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Abstract

Matrix multiplication units (MMUs) in modern parallel pro-
cessors enable efficient execution of tiled matrix multipli-
cations at varying precisions. While their effectiveness in
Al workloads has been well demonstrated, their utility in
scientific computing lacks systematic analysis. In this work,
we characterize MMUs across a broad range of scientific
computing patterns by evaluating performance, power con-
sumption, numerical precision, and memory access behavior.
To support this analysis, we develop Cubie, a comprehensive
benchmark suite comprising ten MMU-optimized kernels of
key parallel patterns. We also categorize MMU utilization
patterns into four quadrants and identify the MMU limita-
tions that arise in scientific computing. Through detailed
comparisons with vector units, we provide nine key observa-
tions on the behavior and implications of MMUs in general
scientific workloads, offering valuable insights for architec-
ture, algorithm, and application researchers.

CCS Concepts: » General and reference — Performance;
Evaluation; - Computing methodologies — Parallel
programming languages.
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1 Introduction

As computational demands have steadily increased over time,
the evolution of compute units, ranging from scalar [16] to
vector [49] architectures, has continuously advanced. Re-
cently, matrix multiplication units (MMUs) processing gen-
eral matrix-matrix multiplication (GEMM) have emerged
as a key in significantly enhancing performance in modern
processors. Representative MMUs include NVIDIA’s Tensor
Core [15], AMD’s Matrix Core [78], Intel’s XMX [34] and
AMX [58], as well as ARM’s SME [94] and Google TPU’s
systolic matrix multipliers [36]. The latest Top500 list [1]
also reveals that the top ten supercomputers are all equipped
with MMUs from NVIDIA, AMD, and Intel GPUs.

MMUs significantly outperform vector units when mul-
tiplying matrices in a variety of precisions [60-63], and its
low-precision computation has been proven to be highly ef-
fective in deep learning [9, 24, 29, 30, 33, 35, 40, 42, 84, 90, 91].
But, although offering 2x double precision peak performance
over vector units, their effectiveness in scientific computing
is not yet well understood. This mainly arises from the di-
verse computational patterns in scientific workloads, which
make MMU utilization more complex than in deep learn-
ing. Fortunately, recent efforts leveraged NVIDIA’s tensor
cores for stencil [11, 28, 43, 48, 102], FFT [23, 41, 76], re-
duction and scan [17], particle in cell [57], dense matrix
factorization [39, 88, 101], general sparse matrix multipli-
cation [44, 51, 53, 73, 80, 99], and breadth-first search [59],
demonstrating improved performance of scientific kernels.

However, existing studies examine MMUs mainly in ma-
chine learning or isolated GEMM settings [21, 54, 78], and
current GPU benchmark suites [4, 8, 18, 20, 85, 92] such as
Rodinia [8] and SHOC [18] remain designed for vector based
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execution without support for evaluating MMU based op-
erations. There lacks a systematic way to analyze MMUs
in general scientific workloads, which limits hardware ar-
chitecture researchers, parallel algorithm researchers, and
HPC application researchers in building a comprehensive
understanding of MMU behavior.

For hardware architecture researchers, a key focus is de-
signing future MMUs. This requires understanding (1) the
compute pattern change of target applications to align with
matrix multiplication, (2) the appropriate memory band-
width to avoid underuse or waste, and (3) the impact on
power consumption before and after adopting MMUs.

For parallel algorithm researchers, it is crucial to design
MMU-optimized methods for non-GEMM computations. This
requires understanding (1) the utilization patterns of MMUs
that can be more performant, (2) whether MMU algorithms
ensure the performance portability across GPU generations,
and (3) the impact of numerical error from MMUs.

For HPC application researchers, the primary concern is
whether MMUs deliver reliable benefits in real-world deploy-
ments. This requires understanding (1) whether applications
can be performance portable, (2) the power and energy effi-
ciency of MMUs in practical simulations, and (3) the numer-
ical stability of MMUs to meet precision requirements.

Table 1. Mapping research questions and observations to
architecture, algorithm, and application researchers.

Concerns Arch. Alg. App. Observation

Compute Patterns v v 01, 02
Performance Portability v v 03

Necessity of MMUs v v 04, O5
Power and Energy v v 06
Numerical Precision v v v 07
Memory v v 08
Workload Diversity v v 09

To address these questions, we firstly propose Cubie, a
benchmark suite composed of ten MMU-optimized work-
loads that align with the Berkeley Dwarfs [2, 3] and Exascale
Computing Project application motifs [81]. Then, based on
the input and output matrix integrity and reuse in MMU, we
categorize the MMU utilization patterns in scientific com-
puting kernels into four quadrants. For analyzing the MMU
behavior, for each workload, we implement three to four vari-
ants, including versions based on vector units and MMUs.
By comparing these implementations, we assess the perfor-
mance effectiveness and portability, analyze their impact on
energy efficiency, quantify numerical errors at FP64 preci-
sion, and examine bandwidth utilization.

We employ NVIDIA tensor cores as a representative MMU
and perform our evaluation on NVIDIA Ampere A100, Hop-
per H200, and Blackwell B200 GPUs. This setting is chosen
because NVIDIA provides a well-defined and widely used
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MMU programming interface [72], and tensor cores have
served as the basis for most prior work [17, 41, 51, 53, 102]
on MMU-accelerated scientific computing. Moreover, despite
vendor-specific details, different MMUs across architectures
share a consistent MM A-based abstraction and cooperative
execution model; therefore, the characterization and obser-
vations derived from tensor cores are able to generalize to
MMU-style matrix engines.

Our evaluation yields nine key observations on the chal-
lenges and opportunities of using MMUs in scientific com-
puting. We find that MMU-accelerated kernels often deliver
higher performance and lower energy consumption than
their vector-based counterparts across a wide range of work-
loads and GPU architectures. These gains, however, come at
the cost of data structure and algorithm changes, which may
in turn introduce redundant computations and numerical er-
ror. Nevertheless, by systematically analyzing performance,
power and energy, numerical accuracy, and memory behav-
ior, we offer valuable insights for researchers in architecture,
algorithm design, and application development.

This work makes the following contributions:

e We propose Cubie, a benchmark suite of ten open-
source MMU workloads in scientific computing, offer-
ing high diversity and open accessibility (Section 3).

e We categorize the MMU utilization patterns in scien-
tific computing kernels into four quadrants based on
the input/output matrix integrity and reuse (Section 4).

e We characterize MMUs across general parallel pat-
terns in scientific computing, quantifying performance,
power, precision, and memory access (Section 5-9).

e We obtain nine key observations of using MMUs, pro-
viding valuable insights for architecture, algorithm,
and application researchers (Section 11).

2 Background of MMU

Over the past decades, processor architectures have been
moving from relying solely on scalar [16] and vector [49]
execution toward treating matrix computation as an explicit
hardware target. Figure 1 contrasts the execution pattern of
a conventional vector unit in Figure 1a with the matrix-level
computation layout of an MMU in Figure 1b.

From the programming viewpoint, MMUs expose a com-
mon abstraction as matrix multiply-accumulate (MMA) op-
erations on fixed matrices. Algorithm 1 sketches a warp-level
GEMM that calls an MMA instruction, showing how loads
(line 6), MMA execution (line 7), and stores (line 8) are struc-
tured around this interface. Each MMA instruction defines
the matrix shape, fragment layout, and cooperative execu-
tion group that holds operand and accumulator fragments
in registers. Correspondingly, Figure 1b illustrates an FP64
MMA instruction, where a warp collectively owns the A, B
and C matrices across its 32 threads.
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Table 2. Workloads in the Cubie benchmark suite with their basic information, test cases, and comparison baselines.

Five Test Cases

Baseline

Kernel Ref.
GEMM cudaSample [68]
PiC PiCTC [57]

FFT tcFFT [41]
Stencil LoRaStencil [102]
Scan TCU-Scan [17]
Reduction TCU-Reduction [17]
BFS BerryBees [59]

GEMV -
SpMV DASP [51]

SpGEMM  AmgT-SpGEMM [53]

M*N*K: 256*256*256, 512*512*512, 1K*1K*1K, 2K*2K*2K, 4K*4K*4K cudaSample [68] matrixMul v12.8
N: 64K, 128K, 256K, 512K, 1M -

Sizes: 256*256, 256512, 256*1K, 512*256, 512*512; Batch: 2K
star2d1r: 1K*1K, 5K*5K, 10K*10K; star3d1r: 512*512, 1IK*1K
Size: 64, 128, 256, 512, 1024
Size: 64, 128, 256, 512, 1024
Five real-world graphs from SuiteSparse [19], see Table 3
M*N: 4K*16, 4K*32, 11K*16, 32K*16, 40K*16
Five real-world sparse matrices from SuiteSparse [19], see Table 4
Five real-world sparse matrices from SuiteSparse [19], see Table 4

cuFFT [66] v12.8
DRStencil [98]

CUB [64] BlockScan v2.7.0
CUB [64] BlockReduce v2.7.0
Gunrock [89]
cuBLAS [65] GEMV v12.8
cuSPARSE [67] SpMV v12.8
CuSPARSE [67] SpGEMM v12.8
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Figure 1. Computation layouts of vector unit and MMU.

Algorithm 1 Warp-level GEMM using FP64_m8n8k4_mma

: Input: Matrices A € R¥* and B € R**8
: Output: Matrix C € R8>8
t « lane_id > Define the thread index in the warp
: double a, b, c[2] > Allocate registers a, b, c[2]
2 ¢[0] «0,c[1] «0O > Init register c[2]
a,b «— LoADMATRIXELEMENTS(A, B, t)

> Load A and B from GMEM/SMEM
: FP64_M8N8K4_MMA(c, a, b) > Call an MMA instruction
8: STOREMATRIXELEMENTS(C, t,¢) > Store C to GMEM/SMEM

AT L S S R

~

At the architectural level, MMUs have become increas-
ingly capable [74, 79, 86] and widely deployed as dedicated
matrix execution paths in modern processors. NVIDIA tensor
cores illustrate this progression across GPU generations (e.g.,
Volta [12], Turing [7], Ampere [14], Hopper [13], and Black-
well [87]) through expanded precision support and richer
instruction interfaces. AMD provides matrix cores [78, 83]
exposed through wavefront-level MFMA instructions, while
Intel offers matrix extensions on both CPUs (AMX [58]) and
GPUs (XMX [34]). Domain-specific tensor accelerators such
as TPU [36] and NPU [10] also expose MMA-style primi-
tives as first-class operators. Beyond these general MMUs,

specialized designs [32, 45, 46, 77, 93] target sparse and irreg-
ular computation with sparsity-aware representations and
dataflows, reflecting a trend toward more flexible MMUs.

3 The Cubie Benchmark Suite

To systematically characterize MMUs, we propose the Cubie
benchmark suite. Cubie comprises ten open-source MMU-
accelerated kernels selected for scientific computing, includ-
ing GEMV, GEMM [68], SpMV [51], SpGEMM [53], FFT [41],
stencil computations [102], reduction [17], scan [17], BFS [59],
and PiC [57]. Detailed information on these workloads is
provided in Table 2. Except for BFS, all kernels in Cubie per-
form floating-point computations using tensor core 64-bit
MMA instructions.

General Matrix Multiplication (GEMM) computes the
product of two dense matrices, resulting in another dense ma-
trix. Cubie incorporates the routine dnmaTensorCoreGEMM
from CUDA Samples [68], where each thread block processes
a 64-by-64 tile using the FP64 wmma_m8n8k4 instruction.

Particle in Cell (PiC) simulates the behavior of charged
particles in a plasma or electromagnetic field. In Cubie, we
adapt the FP16 PiCTC [57] to an FP64 version, employing the
Boris push method [6] to simplify computation and mapping
data into small blocks of size 8-by-4 and 4-by-8 for tensor
core acceleration.

Fast Fourier Transform (FFT) converts time-domain
signals into frequency-domain. Cubie adapts tcFFT [41] by
converting FP16 to FP64, mapping data into 8-by-4 and 4-
by-8 blocks, and leveraging tensor cores to perform complex
matrix multiplications and element-wise computations.

Stencil Computation updates values of a grid using their
neighbors on structured grid. In Cubie, the stencil computa-
tion follows LoRAStencil [102] in FP64. It decomposes stencil
weight matrices into small components to use tensor cores,
enabling memory-efficient data gathering and reducing com-
putation. This transformation underlies our Observation 1.

Scan computes the prefix sum of an array. Cubie adapts
the FP16 segmented scan of Dakkak et al. [17] to FP64. This
method represents the input array as 8-by-8 blocks and mul-
tiplies the input with three different constant matrices to get
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Figure 2. A categorization of workloads into four quadrants based on their utilization of tensor cores’ input and output
patterns. Quadrant I represents workloads with full input and output, e.g., GEMM, PiC, FFT, and Stencil. Quadrant II includes
workloads with partial input but full output, e.g., Scan. Quadrant III consists of workloads with partial input and partial output,
e.g., Reduction. Quadrant IV covers workloads with full input but partial output, e.g., BFS, GEMV, SpMV, and SpGEMM.

the row-wise prefix sums, column-wise prefix sums, and the
final result. This transformation leads to Observation 1.

Reduction calculates the sum of all values in an array.
Cubie incorporates the segmented reduction proposed by
Dakkak et al. [17] and reproduces it from FP16 computations
to FP64 computations. This approach stores the input array
into several blocks of size 8-by-8, performs multiple multi-
plications with two constant matrices, and obtains the final
sum, which also leads to the Observation 1.

Table 3. The Graphs evaluated in BFS.

FP64 mma_m8n8k4 instruction to perform matrix multiplica-
tion on tensor cores, and extracts the diagonal elements from
the output matrix.

Table 4. The matrices evaluated in SpMV and SpGEMM.

Matrix #Rows #Nonzeros Group
spmsrtls 29,995 229,947 GHS_indef
Chevronl 37,365 330,633 Chevron
raefsky3 21,200 1,488,768 Simon
conf5_4-8x8-10 49,152 1,916,928 QCD
besstk39 46,772 2,089,294 Boeing

Graph #Vertices #Edges Group
wikipedia-20070206 3,566,907 90,043,704 Gleich
mycielskian17 98,303 100,245,742  Mycielski
wb-edu 9,845,725 112,468,163 SNAP
kron_g500-logn21 2,097,152 182,082,942 DIMACS10
com-Orkut 3,072,441 234,370,166 SNAP

Sparse Matrix-Vector Multiplication (SpMV) multi-

Breadth-First Search (BFS) explores reachable vertices
from a given source in a graph and is widely applied in com-
binatorial scientific computations [37, 56]. Cubie integrates
BerryBees [59], which represents a graph in an 8-by-128
bitmap block slice-set format and executes bit operations us-
ing the single-bit mma_m8n8k128 instruction of tensor cores.
The tailored structure supports our Observation 1.

General Matrix-Vector Multiplication (GEMV) mul-
tiplies a dense matrix A with a dense vector x to produce a
vector y. Our implementation partitions matrix A into blocks,
broadcasts the corresponding vector x into blocks, calls the

plies a sparse matrix with a dense vector, producing a vector.
Cubie implements this kernel using DASP [51] and adopts
its FP64 version. DASP groups the rows of the input matrix
into three categories and organizes them into small blocks of
size 8-by-4 to use tensor cores. This restructuring for MMU
usage underlies our Observation 1.

Sparse General Matrix-Matrix Multiplication (SpGE
MM) multiplies two sparse matrices to generate a sparse ma-
trix. Cubie uses the FP64 SpGEMM kernel from AmgT [53],
which partitions sparse matrices in the mBSR format, form-
ing 4-by-4 blocks and combining them into blocks of size
8-by-4 to leverage tensor cores, which also motivates the
Observation 1.
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Key Observation 1: To exploit MMUs, non-GEMM
algorithms in scientific computing often have to mod-
ify data structures and reorganize algorithms.

4 Categorization of MMU Utilization
Patterns

We introduce a systematic categorization to characterize how
different workloads leverage the MMA pattern. To properly
run on MMUs, algorithms must undergo data preprocessing
or algorithm reorganizing to transform non-GEMM oper-
ations into computational patterns compatible with MMA
instructions, leading to a variety of MMU utilization patterns.
We classify workloads along two dimensions: input matrix
utilization and output matrix utilization, each categorized as
either full or partial. The four groups are illustrated in the
coordinate system in Figure 2.

Cubie Quadrant I (@', @) includes workloads such as
Stencil, FFT, GEMM, and PiC, which fully utilize both in-
put and output matrices. The key distinction among these
workloads lies in which component is reused. As shown
in Quadrant I in Figure 2, GEMM and PiC repeatedly load
inputs to accumulate into one result matrix, Stencil loads
matrix B only once from constant memory for reuse, and FFT
loads matrix A only once from global memory for multiple
uses and products multiple resulting matrices.

Cubie Quadrant IT (©?, @), containing the Scan kernel,
which uses the constant matrix consisting of values zero and
one as one of the input matrices and fully utilizes all elements
of the output matrix. Specifically, the Scan is completed using
three consecutive types of MMA operations, where one of
the operands in each MMA is a constant matrix: (1) an upper
triangular matrix of ones, (2) a lower triangular matrix of
ones, or (3) a matrix entirely filled with ones, i.e., B, Ay,
and B; in Figure 2 Quadrant II. The constant matrices do not
require loading from global memory.

Cubie Quadrant III (@, ©) contains the Reduction ker-
nel, which exhibits partial utilization of both input and out-
put matrices. Similar to the Scan, this kernel also uses con-
stant matrices as one of the operands. These constant matri-
ces typically have a single row or column filled with ones,
while the remaining elements are zeros, i.e., A; and B; in
Figure 2 Quadrant III. Unlike the Scan, this kernel utilizes
only a small portion of the output matrix, specifically a single
row or even a single element, for the final result.

Cubie Quadrant IV (@, ©), including four kernels BFS,
GEMYV, SpMV and SpGEMM, takes full input A and B but
only partial output C. Among the four kernels shown in
Figure 2 Quadrant IV, (1) BFS reuses one B, loads multiple A,

ISymbol @indicates the algorithm utilizes the entire input or output matrix.
2Symbol ©signifies the algorithm only utilizes a portion of the input or
output matrix, such as when the input is a zero matrix or only the diagonal
of the output is meaningful.
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and extracts the diagonal elements of multiple C, (2) GEMV
and SpMV repeatedly load A and B and accumulate results
also in the diagonal elements of one C, and (3) SpGEMM
reuses A, loads multiple B, and accumulates results into the
diagonal tiles of C, achieving slightly higher utilization.

Key Observation 2: Scientific kernels may not fully
utilize the dense input and output matrices of MMUs,
exhibiting distinct utilization patterns in four quad-
rants characterized by varying levels of density.

The utilization patterns in this section are derived from
MMU adapted kernels and characterize MMU behavior in the
transformed code space. A deeper question is whether MMU
accelerability can be inferred from the original algorithm
or a CUDA core implementation before such transforma-
tions. Addressing this question requires linking algorithmic
structure to MMU execution semantics, likely with compiler
assistance [25, 95, 97]. Our categorization provides a first step
toward the algorithm level reasoning about MMU suitability.

5 Experimental Design

We take the tensor core as a representative MMU to conduct
our evaluation. This section presents the experimental setup
and the algorithmic variants for all workloads, which serve
as the basis for analyzing MMU behaviors in later sections.

5.1 Experimental Setup

We evaluate Cubie on NVIDIA A100 (Ampere), H200 (in
the GH200 platform, Hopper), and B200 (Blackwell) GPUs,
see Table 5 for details. The CUDA version we used is v12.8.
Prior work has shown that GPUs of the same type may
exhibit non-negligible performance variation due to manu-
facturing effects and process variation [82]. To avoid such
device-level variability obscuring the performance trends, all
measurements in this study are conducted on a single physi-
cal GPU for each GPU type. This design choice allows us to
more clearly attribute observed performance differences to
hardware features and execution characteristics, rather than
cross-device variation.

Table 5. The specifications of the three GPUs tested.

NVIDIA GPUs FP64 Units Peak Performance
A100 (Ampere) PCle Tensor Core 19.5 TFLOPs
40 GB, 1.55 TB/s CUDA Core 9.7 TFLOPs
H200 (Hopper) SXM Tensor Core 66.9 TFLOPs
%6 GB, 4 TB/s CUDA Core 33.5 TFLOPs
B200 (Blackwell) SXM Tensor Core 40.0 TFLOPs
180 GB, 8 TB/s CUDA Core 40.0 TFLOPs
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Figure 3. Performance comparison of baselines, TC, CC, and CC-E implementations for all workloads on the three GPUs.

Test Cases: In Cubie, each workload is evaluated using
five test cases, as shown in Table 2. These cases span small to
large problem scales and cover the major GPU performance
regimes. A more detailed representativeness analysis will be
presented in Section 10.

Baselines: For each workload, the TC version is compared
against a baseline from CUDA official libraries or the meth-
ods presented in the original studies. The CUDA libraries
include cuBLAS [65] for GEMV, cudaSample [68] for GEMM,
cuSPARSE [67] for SpMV and SpGEMM, cuFFT [66] for FFT,
and CUB [64] for Reduction and Scan. Gunrock [89] and
DRStencil [98] are used for BFS and Stencil, respectively.

5.2 Algorithmic Implementation Variants

To analyze the changes in program performance, energy effi-
ciency, and computational characteristics, and to determine
whether these changes are driven by the use of MMUs or
the design of the algorithm, we consider three variants.

Tensor Core Version (TC): This algorithmic variant con-
sists of programs that perform floating-point computations
mainly using tensor core MMA 64-bit instructions. The spe-
cific implementation techniques for each workload are de-
scribed in Section 3. This algorithmic variant serves as a
reference for assessing the efficiency of tensor core-based
computation across various workloads.

CUDA Core MMA Replacement (CC): This variant re-
places tensor core MMA operations with CUDA core-based
computations while maintaining identical data structures
and algorithmic settings, i.e., this version implements the ex-
act same algorithm as TC but using CUDA core instructions
instead of tensor core MMAs. Specifically, in an FP64 tensor
core MMA instruction mma_m8n8k4, each thread within a
warp processes a specific subset of matrix elements. Our CC
implementation preserves same thread responsibilities and
data layouts, which enables a direct comparison between
tensor core and CUDA core executions.

CUDA Core Essential Replacement (CC-E): This ver-
sion eliminates redundant or useless operations introduced
by tensor core MMAs, preserving only the essential compu-
tations using CUDA cores. For workloads that do not fully
use the whole MMA pattern, expressing them in MMA pat-
terns introduces redundant computation. In such cases, we
replace tensor core MMA instructions with CUDA core in-
structions that execute only the mathematically necessary
operations to ensure correctness. For example, in the case
of the GEMV kernel y = A - x, the CC variant actually com-
putes A - [x, ..., x], where the second operand is a matrix
generated by replicating the x vector several times and takes
the output diagonal to get y, since CC must express GEMV
in an MMA-like operation. In contrast, the CC-E version of
GEMYV indeed computes y = A - x without any redundant
operation, and the similar principle applies to BFS, SpMV,
and SpGEMM. Comparing CC-E with TC makes it possible
to observe changes in various characteristics, distinguishing
the effects of tensor core-specific optimizations from the
underlying hardware. For the GEMM, PiC, FFT, and Stencil
kernels, the CC-E version is equivalent to CC.

6 Performance of MMUs

In this section, we conduct three performance evaluations
to analyze the suitability of tensor core acceleration for the
scientific workloads that Section 3 describes. For each work-
load, we consider the three variants described in Section 5.2
and its corresponding baseline. Section 6.1 evaluates the
performance improvements of TC versions over their corre-
sponding baselines, focusing on whether these advantages
hold consistently across different GPU architectures. Sec-
tion 6.2 compares the performance of the TC and CC im-
plementations to evaluate the performance acceleration of
MMUs over vector units when using identical data structures
and algorithms. Section 6.3 evaluates the CC-E versions to
investigate whether the redundant computations introduced



Characterizing Matrix Multiplication Units across...

by transformations for MMU utilization are worthwhile for
scientific computing kernels.

Figure 3 shows several subplots indicating in their y-axis
the performance for all workloads across their four imple-
mentations: baseline, TC, CC, and CC-E. The subplots rep-
resent in their x-axis the five test cases per workload that
Table 2 specifies. For each workload, the three subplots from
bottom to top are the performance on A100, H200, and B200
GPUgs, respectively. For stability, most benchmarks start with
100 warm-up runs followed by 1000 timed executions, with
the arithmetic average performance reported.

6.1 Comparison of Baseline Against TC

To evaluate the performance benefits of using tensor core
acceleration compared to standard CUDA libraries, we con-
sider the TC versions and compare them against their cor-
responding baselines, which are listed in the fourth column
of Table 2. Figure 3 represents the performance of the base-
lines and TC versions in terms of blue ‘circle’ and red ‘star’
markers, respectively. Figure 4 summarizes the speedups of
TC versions over baselines for each workload, where each
value is averaged across the five representative test cases.
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Figure 4. Speedups of TC implementations compared to their
baselines on the three GPUs across all workloads, grouped
by utilization patterns (Quadrants I-IV).

For workloads in Quadrant I, which fully use both the
input and output registers of MMA instructions, TC versions
are expected to deliver consistent and portable performance
gains across hardware generations. GEMM and Stencil ex-
perience strong acceleration when using tensor cores for
computation. In contrast, PiC and FFT show reduced bene-
fits, with FFT in particular performs worse than the cuFFT
baseline. The poor performance of FFT is explained by the
difficulty to express the FFT-specific butterfly computation
patterns [100] in terms of MMA instructions.

The Quadrant II workload, Scan, performs MMA instruc-
tions using constant matrices as one operand, which reduces
data transfer overhead and significantly improves tensor
core utilization. Therefore, its TC version outperforms the
baseline across all the three GPUs, achieving speedups of
1.8%, 1.3%, and 1.3% on A100, H200, and B200, respectively.

The Quadrant III kernel, Reduction, uses constant ma-
trices, similarly as Scan, but only accesses a single row or
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element from each 8-by-8 output tile. While tensor core accel-
eration benefits from using constant operands, as it increases
register reuse, the low arithmetic intensity of the Reduction
workload mitigates the performance benefits of using tensor
cores. As a result, the TC version achieves 1.3-1.6X speedups
over the baseline on the three GPUs.

The Quadrant IV kernels are all memory-bound and,
thus, they strongly benefit from high memory bandwidth,
such as H200 and B200. The considered BFS algorithm [59]
judiciously leverages tensor core bit-wise operations and ef-
ficient data structures with low memory footprint to achieve
2.6X%, 3.0%, and 2.7X speedups over the baseline on A100,
H200, and B200, respectively. SpGEMM successfully lever-
ages half of the 8-by-8 output tiles of MMA, resulting in
2.5-3.2Xx speedups over cuSPARSE on the three GPUs. While
B200’s FP64 tensor core throughput is lower than H200’s, its
superior 8 TB/s memory bandwidth enables competitive or
even better performance for memory-bound workloads.

Key Observation 3: MMU-accelerated workloads
consistently outperform vector baselines in most
cases, and exhibit performance portability across the
Ampere, Hopper, and Blackwell architectures.

6.2 Comparison of CC Against TC

This section conducts an ablation study by comparing the CC
and TC implementations to evaluate the performance benefit
of tensor core acceleration under constant data structures
and algorithms. To isolate the effect of the compute unit,
each MMA instruction in the TC versions is replaced with
a semantically equivalent CUDA core instruction in the CC
variants. Figure 3 represents the performance of the CC
versions with green ‘triangle’ markers. Figure 5 summarizes
the average speedups of CC over TC for each workload on
A100, H200, and B200. Specifically:
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Figure 5. Speedups of CC replacements over TC versions
on the three GPUs across kernels in Quadrants I-IV.

The Quadrant I workloads have high MMA computation
density and fully use the MMA pattern, as Figure 2 illustrates.
The performance of the CC versions generally drops around
50% of that achieved by the TC counterparts, which aligns
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with our expectations. As Figure 2 illustrates, GEMM and
PiC benefit from more efficient data movement than FFT
and Stencil, and achieve higher tensor core utilization. Con-
sequently, their CC versions experience larger slowdowns
than FFT and Stencil. For instance, the PiC CC implemen-
tation only achieves a 0.4Xx speedup of its TC version. FFT
suffers the smallest degradation within Quadrant I since its
TC version does not exploit the tensor core performance, as
Section 6.1 explains.

For workloads in Quadrants II and III, including Scan
and Reduction, their CC versions perform noticeably worse
than the TC counterparts. Specifically, the CC versions of
Scan and Reduction deliver less than 40% of the performance
achieved by their TC counterparts. This gap exceeds the ra-
tio between the peak performances of the tensor and CUDA
cores. Besides the lower floating-point performance of CUDA
cores, the additional degradation comes from the fact that the
TC versions of Scan and Reduction benefit from using con-
stant matrices as operands, and CUDA cores do not leverage
these constant operands as much as tensor cores.

In Quadrant IV, although the kernels are memory-bound,
the CC variants still perform worse than the TC versions,
with relatively small performance gaps. For example, in the
case of SpMV, the CC versions retain 60-70% of the TC per-
formance on the three GPUs. Consistent with prior stud-
ies [5, 96] showing that effective use of vector units improves
SpMV performance, MMUs can provide further improve-
ments for memory-bound kernels.

Key Observation 4: Removing the impact of data
structures and algorithms (replacing MMU instruc-
tions with equivalent vector unit operations), MMUs
account for 10% to 200% of the performance gains.

6.3 Comparison of CC-E Against TC

To use MMU, scientific kernels in Quadrants II-IV are trans-
formed into GEMM-like forms at the cost of redundant com-
putations. For example, in SpMV, the input is divided into
small blocks, and full MMA operations are performed among
them, but only the diagonal elements of the outputs are ulti-
mately used. To evaluate whether such redundant compu-
tations are worthwhile, we compare CC-E variants (recall
the description in Section 5.2), which retain only essential
computations on CUDA cores, against TC versions. Figure 6
summarizes the average speedups of CC-E (recall the yellow
‘square’ markers in Figure 3) over TC across the three GPUs.
The CC-E versions of workloads belonging to Quadrant I are
equivalent to the CC variants, so Figure 6 only lists results
of Quadrants II-IV.

In Quadrants II and III, the CC-E versions of Scan and
Reduction consistently underperform their TC counterparts,
with speedups ranging from 0.34-0.45x and 0.66—0.79% across
A100, H200, and B200, respectively. This is because, when
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Figure 6. Speedups of CC-E replacements over TC versions
on the three GPUs across kernels in Quadrants II-IV.

processing small blocks, partial and irregular computations
are less efficient than tensor cores’ full and regular compu-
tation patterns. Despite the redundant computations intro-
duced by MMU use, the TC versions still outperform both the
CC-E and baselines, meaning that the overhead of redundant
computations is worthwhile in these two kernels.

In Quadrant IV, the performance of CC-E shows variation
across workloads. For SpMV, the CC-E versions outperform
the TC by 1.0-1.2X speedups on the three GPUs, considering
that TC is faster than the baseline by a factor of 1.7-2.8x
(recall Section 6.1), removing redundant computations intro-
duced for MMU further improves performance over base-
line. This suggests that while using MMUs incurs redundant
computations for SpMV, the changes of data structures and
algorithmic workflows made to enable MMU use remain ben-
eficial. In contrast, GEMV’s CC-E is slightly slower than its
TC version, and CC-E and TC of SpGEMM and BFS exhibit
similar performance, showing that removing the redundant
computations in general does not bring performance gains.

Key Observation 5: Generally, the redundant com-
putations introduced to enable MMU-friendly matrix
computing patterns should not be removed. The only
exception is SpMV, where avoiding the redundancy
yields up to 20% higher performance.

7 Power and Energy Efficiency of MMUs

This section evaluates the impact of tensor core usage on
the GPU power and energy efficiency. We monitor the work-
loads power using the NVIDIA Management Library [71]
(nvmlDeviceGetPowerUsage()). During each test, a moni-
toring process logs both timestamps and power values from
kernel launch to completion. For brevity, we show the power
and energy efficiency results only for the H200 GPU, which
has a thermal design power of 750W and the highest theo-
retical FP64 tensor core throughput among the three GPUs.

Figure 8 illustrates the power consumption (y-axis) over
runtime (x-axis) for each workload, while the area under
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Figure 8. Power consumption over time of baselines, TC,
CC, and CC-E implementations for all workloads on H200.

each power-runtime curve reflects the total energy consump-
tion per workload. In addition, to measure the balance be-
tween energy efficiency and performance, we compute the
energy-delay product (EDP) [26, 27] for each test case, as
EDP = Average Power X Execution Time?. The EDP results
are summarized in Figure 7.

The Quadrant I workloads, GEMM, FFT, Stencil, and PiC,
fully utilize the register operands of MMA instructions, re-
flecting efficient use of tensor cores. Therefore, the TC im-
plementations typically exhibit high instantaneous power
consumption, often exceeding 400W. However, their much
shorter execution times lead to lower overall energy usage
and better EDP. For example, in Stencil, the TC version com-
pletes execution in 5.5s at an average power of 450W, while
the baseline takes 15s at 470W. This leads to a 65% reduction
in energy and an 88% EDP reduction. Based on the geomean
EDP within Quadrant I, the TC version reduces EDP by ap-
proximately 64% compared to the baseline.

The Quadrants II and IIT workloads, Scan and Reduc-
tion, are composed of lightweight and regular computations,
which drive stable power curves throughout their execu-
tion. For both kernels, the TC implementations consistently
achieve lower power consumption and the shortest execu-
tion times, resulting in the lowest overall EDP. For example,
in Scan, the TC version runs in 3.8 seconds at an average
power of 244W, leading to an EDP of 3.63 kJ-s. In contrast,
the baseline consumes over 300W and reaches an EDP of
8.24 kJ-s, meaning that the TC reduces EDP by over 55%. For
Quadrants II and III, the TC implementation achieves a 36%
reduction in geomean EDP relative to the baseline.

The Quadrant IV kernels, including BFS, GEMV, SpMV,
and SpGEMM, are primarily memory-bound. Due to frequent
memory accesses, their baselines show low CUDA core uti-
lization, and have relatively low power consumption but
longer execution times. In contrast, the TC and its variants
improve memory accessing through regularized data layouts,
leading to higher core utilization. These implementations
consume similar power but complete execution much faster,
resulting in lower overall energy usage and EDP. For exam-
ple, in BES, the TC and CC-E versions consume around 375W,
compared to 340W for the baseline. However, both reduce
execution time by about 40%, leading to over 60% lower EDP.
For Quadrant IV, the TC version lowers the geomean EDP
by nearly 80% compared to the baseline.

Key Observation 6: MMUs exhibit similar power
consumption to vector units but complete compu-
tations significantly faster, resulting in 30% to 80%
lower geomean EDP across all workloads.

8 Floating-point Accuracy of MMUs

This section compares the FP64 accuracy of tensor cores
with CUDA cores. Specifically, we compare outputs obtained
on H200 and B200 GPUs using both kinds of cores against
a naive CPU serial implementation (e.g., CSR-based SpMV),
which serves as the ground truth in terms of floating-point ac-
curacy. For input data initialization, SpMV and SpGEMM load
matrix from the original dataset files and generate vector in-
puts using pseudo-random values; FFT and Stencil follow the
initialization schemes in their original benchmark codes; and
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Table 6. FP64 numerical errors of different implementations for all workloads on H200 and B200 GPUs, obtained against CPU
serial computing results. Bold numbers indicate the lowest average error for each workload.

Errors on H200 GPU

Errors on B200 GPU

Workload Baseline TC/CC CC-E Baseline TC/CC CC-E
Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max.
GEMV  5.19E-16 3.55E-15 0 0 4.69E-16 3.55E-15 6.30E-16 3.55E-15 4.92E-16 5.33E-15 6.07E-16 3.55E-15
GEMM  4.36E-14 3.69E-13 3.12E-13 1.82E-12 - - 5.22E-15 4.97E-14 7.40E-15 1.14E-13 - -
SPMV  2.15E-08 9.54E-07 7.11E-10 2.38E-07 2.02E-08 1.07E-06 2.10E-08 9.54E-07 8.92E-09 4.77E-07 2.09E-08 1.07E-06
SpGEMM  7.10E-16 7.11E-14 6.30E-16 8.53E-14 6.30E-16 8.53E-14 6.78E-16 7.11E-14 6.55E-16 8.53E-14 6.55E-16 8.53E-14
FFT 4.83E-18 122E-15 7.50E-17 2.77E-14 - - 5.00E-18 1.22E-15 7.49E-17 2.77E-14 - -
Stencil ~ 1.05E-16 6.66E-16 8.77E-15 5.68E-14 - - 1.05E-16 6.66E-16 5.84E-15 4.26E-14 - -
Reduction 1.82E-14 5.68E-14 291E-14 853E-14 2.13E-14 533E-14 1.82E-14 5.68E-14 291E-14 853E-14 2.13E-14 533E-14
Scan 9.53E-15 5.68E-14 1.11E-14 8.17E-14 1.11E-14 8.17E-14 9.53E-15 5.68E-14 1.11E-14 8.17E-14 1.11E-14 8.17E-14
PiC 0 0 (1] 0 - - 2.52E-16 2.22E-15 2.52E-16 2.22E-15 - -
the remaining workloads use pseudo-random values. We gen- 9 Performance Model
erate pseudo-random values distributed within (-2, 2) using a
linear congruential generator method [38], following the LIN- Baseline cC CC-E + TC
PACK benchmark [22]. The average and maximum errors are s
_1vn ~10 66.9 TFLOPS
computed as Average_Error = - 3\i_, |resultgpu,i —resultepyi o x@\?«ﬁ}j—m
and Max_Error = iresultgpu,i - resultcpu,i|max, respectively. 9 10% \/,N, -
The n denotes the number of input samples in this compari- S
son, which ranges from 1K to 100M depending on kernels. o 10°
Table 6 presents the FP64 numerical error results for all g
versions. BFS is excluded since it does not perform floating- g 10°
point computations. We observe that (i) for each workload, °
the TC and CC versions produce identical errors. Since these £ 107
; p -1 g Memory - Compute
two variants use the same data structures and algorithms and 10 Bound Ixe Bound
differ only in the compute unit, tensor core and CUDA core 1072 1071 10° 10! 10° 10°

provide equivalent numerical accuracy for FP64 operations.
(ii) For workloads in Quadrant IV, including GEMV, SpMV,
and SpGEMM, the TC/CC versions produce small numeric
errors, while CC-E can introduce deviations up to an order of
magnitude larger (e.g., SpMV). These differences suggest that
the performance-driven optimizations of the CC-E versions
may impact the floating-point computations and complicate
the reproducibility of scientific results.

For workloads in other quadrants, the lowest deviations
are typically achieved by the baselines. For example, in FFT,
the baseline yields an average deviation of 4.83E-18 on H200
and 5.00E-18 on B200, while the TC/CC versions show an
error of 7.50E-17 and 7.49E-17 on two GPUs, nearly an order
of magnitude higher. These differences arise from variations
in algorithmic structure and accumulation order, which affect
how rounding errors propagate during computation.

Key Observation 7: MMUs and vector units pro-
vide comparable numerical accuracy, but algorithmic
transformations for MMU utilization can induce sig-
nificant numerical deviations that undermine the
reproducibility of scientific results.

Arithmetic Intensity (FLOP/byte)

Figure 9. The cache-aware roofline model for Cubie, il-
lustrating the performance characteristics of different im-
plementations. The L1 cache bandwidth is computed as
BWr1 = Nsp X Nrsu X Waceess X felocks and the DRAM band-
width is derived from the whitepaper [63] of H200 GPU.

To better understand the interaction between computation
and memory efficiency in Cubie workloads, we construct a
cache-aware roofline model [31, 50, 55], as shown in Figure 9.
This model incorporates ceilings for DRAM and L1 cache
bandwidth, as well as FP64 compute throughput defined
by the peak performance of tensor cores and CUDA cores.
The plot includes all workloads and their implementations,
except for BFS, which relies on bit-wise operations.

The workloads in Quadrant I exhibit varying levels of
arithmetic intensity. GEMM and FFT have high intensity,
while Stencil and PiC are lower. Although GEMM falls in the
compute-bound region, its performance does not reach the
tensor core peak of 66.9 TFLOPS. This is due to the absence
of advanced optimizations such as those in cuBLAS [65] or
CUTLASS [69], which are excluded from Cubie for simplicity.
Nonetheless, the TC versions of these kernels still achieve
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a clear performance advantage over the CC, demonstrating
the effectiveness of tensor core acceleration.

For workloads in Quadrants II and III, Reduction and
Scan have low arithmetic intensities around 10~!. With seg-
mented processing and improved data locality, they are rel-
atively cache-friendly. Thus, the TC versions exceed the

DRAM bandwidth ceiling and achieve improved performance.

In Quadrant IV, workloads span arithmetic intensities
from 107! to 3, and are considered memory-bound kernels.
However, the performance of baselines does not approximate
the bandwidth limit. In contrast, the TC versions approach
the bandwidth limit more closely, and in some cases, the
CC-E versions do as well, indicating that the adaptations for
tensor core usage lead to more efficient memory access.

Key Observation 8: Adapting data layouts and al-
gorithms for MMUs fundamentally alters memory
access patterns, often yielding more regular access
and significant performance gains.

10 Analysis of Benchmark Suite Coverage

To characterize the coverage of Cubie benchmark suite, we
analyze both its input cases and workload composition.
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(a) The PCA results of the 499 graphs in SuiteSparse and the five
representative graphs used in BFS.
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(b) The PCA results of the 2893 matrices in SuiteSparse and the five
representative matrices used in SpMV and SpGEMM.

Figure 10. The PCA visualizations of the graphs and matri-
ces considered in our experiments.

We standardize the structural features, including sparsity,
row and column degree statistics, and block structures, and
then apply principal component analysis (PCA) to capture
the dominant variation patterns of matrices and graphs in the
SuiteSparse Matrix Collection [19]. As shown in Figures 10a
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Table 7. Comparison of Cubie with two existing benchmark
suites (Rodinia and SHOC) based on the number of the Berke-
ley Dwarf covered and the features analyzed in each suite.

Rodinia SHOC Cubie

[8] [18]  (this work)

Dense linear algebra 3 2 2
Sparse linear algebra - -
Spectral methods -
N-Body -
Structured grids 4
Unstructured grids 2

MapReduce
Graph traversal
Dynamic programming

Dwarf / Feature

[
o= = = DN

w
=N

2

1

Parallelization pattern v

Performance v

Power and energy v

Precision

Memory bandwidth

CPU-GPU data transfer

AN N
AN N NASE
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and 10b, the five selected matrices exhibit a dispersion of
0.18 compared to 0.05 among their nearest neighbors, and
the five selected graphs cover 81-96% of the structural value
ranges with 94.6% of all graphs lying close to at least one
representative, demonstrating that both sets effectively span
the major structural variations in their respective domains.
These matrices and graphs are also widely used in prior
graph algorithms [59] and sparse matrix studies [47, 51, 96].

Additionally, we compare Cubie with Rodinia [8] and
SHOC [18] in terms of the number of the Berkeley Dwarf [2,
3] computation patterns covered and the evaluated features,
as summarized in Table 7. These two suites both cover five
dwarfs and evaluate three or four key features. Compared
with them, Cubie covers seven dwarfs by including one or
two representative workloads for each dwarf and evaluates
five key features, offering both broad pattern coverage and
comprehensive feature assessment.
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Figure 11. The PCA results comparing Rodinia, SHOC, and
Cubie.
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To further compare Cubie with existing benchmark suites,
we perform PCA on key architectural metrics (memory effi-
ciency, compute throughput, and instruction pipeline usage
for FMA and tensor operations) collected using NCU [70],
which provides a comprehensive description of the workload
behavior. We execute kernels and applications from Rodinia,
SHOC, and Cubie, using the datasets specified in the original
papers [8, 18]. For each application, performance metrics are
collected across the complete kernel execution to ensure an
exhaustive coverage of the execution stages. Then, using the
Python module Scikit-learn [75], the data is standardized, fol-
lowed by applying PCA by computing the covariance matrix
and extracting the two top principal components represent-
ing highest variance in workload behavior.

As shown in Figure 11, Cubie workloads span a wider area
in the principal component space, reflecting a greater diver-
sity in execution behavior than both Rodinia and SHOC. This
broader dispersion demonstrates Cubie’s ability to represent
a wide range of patterns relevant to modern processor.

Key Observation 9: Originally developed with the
primary goal of evaluating MMUs, the Cubie bench-
mark suite encompasses a wide range of behaviors
in scientific programs, positioning it as an effective
tool for assessing modern processors.

11 Conclusions

This paper has developed Cubie, a benchmark suite compris-
ing optimized scientific kernels tailored for MMUs, and used
it to characterize MMUs across scientific computing patterns
in performance, power, precision, and memory layout. With
its wide coverage of parallel patterns and computing char-
acteristics, valuable insights for researchers in architecture,
algorithm, and application have been provided.

For architecture design researchers, we confirmed the
value of MMUs in scientific computing, in terms of perfor-
mance (04, 05) and energy (06) advantages for most kernels.
However, as some patterns only use part of the two input
and one output matrices of MMUs (01, O2), enabling ar-
chitectural support for more flexible compute patterns will
improve MMU applicability to a broader class of workloads.

For parallel algorithm researchers, MMUs indeed offer
strong and portable performance across architectures (03,
04, 05), making them more beneficial for scientific kernels.
By changing data layouts and applying programming-level
transformations to align with the four utilization patterns,
non-GEMM kernels can also effectively use MMUs (01, 02).
Optimizing for higher arithmetic intensity and lower mem-
ory overhead will further enhance these gains (08).

For application researchers, MMUs generally provide bet-
ter and portable performance (03), along with improved en-
ergy efficiency across diverse workloads (06). While MMUs
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themselves do not introduce more numerical errors than
the same implementations on vector units, the algorithmic
choices made to exploit MMUs can affect precision, requiring
users to exercise caution in their selection (O7).

FP16 CUDA Core
—e- FP64 CUDA Core

FP16 Tensor Core
—=— FP64 Tensor Core

g 10° 13.2x T1I.8%
9102 : -
101l === 134X ————— ‘ o
2020 2022 2024
A100 H200 8200
Gen3 TC Gen4 TC Gen5 TC

Figure 12. Peak throughput of NVIDIA’s three latest GPU
architectures (Ampere, Hopper, Blackwell), comparing FP16
and FP64 performance on CUDA cores and Tensor Cores.

We highlight an unexpected and concerning divergence
in tensor core evolution, as shown in Figure 12: FP16 tensor
core peak throughput continues to scale across generations,
rising from 312 TFLOPS on Ampere to 989.5 TFLOPS on
Hopper and 1800 TFLOPS on Blackwell, whereas FP64 ten-
sor core peak throughput increases from 19.5 TFLOPS on
Ampere to 67 TFLOPS on Hopper but, instead of sustaining
this growth, falls to 30 TFLOPS in the latest Blackwell, which
is less than half of the Hopper. This regression may directly
undermine FP64 MMU adoption for scientific computing
and should be viewed as a step backward for HPC capability.
While the reduction may reflect a vendor perception that
FP64 MMU support is of limited practical value, our results
demonstrate that FP64 MMU acceleration can largely benefit
most scientific workloads. Given our observations, future
GPU roadmaps should preserve and materially strengthen
FP64 MMU capability rather than treating it as a secondary
feature, so that architectural gains translate into sustained
progress for scientific computing applications.
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A Artifact Evaluation

This artifact accompanies the submission #336 entitled ‘Char-
acterizing Matrix Multiplication Units across General Parallel
Patterns in Scientific Computing’. It provides a benchmark
suite for Matrix Multiplication Units (MMUs), covering ten
workloads evaluated in terms of performance, power con-
sumption, and numerical accuracy.

The artifact consists of two main components: the Getting
Started Guide and the Step-by-Step Instructions: The first
part introduces the prerequisites for running the artifact
and provides a quick test that evaluates four representative
workloads from the paper. It includes the necessary compi-
lation and execution commands, along with the expected
outputs for performance, power, and accuracy. This quick
test is designed to complete in approximately 30 minutes.
The second part presents the full evaluation workflow. It
offers detailed, step-by-step instructions for testing all ten
workloads in the suite, including the commands required for
measuring performance, power consumption, and numerical
accuracy, as well as the corresponding expected outputs.

A.1 Getting Started Guide
A.1.1 Prerequisites.

e Hardware Requirements:

— GPU: At least one GPU with support for FP64 tensor
cores (e.g., NVIDIA Ampere, Hopper, or Blackwell
GPU). In this paper, we use NVIDIA A100, H200 and
B200 GPUs.

— CPU: Any multicore CPU (Intel Xeon Silver 4210 as
tested).

- Disk Space: At least 8GB.

e Software Requirements:

- For evaluating the artifact: GCC v9.4.0 or higher,
NVIDIA CUDA Toolkit v12.0 or above, and CMake
v3.30.4 or above.

— For reproducing the figures: Python v3.9 or above,
matplotlib v3.10.7 or above, numpy v2.2.6 or above,
packaging v25.0 or above, and pandas v2.3.3 or above.

o Datasets/Inputs: Each workload is evaluated using
five test cases. Sparse matrices and graphs used in

SpMV, SpGEMM and BFS are sourced from the SuiteS-

parse Matrix Collection. Other test cases use custom

inputs of different sizes. All input datasets have been
fully prepared in the artifact.

A.1.2 Setup and Quick Test.

e Download the artifact: Two options are available for
obtaining this artifact.
(1) Download the prebuilt image, which contains the
full required environment and the artifact already pla-
ced at /workspace/. Pull the prebuilt Docker image:

$ docker pull yuechen0210/cubie:v1

Lu et al.

Start a Docker container using the pulled image:

$ docker run -it --rm --runtime-nvidia \
--gpus all yuechen®210/cubie:v1

(2) Download the artifact package directly to your local
machine. The artifact can be downloaded from the fol-
lowing link: https://doi.org/10.5281/zenodo.17725527.
Extract the package:

$ unzip Cubie-ppopp26.zip

Inspect and configure the environment settings.
Please check the configuration file at Cubie/config.mk
and modify it if necessary. By default, the CUDA path
is set to /usr/local/cuda, the target GPU architec-
ture is Ampere, and the device ID is 0. If your local
environment differs from these defaults, update the
corresponding entries in config.mk accordingly.
Run the quick test: Navigate to the quick_test di-
rectory and execute the provided script according to
your GPU architecture (Ampere, Hopper, or Blackwell):

$ cd quick_test
$ nohup sh runme.sh Ampere

This quick test is a lightweight evaluation designed
to complete in approximately 30 minutes. It runs four
representative workloads (SpMV, Reduction, Scan, and
FFT) and produces their performance results, numer-
ical accuracy reports, and power consumption mea-
surements.

Note: Please run the script with nohup so the job

keeps running even if the terminal is closed or the

SSH connection drops (otherwise it may be terminated

by a hangup signal). The output will be written to

nohup. out for later inspection.

Expected Outputs: After the quick test finishes, the

quick_test directory should contain the performance,

power, and accuracy results for the four evaluated
workloads.

— The performance plots should include
Figure3_perf.pdf,

Figure4_TCvsBaseline.pdf,

Figure5_CCvsTC. pdf,

and Figure6_CCEvsTC. pdf.

These figures record the absolute performance val-
ues and speedup comparisons across different kernel
variants.

— The power results should include Figure7_edp. pdf
and Figure8_power.pdf. These figures summarize
the energy-delay product (EDP) and the power con-
sumption traces over time.
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— The accuracy report is in the file all_error.csv.
This file records the average and maximum numeri-
cal error measured for the four workloads.

Note: This artifact is a benchmarking suite, so the

exact numbers and curves may vary across different

GPUs, and do not need to match the results in the

paper exactly.

A.2 Step-by-Step Instructions

A.2.1 Overview of Evaluation Goals. The full evalua-
tion of this artifact is designed to run all ten workloads in our
Cubie benchmarking suite, each implemented using three
or four kernel variants (Baseline, TC, CC, and CC-E). The
evaluation validates the performance (Figures 3-6 in the
paper), power consumption (Figures 7-8 in the paper), and
numerical accuracy results (Table 6 in the paper) presented
in our paper.

A.3 Detailed Steps for Full Evaluation

e Run all tests: To execute the full evaluation, navigate
to the Cubie/ directory and run the provided script
according to your GPU architecture (Ampere, Hopper,
or Blackwell):

$ nohup sh runme.sh Ampere

The complete evaluation is expected to finish in ap-

proximately five hours.

Note: Please run the script with nohup so the job

keeps running even if the terminal is closed or the

SSH connection drops (otherwise it may be terminated

by a hangup signal). The output will be written to

nohup . out for later inspection.

e The evaluation procedure: The execution script
runme. sh performs the following steps in sequence:
— Compilation test: runs compile_test. sh to verify

that all workloads and kernel variants can be suc-
cessfully compiled.

— Performance evaluation: runs run_perf . sh to mea-
sure the absolute performance of the ten workloads
and compute speedups across the Baseline, TC, CC,
and CC-E variants.

— Power evaluation: runs run_power.sh to collect
power traces for all workloads and compute their
energy-delay product (EDP).

— Accuracy evaluation: runs run_error.sh to com-
pute the average and maximum numerical error for
each workload and kernel variant.

e Expected outputs of the full evaluation: Upon com-
pletion, all evaluation results will be generated under
the Cubie/script/ directory. These outputs corre-
spond to Figures 3-8 and Table 6 in the paper and
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summarize the performance, power, and numerical ac-

curacy of all ten workloads across the Baseline, TC,

CC, and CC-E implementations.

— Performance Evaluation (Figures 3-6): The perfor-
mance plots should include:
(1) Figure3_perf.pdf: absolute performance of all
workloads and variants.
The plot will report throughput (e.g., TFLOP/s) for
each workload and kernel variant, showing all five
test cases separately.
(2) Figure4_TCvsBaseline.pdf: speedups of the
Tensor Core (TC) version over the vector-based base-
line version.
The figure will report the average speedup across
the five test cases for each workload.
(3) Figure5_CCvsTC.pdf: speedups of the CUDA
Core (CC) version over the Tensor Core (TC) version.
The figure will report the average speedup across
the five test cases for each workload.
(4) Figure6_CCEvsTC. pdf: speedups of the CUDA
Core Essential (CC-E) version over the Tensor Core
(TC) version.
The figure will report the average speedup across
the five test cases for each workload.

- Power and Energy Evaluation (Figures 7-8): The
power-related results should include:
(1) Figure7_edp. pdf: energy-delay product (EDP)
of all workloads and variants.
It will evaluate one representative test case per work-
load, and report the corresponding EDP for each
variant. The plot groups workloads by quadrant and
additionally reports the geometric-mean EDP for
each quadrant at the end.
Clarify the definition used (e.g., EDP = Power X
Time?) and the time window is kernel-only.
(2) Figure8_power.pdf: power curves over time.
The figure will show instantaneous power (W) ver-
sus time for representative workloads/variants, align-
ed to kernel start/end. Similar to Figure 7, we eval-
uate one representative test case per workload. To
capture stable power values, each kernel is executed
repeatedly in a loop during measurement.

— Numerical Accuracy Evaluation (Table 6): The ac-
curacy output should include
(1) all_error.csv: average and maximum numeri-
cal error for each workload and kernel variant.
It will evaluate one representative test case per work-
load. The table reports workload name, variant
name, Average_Error, and Max_Error for each en-
try. Empirically, the TC and CC variants exhibit iden-
tical results for all workloads; thus, they are grouped
and reported together in the table.

Received 2025-09-01; accepted 2025-11-10



	Abstract
	1 Introduction
	2 Background of MMU
	3 The Cubie Benchmark Suite
	4 Categorization of MMU Utilization Patterns
	5 Experimental Design
	5.1 Experimental Setup
	5.2 Algorithmic Implementation Variants

	6 Performance of MMUs
	6.1 Comparison of Baseline Against TC
	6.2 Comparison of CC Against TC
	6.3 Comparison of CC-E Against TC

	7 Power and Energy Efficiency of MMUs
	8 Floating-point Accuracy of MMUs
	9 Performance Model
	10 Analysis of Benchmark Suite Coverage
	11 Conclusions
	Acknowledgments
	References
	A Artifact Evaluation
	A.1 Getting Started Guide
	A.2 Step-by-Step Instructions
	A.3 Detailed Steps for Full Evaluation


