researchers, and

HPC application researchers in building a comprehensive

understanding of MMU behavior.

For hardware architecture researchers, a key focus is de-

signing future MMUs. This requires understanding (1) the

compute pattern change of target applications to align with

matrix multiplication, (2) the appropriate memory band-

width to avoid underuse or waste, and (3) the impact on

power consumption before and after adopting MMUs.

For parallel algorithm researchers, it is crucial to design

MMU-optimizedmethods for non-GEMMcomputations. This

requires understanding (1) the utilization patterns of MMUs

that can be more performant, (2) whether MMU algorithms

ensure the performance portability across GPU generations,

and (3) the impact of numerical error from MMUs.

For HPC application researchers, the primary concern is

whether MMUs deliver reliable benefits in real-world deploy-

ments. This requires understanding (1) whether applications

can be performance portable, (2) the power and energy effi-

ciency of MMUs in practical simulations, and (3) the numer-

ical stability of MMUs to meet precision requirements.

Table 1. Mapping research questions and observations to

architecture, algorithm, and application researchers.

Concerns Arch. Alg. App. Observation

Compute Patterns ✓ ✓ O1, O2

Performance Portability ✓ ✓ O3

Necessity of MMUs ✓ ✓ O4, O5

Power and Energy ✓ ✓ O6

Numerical Precision ✓ ✓ ✓ O7

Memory ✓ ✓ O8

Workload Diversity ✓ ✓ O9

To address these questions, we firstly propose Cubie, a

benchmark suite composed of ten MMU-optimized work-

loads that align with the Berkeley Dwarfs [2, 3] and Exascale

Computing Project application motifs [81]. Then, based on

the input and output matrix integrity and reuse in MMU, we

categorize the MMU utilization patterns in scientific com-

puting kernels into four quadrants. For analyzing the MMU

behavior, for each workload, we implement three to four vari-

ants, including versions based on vector units and MMUs.

By comparing these implementations, we assess the perfor-

mance effectiveness and portability, analyze their impact on

energy efficiency, quantify numerical errors at FP64 preci-

sion, and examine bandwidth utilization.

We employ NVIDIA tensor cores as a representative MMU

and perform our evaluation on NVIDIA Ampere A100, Hop-

per H200, and Blackwell B200 GPUs. This setting is chosen

because NVIDIA provides a well-defined and widely used

MMU programming interface [72], and tensor cores have

served as the basis for most prior work [17, 41, 51, 53, 102]

onMMU-accelerated scientific computing. Moreover, despite

vendor-specific details, different MMUs across architectures

share a consistent MMA-based abstraction and cooperative

execution model; therefore, the characterization and obser-

vations derived from tensor cores are able to generalize to

MMU-style matrix engines.

Our evaluation yields nine key observations on the chal-

lenges and opportunities of using MMUs in scientific com-

puting. We find that MMU-accelerated kernels often deliver

higher performance and lower energy consumption than

their vector-based counterparts across a wide range of work-

loads and GPU architectures. These gains, however, come at

the cost of data structure and algorithm changes, which may

in turn introduce redundant computations and numerical er-

ror. Nevertheless, by systematically analyzing performance,

power and energy, numerical accuracy, and memory behav-

ior, we offer valuable insights for researchers in architecture,

algorithm design, and application development.

This work makes the following contributions:

• We propose Cubie, a benchmark suite of ten open-

source MMU workloads in scientific computing, offer-

ing high diversity and open accessibility (Section 3).

• We categorize the MMU utilization patterns in scien-

tific computing kernels into four quadrants based on

the input/output matrix integrity and reuse (Section 4).

• We characterize MMUs across general parallel pat-

terns in scientific computing, quantifying performance,

power, precision, and memory access (Section 5-9).

• We obtain nine key observations of using MMUs, pro-

viding valuable insights for architecture, algorithm,

and application researchers (Section 11).

2 Background of MMU
Over the past decades, processor architectures have been

moving from relying solely on scalar [16] and vector [49]

execution toward treating matrix computation as an explicit

hardware target. Figure 1 contrasts the execution pattern of

a conventional vector unit in Figure 1a with the matrix-level

computation layout of an MMU in Figure 1b.

From the programming viewpoint, MMUs expose a com-

mon abstraction as matrix multiply–accumulate (MMA) op-

erations on fixed matrices. Algorithm 1 sketches a warp-level

GEMM that calls an MMA instruction, showing how loads

(line 6), MMA execution (line 7), and stores (line 8) are struc-

tured around this interface. Each MMA instruction defines

the matrix shape, fragment layout, and cooperative execu-

tion group that holds operand and accumulator fragments

in registers. Correspondingly, Figure 1b illustrates an FP64

MMA instruction, where a warp collectively owns the 𝐴, 𝐵

and 𝐶 matrices across its 32 threads.
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Table 2.Workloads in the Cubie benchmark suite with their basic information, test cases, and comparison baselines.

Kernel Ref. Five Test Cases Baseline

GEMM cudaSample [68] M*N*K: 256*256*256, 512*512*512, 1K*1K*1K, 2K*2K*2K, 4K*4K*4K cudaSample [68] matrixMul v12.8

PiC PiCTC [57] N: 64K, 128K, 256K, 512K, 1M -

FFT tcFFT [41] Sizes: 256*256, 256*512, 256*1K, 512*256, 512*512; Batch: 2K cuFFT [66] v12.8

Stencil LoRaStencil [102] star2d1r: 1K*1K, 5K*5K, 10K*10K; star3d1r: 512*512, 1K*1K DRStencil [98]

Scan TCU-Scan [17] Size: 64, 128, 256, 512, 1024 CUB [64] BlockScan v2.7.0

Reduction TCU-Reduction [17] Size: 64, 128, 256, 512, 1024 CUB [64] BlockReduce v2.7.0

BFS BerryBees [59] Five real-world graphs from SuiteSparse [19], see Table 3 Gunrock [89]

GEMV - M*N: 4K*16, 4K*32, 11K*16, 32K*16, 40K*16 cuBLAS [65] GEMV v12.8

SpMV DASP [51] Five real-world sparse matrices from SuiteSparse [19], see Table 4 cuSPARSE [67] SpMV v12.8

SpGEMM AmgT-SpGEMM [53] Five real-world sparse matrices from SuiteSparse [19], see Table 4 cuSPARSE [67] SpGEMM v12.8

=
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(a) Vector unit computation lay-

out with SIMD-style operations

across vector lanes.
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(b) MMU computation layout

with tile-level MMA and cooper-

ative fragment mapping.

Figure 1. Computation layouts of vector unit and MMU.

Algorithm 1Warp-level GEMM using FP64_m8n8k4_mma

1: Input:Matrices 𝐴 ∈ R8×4
and 𝐵 ∈ R4×8

2: Output:Matrix 𝐶 ∈ R8×8

3: 𝑡 ← lane_id ⊲ Define the thread index in the warp

4: double 𝑎, 𝑏, 𝑐 [2] ⊲ Allocate registers 𝑎, 𝑏, 𝑐 [2]
5: 𝑐 [0] ← 0, 𝑐 [1] ← 0 ⊲ Init register 𝑐 [2]
6: 𝑎, 𝑏 ← LoadMatrixElements(𝐴, 𝐵, 𝑡)

⊲ Load 𝐴 and 𝐵 from GMEM/SMEM

7: fp64_m8n8k4_mma(𝑐 , 𝑎, 𝑏) ⊲ Call an MMA instruction

8: StoreMatrixElements(𝐶 , 𝑡 , 𝑐) ⊲ Store 𝐶 to GMEM/SMEM

At the architectural level, MMUs have become increas-

ingly capable [74, 79, 86] and widely deployed as dedicated

matrix execution paths inmodern processors. NVIDIA tensor

cores illustrate this progression across GPU generations (𝑒.𝑔.,

Volta [12], Turing [7], Ampere [14], Hopper [13], and Black-

well [87]) through expanded precision support and richer

instruction interfaces. AMD provides matrix cores [78, 83]

exposed through wavefront-level MFMA instructions, while

Intel offers matrix extensions on both CPUs (AMX [58]) and

GPUs (XMX [34]). Domain-specific tensor accelerators such

as TPU [36] and NPU [10] also expose MMA-style primi-

tives as first-class operators. Beyond these general MMUs,

specialized designs [32, 45, 46, 77, 93] target sparse and irreg-

ular computation with sparsity-aware representations and

dataflows, reflecting a trend toward more flexible MMUs.

3 The Cubie Benchmark Suite
To systematically characterize MMUs, we propose the Cubie

benchmark suite. Cubie comprises ten open-source MMU-

accelerated kernels selected for scientific computing, includ-

ing GEMV, GEMM [68], SpMV [51], SpGEMM [53], FFT [41],

stencil computations [102], reduction [17], scan [17], BFS [59],

and PiC [57]. Detailed information on these workloads is

provided in Table 2. Except for BFS, all kernels in Cubie per-

form floating-point computations using tensor core 64-bit

MMA instructions.

General Matrix Multiplication (GEMM) computes the

product of two densematrices, resulting in another densema-

trix. Cubie incorporates the routine dmmaTensorCoreGEMM
from CUDA Samples [68], where each thread block processes

a 64-by-64 tile using the FP64 wmma_m8n8k4 instruction.

Particle in Cell (PiC) simulates the behavior of charged

particles in a plasma or electromagnetic field. In Cubie, we

adapt the FP16 PiCTC [57] to an FP64 version, employing the

Boris push method [6] to simplify computation and mapping

data into small blocks of size 8-by-4 and 4-by-8 for tensor

core acceleration.

Fast Fourier Transform (FFT) converts time-domain

signals into frequency-domain. Cubie adapts tcFFT [41] by

converting FP16 to FP64, mapping data into 8-by-4 and 4-

by-8 blocks, and leveraging tensor cores to perform complex

matrix multiplications and element-wise computations.

Stencil Computation updates values of a grid using their

neighbors on structured grid. In Cubie, the stencil computa-

tion follows LoRAStencil [102] in FP64. It decomposes stencil

weight matrices into small components to use tensor cores,

enabling memory-efficient data gathering and reducing com-

putation. This transformation underlies our Observation 1.

Scan computes the prefix sum of an array. Cubie adapts

the FP16 segmented scan of Dakkak et al. [17] to FP64. This

method represents the input array as 8-by-8 blocks and mul-

tiplies the input with three different constant matrices to get
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Figure 2. A categorization of workloads into four quadrants based on their utilization of tensor cores’ input and output

patterns. Quadrant I represents workloads with full input and output, 𝑒.𝑔., GEMM, PiC, FFT, and Stencil. Quadrant II includes

workloads with partial input but full output, 𝑒.𝑔., Scan. Quadrant III consists of workloads with partial input and partial output,

𝑒.𝑔., Reduction. Quadrant IV covers workloads with full input but partial output, 𝑒.𝑔., BFS, GEMV, SpMV, and SpGEMM.

the row-wise prefix sums, column-wise prefix sums, and the

final result. This transformation leads to Observation 1.

Reduction calculates the sum of all values in an array.

Cubie incorporates the segmented reduction proposed by

Dakkak et al. [17] and reproduces it from FP16 computations

to FP64 computations. This approach stores the input array

into several blocks of size 8-by-8, performs multiple multi-

plications with two constant matrices, and obtains the final

sum, which also leads to the Observation 1.

Table 3. The Graphs evaluated in BFS.

Graph #Vertices #Edges Group

wikipedia-20070206 3,566,907 90,043,704 Gleich

mycielskian17 98,303 100,245,742 Mycielski

wb-edu 9,845,725 112,468,163 SNAP

kron_g500-logn21 2,097,152 182,082,942 DIMACS10

com-Orkut 3,072,441 234,370,166 SNAP

Breadth-First Search (BFS) explores reachable vertices
from a given source in a graph and is widely applied in com-

binatorial scientific computations [37, 56]. Cubie integrates

BerryBees [59], which represents a graph in an 8-by-128

bitmap block slice-set format and executes bit operations us-

ing the single-bit mma_m8n8k128 instruction of tensor cores.

The tailored structure supports our Observation 1.

General Matrix-Vector Multiplication (GEMV) mul-

tiplies a dense matrix 𝐴 with a dense vector 𝑥 to produce a

vector𝑦. Our implementation partitions matrix𝐴 into blocks,

broadcasts the corresponding vector 𝑥 into blocks, calls the

FP64 mma_m8n8k4 instruction to perform matrix multiplica-

tion on tensor cores, and extracts the diagonal elements from

the output matrix.

Table 4. The matrices evaluated in SpMV and SpGEMM.

Matrix #Rows #Nonzeros Group

spmsrtls 29,995 229,947 GHS_indef

Chevron1 37,365 330,633 Chevron

raefsky3 21,200 1,488,768 Simon

conf5_4-8x8-10 49,152 1,916,928 QCD

bcsstk39 46,772 2,089,294 Boeing

Sparse Matrix-Vector Multiplication (SpMV) multi-

plies a sparse matrix with a dense vector, producing a vector.

Cubie implements this kernel using DASP [51] and adopts

its FP64 version. DASP groups the rows of the input matrix

into three categories and organizes them into small blocks of

size 8-by-4 to use tensor cores. This restructuring for MMU

usage underlies our Observation 1.

Sparse General Matrix-Matrix Multiplication (SpGE
MM)multiplies two sparse matrices to generate a sparse ma-

trix. Cubie uses the FP64 SpGEMM kernel from AmgT [53],

which partitions sparse matrices in the mBSR format, form-

ing 4-by-4 blocks and combining them into blocks of size

8-by-4 to leverage tensor cores, which also motivates the

Observation 1.
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Key Observation 1: To exploit MMUs, non-GEMM

algorithms in scientific computing often have tomod-

ify data structures and reorganize algorithms.

4 Categorization of MMU Utilization
Patterns

We introduce a systematic categorization to characterize how

different workloads leverage the MMA pattern. To properly

run on MMUs, algorithms must undergo data preprocessing

or algorithm reorganizing to transform non-GEMM oper-

ations into computational patterns compatible with MMA

instructions, leading to a variety of MMU utilization patterns.

We classify workloads along two dimensions: input matrix

utilization and output matrix utilization, each categorized as

either full or partial. The four groups are illustrated in the

coordinate system in Figure 2.

Cubie Quadrant I ( 1, ) includes workloads such as

Stencil, FFT, GEMM, and PiC, which fully utilize both in-

put and output matrices. The key distinction among these

workloads lies in which component is reused. As shown

in Quadrant I in Figure 2, GEMM and PiC repeatedly load

inputs to accumulate into one result matrix, Stencil loads

matrix 𝐵 only once from constant memory for reuse, and FFT

loads matrix 𝐴 only once from global memory for multiple

uses and products multiple resulting matrices.

Cubie Quadrant II (G#2, ), containing the Scan kernel,

which uses the constant matrix consisting of values zero and

one as one of the input matrices and fully utilizes all elements

of the output matrix. Specifically, the Scan is completed using

three consecutive types of MMA operations, where one of

the operands in each MMA is a constant matrix: (1) an upper

triangular matrix of ones, (2) a lower triangular matrix of

ones, or (3) a matrix entirely filled with ones, 𝑖 .𝑒 ., 𝐵1, 𝐴2,

and 𝐵3 in Figure 2 Quadrant II. The constant matrices do not

require loading from global memory.

Cubie Quadrant III (G#,G#) contains the Reduction ker-

nel, which exhibits partial utilization of both input and out-

put matrices. Similar to the Scan, this kernel also uses con-

stant matrices as one of the operands. These constant matri-

ces typically have a single row or column filled with ones,

while the remaining elements are zeros, 𝑖 .𝑒 ., 𝐴1 and 𝐵2 in

Figure 2 Quadrant III. Unlike the Scan, this kernel utilizes

only a small portion of the output matrix, specifically a single

row or even a single element, for the final result.

Cubie Quadrant IV ( ,G#), including four kernels BFS,

GEMV, SpMV and SpGEMM, takes full input 𝐴 and 𝐵 but

only partial output 𝐶 . Among the four kernels shown in

Figure 2 Quadrant IV, (1) BFS reuses one 𝐵, loads multiple 𝐴,

1
Symbol indicates the algorithm utilizes the entire input or output matrix.

2
Symbol G#signifies the algorithm only utilizes a portion of the input or

output matrix, such as when the input is a zero matrix or only the diagonal

of the output is meaningful.

and extracts the diagonal elements of multiple 𝐶 , (2) GEMV

and SpMV repeatedly load 𝐴 and 𝐵 and accumulate results

also in the diagonal elements of one 𝐶 , and (3) SpGEMM

reuses 𝐴, loads multiple 𝐵, and accumulates results into the

diagonal tiles of 𝐶 , achieving slightly higher utilization.

Key Observation 2: Scientific kernels may not fully

utilize the dense input and output matrices of MMUs,

exhibiting distinct utilization patterns in four quad-

rants characterized by varying levels of density.

The utilization patterns in this section are derived from

MMU adapted kernels and characterize MMU behavior in the

transformed code space. A deeper question is whether MMU

accelerability can be inferred from the original algorithm

or a CUDA core implementation before such transforma-

tions. Addressing this question requires linking algorithmic

structure to MMU execution semantics, likely with compiler

assistance [25, 95, 97]. Our categorization provides a first step

toward the algorithm level reasoning about MMU suitability.

5 Experimental Design
We take the tensor core as a representative MMU to conduct

our evaluation. This section presents the experimental setup

and the algorithmic variants for all workloads, which serve

as the basis for analyzing MMU behaviors in later sections.

5.1 Experimental Setup
We evaluate Cubie on NVIDIA A100 (Ampere), H200 (in

the GH200 platform, Hopper), and B200 (Blackwell) GPUs,

see Table 5 for details. The CUDA version we used is v12.8.

Prior work has shown that GPUs of the same type may

exhibit non-negligible performance variation due to manu-

facturing effects and process variation [82]. To avoid such

device-level variability obscuring the performance trends, all

measurements in this study are conducted on a single physi-

cal GPU for each GPU type. This design choice allows us to

more clearly attribute observed performance differences to

hardware features and execution characteristics, rather than

cross-device variation.

Table 5. The specifications of the three GPUs tested.

NVIDIA GPUs FP64 Units Peak Performance

A100 (Ampere) PCIe

40 GB, 1.55 TB/s

Tensor Core 19.5 TFLOPs

CUDA Core 9.7 TFLOPs

H200 (Hopper) SXM

96 GB, 4 TB/s

Tensor Core 66.9 TFLOPs

CUDA Core 33.5 TFLOPs

B200 (Blackwell) SXM

180 GB, 8 TB/s

Tensor Core 40.0 TFLOPs

CUDA Core 40.0 TFLOPs
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Figure 3. Performance comparison of baselines, TC, CC, and CC-E implementations for all workloads on the three GPUs.

Test Cases: In Cubie, each workload is evaluated using

five test cases, as shown in Table 2. These cases span small to

large problem scales and cover the major GPU performance

regimes. A more detailed representativeness analysis will be

presented in Section 10.

Baselines: For each workload, the TC version is compared

against a baseline from CUDA official libraries or the meth-

ods presented in the original studies. The CUDA libraries

include cuBLAS [65] for GEMV, cudaSample [68] for GEMM,

cuSPARSE [67] for SpMV and SpGEMM, cuFFT [66] for FFT,

and CUB [64] for Reduction and Scan. Gunrock [89] and

DRStencil [98] are used for BFS and Stencil, respectively.

5.2 Algorithmic Implementation Variants
To analyze the changes in program performance, energy effi-

ciency, and computational characteristics, and to determine

whether these changes are driven by the use of MMUs or

the design of the algorithm, we consider three variants.

Tensor Core Version (TC): This algorithmic variant con-

sists of programs that perform floating-point computations

mainly using tensor core MMA 64-bit instructions. The spe-

cific implementation techniques for each workload are de-

scribed in Section 3. This algorithmic variant serves as a

reference for assessing the efficiency of tensor core-based

computation across various workloads.

CUDA Core MMA Replacement (CC): This variant re-
places tensor core MMA operations with CUDA core-based

computations while maintaining identical data structures

and algorithmic settings, 𝑖 .𝑒 ., this version implements the ex-

act same algorithm as TC but using CUDA core instructions

instead of tensor core MMAs. Specifically, in an FP64 tensor

core MMA instruction mma_m8n8k4, each thread within a

warp processes a specific subset of matrix elements. Our CC

implementation preserves same thread responsibilities and

data layouts, which enables a direct comparison between

tensor core and CUDA core executions.

CUDA Core Essential Replacement (CC-E): This ver-
sion eliminates redundant or useless operations introduced

by tensor core MMAs, preserving only the essential compu-

tations using CUDA cores. For workloads that do not fully

use the whole MMA pattern, expressing them in MMA pat-

terns introduces redundant computation. In such cases, we

replace tensor core MMA instructions with CUDA core in-

structions that execute only the mathematically necessary

operations to ensure correctness. For example, in the case

of the GEMV kernel 𝑦 = 𝐴 · 𝑥 , the CC variant actually com-

putes 𝐴 · [𝑥, ..., 𝑥], where the second operand is a matrix

generated by replicating the 𝑥 vector several times and takes

the output diagonal to get 𝑦, since CC must express GEMV

in an MMA-like operation. In contrast, the CC-E version of

GEMV indeed computes 𝑦 = 𝐴 · 𝑥 without any redundant

operation, and the similar principle applies to BFS, SpMV,

and SpGEMM. Comparing CC-E with TC makes it possible

to observe changes in various characteristics, distinguishing

the effects of tensor core-specific optimizations from the

underlying hardware. For the GEMM, PiC, FFT, and Stencil

kernels, the CC-E version is equivalent to CC.

6 Performance of MMUs
In this section, we conduct three performance evaluations

to analyze the suitability of tensor core acceleration for the

scientific workloads that Section 3 describes. For each work-

load, we consider the three variants described in Section 5.2

and its corresponding baseline. Section 6.1 evaluates the

performance improvements of TC versions over their corre-

sponding baselines, focusing on whether these advantages

hold consistently across different GPU architectures. Sec-

tion 6.2 compares the performance of the TC and CC im-

plementations to evaluate the performance acceleration of

MMUs over vector units when using identical data structures

and algorithms. Section 6.3 evaluates the CC-E versions to

investigate whether the redundant computations introduced
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by transformations for MMU utilization are worthwhile for

scientific computing kernels.

Figure 3 shows several subplots indicating in their y-axis

the performance for all workloads across their four imple-

mentations: baseline, TC, CC, and CC-E. The subplots rep-

resent in their x-axis the five test cases per workload that

Table 2 specifies. For each workload, the three subplots from

bottom to top are the performance on A100, H200, and B200

GPUs, respectively. For stability, most benchmarks start with

100 warm-up runs followed by 1000 timed executions, with

the arithmetic average performance reported.

6.1 Comparison of Baseline Against TC
To evaluate the performance benefits of using tensor core

acceleration compared to standard CUDA libraries, we con-

sider the TC versions and compare them against their cor-

responding baselines, which are listed in the fourth column

of Table 2. Figure 3 represents the performance of the base-

lines and TC versions in terms of blue ‘circle’ and red ‘star’

markers, respectively. Figure 4 summarizes the speedups of

TC versions over baselines for each workload, where each

value is averaged across the five representative test cases.
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Figure 4. Speedups of TC implementations compared to their

baselines on the three GPUs across all workloads, grouped

by utilization patterns (Quadrants I-IV).

For workloads in Quadrant I, which fully use both the

input and output registers of MMA instructions, TC versions

are expected to deliver consistent and portable performance

gains across hardware generations. GEMM and Stencil ex-

perience strong acceleration when using tensor cores for

computation. In contrast, PiC and FFT show reduced bene-

fits, with FFT in particular performs worse than the cuFFT

baseline. The poor performance of FFT is explained by the

difficulty to express the FFT-specific butterfly computation

patterns [100] in terms of MMA instructions.

The Quadrant II workload, Scan, performs MMA instruc-

tions using constant matrices as one operand, which reduces

data transfer overhead and significantly improves tensor

core utilization. Therefore, its TC version outperforms the

baseline across all the three GPUs, achieving speedups of

1.8×, 1.3×, and 1.3× on A100, H200, and B200, respectively.

The Quadrant III kernel, Reduction, uses constant ma-

trices, similarly as Scan, but only accesses a single row or

element from each 8-by-8 output tile. While tensor core accel-

eration benefits from using constant operands, as it increases

register reuse, the low arithmetic intensity of the Reduction

workload mitigates the performance benefits of using tensor

cores. As a result, the TC version achieves 1.3-1.6× speedups
over the baseline on the three GPUs.

The Quadrant IV kernels are all memory-bound and,

thus, they strongly benefit from high memory bandwidth,

such as H200 and B200. The considered BFS algorithm [59]

judiciously leverages tensor core bit-wise operations and ef-

ficient data structures with low memory footprint to achieve

2.6×, 3.0×, and 2.7× speedups over the baseline on A100,

H200, and B200, respectively. SpGEMM successfully lever-

ages half of the 8-by-8 output tiles of MMA, resulting in

2.5-3.2× speedups over cuSPARSE on the three GPUs. While

B200’s FP64 tensor core throughput is lower than H200’s, its

superior 8 TB/s memory bandwidth enables competitive or

even better performance for memory-bound workloads.

Key Observation 3: MMU-accelerated workloads

consistently outperform vector baselines in most

cases, and exhibit performance portability across the

Ampere, Hopper, and Blackwell architectures.

6.2 Comparison of CC Against TC
This section conducts an ablation study by comparing the CC

and TC implementations to evaluate the performance benefit

of tensor core acceleration under constant data structures

and algorithms. To isolate the effect of the compute unit,

each MMA instruction in the TC versions is replaced with

a semantically equivalent CUDA core instruction in the CC

variants. Figure 3 represents the performance of the CC

versions with green ‘triangle’ markers. Figure 5 summarizes

the average speedups of CC over TC for each workload on

A100, H200, and B200. Specifically:
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Figure 5. Speedups of CC replacements over TC versions

on the three GPUs across kernels in Quadrants I-IV.

The Quadrant I workloads have high MMA computation

density and fully use the MMA pattern, as Figure 2 illustrates.

The performance of the CC versions generally drops around

50% of that achieved by the TC counterparts, which aligns
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with our expectations. As Figure 2 illustrates, GEMM and

PiC benefit from more efficient data movement than FFT

and Stencil, and achieve higher tensor core utilization. Con-

sequently, their CC versions experience larger slowdowns

than FFT and Stencil. For instance, the PiC CC implemen-

tation only achieves a 0.4× speedup of its TC version. FFT

suffers the smallest degradation within Quadrant I since its

TC version does not exploit the tensor core performance, as

Section 6.1 explains.

For workloads in Quadrants II and III, including Scan

and Reduction, their CC versions perform noticeably worse

than the TC counterparts. Specifically, the CC versions of

Scan and Reduction deliver less than 40% of the performance

achieved by their TC counterparts. This gap exceeds the ra-

tio between the peak performances of the tensor and CUDA

cores. Besides the lower floating-point performance of CUDA

cores, the additional degradation comes from the fact that the

TC versions of Scan and Reduction benefit from using con-

stant matrices as operands, and CUDA cores do not leverage

these constant operands as much as tensor cores.

InQuadrant IV, although the kernels are memory-bound,

the CC variants still perform worse than the TC versions,

with relatively small performance gaps. For example, in the

case of SpMV, the CC versions retain 60-70% of the TC per-

formance on the three GPUs. Consistent with prior stud-

ies [5, 96] showing that effective use of vector units improves

SpMV performance, MMUs can provide further improve-

ments for memory-bound kernels.

Key Observation 4: Removing the impact of data

structures and algorithms (replacing MMU instruc-

tions with equivalent vector unit operations), MMUs

account for 10% to 200% of the performance gains.

6.3 Comparison of CC-E Against TC
To use MMUs, scientific kernels in Quadrants II-IV are trans-

formed into GEMM-like forms at the cost of redundant com-

putations. For example, in SpMV, the input is divided into

small blocks, and full MMA operations are performed among

them, but only the diagonal elements of the outputs are ulti-

mately used. To evaluate whether such redundant compu-

tations are worthwhile, we compare CC-E variants (recall

the description in Section 5.2), which retain only essential

computations on CUDA cores, against TC versions. Figure 6

summarizes the average speedups of CC-E (recall the yellow

‘square’ markers in Figure 3) over TC across the three GPUs.

The CC-E versions of workloads belonging to Quadrant I are

equivalent to the CC variants, so Figure 6 only lists results

of Quadrants II-IV.

In Quadrants II and III, the CC-E versions of Scan and

Reduction consistently underperform their TC counterparts,

with speedups ranging from 0.34–0.45× and 0.66–0.79× across
A100, H200, and B200, respectively. This is because, when
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Figure 6. Speedups of CC-E replacements over TC versions

on the three GPUs across kernels in Quadrants II-IV.

processing small blocks, partial and irregular computations

are less efficient than tensor cores’ full and regular compu-

tation patterns. Despite the redundant computations intro-

duced byMMU use, the TC versions still outperform both the

CC-E and baselines, meaning that the overhead of redundant

computations is worthwhile in these two kernels.

InQuadrant IV, the performance of CC-E shows variation

across workloads. For SpMV, the CC-E versions outperform

the TC by 1.0-1.2× speedups on the three GPUs, considering

that TC is faster than the baseline by a factor of 1.7-2.8×
(recall Section 6.1), removing redundant computations intro-

duced for MMU further improves performance over base-

line. This suggests that while using MMUs incurs redundant

computations for SpMV, the changes of data structures and

algorithmic workflows made to enable MMU use remain ben-

eficial. In contrast, GEMV’s CC-E is slightly slower than its

TC version, and CC-E and TC of SpGEMM and BFS exhibit

similar performance, showing that removing the redundant

computations in general does not bring performance gains.

Key Observation 5: Generally, the redundant com-

putations introduced to enable MMU-friendly matrix

computing patterns should not be removed. The only

exception is SpMV, where avoiding the redundancy

yields up to 20% higher performance.

7 Power and Energy Efficiency of MMUs
This section evaluates the impact of tensor core usage on

the GPU power and energy efficiency. We monitor the work-

loads power using the NVIDIA Management Library [71]

( nvmlDeviceGetPowerUsage()). During each test, a moni-

toring process logs both timestamps and power values from

kernel launch to completion. For brevity, we show the power

and energy efficiency results only for the H200 GPU, which

has a thermal design power of 750W and the highest theo-

retical FP64 tensor core throughput among the three GPUs.

Figure 8 illustrates the power consumption (y-axis) over

runtime (x-axis) for each workload, while the area under
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Figure 8. Power consumption over time of baselines, TC,

CC, and CC-E implementations for all workloads on H200.

each power-runtime curve reflects the total energy consump-

tion per workload. In addition, to measure the balance be-

tween energy efficiency and performance, we compute the

energy-delay product (EDP) [26, 27] for each test case, as

𝐸𝐷𝑃 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑜𝑤𝑒𝑟 × 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒2. The EDP results

are summarized in Figure 7.

The Quadrant I workloads, GEMM, FFT, Stencil, and PiC,

fully utilize the register operands of MMA instructions, re-

flecting efficient use of tensor cores. Therefore, the TC im-

plementations typically exhibit high instantaneous power

consumption, often exceeding 400W. However, their much

shorter execution times lead to lower overall energy usage

and better EDP. For example, in Stencil, the TC version com-

pletes execution in 5.5s at an average power of 450W, while

the baseline takes 15s at 470W. This leads to a 65% reduction

in energy and an 88% EDP reduction. Based on the geomean

EDP within Quadrant I, the TC version reduces EDP by ap-

proximately 64% compared to the baseline.

The Quadrants II and III workloads, Scan and Reduc-

tion, are composed of lightweight and regular computations,

which drive stable power curves throughout their execu-

tion. For both kernels, the TC implementations consistently

achieve lower power consumption and the shortest execu-

tion times, resulting in the lowest overall EDP. For example,

in Scan, the TC version runs in 3.8 seconds at an average

power of 244W, leading to an EDP of 3.63 kJ·s. In contrast,

the baseline consumes over 300W and reaches an EDP of

8.24 kJ·s, meaning that the TC reduces EDP by over 55%. For

Quadrants II and III, the TC implementation achieves a 36%

reduction in geomean EDP relative to the baseline.

The Quadrant IV kernels, including BFS, GEMV, SpMV,

and SpGEMM, are primarily memory-bound. Due to frequent

memory accesses, their baselines show low CUDA core uti-

lization, and have relatively low power consumption but

longer execution times. In contrast, the TC and its variants

improve memory accessing through regularized data layouts,

leading to higher core utilization. These implementations

consume similar power but complete execution much faster,

resulting in lower overall energy usage and EDP. For exam-

ple, in BFS, the TC and CC-E versions consume around 375W,

compared to 340W for the baseline. However, both reduce

execution time by about 40%, leading to over 60% lower EDP.

For Quadrant IV, the TC version lowers the geomean EDP

by nearly 80% compared to the baseline.

Key Observation 6: MMUs exhibit similar power

consumption to vector units but complete compu-

tations significantly faster, resulting in 30% to 80%

lower geomean EDP across all workloads.

8 Floating-point Accuracy of MMUs
This section compares the FP64 accuracy of tensor cores

with CUDA cores. Specifically, we compare outputs obtained

on H200 and B200 GPUs using both kinds of cores against

a naive CPU serial implementation (𝑒.𝑔., CSR-based SpMV),

which serves as the ground truth in terms of floating-point ac-

curacy. For input data initialization, SpMV and SpGEMM load

matrix from the original dataset files and generate vector in-

puts using pseudo-random values; FFT and Stencil follow the

initialization schemes in their original benchmark codes; and
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Table 6. FP64 numerical errors of different implementations for all workloads on H200 and B200 GPUs, obtained against CPU

serial computing results. Bold numbers indicate the lowest average error for each workload.

Workload
Errors on H200 GPU Errors on B200 GPU

Baseline TC/CC CC-E Baseline TC/CC CC-E

Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max.

GEMV 5.19E-16 3.55E-15 0 0 4.69E-16 3.55E-15 6.30E-16 3.55E-15 4.92E-16 5.33E-15 6.07E-16 3.55E-15

GEMM 4.36E-14 3.69E-13 3.12E-13 1.82E-12 - - 5.22E-15 4.97E-14 7.40E-15 1.14E-13 - -

SpMV 2.15E-08 9.54E-07 7.11E-10 2.38E-07 2.02E-08 1.07E-06 2.10E-08 9.54E-07 8.92E-09 4.77E-07 2.09E-08 1.07E-06

SpGEMM 7.10E-16 7.11E-14 6.30E-16 8.53E-14 6.30E-16 8.53E-14 6.78E-16 7.11E-14 6.55E-16 8.53E-14 6.55E-16 8.53E-14

FFT 4.83E-18 1.22E-15 7.50E-17 2.77E-14 - - 5.00E-18 1.22E-15 7.49E-17 2.77E-14 - -

Stencil 1.05E-16 6.66E-16 8.77E-15 5.68E-14 - - 1.05E-16 6.66E-16 5.84E-15 4.26E-14 - -

Reduction 1.82E-14 5.68E-14 2.91E-14 8.53E-14 2.13E-14 5.33E-14 1.82E-14 5.68E-14 2.91E-14 8.53E-14 2.13E-14 5.33E-14

Scan 9.53E-15 5.68E-14 1.11E-14 8.17E-14 1.11E-14 8.17E-14 9.53E-15 5.68E-14 1.11E-14 8.17E-14 1.11E-14 8.17E-14

PiC 0 0 0 0 - - 2.52E-16 2.22E-15 2.52E-16 2.22E-15 - -

the remaining workloads use pseudo-random values.We gen-

erate pseudo-random values distributed within (-2, 2) using a

linear congruential generatormethod [38], following the LIN-

PACK benchmark [22]. The average and maximum errors are

computed as𝐴𝑣𝑒𝑟𝑎𝑔𝑒_𝐸𝑟𝑟𝑜𝑟 = 1

𝑛

∑𝑛
𝑖=1

��𝑟𝑒𝑠𝑢𝑙𝑡𝑔𝑝𝑢,𝑖 − 𝑟𝑒𝑠𝑢𝑙𝑡𝑐𝑝𝑢,𝑖 ��
and𝑀𝑎𝑥_𝐸𝑟𝑟𝑜𝑟 =

��𝑟𝑒𝑠𝑢𝑙𝑡𝑔𝑝𝑢,𝑖 − 𝑟𝑒𝑠𝑢𝑙𝑡𝑐𝑝𝑢,𝑖 ��𝑚𝑎𝑥
, respectively.

The 𝑛 denotes the number of input samples in this compari-

son, which ranges from 1K to 100M depending on kernels.

Table 6 presents the FP64 numerical error results for all

versions. BFS is excluded since it does not perform floating-

point computations. We observe that (i) for each workload,

the TC and CC versions produce identical errors. Since these

two variants use the same data structures and algorithms and

differ only in the compute unit, tensor core and CUDA core

provide equivalent numerical accuracy for FP64 operations.

(ii) For workloads in Quadrant IV, including GEMV, SpMV,

and SpGEMM, the TC/CC versions produce small numeric

errors, while CC-E can introduce deviations up to an order of

magnitude larger (𝑒.𝑔., SpMV). These differences suggest that

the performance-driven optimizations of the CC-E versions

may impact the floating-point computations and complicate

the reproducibility of scientific results.

For workloads in other quadrants, the lowest deviations

are typically achieved by the baselines. For example, in FFT,

the baseline yields an average deviation of 4.83E-18 on H200

and 5.00E-18 on B200, while the TC/CC versions show an

error of 7.50E-17 and 7.49E-17 on two GPUs, nearly an order

of magnitude higher. These differences arise from variations

in algorithmic structure and accumulation order, which affect

how rounding errors propagate during computation.

Key Observation 7: MMUs and vector units pro-

vide comparable numerical accuracy, but algorithmic

transformations for MMU utilization can induce sig-

nificant numerical deviations that undermine the

reproducibility of scientific results.

9 Performance Model
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Figure 9. The cache-aware roofline model for Cubie, il-

lustrating the performance characteristics of different im-

plementations. The L1 cache bandwidth is computed as

𝐵𝑊𝐿1 = 𝑁𝑆𝑀 ×𝑁𝐿𝑆𝑈 ×𝑊𝑎𝑐𝑐𝑒𝑠𝑠 × 𝑓𝑐𝑙𝑜𝑐𝑘 , and the DRAM band-

width is derived from the whitepaper [63] of H200 GPU.

To better understand the interaction between computation

and memory efficiency in Cubie workloads, we construct a

cache-aware roofline model [31, 50, 55], as shown in Figure 9.

This model incorporates ceilings for DRAM and L1 cache

bandwidth, as well as FP64 compute throughput defined

by the peak performance of tensor cores and CUDA cores.

The plot includes all workloads and their implementations,

except for BFS, which relies on bit-wise operations.

The workloads in Quadrant I exhibit varying levels of

arithmetic intensity. GEMM and FFT have high intensity,

while Stencil and PiC are lower. Although GEMM falls in the

compute-bound region, its performance does not reach the

tensor core peak of 66.9 TFLOPS. This is due to the absence

of advanced optimizations such as those in cuBLAS [65] or

CUTLASS [69], which are excluded from Cubie for simplicity.

Nonetheless, the TC versions of these kernels still achieve



Characterizing Matrix Multiplication Units across... PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia

a clear performance advantage over the CC, demonstrating

the effectiveness of tensor core acceleration.

For workloads in Quadrants II and III, Reduction and

Scan have low arithmetic intensities around 10
−1
. With seg-

mented processing and improved data locality, they are rel-

atively cache-friendly. Thus, the TC versions exceed the

DRAMbandwidth ceiling and achieve improved performance.

In Quadrant IV, workloads span arithmetic intensities

from 10
−1

to 3, and are considered memory-bound kernels.

However, the performance of baselines does not approximate

the bandwidth limit. In contrast, the TC versions approach

the bandwidth limit more closely, and in some cases, the

CC-E versions do as well, indicating that the adaptations for

tensor core usage lead to more efficient memory access.

Key Observation 8: Adapting data layouts and al-

gorithms for MMUs fundamentally alters memory

access patterns, often yielding more regular access

and significant performance gains.

10 Analysis of Benchmark Suite Coverage
To characterize the coverage of Cubie benchmark suite, we

analyze both its input cases and workload composition.
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(a) The PCA results of the 499 graphs in SuiteSparse and the five

representative graphs used in BFS.
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(b) The PCA results of the 2893 matrices in SuiteSparse and the five

representative matrices used in SpMV and SpGEMM.

Figure 10. The PCA visualizations of the graphs and matri-

ces considered in our experiments.

We standardize the structural features, including sparsity,

row and column degree statistics, and block structures, and

then apply principal component analysis (PCA) to capture

the dominant variation patterns of matrices and graphs in the

SuiteSparse Matrix Collection [19]. As shown in Figures 10a

Table 7. Comparison of Cubie with two existing benchmark

suites (Rodinia and SHOC) based on the number of the Berke-

ley Dwarf covered and the features analyzed in each suite.

Dwarf / Feature Rodinia
[8]

SHOC
[18]

Cubie
(this work)

Dense linear algebra 3 2 2

Sparse linear algebra - - 2

Spectral methods - 1 1

N-Body - 1 1

Structured grids 4 1 1

Unstructured grids 2 - -

MapReduce - 3 2

Graph traversal 2 - 1

Dynamic programming 1 - -

Parallelization pattern ✓ ✓

Performance ✓ ✓ ✓

Power and energy ✓ ✓ ✓

Precision ✓

Memory bandwidth ✓ ✓

CPU-GPU data transfer ✓ ✓

and 10b, the five selected matrices exhibit a dispersion of

0.18 compared to 0.05 among their nearest neighbors, and

the five selected graphs cover 81–96% of the structural value

ranges with 94.6% of all graphs lying close to at least one

representative, demonstrating that both sets effectively span

the major structural variations in their respective domains.

These matrices and graphs are also widely used in prior

graph algorithms [59] and sparse matrix studies [47, 51, 96].

Additionally, we compare Cubie with Rodinia [8] and

SHOC [18] in terms of the number of the Berkeley Dwarf [2,

3] computation patterns covered and the evaluated features,

as summarized in Table 7. These two suites both cover five

dwarfs and evaluate three or four key features. Compared

with them, Cubie covers seven dwarfs by including one or

two representative workloads for each dwarf and evaluates

five key features, offering both broad pattern coverage and

comprehensive feature assessment.
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Figure 11. The PCA results comparing Rodinia, SHOC, and

Cubie.
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To further compare Cubie with existing benchmark suites,

we perform PCA on key architectural metrics (memory effi-

ciency, compute throughput, and instruction pipeline usage

for FMA and tensor operations) collected using NCU [70],

which provides a comprehensive description of the workload

behavior. We execute kernels and applications from Rodinia,

SHOC, and Cubie, using the datasets specified in the original

papers [8, 18]. For each application, performance metrics are

collected across the complete kernel execution to ensure an

exhaustive coverage of the execution stages. Then, using the

Python module Scikit-learn [75], the data is standardized, fol-

lowed by applying PCA by computing the covariance matrix

and extracting the two top principal components represent-

ing highest variance in workload behavior.

As shown in Figure 11, Cubie workloads span a wider area

in the principal component space, reflecting a greater diver-

sity in execution behavior than both Rodinia and SHOC. This

broader dispersion demonstrates Cubie’s ability to represent

a wide range of patterns relevant to modern processor.

Key Observation 9: Originally developed with the

primary goal of evaluating MMUs, the Cubie bench-

mark suite encompasses a wide range of behaviors

in scientific programs, positioning it as an effective

tool for assessing modern processors.

11 Conclusions
This paper has developed Cubie, a benchmark suite compris-

ing optimized scientific kernels tailored for MMUs, and used

it to characterize MMUs across scientific computing patterns

in performance, power, precision, and memory layout. With

its wide coverage of parallel patterns and computing char-

acteristics, valuable insights for researchers in architecture,

algorithm, and application have been provided.

For architecture design researchers, we confirmed the

value of MMUs in scientific computing, in terms of perfor-

mance (O4,O5) and energy (O6) advantages for most kernels.

However, as some patterns only use part of the two input

and one output matrices of MMUs (O1, O2), enabling ar-

chitectural support for more flexible compute patterns will

improve MMU applicability to a broader class of workloads.

For parallel algorithm researchers, MMUs indeed offer

strong and portable performance across architectures (O3,
O4, O5), making them more beneficial for scientific kernels.

By changing data layouts and applying programming-level

transformations to align with the four utilization patterns,

non-GEMM kernels can also effectively use MMUs (O1, O2).
Optimizing for higher arithmetic intensity and lower mem-

ory overhead will further enhance these gains (O8).
For application researchers, MMUs generally provide bet-

ter and portable performance (O3), along with improved en-

ergy efficiency across diverse workloads (O6). While MMUs

themselves do not introduce more numerical errors than

the same implementations on vector units, the algorithmic

choices made to exploit MMUs can affect precision, requiring

users to exercise caution in their selection (O7).
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Gen5 TC
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FP64 CUDA Core

FP16 Tensor Core
FP64 Tensor Core

Figure 12. Peak throughput of NVIDIA’s three latest GPU

architectures (Ampere, Hopper, Blackwell), comparing FP16

and FP64 performance on CUDA cores and Tensor Cores.

We highlight an unexpected and concerning divergence

in tensor core evolution, as shown in Figure 12: FP16 tensor

core peak throughput continues to scale across generations,

rising from 312 TFLOPS on Ampere to 989.5 TFLOPS on

Hopper and 1800 TFLOPS on Blackwell, whereas FP64 ten-

sor core peak throughput increases from 19.5 TFLOPS on

Ampere to 67 TFLOPS on Hopper but, instead of sustaining

this growth, falls to 30 TFLOPS in the latest Blackwell, which

is less than half of the Hopper. This regression may directly

undermine FP64 MMU adoption for scientific computing

and should be viewed as a step backward for HPC capability.

While the reduction may reflect a vendor perception that

FP64 MMU support is of limited practical value, our results

demonstrate that FP64 MMU acceleration can largely benefit

most scientific workloads. Given our observations, future

GPU roadmaps should preserve and materially strengthen

FP64 MMU capability rather than treating it as a secondary

feature, so that architectural gains translate into sustained

progress for scientific computing applications.
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A Artifact Evaluation
This artifact accompanies the submission #336 entitled ‘Char-

acterizingMatrixMultiplication Units across General Parallel

Patterns in Scientific Computing’. It provides a benchmark

suite for Matrix Multiplication Units (MMUs), covering ten

workloads evaluated in terms of performance, power con-

sumption, and numerical accuracy.

The artifact consists of two main components: the Getting

Started Guide and the Step-by-Step Instructions: The first

part introduces the prerequisites for running the artifact

and provides a quick test that evaluates four representative

workloads from the paper. It includes the necessary compi-

lation and execution commands, along with the expected

outputs for performance, power, and accuracy. This quick

test is designed to complete in approximately 30 minutes.

The second part presents the full evaluation workflow. It

offers detailed, step-by-step instructions for testing all ten

workloads in the suite, including the commands required for

measuring performance, power consumption, and numerical

accuracy, as well as the corresponding expected outputs.

A.1 Getting Started Guide
A.1.1 Prerequisites.

• Hardware Requirements:
– GPU: At least one GPU with support for FP64 tensor

cores (𝑒.𝑔., NVIDIA Ampere, Hopper, or Blackwell

GPU). In this paper, we use NVIDIA A100, H200 and

B200 GPUs.

– CPU: Any multicore CPU (Intel Xeon Silver 4210 as

tested).

– Disk Space: At least 8GB.

• Software Requirements:
– For evaluating the artifact: GCC v9.4.0 or higher,

NVIDIA CUDA Toolkit v12.0 or above, and CMake

v3.30.4 or above.

– For reproducing the figures: Python v3.9 or above,

matplotlib v3.10.7 or above, numpy v2.2.6 or above,

packaging v25.0 or above, and pandas v2.3.3 or above.

• Datasets/Inputs: Each workload is evaluated using

five test cases. Sparse matrices and graphs used in

SpMV, SpGEMM and BFS are sourced from the SuiteS-

parse Matrix Collection. Other test cases use custom

inputs of different sizes. All input datasets have been

fully prepared in the artifact.

A.1.2 Setup and Quick Test.

• Download the artifact: Two options are available for
obtaining this artifact.

(1) Download the prebuilt image, which contains the

full required environment and the artifact already pla-

ced at /workspace/. Pull the prebuilt Docker image:

$ docker pull yuechen0210/cubie:v1

Start a Docker container using the pulled image:

$ docker run -it --rm --runtime-nvidia \
--gpus all yuechen0210/cubie:v1

(2) Download the artifact package directly to your local

machine. The artifact can be downloaded from the fol-

lowing link: https://doi.org/10.5281/zenodo.17725527.

Extract the package:

$ unzip Cubie-ppopp26.zip

• Inspect and configure the environment settings.
Please check the configuration file at Cubie/config.mk
and modify it if necessary. By default, the CUDA path

is set to /usr/local/cuda, the target GPU architec-

ture is Ampere, and the device ID is 0. If your local

environment differs from these defaults, update the

corresponding entries in config.mk accordingly.

• Run the quick test: Navigate to the quick_test di-
rectory and execute the provided script according to

your GPU architecture (Ampere, Hopper, or Blackwell):

$ cd quick_test
$ nohup sh runme.sh Ampere

This quick test is a lightweight evaluation designed

to complete in approximately 30 minutes. It runs four

representative workloads (SpMV, Reduction, Scan, and

FFT) and produces their performance results, numer-

ical accuracy reports, and power consumption mea-

surements.

Note: Please run the script with nohup so the job

keeps running even if the terminal is closed or the

SSH connection drops (otherwise it may be terminated

by a hangup signal). The output will be written to

nohup.out for later inspection.

• Expected Outputs: After the quick test finishes, the

quick_test directory should contain the performance,

power, and accuracy results for the four evaluated

workloads.

– The performance plots should include

Figure3_perf.pdf,
Figure4_TCvsBaseline.pdf,
Figure5_CCvsTC.pdf,
and Figure6_CCEvsTC.pdf.
These figures record the absolute performance val-

ues and speedup comparisons across different kernel

variants.

– The power results should include Figure7_edp.pdf
and Figure8_power.pdf. These figures summarize

the energy-delay product (EDP) and the power con-

sumption traces over time.

https://doi.org/10.5281/zenodo.17725527
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– The accuracy report is in the file all_error.csv.
This file records the average and maximum numeri-

cal error measured for the four workloads.

Note: This artifact is a benchmarking suite, so the

exact numbers and curves may vary across different

GPUs, and do not need to match the results in the

paper exactly.

A.2 Step-by-Step Instructions
A.2.1 Overview of Evaluation Goals. The full evalua-
tion of this artifact is designed to run all ten workloads in our

Cubie benchmarking suite, each implemented using three

or four kernel variants (Baseline, TC, CC, and CC-E). The

evaluation validates the performance (Figures 3–6 in the

paper), power consumption (Figures 7–8 in the paper), and

numerical accuracy results (Table 6 in the paper) presented

in our paper.

A.3 Detailed Steps for Full Evaluation
• Run all tests: To execute the full evaluation, navigate
to the Cubie/ directory and run the provided script

according to your GPU architecture (Ampere, Hopper,

or Blackwell):

$ nohup sh runme.sh Ampere

The complete evaluation is expected to finish in ap-

proximately five hours.
Note: Please run the script with nohup so the job

keeps running even if the terminal is closed or the

SSH connection drops (otherwise it may be terminated

by a hangup signal). The output will be written to

nohup.out for later inspection.
• The evaluation procedure: The execution script

runme.sh performs the following steps in sequence:

– Compilation test: runs compile_test.sh to verify
that all workloads and kernel variants can be suc-

cessfully compiled.

– Performance evaluation: runs run_perf.sh to mea-

sure the absolute performance of the ten workloads

and compute speedups across the Baseline, TC, CC,

and CC-E variants.

– Power evaluation: runs run_power.sh to collect

power traces for all workloads and compute their

energy-delay product (EDP).

– Accuracy evaluation: runs run_error.sh to com-

pute the average and maximum numerical error for

each workload and kernel variant.

• Expected outputs of the full evaluation:Upon com-

pletion, all evaluation results will be generated under

the Cubie/script/ directory. These outputs corre-

spond to Figures 3–8 and Table 6 in the paper and

summarize the performance, power, and numerical ac-

curacy of all ten workloads across the Baseline, TC,

CC, and CC-E implementations.

– Performance Evaluation (Figures 3–6): The perfor-

mance plots should include:

(1) Figure3_perf.pdf: absolute performance of all

workloads and variants.

The plot will report throughput (𝑒.𝑔., TFLOP/s) for

each workload and kernel variant, showing all five

test cases separately.

(2) Figure4_TCvsBaseline.pdf: speedups of the

Tensor Core (TC) version over the vector-based base-

line version.

The figure will report the average speedup across

the five test cases for each workload.

(3) Figure5_CCvsTC.pdf: speedups of the CUDA

Core (CC) version over the Tensor Core (TC) version.

The figure will report the average speedup across

the five test cases for each workload.

(4) Figure6_CCEvsTC.pdf: speedups of the CUDA
Core Essential (CC-E) version over the Tensor Core

(TC) version.

The figure will report the average speedup across

the five test cases for each workload.

– Power and Energy Evaluation (Figures 7–8): The

power-related results should include:

(1) Figure7_edp.pdf: energy-delay product (EDP)

of all workloads and variants.

It will evaluate one representative test case per work-

load, and report the corresponding EDP for each

variant. The plot groups workloads by quadrant and

additionally reports the geometric-mean EDP for

each quadrant at the end.

Clarify the definition used (𝑒.𝑔., 𝐸𝐷𝑃 = 𝑃𝑜𝑤𝑒𝑟 ×
𝑇𝑖𝑚𝑒2) and the time window is kernel-only.

(2) Figure8_power.pdf: power curves over time.

The figure will show instantaneous power (W) ver-

sus time for representativeworkloads/variants, align-

ed to kernel start/end. Similar to Figure 7, we eval-

uate one representative test case per workload. To

capture stable power values, each kernel is executed

repeatedly in a loop during measurement.

– Numerical Accuracy Evaluation (Table 6): The ac-

curacy output should include

(1) all_error.csv: average and maximum numeri-

cal error for each workload and kernel variant.

It will evaluate one representative test case per work-

load. The table reports workload name, variant
name, Average_Error, and Max_Error for each en-

try. Empirically, the TC and CC variants exhibit iden-

tical results for all workloads; thus, they are grouped

and reported together in the table.
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