
2026 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

Uni-STC: Unified Sparse Tensor Core
Haocheng Lian1, Qiyue Zhang1, Xinran Zhao1, Meichen Dong1, Yijie Nie1, Zhengyi Zhao1,

Junzhong Shen2, Wei Guo2, Chun Huang2, Bingcai Sui2 and Weifeng Liu1

1. Super Scientific Software Laboratory, Department of CST, China University of Petroleum-Beijing, Beijing, China
2. National University of Defense Technology, Changsha, China

{haocheng.lian, qiyue.zhang, xr.zhao, meichen.dong, yijie.nie, zhengyi.zhao}@student.cup.edu.cn
{shenjunzhong, wineer guowei, chunhuang, bingcaisui}@nudt.edu.cn and weifeng.liu@cup.edu.cn

Abstract—Modern processors are increasingly adopting tensor
cores as key computational units. Compared to existing designs
for dense and structured sparsity, recent dual-side sparse tensor
cores have evolved to support general sparsity. However, existing
methods still face limitations on generality (incomplete sparse
kernel support prevents broad applicability) and performance
(outer-product/row-row schemes yield unsatisfactory hardware
utilisation, data reuse, and energy efficiency).

In this paper, we propose Uni-STC, a unified sparse tensor core
that delivers high-performance dataflows for four key sparse ker-
nels: sparse matrix-vector multiplication (SpMV), sparse matrix-
sparse vector multiplication (SpMSpV), sparse matrix-multiple
vector multiplication (SpMM), and sparse general matrix-matrix
multiplication (SpGEMM). To efficiently support these diverse
sparse workloads, we first introduce BBC, a unified sparse
format co-designed with Uni-STC’s dataflow. We then design Uni-
STC’s architecture supporting (1) fine-grained task partitioning
to improve resource utilisation, (2) parallel sparse-tile processing
to enhance data reuse, and (3) a dynamic network to reduce
intermediate data movement and energy consumption. Evaluated
across 2893 SuiteSparse and 302 DLMC matrices, Uni-STC
demonstrates significant improvements, outperforming the state-
of-the-art RM-STC with a 2.21× geomean speedup and 2.96×
higher energy efficiency.

I. INTRODUCTION

In the past decade, tensor cores may be the most innovative
data-level parallelism technology on modern processors. Com-
pared to classic vector SIMD units, tensor cores can complete
matrix-matrix multiplication (GEMM) far more efficiently in
both throughput and energy. Driven by such demand from high
performance scientific and AI workloads, modern mainstream
GPUs [9], [71], CPUs [4] and TPUs [35], [36] are already
equipped with tensor cores of various precisions, sizes, and
structured sparsity capabilities.

As sparse matrix computations are one of the major parallel
computing patterns [1], designing sparsity-aware architectures
received much attention [59], [66], [87]. Domain-specific
architectures (DSAs) accelerating sparse computations, as well
as sparse tensor cores (STCs) able to replace tensor cores in
GPUs (the focus of our work), are representative directions.
However, despite these advances, they still face significant
limitations in terms of generality and performance.

From the perspective of generality, modern scientific com-
puting and AI applications are exhibiting an increasing de-
mand for diverse sparse computation patterns [25], [53],
[56], [69], with the main operations covering combinatorial

TABLE I: A brief comparison of DS-STC [78], [92], RM-
STC [30] and Uni-STC (our work proposed in this paper).

STC Sparse kernel Dataflow Task of one cycle

DS-STC SpGEMM Outer-product
Vector mul. vector
to update a matrix

RM-STC SpGEMM Row-row
Scalars mul. vectors

to update vectors

Uni-STC
(this work)

SpMV, SpMSpV,
SpMM & SpGEMM

Outer-product
plus segmented

dot-product

A group of parallel
vector mul. vector
to update scalars

applications of multiple sparse kernels. Unfortunately, the lim-
ited functional support of existing sparsity-aware architectures
constrains their use in wider real-world applications.

From the perspective of performance, the existing architec-
tures utilising outer-product [63], [78], [92] and row-row [30],
[87], [93] dataflows often adopt coarse task partitioning, which
results in suboptimal MAC utilisation. These architectures also
continuously transmit intermediate products over large-scale
networks, leading to high energy consumption.

Although the goals are explicitly specified, simultaneously
improving generality and performance remains challenging.
Software-only interface expansion may address generality, but
often leaves hardware capabilities underutilised, highlighting
the need for hardware-software co-design [64], [66]. First,
it is essential to devise a single sparse format that can
efficiently support a variety of sparse kernels. Second, a
unified architecture must be able to generate fine-grained tasks
to utilise hardware resources, schedule tasks in parallel to
increase data reuse, and manage data movement to reduce
energy consumption. Finally, the architectural design requires
rigorous validation using a large number of sparse matrices,
various sparse kernels and real-world applications.

In this paper, we propose Uni-STC, a unified sparse tensor
core that brings high performance to complete sparse kernels,
including sparse matrix-vector multiplication (SpMV), sparse
matrix-sparse vector multiplication (SpMSpV), sparse matrix-
multiple vector multiplication (SpMM), and sparse general
matrix-matrix multiplication (SpGEMM). Uni-STC works on a
fundamental sparse format called Bitmap-Bitmap-CSR (BBC)
that combines compressed sparse row (CSR) arrays and
two-level bitmap information. In addition, Uni-STC includes
three newly designed functional units: tile multiply scheduler

(TMS), dot-product generator (DPG), and segmented dot-
product unit (SDPU). These units take sparse tiles from the
BBC format as input, split and recombine them into small
dot-product tasks, schedule them for data reuse, execute the
dot-products with fewer data movements, and finally save the
output in the BBC format.

Compared to two state-of-the-art STC studies dual-side
sparse tensor core (DS-STC) [78], [92] and row-merge sparse
tensor core (RM-STC) [30], the Uni-STC emphasizes (1) the
support of more complete sparse kernels, (2) the combination
of various dataflows for generating fine-grained tasks, and (3)
the increase of data-level parallelism in a single cycle. Table I
gives a brief comparison of DS-STC, RM-STC and Uni-STC.

We evaluate Uni-STC with all 2,893 SuiteSparse matrices
across the four sparse kernels (SpMV, SpMSpV, SpMM,
SpGEMM), 302 DLMC matrices for DNN inference, and
an Algebraic MultiGrid (AMG) solver for application-level
testing. Simulation results show Uni-STC achieves geometric
mean speedups of 3.35× and 2.21× over DS-STC and RM-
STC at the kernel level, accompanied by energy reductions of
1.97× and 1.27×, leading to energy efficiency gains of 7.05×
and 2.96×. Despite an 18% area overhead in its dedicated
modules compared to the state-of-the-art RM-STC, Uni-STC
retains application-level speedups of 1.43× on DNNs and
1.92× on the AMG solver, enabled by its kernel performance.

This work makes the following contributions:
• We propose BBC, a unified format that supports software-

hardware collaborative computing for the four sparse
kernels, while reducing storage overhead and mitigating
complex hardware decoding.

• We design the Uni-STC architecture to support the four
sparse kernels, optimizing resource utilisation, data reuse,
and energy efficiency by featuring three novel functional
units: TMS, DPG and SDPU.

• We conduct evaluation covering the performance, energy,
and area of Uni-STC. Results demonstrate performance
improvement and energy reduction over state-of-the-art
designs with acceptable area overhead.

II. BACKGROUND

A. CSR and Bitmap Storage Formats

Sparse matrices typically employ compressed storage for-
mats to save memory and enhance computational throughput.
The CSR format is prevalent due to its simplicity and efficient
row-wise access to nonzero elements. Alternatively, bitmap-
based representations are favoured for smaller matrices, offer-
ing a compact layout that facilitates rapid element retrieval.
Fig. 1 depicts a 4 × 4 sparse matrix alongside its CSR and
bitmap representations, highlighting their distinct storage and
indexing mechanisms.

B. Sparse Kernels

In contrast to dense operations, sparse computations involve
a diverse array of operand types, where inputs and outputs vary
in both sparsity (dense or sparse) and dimensionality (vector or
matrix). Fig. 2 lists these combinations into four fundamental

CSR Format:

Bitmap Format:

ba
c

d
e f

Val ec db fa

ColIdx 01 32 30

RowPtr 63 420

Val ec db fa

Mask 01 00 11 00 00 10 0 101

Matrix:

Fig. 1: An example of the CSR and Bitmap formats.

K
=
4

N=1K=4

M
=
4

M
=
4

N=1

K
=
4

N=1K=4

M
=
4

M
=
4

N=1

K
=
4

N=4K=4

M
=
4

M
=
4

N=4

K
=
4

N=4K=4

M
=
4

M
=
4

N=4

SpMV SpMSpV

SpMM SpGEMM

Matrix A Vector x Vector y Matrix A Vector x Vector y

Matrix A Matrix C Matrix A Matrix CMatrix B Matrix B

Fig. 2: Sparse kernels SpMV, SpMSpV, SpMM and SpGEMM.

for m in 0...M
 for n in 0...N
 for k in 0...K
 C[m,n] += A[m,k] * B[k,n]

(1) Dot-product dataflow

for k in 0...K
 for m in 0...M
 for n in 0...N
 C[m,n] += A[m,k] * B[k,n]

(2) Outer-product dataflow

for m in 0...M
 for k in 0...K
 for n in 0...N
 C[m,n] += A[m,k] * B[k,n]

(3) Row-row dataflow

Matrix A

M
=

4

K=4

Matrix B

K
=

4

N=4

Matrix C

M
=

4

N=4

Matrix A

M
=

4

K=4

Matrix B

K
=

4

N=4

Matrix C

M
=

4

N=4

Matrix A

M
=

4

K=4

Matrix B

K
=

4

N=4

Matrix C

M
=

4

N=4

Fig. 3: Three fundamental dataflows for matrix multiplication:
dot-product, outer-product and row-row.

TABLE II: Sparse kernels in different applications.

SpMV SpMSpV SpMM SpGEMM
GNN ✓ ✓

AMG ✓ ✓

BFS ✓ ✓

kernels—SpMV, SpMSpV, SpMM, and SpGEMM—that serve
as cornerstones for scientific computing and AI workloads.

C. Dataflows

Matrix multiplication primarily relies on three fundamental
dataflows: (1) the dot-product (DotP) dataflow, which com-
putes a single element of C by multiplying a row of A with
a column of B; (2) the outer-product (OutP) dataflow, which
updates the whole C by multiplying a column of A with a row
of B; and (3) the row-row dataflow, which generates a row of
C by scaling rows of B with scalar elements from a row of A.
Fig. 3 provides a schematic illustration of these mechanisms.

TABLE III: Task sizes at different levels in STCs (64 MACs).

Task
Level

Task
Name

Task Size (M ×N ×K)
NV-DTC

[60]
DS-STC
[78], [92]

RM-STC
[30]

Uni-STC
(ours)

T1
MMA

instruction
16×16×16

T2
Machine

instruction
8×8×4 16×16×1 8×16×2 None

T3 Tile 4×4×4 8×8×1 8×4×2 4×4×4

T4 Vector None 1×1×4

#Cycles: 11
MAC Util.: 56.82%

#Cycles: 6
MAC Util.: 41.67%

#Cycles: 5
MAC Util.: 30.00%

#Cycles: 4
MAC Util.: 37.50%

#Cycles: 6
MAC Util.: 41.67%

#Cycles: 7
MAC Util.: 89.29%

#Cycles: 9
MAC Util.: 69.44%

DS-STC
MAC: 2x2

Matrix A

#Cycles: 12
MAC Util.: 83.33%

#Cycles: 3
MAC Util.: 83.33%

#Cycles: 2
MAC Util.: 75.00%

SpMV

Multiply
dense

vector x

SpMSpV

Multiply
sparse

vector x

SpMM

Multiply
dense

matrix B

SpGEMM

Multiply
sparse

matrix B

#Cycles: 12
MAC Util.: 83.33%

#Cycles: 10
MAC Util.: 100%

RM-STC
MAC: 2x2

Uni-STC
MAC: 1x4

Fig. 4: Schematic dataflow comparison of DS-STC, RM-STC,
and Uni-STC across the four kernels, assuming a MAC array
size of 4. Solid and dashed black boxes demarcate the data
access windows for the first and final execution cycles, respec-
tively; red slashes highlight ineffective memory accesses. For
DS-STC and RM-STC, black dots signify accessed elements,
while orange lines trace the per-cycle execution trajectory.

III. MOTIVATION

A. Challenge 1: Acceleration of sparse applications

1) Demand for generality: As summarized in Table II, real-
world applications frequently require a combination of sparse
kernels. For instance, Graph Neural Networks (GNNs) [25],
[69] use both SpMM and SpGEMM for node information
propagation and aggregation. Similarly, Algebraic Multigrid
(AMG) solvers [53] and Breadth-First Search (BFS) algo-
rithms [56] depend on multiple sparse kernels for convergence
and traversal efficiency. This workload diversity underscores
the critical need for accelerators capable of supporting a
comprehensive suite of sparse computations.

2) Unified data structure: Implementing a unified data
structure is a necessary condition for effectively supporting
multiple sparse kernels. This structure eliminates costly on-
line format conversions between kernels, supporting a unified
dataflow in hardware design to enhance generality. However,

NV DS RM Uni
consph

0
25
50
75

100
125
150
175

n=83.3K, nnz=6.0M
#inter-prod/blk=164.9

NV DS RM Uni
shipsec1

0
20
40
60
80

100
120
140

n=140.9K, nnz=7.8M
#inter-prod/blk=189.5

NV DS RM Uni
crankseg_2

0
200
400
600
800

1000
1200

n=63.8K, nnz=14.1M
#inter-prod/blk=198.5

NV DS RM Uni
cant

0
10
20
30
40
50
60

n=62.5K, nnz=4.0M
#inter-prod/blk=280.2

NV DS RM Uni
opt1

0
5

10
15
20
25
30
35

n=15.4K, nnz=1.9M
#inter-prod/blk=506.4

NV DS RM Uni
pdb1HYS

0
10
20
30
40
50
60
70

n=36.4K, nnz=4.3M
#inter-prod/blk=517.2

NV DS RM Uni
pwtk

0
10
20
30
40
50
60
70

n=217.9K, nnz=11.6M
#inter-prod/blk=548.3

NV DS RM Uni
gupta3

0
200
400
600
800

1000
1200
1400
1600

n=16.8K, nnz=9.3M
#inter-prod/blk=1154.1

#C
yc

le
s (

in
 M

illi
on

s)
#C

yc
le

s (
in

 M
illi

on
s)

#C
yc

le
s (

in
 M

illi
on

s)
#C

yc
le

s (
in

 M
illi

on
s)

#C
yc

le
s (

in
 M

illi
on

s)
#C

yc
le

s (
in

 M
illi

on
s)

#C
yc

le
s (

in
 M

illi
on

s)
#C

yc
le

s (
in

 M
illi

on
s)

(0%, 25%] utilisation (25%, 50%] utilisation
(50%, 75%] utilisation (75%, 100%] utilisation

Fig. 5: STCs’ SpGEMM performance on eight representative
matrices in Table VII (C = A2). This figure shows the
results with color-coded blocks, which display the proportion
of cycles with varying utilisation rates within the total cycles.

designing such a unified structure is challenging because of
the sparse kernels variety and the hardware constraints.

Given the limited generality of existing accelerators, ac-
celerating real-world sparse applications requires a unified
framework that integrates a common data structure, software
algorithms, and a sparse tensor core.

Understanding the inefficiency of existing STCs requires
examining their decomposition of large tasks into multiple
layers. As shown in Table III, we organize the computation
into a four-level task hierarchy (T1–T4):
• (T1) The matrix multiply-accumulate (MMA) instruction

task: A 16(M) × 16(N) × 16(K) matrix multiplication
corresponding to a warp MMA (WMMA) instruction on
an A100 GPU.

• (T2) Machine instruction task: A task corresponding
to a Parallel Thread Execution (PTX) instruction from
the compiler, which follows a predefined, multi-cycle
execution flow.

• (T3) Tile task: A sub-task generated by partitioning a
T2 task based on the STC’s per-cycle throughput. For
sparse computation, it is designed to support hardware-
level concatenation.

• (T4) Vector task: A fine-grained task derived from a T3
task, whose length is determined by the STC’s ability to
merge adjacent intermediate products.

Specifically, fixed-size T2 tasks are well-suited for regular
sparsity but struggle with unstructured patterns. The unpre-
dictable locations of nonzeros in such cases lead to ineffi-
cient memory accesses and significant throughput degradation.
Fig. 4 illustrates how fixed task partitioning can degrade
throughput. In each cycle, DS-STC forms an outer-product
task from a half-column of A and a half-row of B/x, whereas
RM-STC generates multiple ‘scalar × vector’ tasks from two
half-row vectors. This rigid selection frequently causes in-
efficient data accesses (marked by red slashes), resulting in
lower MAC utilisation compared to Uni-STC. Our quantitative
analysis in Fig. 5 further emphasizes this performance gap. For

K=0

K=1

Outer-product
(DS-STC)

M=0
M=1
M=2
M=3

M=7
...

M=0
M≠1
M≠2

M=7

...

Row-row
(RM-STC)

Dot-product
(Uni-STC)

M=0
N=0
K=0,2

M=2
N=3

K=1,2,3

...
can not
concat

can not
concat

N

Fig. 6: Restrictions of different STC on task concatenation.

real-world matrices, NVIDIA dense tensor core (NV-DTC)
offers only limited sparsity support, with MAC utilisation
falling below 25% in 84.34% of cycles. Although DS-STC
and RM-STC demonstrate higher efficiency than NV-DTC,
their utilisation remains suboptimal. We therefore identify two
primary challenges to enhancing STC MAC utilisation: task
scheduling and task concatenation.

B. Challenge 2: Task scheduling

1) Inefficiency of data gathering: As shown in Fig. 4, DS-
STC and RM-STC achieve transient high MAC utilisation by
gathering sparse matrices into dense vectors. However, they
suffer from frequent low-utilisation phases (indicated by red
slashes in Fig. 4). These phases, stemming from ineffective ac-
cesses, lead to 61.68% and 62.78% of cycles operating below
50% utilisation (Fig. 5). Furthermore, because their T3 task
dimensions are rigidly tailored to specific sparsity patterns,
efficiency degrades significantly when handling diverse real-
world patterns, such as long rows in matrix A.

2) Insufficient parallelism within STC: The proportion of
low-utilisation cycles in DS-STC and RM-STC significantly
surpasses the 15.82% baseline achieved in Uni-STC. This
stems from their lack of a load-aware task execution mech-
anism. Given the inherent difficulty in minimizing low-load
tasks, a paradigm shift from gathering data to gathering tasks
(aggregating multiple low-load tasks) is essential. However,
existing architectures lack the workload-aware design neces-
sary to implement this shift, which hinders overall utilisation.

Therefore, it is necessary to bypass T2 task partitioning,
integrate task-load awareness into STC, and support parallel
task execution.

C. Challenge 3: Task concatenation

1) Coarse Task Granularity: The limited proportion of
high-utilisation cycles in DS-STC and RM-STC (approxi-
mately 20% in the red region of Fig. 5) stems from their
coarse task granularity. Specifically, for tasks in the 50-75%
utilisation range (the yellow region), these architectures lack a
mechanism to further partition and reorganize them to better
fit the MAC array dimensions. Therefore, T3 tasks need to be
further broken down.

2) Concatenating restrictions: However, as shown in Fig. 6,
merely refining task granularity is insufficient to resolve
the utilisation bottleneck. DS-STC and RM-STC, employing
outer-product and row-row dataflows respectively, adhere to

Tile multiply
scheduler

(TMS)

Meta buffer (144B)

(a) Register (16,384 x 32-bit)

or or or

C: dense/sparse matrix/vector

or

A: dense/sparse matrix

S
hu

ffl
e

C
 N

e
tw

or
k

F
in

al
 a

cc
u

m
u

la
to

r
(1

K
B

)

Segmented
dot product

unit
(SDPU)

D
o

t
pr

o
du

ct
 q

u
e

ue

A
 B

u
ffe

r
(2

K
B

)

B
 N

e
tw

or
k

A
 N

e
tw

or
k

T
ile

 q
ue

u
e Dot

product
generators
(DPG) 0~7

Register file

Dispatch unit

Warp scheduler

L0 instruction cache

(c) Unified Sparse Tensor Core (Uni-STC)(b) GPU SM

INT 32

FP 32

FP
64

Uni-
STC

LD/ST SFU

or or or

B: dense/sparse matrix/vector

Fig. 7: (a) Uni-STC’s supported data types; (b) Uni-STC’s
position in GPU SM; and (c) Uni-STC’s architecture, high-
lighting three core components: TMS, DPG and SDPU.

rigid 2D or 3D structural layouts (consistent with T3 task
definitions in Table III). Such rigidity limits task concatena-
tion flexibility: DS-STC cannot concatenate tasks at different
positions along the K-dimension, whereas RM-STC only
permits concatenation along the N -dimension. Consequently,
even with fine-grained tasks, these spatial constraints prevent
efficient packing and leave the hardware underutilised.

Therefore, adopting a least-constrained dot-product method
for task refinement offers a more promising solution.

D. Uni-STC Design Principles

Addressing these challenges, we formulate three design
principles for Uni-STC:

1) Unify data structure and architecture to support diverse
sparse kernels.

2) Offload T1 task execution to the STC while augmenting
scheduling capabilities.

3) Decompose T3 tasks into fine-grained vector tasks to
enhance task concatenation efficiency.

IV. UNI-STC ARCHITECTURE

As shown in Fig. 7, to overcome the limitations of existing
STCs, we propose Uni-STC, a unified architecture designed
to replace the original GPU tensor cores and support various
sparse kernels. It comprises three functional units: the Tile
Multiply Scheduler (TMS), the Dot Product Generator (DPG),
and the Segmented Dot Product Unit (SDPU). Operationally,
the TMS first decomposes T1 tasks into T3 tasks for the DPGs.
The DPGs then subsequently partition these into fine-grained
T4 tasks, which are ultimately concatenated and executed by
the SDPU.

A. Task Generation Using TMS and DPG

To support diverse sparse patterns and kernels, Uni-STC’s
fundamental working unit is the 4 × 4 × 4 T3 task, derived
from the decomposition of a larger 16×16×16 T1 task. This
design choice is motivated by three key considerations:

(1) Mitigating inefficiency from real-world sparsity: Tasks
defined with K = 1 (DS-STC) or K = 2 (RM-STC) lead to
numerous low-utilisation cycles when handling patterns such

！

Bitmap B

Bitmap A

Outer-product unit Sequencer Dispatcher

k pos
Tile multiply scheduler (TMS)

DE F

0 1

9

2 3
5

B
6 7

0 2

A
6

B

DC

0 1

0

8

2

A
4 6

6 7
A B

1 3

1

0
3 3

2 7

2 A

1 A

1 8

2 3

！

k=
0

C nnz_c = 2

6 7
A

1 3

A
0 0

0 C

0 1

0 D

1 0

1 2

1 4

1 6
or

de
r

nnz_r = 2

3 1

2 B

2 6

D
ot

 p
ro

du
ct

 g
en

er
at

or
s(

D
P

G
s)

T
ile

 q
ue

ue

non-zero tile
T3 task

8
4

4
8 nnz_c = 2

nnz_r = 3

nnz_c = 2

nnz_r = 2

nnz_c = 2

nnz_r = 1

k=
1

k=
2

k=
3

Fig. 8: TMS component and its subsequent modules.

TABLE IV: Trade-offs of T3 task sizes on cycle count, the
number of DPGs to saturate SDPU, and network scale to route
tiles and nonzeros. The 4 × 4 × 4 size is the best among the
three, as it avoids excessive DPG counts and routing overhead.

Task

size
#Cycles

#DPGs to

saturate SDPU

Network scale to route

tiles nonzeros

2× 2× 2 1 32-64 (high) 64×#DPGs (high) 4× 4

4× 4× 4 1 8-16 16×#DPGs 16× 16

8× 8× 8 ≥2 (high) 2-4 (low) 4×#DPGs 64× 64 (high)

as long rows or long columns (e.g., matrix crankseg_2 in
Fig. 5) or nonzeros concentrated near the diagonal (matrix
cant). To achieve stable utilisation across such diverse struc-
tures, we adopt a symmetric configuration with M = N = K.

(2) Facilitating a unified data structure: To meet the unified
data structure requirement outlined in Section III-D while
avoiding complex hardware decoders, we select symmetric
tile dimensions. This symmetry allows both operands to share
identical bitmap encoding logic.

(3) Balancing resource utilisation and timing: Table IV
compares the 4×4×4 configuration with alternative tile sizes.
A 2×2×2 design incurs excessive resource overhead, requiring
32-64 DPGs and a much larger routing network. Conversely,
an 8× 8× 8 size fails to meet timing constraints (≥2 cycles),
suffers from limited parallelism (2-4 DPGs, denoted as low),
and has high routing costs. The chosen 4×4×4 configuration
strikes an balance, avoiding the resource overhead of smaller
tiles and the timing violations of larger ones.

During computation, a 16 × 16 matrix block is partitioned
into 16 4×4 tiles. A two-level bitmap encodes this structure to
steer the pipeline: the top-level bitmap (marking tiles) guides
the TMS in generating T3 tasks, while the bottom-level bitmap
(marking elements) directs the DPG to generate T4 tasks.

1) Tile multiply scheduler (TMS) in Fig. 8: 1 Generation
of T3 tasks. The TMS generates a four-layer intermediate
product bitmap using an outer-product approach, where each
position in the bitmap represents a T3 task. For instance, the
top-left position in the K = 0 bitmap (marked by a green ‘0’)
signifies the T3 task C00+ = A00 ×B00.

2 Task ordering. Task ordering for batched T3 tasks sub-
stantially impacts data reuse and energy consumption. For in-

 Index C00

F
ill

CCC

1 111

Outer-product unit

T4 task

Dot product generator (DPG) 0

Bitmap B00

Bitmap A00

00 0 0

0 0

0

0 0
0

00
1
0

1 1

1

1

1

intermediate
products​

non-zero
element

1

1

1

1

1

1

1 1

1

11

1

1

1

1

display
in hex

K-index
encoder

Index
composer

6 7

2 43
0 1

5

Previous
C00

21 3F49

6E78

2 3

4
E

1

8

9F

Hex encoded
C00

D
ot

 p
ro

du
ct

 q
ue

ue

 S
eg

m
en

te
d

do
t p

ro
du

ct

un
it

(S
D

P
U

)

T
ile

 m
ul

tip
ly

 s
ch

ed
ul

er
 (

T
M

S
)

T
ile

 q
ue

ue

k=
0

k=
1

k=
2

k=
3

Fig. 9: DPG component and its adjacent modules.

0

25

50

D
at

a
re

us
e

ra
te

 (%
)

Dot-product Outer-product Row-row

1

4

7

#T
as

ks
(p

ar
al

le
l)

1

4

7

#T
as

ks
(a

lig
ne

d)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#Nonzeros of 4(M) × 4(N) matrix C

0

6

12
C

on
fli

ct
ra

te
 (%

)

Fig. 10: Comparison of dot-product, outer-product and row-
row ordering methods (assuming Uni-STC can complete eight
T3 tasks per cycle). The metrics are: (1) data reuse rates
for matrices A and B, calculated as 1 − Actual Accesses

Theoretical Accesses , (2)
average parallel tasks per cycle, (3) average aligned tasks per
cycle, and (4) average write conflict rate.

stance, at layer K = 0, parallel execution of T00, T01, T10, T11

fetches tiles (A0, A1, B0, B1) only once, whereas sequential
execution would double read volume. To identify the most
effective strategy, we evaluated dot-product, outer-product, and
row-row orders based on parallelism, K-dimension alignment,
and write conflicts (defined as #ConflictCycles

#TotalCycles). As shown in
Fig. 10, the outer-product strategy is superior, achieving high
parallelism (avg. 4.54 tasks), a 47.38% peak reuse rate through
effective K-alignment, and low write conflicts (e.g., 6.2% peak
at #Nonzeros=6), thereby mitigating bottlenecks.

Additionally, we implement an adaptive intra-layer task or-
dering mechanism. The system dynamically selects a column-
major order when nonzero rows outnumber nonzero columns,
and a row-major order otherwise, enhancing data reuse across
diverse workloads.

3 Task dispatch. The TMS enqueues generated T3 tasks
into the Tile queue. In the event of a write conflict (e.g.,
the T3 task marked by the red box and exclamation mark
in Fig. 8), the Tile queue employs round-robin arbitration to
stall the conflicting T3 task, forcing the corresponding DPG
to wait one cycle before execution.

2) Dot-product generators (DPGs) : The DPG’s workflow
begins with a T3 task. 1 First, it applies an outer-product
method to the bottom-level bitmaps to generate four interme-
diate bitmap layers. 2 These layers are then overlaid, creating
a map where the 4-bit value at each position encodes the index-
matching results for a sparse vector dot-product.

3 Next, the DPG combines this overlaid map with the
structural layout of tile C to generate 8-bit T4 task codes.
Concurrently, it extracts the required operand vectors from
tiles A and B for subsequent concatenation. For instance, in
Fig. 9, the value ‘49’ in the orange box signifies the following:
the upper nibble ‘4’ denotes the accumulation target (4th
nonzero in tile C), while the lower nibble ‘9’ encodes the
sparse dot-product pattern (0x1001). Thus, the T4 task ‘49’
corresponds to: C0,0[4] += A1,0 ×B0,3 +A1,3 ×B3,3.

4 Multiple T4 tasks from a DPG are filled into the Dot-
product queue in a Z-shaped pattern, as depicted in Fig. 9.

This ordering is critical for minimizing data movement.
When vector tasks are concatenated, the required broadcast
range for any nonzero is minimized. Specifically: (1) For
matrix A, an element is broadcast to a compact group of only
5 (4 + 1) adjacent multipliers, as our scheduling limits its
reuse to at most two consecutive vector tasks (length ≤ 4). (2)
For matrix B, the Z-shaped fill order ensures an element is
broadcast to a slightly wider range of 9 (4+4+1) multipliers,
because two tasks requiring the same B data are separated by
at most one intervening task. This localized data forwarding is
highly efficient; alternative strategies, such as an N -shaped fill
order, were tested and found to be inferior for most matrices.

The aforementioned process of task dispatch and vector con-
catenation relies on simple prefix sums and shift units. These
components are commonly employed in prior works [21], [87],
and are therefore omitted for brevity.

Uni-STC’s default configuration of 8 DPGs is driven by
a sensitivity study on Energy Efficiency Density (EED) and
alignment with hardware resource budgets. The EED analysis,
presented in Fig. 22, shows that increasing the DPG count
from 4 to 8 benefits SpMM and SpGEMM, whereas a further
increase to 16 yields diminishing returns and introduces higher
overheads, particularly for SpMV and SpMSpV. Moreover, the
8-DPG configuration aligns with existing tensor core resource
budgets. Because each T3 task is constrained to at most 64
intermediate products, Uni-STC can flexibly scale its preci-
sion from 256 MACs@FP16 to 64 MACs@FP64 within the
same hardware footprint. This is accomplished while retaining
sufficient task concatenation capability to achieve significant
performance gains.

B. Segmented Dot Product Unit (SDPU)

To facilitate parallel execution of multiple T4 tasks, we
introduce the SDPU. As illustrated in Fig. 11(a), T4 tasks
generated by DPG 0 are compactly concatenated for batched
processing within the SDPU. Fig. 11(b) is a merge-forward
structure, which dynamically configures any four adjacent
multipliers into a complete binary tree. This design yields two
key benefits. First, it enables the compact, parallel computation

fwd a

(b)

21 3F 49 78 6E

sum

a b

ctrl

D
ot

 p
ro

du
ct

 q
ue

ue

Segmented dot product unit (SDPU)

(a)

D
ot

 p
ro

du
ct

 g
en

er
at

or
(D

P
G

)
0 1 1 2 3 4 1 2 1 1 2 3

1 3 7 3 1 3 3

1 10 3 1 6

Fig. 11: SDPU component and its preceding modules.

2⋅16x8
networks
(A & B)

...

A & B
tiles

...

8⋅16x16
network

(C)

...

C
tiles

Control by TMS Control by 8 DPGs

16x8
network

(C)

64x5 MUX
array (A)

64x9 MUX
array (B)

dot product
queue

co
nc

at
 v

ec
to

rs

...

2⋅8⋅4x8
networks
(A & B)

Synchronize

T3
 ta

sk
s

tile task
queue

Task Generation Task Concatenation Execution & Write C

Fig. 12: Internal pipeline and datapath in Uni-STC.

of multiple T4 tasks. Second, it facilitates the pre-merging of
up to four partial products before they are written out, which
significantly reduces write traffic to the result matrix C.

C. Internal Pipeline and Datapath

As shown in Fig. 12, to meet the 1.5 GHz target frequency
(A100), Uni-STC implements a three-stage internal pipeline
that uses Tile and Dot-product queues to manage task lifecy-
cles, thereby decoupling control and data flows.

1) Three-Stage Pipeline: The execution flow, triggered by
the issuance of a UWMMA instruction (see Section IV-E),
consists of three main stages:
• Stage 1: Task Generation. Acting as the controller, the

TMS fetches the top-level bitmap from the Meta Buffer
(144B) and generates T3 tasks, which are dispatched into
the Tile queue.

• Stage 2: Task Concatenation. Eight DPGs operate in
parallel, utilising underlying bitmaps to populate the Dot-
product queue with T3 and T4 task codes, as well as
network control signals. These signals are used to acquire
operands from the Matrix A buffer (2KB) and registers.

• Stage 3: Execution & Write C. The SDPU pops a batch
of merged T4 tasks, performs segmented dot-products,
accumulates results in an accumulator buffer (1KB), and
updates registers.

Notably, the Tile and Dot-product queues store only control
information rather than the numerical values of matrices A
and B. This design choice is driven by two factors: first, to
minimize the area overhead associated with wide datapaths;
and second, to accommodate potential latency, as values may
not be available in the registers or buffers during the first two
pipeline stages.

2) Datapath: Prior studies (e.g., RM-STC [30]) have es-
tablished that on-chip network scale and data traffic are
the primary drivers of energy consumption in STCs. While
previous sections have demonstrated how Uni-STC mitigates
data traffic—specifically through reuse-aware scheduling in
the TMS and partial product pre-merging in the SDPU—the
scale of the interconnect remains a critical efficiency bottle-
neck. Therefore, this section shifts focus to the other factor:
optimizing Uni-STC’s network scale to reduce energy per bit.

As shown in Fig. 12, Uni-STC employs a two-layer network
for data access. The outer layer, controlled by the TMS, uses
three dedicated 16× 8 networks to forward tiles for matrices
A, B, and C. For matrix C, since the SDPU output can be
directly partitioned, each tile is handled by a dedicated 16 ×
16 network, and with 8 DPGs in parallel, this results in an
8 ·16×16 network structure. For matrices A and B, each first
passes through a dedicated 4×8 network into the dot product
queue. Subsequently, two sets of MUX arrays—64× 5 for A
and 64× 9 for B—select the corresponding vectors from the
queue. This hierarchical network design eliminates the need to
implement separate 64×256 networks for matrices A, B, and
C, achieving reductions in energy per bit of 7.16×, 5.33×,
and 2.83×, respectively.

Additionally, Uni-STC employs a dynamic DPG activation
mechanism to optimize energy efficiency. By calculating the
prefix sums of intermediate products at the Tile queue head,
the TMS determines the number of DPGs required to saturate
the SDPU. The control logic then power-gates any redundant
DPGs and their associated datapaths—including the input
networks for matrices A and B (2 · 8 · 4 × 8) and the output
network for matrix C (8·16×16). This selective gating, which
assumes wake-up latency is hidden by look-ahead scheduling,
enables energy savings of up to 2.83× compared to an always-
on approach (see Section VI-C).

D. BBC Format

Guided by the design principles from Section III-D, we
propose the BBC format, a hierarchical data structure. Its outer
layer uses the CSR format to organize submatrices, while its
inner layer employs a two-level bitmap to manage elements
within each sparse submatrix. Fig. 13 illustrates this format
with a downsized 8 × 8 matrix, where each 4 × 4 submatrix
is subdivided into four 2× 2 blocks.

The second-level index of the BBC format, ValPtr Lv2, is
provided directly to Uni-STC, enabling the TMS to control
the forwarding of corresponding tile data. This design choice
is motivated by a trade-off between hardware and software
costs. Unlike RM-STC, which requires a hardware decoder
consuming 16.67% of the area overhead, BBC enables direct
execution. We offload indexing to a one-time software en-
coding. This approach incurs negligible storage overhead—no
more than 0.3% within the BBC format, translating to just
0.015% of the total die area—while eliminating the costly
hardware decoder.

Additionally, the two-level bitmap structure can be used di-
rectly by TMS without decoding. Converting a 4×4 submatrix

a b
dc

e
f

g i
jh

RowPtr ColIdx BlkPtr

Value

0 1 3 0 0 1 40 1 2

ValPtr_Lv2 0 0

ValPtr_Lv1 100 4

a b c d e f g h i j

6

0 2

+

BitMap_Lv1

01

00

00

01

11

00

11

11

01

01

10

01

10

10

BitMap_Lv2

Fig. 13: Downsized BBC format for an 8 × 8 matrix. At the
top level, RowPtr and ColIdx use CSR to locate nonzero 4×4
submatrices. The sparsity pattern within these submatrices is
then described by a two-level bitmap: BitMap Lv1 identifies
which 2×2 blocks contain nonzero elements, and BitMap Lv2
specifies the exact location of the nonzero elements within
those blocks. All nonzero elements are stored in the Value
array. They are accessed using a two-level pointer where
ValPtr Lv1 provides the base address for a 4 × 4 submatrix
and ValPtr Lv2 provides the offset for a specific 2× 2 block.

within the DPG into four row or column vectors accounts for
approximately 6.6% of the total area overhead. The primary
cost is the one-time offline construction of the BBC format.
However, this cost is amortized across multiple invocations
and can be entirely eliminated for frequently used matrices by
saving and reloading them via implemented file I/O function.

E. Hardware Integration with GPU

To integrate Uni-STC as a coprocessor in the GPU Stream-
ing Multiprocessor (SM) and bypass the T2 task partitioning
stage, we require micro-architectural adjustments to the SM
in two parts: instruction issue and data interaction.

(1) Instruction issue: This requires two control logic modi-
fications: updating the instruction decoder to parse Uni-STC’s
opcodes, and extending the warp scheduler to dispatch the
decoded instructions. Both modifications incur negligible area
and energy overhead.

(2) Data interaction: Uni-STC interfaces with core SM
components solely via the register file, a design that leverages
the high-bandwidth operand collector interfaces of modern
SM90+ architectures (e.g., Hopper and Blackwell). For earlier
generations like Ampere, however, the register-file ports must
be widened to provide the necessary bandwidth: up to 16 FP64
source and 4 FP64 destination operands per thread, per cycle.

With these adjustments, Uni-STC operates as an inde-
pendent computational unit within the SM. The following
subsections detail the instruction set, execution lifecycle and
control interaction.

F. Instruction Set

Table V summarizes the Uni-STC instruction set
(UWMMA), which follows WMMA semantics and includes
the cycle ranges for FP64 operations. Data types are
categorized by suffixes: ‘i’ for 8-bit indexes, ‘b’ for 16-bit
bitmaps, and ‘v’ for 64-bit values.

TABLE V: Uni-STC@FP64 instruction set (UWMMA).

Operation Registers per threads Cycles

Load

Meta

(MV)

A16b1, A16b2, X16b,

A4b1/A4i1, A4b2/A4i2
1

Meta

(MM)

A16b,B16b, C16b,

A4b/A4i, B4b/B4i, C4b/C4i
1

A Av(0 ∼ 7) 2

T3 Task

Generate

MV Use meta data saved in buffer 1∼4

MM Use meta data saved in buffer 1∼8

Calculate

and Store

MV Av2(0 ∼ 7), Xv, Yv 1∼8

MM Bv(0 ∼ 7), Cv(0 ∼ 7) 1∼64

To comply with the operand limits of PTX instructions (e.g.,
the ‘mma.sync.aligned.m16n8k16.row.col.f64.f64.f64.f64’ va-
riant allows a maximum of 20 FP64 register operands per
thread) and better aligns with the properties of sparse kernels,
we choose to store both the block values of matrix A and
the corresponding block structures within Uni-STC’s internal
buffers. Integrating the UWMMA instruction set and this data
handling approach necessitates compiler modifications.

G. Execution Lifecycle and Control Interaction

Uni-STC executes sparse kernels through a coordinated
UWMMA instruction sequence. This lifecycle relies on in-
teraction with the SM and internal state registers to achieve
asynchronous task generation and synchronous computation:

(1) Operand collection. The cycle begins with stc.load
instructions. The SM uses the operand collector to fetch
numerical data or metadata from the register files and stores
them into Uni-STC’s internal buffers (Matrix A Buffer or Meta
Buffer). This phase is synchronous and memory-bound.

(2) Asynchronous task generation. Upon issuing a
stc.task instruction, the Uni-STC transitions its state reg-
ister from IDLE to BUSY. This triggers the TMS and DPGs to
begin processing metadata and filling the two task queues. This
asynchronous process allows the SM to immediately retire the
stc.task_gen instruction and proceed with other work,
effectively hiding the task generation latency.

(3) Synchronized computation. The stc.numeric in-
struction initiates computation on the SDPU by first checking
the flag register:

• Stall (BUSY): If the flag is BUSY, indicating insuffi-
ciently populated task queues, the pipeline stalls.

• Execute (READY): Once the DPGs populate the queues,
the flag transitions to READY. The SDPU then begins
execution, consuming T4 tasks, performing segmented
dot-products, and accumulating the results.

(4) Completion. When the batch of T4 tasks is fully pro-
cessed, the flag returns to IDLE, enabling the results to be
written back to the register files.

Algorithm 1: SpMV/SpMSpV with Uni-STC@FP64
1: laneid← threadIdx.x&31
2: row ← warpRowId[warpid]
3: start← warpIndex[warpid]
4: end← warpIndex[warpid + 1]
5: ry ← 0
6: j ← start
7: while j < end do
8: a4b← load bitmap(laneid)
9: a4i← load offset(laneid)

10: rxb← load bitmapx(laneid)
11: % stc.load.meta mv A16b[j], A16b[j + 1], rxb, a4b, a4i
12: % stc.task gen.mv// TMS and DPG generate T3 and T4 tasks
13: for i← 0→ 15 do
14: rA[i]← load value A(A val + a4i, a4b, laneid, i)
15: end for
16: % stc.load.a rA[0 ∼ 7]// Load 16× 16 block data of matrix A
17: rx← load value x(laneid)
18: % stc.numeric.mv rA[8 ∼ 15], rx, ry// SDPU execute T4 tasks
19: j+ = 2
20: end while
21: shfl gather(ry)
22: write back(ry, row, laneid)

Algorithm 2: SpMM/SpGEMM with Uni-STC@FP64
1: warpid← threadIdx.x >> 5
2: laneid← threadIdx.x&31
3: row ← warpRowId[warpid]
4: for j ← Arow ptr[row]→ Arow ptr[row + 1] do
5: Acol← Aci[j]
6: A16b← A16b ptr[j]
7: Av[8]← load v(row,Acol, laneid)
8: Abi← load bi(row,Acol, laneid)
9: % stc.load.a Av[0 ∼ 7]// Load 16× 16 block data of matrix A

10: for Bj ← Brow ptr[Acol]→ Brow ptr[Acol + 1] do
11: Bcol← Bcol idx[Bj]
12: B16b← B16b ptr[Bj]
13: if A16b× B16b and bfind(Bcol) then
14: C16b← Ccol idx[bfind result]
15: Bbi← load bi(Acol, Bcol, laneid)
16: Cbi← load bi(row,Bcol, laneid)
17: % stc.load.meta mm A16b, B16b, C16b, Abi, Bbi, Cbi
18: % stc.task gen.mm// TMS and DPG generate T3 and T4 tasks
19: Bv[8]← load v(Acol, Bcol, laneid)
20: Cv[8]← load v(row,Bcol, laneid)
21: % stc.numeric.mm Bv[0 ∼ 7], Cv[0 ∼ 7]// SDPU execution
22: accumulate c(row,Bcol, laneid, Cv)
23: end if
24: end for
25: end for

V. UNI-STC DATAFLOW

This section details the software-hardware co-design of Uni-
STC, focusing on the dataflow from both the software and
hardware perspectives.

A. Software Dataflow

Based on the BBC format and the UWMMA instruction
set, we design the four sparse kernels at the software level.
The implementation of SpMV and SpMSpV is presented in
Algorithm 1. During execution, Uni-STC computes the multi-
plication of two blocks of matrix A and corresponding vectors,
accumulating the results in each thread’s ry register. Finally,
shfl_gather is used to accumulate the results in the first 16
threads, and then written back to global memory. For SpMM
and SpGEMM, detailed in Algorithm 2, the dataflow leverages
the first-level CSR structure within the BBC format. This
structure facilitates the scheduling of T1 tasks through a row-
by-row outer product formulation (Ci∗+ = Aik ×Bk∗).

15 15

15 11

4

11

19 14

12 6

8

2

4 1 2 1 0

1 3

4 1 2 2 4

4 1 2
Each block represents a 2×2×2 T3 task

SDPU

matrix C

Uni-STC

layer k=2 layer k=3 scatter

 4 32

1 2 1 0

2

8 2

 4

4

1 2 4

1 1
(0) (1) (2) (3)

cycle 1

(3) (5)

(0)

(6)

(1)

(7)

(0) (1)

(5)

(7)

DS-STC

#Cycles

original matrix A

original matrix B

matrix C

row 6

col 6

8

37.50% MAC
Utilisation

Step 1 Step 2

Step 3

4

4

4 4
scatter

g
ather

compressed matrix B

compressed matrix A

row 1

matrix C

RM-STC

4

8

scatter

8

4

4 4

Step 1 Step 2

1 2 1
2
1
2

row 2

1 2

100
MAC Utilisation Proportions

MAC Utilisation Intervals (%)

P
ro

po
rt

io
n

of
 T

o
ta

l C
yc

le
s

(%
)

75.00

0.00 0.00

25.00

80

60

40

20

0

100
MAC Utilisation Proportions

MAC Utilisation Intervals (%)

P
ro

po
rt

io
n

of
 T

o
ta

l C
yc

le
s

(%
)

16.67

50.00

16.6716.67

80

60

40

20

0

100
MAC Utilisation Proportions

MAC Utilisation Intervals (%)P
ro

po
rt

io
n

of
 T

o
ta

l C
yc

le
s

(%
)

25.0025.00

50.00

80

60

40

20

0

(0,25]
(25,50]

(50,75]
(75,100]

(6)

(4)(2) (3)

(2)(0) (1)

(4)

0.00

Step 4

6
(4) (5) (6)

#Cycles 6

50.00% MAC
Utilisation

#Cycles

4

75.00% MAC
Utilisation

gather

(Intermediate products are written in the middle of each block)

(0,25]
(25,50]

(50,75]
(75,100]

(0,25]
(25,50]

(50,75]
(75,100]

0

1

2

3

0 1 2 3
(5)

C[1][0] A[1][2] B[2][0]

layer k=1

(0)

C[0][0] A[0][0] B[0][0]

(7)

C10[0][0] += A12[0][1]×B20[1][0]

C10[0][1] += A12[0][1]×B20[1][1]

！
Write conflict

on C[0][0]:
 (0) at k = 0,
 (2) at k = 2
one executed,
one postponed

1

ne
tw

or
k:

 1
6

×
 6

4

ne
tw

or
k:

 4
 ×

 4
 ×

 8

ne
tw

or
k:

 8
 ×

 4
 ×

 4

C00​[m][n] += ∑​ A00​[m][k]

 ⋅B00​[k][n]
k

6

C10[1][0] += A12[1][0]×B20[1][0]

2

3

layer k=0

Fig. 14: Comparison of DS-STC, RM-STC and our Uni-STC on a downsized 8(M)× 8(N)× 8(K) T1 task.

The ‘warpRow’, ‘warpIndex’, and ‘warpRowId’ variables
are used in the preceding algorithms to implement a static
load-balancing scheme, which configures the data processing
range ofeach warp.

For dense computations, the structural information of dense
vector and matrix is stored in GPU memory (a total of 96B).
This information is loaded into registers with a single read
operation at the start of the computation.

B. Hardware Dataflow

The hardware dataflow of an STC is defined by the interplay
between its task preparation method and its computational
unit architecture, which ultimately dictates performance. To
illustrate the resulting differences, we present a case study
in Fig. 14 that compares three STCs processing a downsized
8(M) × 8(N) × 8(K) T1 task. The comparison focuses on
two key stages: task preparation and task execution. For a fair
comparison, each STC is equipped with 16 multipliers and
their associated adders.

1) Task preparation: The goal of task preparation is to
decompose large T1 tasks into smaller T3 tasks compatible
with the computational units. DS-STC and RM-STC achieve
this using a hybrid software-hardware approach that reduces
hardware overhead. As illustrated in Fig. 14, this process
begins in software, where the compiler expands a T1 task
into intermediate T2 sub-instructions, represented by the red-
highlighted box. This stage leverages the GPU front-end’s
skipping mechanism for coarse-grained sparsity support. Sub-
sequently, in hardware, any T2 task that still exceeds the
computational unit’s capacity is further subdivided into T3
tasks for sequential execution.

Although this collaborative method reduces hardware over-
head, its core limitation is that T2 task splitting is rigidly tied
to the computational unit’s structure. Within STC, there is a
lack of mechanisms to address the load imbalance of T2 tasks
caused by irregularity, which typically results in relatively low

MAC utilisation. In contrast, Uni-STC adopts a more flexible
strategy. Although it initially divides T1 tasks into fixed-size
T3 tasks, it provides a dynamic task fusion mechanism to
mitigate load imbalance.

Fig. 14 highlights the four-layer T3 tasks for Uni-STC,
where the diagram’s notation is interpreted as follows. The
number in the center of each block denotes the count of
intermediate products, the number in the upper-left corner
identifies the assigned DPG, and the green blocks signify
multiple T3 tasks that are concurrently executed on the SDPU
during the first cycle.

2) Task execution: Achieving effective task fusion is non-
trivial. As illustrated in Fig. 14, the approaches in DS-STC
and RM-STC suffer from two key inefficiencies related to the
MAC array. First, T2 tasks can be too small to fully utilise
the array’s resources, leading to wasted performance (e.g.,
RM-STC). Second, even sufficiently large tasks may have
shapes that are incompatible with the array, which prevents the
concatenation of multiple T3 tasks and thus causes inefficiency
(e.g., DS-STC). This architectural challenge is compounded
by the complexity of implementing a hardware-based, multi-
dimensional knapsack solver on resource-constrained STCs.

Uni-STC addresses these fusion challenges by decomposing
T3 tasks into even finer-grained vector dot-product operations
(T4 tasks). As shown in Fig. 14, a 2(M) × 2(N) × 2(K)
T3 task is broken down into 1(M) × 1(N) × 2(K) T4
tasks. The concatenation of these vector tasks is accomplished
using simple prefix sums and shift units, thereby accelerating
computation on the SDPU. Consequently, this approach boosts
Uni-STC’s utilisation to 75%, a significant improvement over
the 50% of RM-STC and 37.5% of DS-STC.

In summary, Uni-STC adopts a software-hardware co-
designed dataflow: BBC and UWMMA express and schedule
the four kernels in software, while the hardware dataflow
(TMS→DPG→SDPU) enables efficient task preparation and
execution to improve utilisation under irregular sparsity.

[20 21)[21 22)[22 23)[23 24)[24 25)[25 26)[26 27)[27 28)
Non-zero elements per block

10
2

10
1

10
0

10
1

S
pa

ce
R

ed
uc

tio
n

BSR
(16x16)

BSR
(4x4)

BBC
(this work)

CSR
(baseline)

Fig. 15: Space reduction of the three formats BSR (4 × 4),
BSR (16× 16) and our BBC over the baseline CSR.

VI. EVALUATION

A. Experimental Setup

On the dataset side, we evaluate SpMV, SpMSpV, and
SpMM using all 2893 matrices from SuiteSparse [10], and
SpGEMM (C = A2) using its 2126 square matrices. For
DNN inference, we evaluate ResNet-50 and Transformer [74]
models using the 302 weight matrices from DLMC [23]
at 70% and 98% sparsity. Additionally, input vectors for
SpMSpV are randomly generated with 50% sparsity, and the
number of columns in matrix B for SpMM is set to 64.

On the software side, we compare our BBC format with
the conventional CSR and BSR (with block sizes of 4 × 4
and 16× 16) to assess the memory efficiency derived from its
unique sparse matrix structure.

On the hardware side, we build upon Accel-Sim [38] with
added support for asynchronous memory access, integrating
our STC simulator to support GAMMA [93], SIGMA [66],
Trapezoid [87], NV-DTC [60] (A100’s original Tensor Core),
DS-STC [78], [92], RM-STC [30], and our work Uni-STC.

To rigorously evaluate the architectural benefits of Uni-STC
under configurations ‘64 MAC@FP64 and 128 MAC@FP32’,
we establish a fair comparison by aligning the theoretical
compute throughput of all designs. To this end, we adopt
SIGMA’s PE design and scale the MAC arrays of all evaluated
architectures, including GAMMA and Trapezoid, accordingly.

We assess three key metrics: performance, energy, and area.
Performance is measured using a unified software invocation
of a T1 task with dimensions 16(M)×16(N)×16(K). Energy
consumption is extrapolated from register activity following
the Sparseloop methodology [80]. Uni-STC’s chip area is
analyzed using yosys [79], FreePDK45 [62], and CACTI7 [3].

B. Data Structure Comparison

Fig. 15 compares the memory overhead of our BBC format
against the conventional CSR and BSR (with the block sizes
of 4×4 and 16×16) across all 3195 test matrices. The memory
usage of the BBC format shrinks as the number of nonzeros
per block (NnzPB) increases, becoming the most efficient for
2585 matrices (where NnzPB > 3.57) and delivering savings
of up to 15.26× over CSR. Conversely, the BSR format
typically requires more storage than CSR.

TABLE VI: Comparison of STCs. MMA instruction task size:
16× 16× 16, MAC array size: 128@FP32 or 64@FP64.

STC
T3 Task Size

(128 or 64 MACs)
(M ×N ×K)

T4 Task Size
(M ×N ×K)

GAMMA [93] 16× (8 or 4)× 1

Same as T3
Task Size

SIGMA [66] 1× (8 or 4)× 16

Trapezoid [87]
TrIP: 16× (4 or 2)× 2

TrGT: 16× 4× (2 or 1)
TrGS: 8× 4× (4 or 2)

NV-DTC [60] (8 or 4)× 4× 4

DS-STC [78], [92] 8× (16 or 8)× 1

RM-STC [30] (16 or 8)× 4× 2

Uni-STC (this work) 4× 4× 4 1× 1× 4

10 20 30 40 50 60 70 80 90
B-sparsity(%)

0.0

0.2

0.4

0.6

0.8

1.0

M
AC

 U
til

isa
tio

n
(%

)

A Dense

10 20 30 40 50 60 70 80 90
B-sparsity(%)

0.0

0.2

0.4

0.6

0.8

1.0
A 50% Sparse

10 20 30 40 50 60 70 80 90
B-sparsity(%)

0.0

0.2

0.4

0.6

0.8

1.0
A 80% Sparse

GAMMA
NV-STC

SIGMA
DS-STC

Trapezoid
RM-STC

Uni-STC (this work)

Fig. 16: MAC utilisation for GAMMA, SIGMA, Trapezoid,
DS-STC, RM-STC and Uni-STC (128 MAC@FP32).

The one-time format conversion overhead is modest, compa-
rable to the execution time of a few hundred SpMV operations.
On a 64-core AMD EPYC 7702 CPU, this conversion takes
less than 1000 ms, while on an NVIDIA A100 GPU, the over-
head is less than 100 ms. This initial cost can be effectively
amortized and becomes negligible in iterative applications
such as GNN training and linear solvers.

C. Hardware Comparison

Table VI details the configurations of all evaluated STCs.
For multi-mode architectures like SIGMA and Trapezoid,
we select their best-performing configurations. Since our
implementations of GAMMA, SIGMA, and Trapezoid are
specifically adapted for a fair throughput comparison, which
do not accurately reflect the original designs. As their energy
consumption and energy efficiency are both lower than RM-
STC, in this section, our analysis against these three architec-
tures focuses solely on performance.

1) Comparison using random matrices: Following the
methodology of RM-STC, we first evaluate MAC utilisation
using random 8192× 8192 matrices with varying sparsity.

As shown in Fig. 16, Uni-STC achieves average speedups
of 1.67×, 1.73×, and 1.13× over GAMMA, SIGMA, and
Trapezoid, respectively. The performance gain over GAMMA
stems from Uni-STC’s ability to bypass empty rows, a task
difficult for GAMMA’s blocking approach. The advantage over
SIGMA is due to its effective handling of dual-sided sparsity,
whereas SIGMA’s modes are either limited to single-sided
sparsity or incur high transmission overhead. The speedup

0
2
4
6

Sp
ee

du
p

0
1
2
3

0
1
2
3

0

2

4

En
er

gy
R

ed
uc

tio
n

0

2

4

0

5

10

co
ns

ph
cr

an
ks

eg
_2

sh
ip

se
c1

ca
nt

op
t1

pd
b1

H
Y

S
pw

tk
gu

pt
a3

SpMV

0
7

14
21

En
er

gy
Ef

fic
ie

nc
y

co
ns

ph
cr

an
ks

eg
_2

sh
ip

se
c1

ca
nt

op
t1

pd
b1

H
Y

S
pw

tk
gu

pt
a3

SpMSpV
co

ns
ph

cr
an

ks
eg

_2
sh

ip
se

c1
ca

nt
op

t1
pd

b1
H

Y
S

pw
tk

gu
pt

a3

SpMM

0
2
4
6
8

co
ns

ph
sh

ip
se

c1
cr

an
ks

eg
_2

ca
nt

op
t1

pd
b1

H
Y

S
pw

tk
gu

pt
a3

SpGEMM

R
es

N
et

50
-1

R
es

N
et

50
-2

R
es

N
et

50
-3

R
es

N
et

50
-4

Tr
an

sf
or

m
er

-1
Tr

an
sf

or
m

er
-2

Tr
an

sf
or

m
er

-3
Tr

an
sf

or
m

er
-4

Inference (Dense)

0
4
8

12

R
es

N
et

50
-1

R
es

N
et

50
-2

R
es

N
et

50
-3

R
es

N
et

50
-4

Tr
an

sf
or

m
er

-1
Tr

an
sf

or
m

er
-2

Tr
an

sf
or

m
er

-3
Tr

an
sf

or
m

er
-4

Inference (Sparse)

DS-STC (baseline, always 1.0 × in the sub-figures) RM-STC Uni-STC (this work)

Fig. 17: Comparison of speedup, energy consumption, and energy efficiency of four sparse kernels, as well as ResNet50 and
Transformer inference on DS-STC, RM-STC, and Uni-STC. The value after the model name denotes the layer number. Among
them, the four sparse kernels use 64 MAC@FP64, and the DNN inference uses 128 MAC@FP32.

DS-STCRM-STCUni-STC
consph

0.0

0.5

1.0

DS-STCRM-STCUni-STC
shipsec1

0.0

0.5

1.0

DS-STCRM-STCUni-STC
crankseg_2

0.0

0.5

1.0

DS-STCRM-STCUni-STC
cant

0.0

0.5

1.0

DS-STCRM-STCUni-STC
opt1

0.0

0.5

1.0

DS-STCRM-STCUni-STC
pdb1HYS

0.0

0.5

1.0

DS-STCRM-STCUni-STC
pwtk

0.0

0.5

1.0

DS-STCRM-STCUni-STC
gupta3

0.0

0.5

1.0

No
rm

al
ize

d
En

er
gy

No
rm

al
ize

d
En

er
gy

No
rm

al
ize

d
En

er
gy

No
rm

al
ize

d
En

er
gy

No
rm

al
ize

d
En

er
gy

No
rm

al
ize

d
En

er
gy

No
rm

al
ize

d
En

er
gy

No
rm

al
ize

d
En

er
gy

Read A Read B Write C

Fig. 18: Energy consumption of I/O (reading A and B, and
writing C) in SpGEMM on the eight matrices.

2 0 2 4 60.0

0.5

1.0

(a
)

N
et

w
or

k
Tr

af
fic

2 0 2 4 60.00

0.05

0.10

(b
)

Av
er

ag
e

Sc
al

e

con
sph

shi
pse

c1

cra
nk

seg
_2 can

t
op

t1

pd
b1

HYS pw
tk

gu
pta

3

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

DS-STC RM-STC Uni-STC (this work)

Fig. 19: The data traffic and average network scale when
writing matrix C.

against Trapezoid is attributed to Uni-STC’s global task
scheduling, which avoids the potential load imbalances found
in Trapezoid’s grouped MAC array design.

Uni-STC also demonstrates superior MAC utilisation com-
pared with NV-DTC, DS-STC, and RM-STC by factors of

TABLE VII: Information of the eight representative matrices.
The column #inter-prod/blk represents the average number of
intermediate products per T1 task during SpGEMM computa-
tion, with a maximum value of 16× 16× 16 = 4096.

Matrix A n(A) nnz(A) plot nnz(C) #inter-prod/blk

consph 83K 6.0M 26.5M 164.9

shipsec1 140K 7.8M 24.1M 189.5

crankseg 2 64K 14.1M 104.6M 198.5

cant 62K 4.0M 17.4M 280.2

opt1 15K 1.9M 8.2M 506.4

pdb1HYS 36K 4.3M 19.6M 517.2

pwtk 218K 11.6M 32.8M 548.3

gupta3 17K 9.3M 270.9M 1154.1

2.89×, 1.89×, and 1.39×, respectively. This superiority stems
from its finer-grained task parallelism and stronger sparsity
adaptation. In contrast, NV-DTC lacks sparsity adaptation, DS-
STC’s performance is constrained by dual-sided sparsity, and
RM-STC is particularly sensitive to the sparsity of matrix A.

In dense computation scenarios, all DTC/STCs achieve
100% MAC utilisation, but their energy consumption varies.
Normalizing to NV-DTC, our Uni-STC achieves a 0.94×
energy reduction, outperforming both DS-STC (0.67×) and
RM-STC (0.83×). This advantage arises because DS-STC
and RM-STC incur additional overhead for data reuse and
intermediate transfers. In contrast, Uni-STC activates only two
DPGs, preserving a data movement pattern consistent to NV-

0

50

100

M
ac

Ut
ilis

at
io

n

20 21 22 23 24 25 26 27

SpMV
0

20

En
er

gy
Ef

fic
ie

nc
y

2 2 2 1 20 21 22 23 24 25

SpMSpV
24 25 26 27 28 29 210 211

SpMM
2 22 120 21 22 23 24 25 26 27 28 29210211

SpGEMM

DS-STC RM-STC Uni-STC (this work)

Fig. 20: Performance distribution of the three STCs and four kernels on matrices from SuiteSparse. The x-axis denotes the
average number of intermediate products per T1 task. Energy efficiency analyses use DS-STC as the baseline, and is calculated
as ‘speedup × energy reduction’.

DTC. The minor additional energy in Uni-STC is attributed
to its task scheduling within the TMS and DPG. The break-
even point is reached when matrix A is dense and matrix
B’s sparsity is below 85%, at which point Uni-STC’s energy
efficiency becomes comparable to that of NV-DTC.

2) Comparison using real world matrices: To further high-
light the performance differences among STCs arising from
real-world sparse patterns, we select eight matrices from
SuiteSparse, as listed in Table VII, to compare the four sparse
kernels, and we use DLMC model data to evaluate the infer-
ence effects of both dense and sparse weights. Fig. 17 presents
the speedup, energy reduction, and energy efficiency of Uni-
STC and RM-STC, normalized to DS-STC as the baseline. The
results consistently show that Uni-STC’s superior performance
and lower energy consumption translate to significantly higher
overall energy efficiency.

For SpMV and SpMSpV kernels: About performance, (1)
In SpMV, the MAC array structures of DS-STC and RM-STC
limit their utilisation to below 12.5% and 25%, respectively.
In contrast, Uni-STC’s fine-grained task parallelism yields
speedups of 5.21× over DS-STC and 2.74× over RM-STC.
(2) In SpMSpV, RM-STC’s MAC utilisation drops below
12.5% as the input vector x becomes sparser. Uni-STC uses the
SDPU to achieve speedups of 5.25× and 5.50×. About energy,
(1) For SpMV, Uni-STC reduces energy by 2.76× compared to
DS-STC and 1.01× compared to RM-STC by reusing vector x
data and minimizing intermediate product transfers, delivering
average energy efficiency gains of 14.34× and 2.77×. (2) For
SpMSpV, the energy reduction further improves to 3.06× and
1.72×, achieving average energy efficiency gains of 15.97×
and 9.41×.

For SpMM, SpGEMM, and DNN inference (with convolu-
tion treated as SpGEMM), Uni-STC consistently outperforms
the baselines. DS-STC exhibits poor energy efficiency due to
its coarse-grained partitioning and lack of task parallelism.
In comparison, Uni-STC achieves energy efficiency gains of
1.74×, 2.21×, 1.37×, and 1.51× over RM-STC for these four
kernels, respectively. About performance, (1) For SpMM and
dense DNN inference, Uni-STC’s fine-grained partitioning,
which leverages sparsity in matrix A, delivers 1.53× and
1.35× speedups over RM-STC, which is constrained by a
fixed 4-cycle task execution. (2) For SpGEMM and sparse
DNN inference, Uni-STC adapts to the sparse distribution to

TABLE VIII: Comparison of performance (P), energy con-
sumption (E), and energy efficiency (E × P) of STCs on the
SuiteSparse Matrix Collection.

SpMV SpMSpVCompared
With P E E × P P E E × P

DS-STC
64 MAC@FP64

Aver 3.76 2.02 7.59 4.18 3.14 12.24
Max 16.00 5.47 27.06 28.76 6.71 192.97

DS-STC
128 MAC@FP32

Aver 3.58 2.79 9.89 4.18 4.28 16.71
Max 16.00 7.41 30.79 28.76 9.15 263.08

RM-STC
64 MAC@FP64

Aver 1.47 1.00 1.48 3.39 1.96 6.66
Max 3.96 2.71 5.07 13.99 4.75 56.73

RM-STC
128 MAC@FP32

Aver 1.39 1.37 1.91 3.39 2.68 9.07
Max 3.33 3.67 6.68 13.99 6.50 77.34

SpMM SpGEMM
P E E × P P E E × P

DS-STC
64 MAC@FP64

Aver 3.07 1.51 4.17 2.40 1.91 4.19
Max 8.00 5.61 20.66 16.00 5.65 20.75

DS-STC
128 MAC@FP32

Aver 2.09 1.89 3.77 2.50 2.51 5.86
Max 8.00 6.60 15.94 16.00 7.21 34.85

RM-STC
64 MAC@FP64

Aver 2.52 0.77 1.84 1.45 1.35 1.86
Max 7.15 1.80 9.19 5.20 3.59 5.03

RM-STC
128 MAC@FP32

Aver 2.44 0.94 2.29 1.23 1.77 2.07
Max 7.18 2.09 12.48 3.40 4.95 5.02

maintain speedups of 1.88× and 1.48×, whereas RM-STC
struggles with dual-matrix sparsity. About energy, as illustrated
in Fig. 18 and 19, Uni-STC’s energy savings are substantial.
It reduces the energy for writing matrix C by 6.5× compared
to DS-STC, resulting in lower overall consumption than both
DS-STC and RM-STC. This reduction is primarily driven
by two factors: a smaller dynamic network scale (a 2.36×
contribution) and reduced data traffic from the SDPU (an
additional 2.75× contribution).

Moreover, the different energy efficiency improvements on
ResNet50 and Transformer demonstrate Uni-STC’s ability to
perceive sparse loads: (1) In ResNet50, because the images are
usually sparse after preprocessing, Uni-STC consumes more
energy to enable multiple DPG to improve the throughput of
SDPU. (2) In Transformer, because the load is relatively dense,
Uni-STC activates only a single DPG in most cycles, saving
nearly 2× energy consumption compared to RM-STC.

We extend our comparison to all SuiteSparse matrices
for four key kernels. As detailed in Table VIII, Uni-STC
consistently achieves higher energy efficiency than the state-
of-the-art RM-STC.

SIGMA GAMMA RM-STC Trapezoid Uni-STC (ours)
0
1
2
3
4
5
6

G
eo

m
ea

n
Sp

ee
du

p
(v

s.
 D

S-
ST

C)

1.42 1.54
2.07

2.63

3.98

1.78 2.02 2.32

4.15
4.84

1.12 0.84
1.49

1.06

2.46

SpMV SpGEMM All

Fig. 21: Speedup on AMG compared to DS-STC.

0
4
8

12
16

EE
D

(F
P3

2)

SpMV
0
4
8

12

EE
D

(F
P6

4)

SpMSpV SpMM SpGEMM

DS-STC RM-STC Uni-STC (4) Uni-STC (8) Uni-STC (16)

Fig. 22: Comparison of energy efficiency density (EED) nor-
malized to DS-STC.

We measure computational density by calculating the av-
erage number of intermediate products contained within each
T1 task. Fig. 20 illustrates the performance of the three STCs
as a function of this density. For extremely sparse matrices,
most T1 tasks complete in a single cycle. Consequently, the
MAC utilisation across the three STCs is nearly identical, and
Uni-STC conserves energy by activating only a single DPG.
As block density increases, Uni-STC activates more DPGs to
boost MAC utilisation, yielding higher performance in SpMM
and SpGEMM. When matrices become even denser, the MAC
utilisation for all STCs approaches saturation, at which point
Uni-STC again saves energy by deactivating most DPGs.

D. Case study: AMG

This experiment adapts an existing AMG solver [14], [53],
a key tool in scientific computing, by substituting its original
FP64 dense Tensor Core calculations with our STC designs.
We then quantitatively evaluate the speedup achieved on the
SpMV and SpGEMM kernels, using the DS-STC as the
baseline.

As illustrated in Fig. 21, Uni-STC demonstrates superior
performance. In contrast, other STCs—while effective on
random matrices—are hampered by the irregularity of real-
world sparse patterns, such as elements being concentrated
on the diagonal or within specific rows and columns. For
SpMV, architectural limitations in MAC arrays constrain DS-
STC, SIGMA, GAMMA, and RM-STC, impeding effective
acceleration. For SpGEMM, the absence of fine-grained task
partitioning restricts gains for DS-STC, GAMMA, and RM-
STC. Similarly, SIGMA achieves only marginal SpGEMM
improvements; despite its focus on data reuse, it suffers
from suboptimal MAC utilisation. Finally, although Trapezoid
achieves a 4.15× SpMV speedup via dot-product acceleration,

TABLE IX: Area breakdown of the core modules in Uni-
STC. The percentage represents the total area for a projected
deployment of 432 Uni-STCs (4 per SM × 108 SMs) on an
NVIDIA A100 GPU, relative to its 826 mm2 die area.

Module Name Area (mm2) Percentage (%)
Benes & MUX networks 0.002 0.1

TMS & DPG 0.012 0.6
Extra adders in SDPU 0.018 0.94

Meta data buffer (144B) 0.0005 0.03
Accumulate buffer (1KB) 0.003 0.15
Matrix A buffer (2KB) 0.007 0.3

Total Overhead 0.0425 2.12

real-world irregularity exacerbates load imbalances across its
PE rows, limiting it to a modest 1.06× speedup for SpGEMM.
Conversely, Uni-STC effectively mitigates these irregularities,
delivering notable speedups of 4.84× for SpMV and 2.46×
for SpGEMM.

E. Energy Efficiency Density

We introduce the Energy Efficiency Density (EED) metric
to holistically evaluate Uni-STC and guide the determination
of the optimal number of DPGs. This metric quantifies the
trade-offs among performance, energy consumption, and area,
and is defined as the normalized energy efficiency per area:
EED = Speedup×Energy Reduction

Area Overhead . A higher EED value signifies
greater energy efficiency achieved per unit of area.

Fig. 22 presents a detailed comparative analysis of the
EED for the three STCs, revealing that Uni-STC consis-
tently outperforms both DS-STC and RM-STC across the
evaluated workloads. The analysis shows contrasting trends
as the number of DPGs increases from 4 to 16: the EED for
SpMV and SpMSpV gradually decreases, while for SpMM and
SpGEMM, it conversely exhibits an upward trend. This trade-
off analysis identifies DPG=8 as an balanced configuration. At
this setting, the EED for SpMM and SpGEMM nearly matches
that of the DPG=16 configuration, representing a significant
1.37× improvement over DPG=4. Concurrently, the EED
reduction for SpMV and SpMSpV is minimal—only 1.1×
lower than at DPG=4. Based on this evidence, we establish
DPG=8 as the default configuration for Uni-STC.

F. Area Analysis and Time Budget

We synthesize the Uni-STC@FP64 (configured with 8
DPGs) using Yosys [79] and the FreePDK45 library [62].
Synthesis results indicate that the critical path lies within the
“Execution & Write C” stage, which satisfies the 1.5 GHz
timing constraint. Regarding area estimation, the buffers in
Uni-STC are modeled using CACTI 7 [3] at 45 nm and scaled
to 7 nm technology. For logic area, we aggregate the TMS and
DPG due to their structural similarities. Furthermore, since the
SDPU is derived from the original Tensor Core with additional
adders, we only account for its incremental overhead. Table IX
details the area breakdown of these specific modules. Ideally,
the total area overhead for 432 Uni-STC units is approximately
2.12% of the 826 mm2 die area of an NVIDIA A100 GPU [60].

VII. RELATED WORK

A. Sparse Kernel Acceleration

Prior works have adopted diverse strategies to acceler-
ate SpMV. On heterogeneous multi-core CPU and GPU
platforms, Speculative Segmented Sum [49] achieves higher
throughput using speculative computation, CSR5 [47] fos-
ters greater parallelism with tiling, HASpMV [42] lever-
ages heterogeneity-aware formats to improve memory access,
TileSpMV [57] promotes data locality through tiled pro-
cessing, TileSpMSpV [34] uses adaptive kernels on GPUs,
and DASP [52] utilises regularized tensor core for accel-
eration. For HBM-equipped FPGAs, Serpens [72] and Cu-
per [89] mitigates memory access conflicts through customized
dataflows and reordering. In distributed environments, Dist-
SpMV Balanced [55] reconciles computation and communi-
cation by means of graph partitioning.

To accelerate SpMM, researchers have pursued several
optimization directions. The first is data-centric, VEGETA [33]
and TB-STC [44] support hybrid sparsity formats, ASADI [41]
applies diagonal compression, and Avalanche [6] improves
access patterns via data reordering. The second direction op-
timizes the computation flow, SPADE [20] and HotTiles [19]
reduce data transfer and adapt to sparsity, while GROW [31]
balances data locality with parallelism. The third direction
leverages specific hardware features, Eureka [22] utilises ten-
sor cores, and Leda [88] optimizes dataflows on FPGAs.

For SpGEMM, various approaches have been proposed to
improve performance. In hardware architecture and dataflows,
OuterSPACE [63] pioneered the outer-product approach.
Trapezoid [87] designs specialized dataflows, NeuraChip [69]
uses hash-based decoupling, and TaskFusion [16] enhances
data sharing. Other targeted improvements include SGCN [90]
enhancing format support, HIRAC [67] improving locality,
S2TA [50] supporting dual-sided sparsity, and GoSPA [11]
applying intersection computation. Pattern-based and tile-
level optimisations represent another significant direction, ex-
plored in works such as SPAGHETTI [29], SpArch [94],
DRT [61], GAMMA [93], HARP [39], Tailors [84], DS-
STC [78], and RM-STC [30]. For sparse ML workloads,
many works have investigated adaptive dataflow strategies,
including FEATHER [73], Sparseloop [80], Flexagon [59],
ACES [51], FEASTA [95], SPADA [43], CANDLES [24],
Sparse Tensor Core [96], SparTen [21], and ExTensor [28].
Acceleration on CPUs and GPUs has also been extensively
studied. Liu et al. [46], [48] proposed a foundational four-stage
framework. HASpGEMM [8] improves load balancing on het-
erogeneous cores, while GPU-specific works exploit hardware
registers [45]. In particular, TileSpGEMM [58] adopts tiled
execution to enhance locality and alleviate load imbalance.
Furthermore, approaches like IA-SpGEMM [82], [83] focus
on input-aware method selection to adapt to matrix sparsity.

Several studies propose a unified design to accelerate mul-
tiple kernels. Early efforts combine pairs of sparse kernels,
where VIA [65] improves index matching for SpMV and
SpMM, and PruneGNN [25] includes units for both SpMM

and SpGEMM. Griffin [68] later expands this scope by
optimizing resource reuse across dense and sparse matrices.
Building on this trend, KAMI [76] unifies dense GEMM with
sparse SpMM and SpGEMM, and Siracusa et al. [70] propose
a versatile multi-lane architecture.

Bitmap-based compression reduces indexing and band-
width overhead. This technique is used by SMASH [37] to
compress metadata and by Buluç et al. [5] to cut bandwidth.
More recent works adapt it for modern hardware, SpInfer [15]
and BerryBees [56] design Tensor Core aware encodings,
while AmgT [53] uses a bitmap driven format to accelerate
both SpMV and SpGEMM.

B. Other Sparsity-Aware Optimisation
Sparsity is also exploited in PIM and ReRAM accel-

erators. In the PIM domain, early works like GaaS-X [7]
optimize data representation for graph SpMV. Subsequent
efforts include SpaceA [81], a dedicated SpMV accelerator,
and more recently, pSyncPIM [2], which implements partial
synchronous execution. Similarly, ReRAM-based approaches
have evolved. Yang et al. [86] leverage activation and weight
sparsity. Recently, AmgR [14] and ReCG [13] exploit in-
memory computation to further improve performance and
energy efficiency of sparse linear solvers.

In machine learning (ML) workloads, pruning is widely
applied. Foundational works from Han et al. [26] and Yu et
al. [91] propose compressed DNN schemes, while SCNN [64]
provides an early accelerator for CNNs. Subsequent efforts
optimize data handling. Hanson et al. [27] and Lew et al. [40]
improve data reuse, Feinberg et al. [17] reorder weights,
Jang et al. [32] search nonzeros, and SIGMA [66] constructs
reduction trees. Another direction addresses dynamic sparsity,
where DPACS [18], SOFA [77], and Sparse-DySta [12] handle
various dynamic patterns, and TensorDash [54] leverages input
sparsity. Moreover, SpAtten [75] prunes tokens and heads, and
HuffDuff [85] enhances mobile sparse accelerator efficiency.

VIII. CONCLUSION

This paper presents Uni-STC, a unified sparse tensor core
accelerating a comprehensive set of sparse kernels. Leveraging
the novel BBC format, Uni-STC dynamically generates fine-
grained tasks, schedules them to improve data reuse, and
executes concatenated dot-products. This approach optimizes
hardware utilisation while reducing intermediate data move-
ment. Evaluations confirm that Uni-STC delivers significant
speedup and energy savings over state-of-the-art designs.

IX. ACKNOWLEDGMENTS

We are very grateful to all reviewers for their invaluable
comments and to the shepherd for the constructive guidance.
Weifeng Liu is the corresponding author of this paper. This
work is partially supported by the National Natural Science
Foundation of China (U23A20301, 62372467 and 62202481).
We also thank the researchers at the Beijing Institute of Open
Source Chip for our helpful discussions. Finally, we appreciate
Xin Shi and Yuxiang Pu for their help in the implementation
and verification of the Uni-STC.

REFERENCES

[1] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubia-
towicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and
K. Yelick, “A view of the parallel computing landscape,” Communica-
tions of the ACM, 2009.

[2] D. Baek, S. Hwang, and J. Huh, “psyncpim: Partially synchronous
execution of sparse matrix operations for all-bank pim architectures,”
in ISCA, 2024.

[3] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee,
and V. Srinivas, “Cacti 7: New tools for interconnect exploration in
innovative off-chip memories,” TACO, 2017.

[4] A. Biswas, “Sapphire rapids,” HCS, 2021.
[5] A. Buluç, S. Williams, L. Oliker, and J. Demmel, “Reduced-bandwidth

multithreaded algorithms for sparse matrix-vector multiplication,” in
IPDPS, 2011.

[6] G. Byeon, S. Kim, H. Kim, S. Han, J. Kim, P. Nair, T. Kang, and
S. Hong, “Avalanche: Optimizing cache utilization via matrix reordering
for sparse matrix multiplication accelerator,” in ISCA, 2025.

[7] N. Challapalle, S. Rampalli, L. Song, N. Chandramoorthy, K. Swami-
nathan, J. Sampson, Y. Chen, and V. Narayanan, “Gaas-x: Graph
analytics accelerator supporting sparse data representation using crossbar
architectures,” in ISCA, 2020.

[8] H. Cheng, W. Li, Y. Lu, and W. Liu, “Haspgemm: Heterogeneity-aware
sparse general matrix-matrix multiplication on modern asymmetric mul-
ticore processors,” in ICPP, 2023.

[9] J. Choquette, “Nvidia hopper gpu: Scaling performance,” in HCS, 2022.
[10] T. A. Davis and Y. Hu, “The university of florida sparse matrix

collection,” ACM Trans. Math. Softw., 2011.
[11] C. Deng, Y. Sui, S. Liao, X. Qian, and B. Yuan, “Gospa: An energy-

efficient high-performance globally optimized sparse convolutional neu-
ral network accelerator,” in ISCA, 2021.

[12] H. Fan, S. I. Venieris, A. Kouris, and N. Lane, “Sparse-dysta: Sparsity-
aware dynamic and static scheduling for sparse multi-dnn workloads,”
in MICRO, 2023.

[13] M. Fan, X. Cheng, D. Yang, Z. Jin, and W. Liu, “Recg: Reram-
accelerated sparse conjugate gradient,” in DAC, 2024.

[14] M. Fan, X. Tian, Y. He, J. Li, Y. Duan, X. Hu, Y. Wang, Z. Jin, and
W. Liu, “Amgr: Algebraic multigrid accelerated on reram,” in DAC,
2023.

[15] R. Fan, X. Yu, P. Dong, Z. Li, G. Gong, Q. Wang, W. Wang, and X. Chu,
“Spinfer: Leveraging low-level sparsity for efficient large language
model inference on gpus,” in EuroSys, 2025.

[16] Z. Fan, Q. Zhang, P. Abillama, S. Shoouri, C. Lee, D. Blaauw, H.-
S. Kim, and D. Sylvester, “Taskfusion: An efficient transfer learning
architecture with dual delta sparsity for multi-task natural language
processing,” in ISCA, 2023.

[17] B. Feinberg, B. C. Heyman, D. Mikhailenko, R. Wong, A. C. Ho, and
E. Ipek, “Commutative data reordering: A new technique to reduce data
movement energy on sparse inference workloads,” in ISCA, 2020.

[18] Y. Gao, B. Zhang, X. Qi, and H. K.-H. So, “Dpacs: Hardware accelerated
dynamic neural network pruning through algorithm-architecture co-
design,” in ASPLOS, 2023.

[19] G. Gerogiannis, S. Aananthakrishnan, J. Torrellas, and I. Hur, “Hottiles:
Accelerating spmm with heterogeneous accelerator architectures,” in
HPCA, 2024.

[20] G. Gerogiannis, S. Yesil, D. Lenadora, D. Cao, C. Mendis, and J. Torrel-
las, “Spade: A flexible and scalable accelerator for spmm and sddmm,”
in ISCA, 2023.

[21] A. Gondimalla, N. Chesnut, M. Thottethodi, and T. N. Vijaykumar,
“Sparten: A sparse tensor accelerator for convolutional neural networks,”
in MICRO, 2019.

[22] A. Gondimalla, M. Thottethodi, and T. N. Vijaykumar, “Eureka: Efficient
tensor cores for one-sided unstructured sparsity in dnn inference,” in
MICRO, 2023.

[23] Google, “Deep learning matrix collection(dlmc),” 2020. [Online].
Available: https://storage.googleapis.com/sgk-sc2020/dlmc.tar.gz

[24] S. Gudaparthi, S. Singh, S. Narayanan, R. Balasubramonian, and
V. Sathe, “Candles: Channel-aware novel dataflow-microarchitecture co-
design for low energy sparse neural network acceleration,” in HPCA,
2022.

[25] D. Gurevin, M. Shan, S. Huang, M. A. Hasan, C. Ding, and O. Khan,
“Prunegnn: Algorithm-architecture pruning framework for graph neural
network acceleration,” in HPCA, 2024.

[26] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “Eie: Efficient inference engine on compressed deep neural
network,” in ISCA, 2016.

[27] E. Hanson, S. Li, H. H. Li, and Y. Chen, “Cascading structured pruning:
Enabling high data reuse for sparse dnn accelerators,” in ISCA, 2022.

[28] K. Hegde, H. Asghari-Moghaddam, M. Pellauer, N. Crago, A. Jaleel,
E. Solomonik, J. Emer, and C. W. Fletcher, “ExTensor: An Accelerator
for Sparse Tensor Algebra,” in MICRO, 2019.

[29] R. Hojabr, A. Sedaghati, A. Sharifian, A. Khonsari, and A. Shriraman,
“Spaghetti: Streaming accelerators for highly sparse gemm on fpgas,”
in HPCA, 2021.

[30] G. Huang, Z. Wang, P.-A. Tsai, C. Zhang, Y. Ding, and Y. Xie, “Rm-stc:
Row-merge dataflow inspired gpu sparse tensor core for energy-efficient
sparse acceleration,” in MICRO, 2023.

[31] R. Hwang, M. Kang, J. Lee, D. Kam, Y. Lee, and M. Rhu, “Grow:
A row-stationary sparse-dense gemm accelerator for memory-efficient
graph convolutional neural networks,” in HPCA, 2023.

[32] J.-W. Jang, S. Lee, D. Kim, H. Park, A. S. Ardestani, Y. Choi,
C. Kim, Y. Kim, H. Yu, H. Abdel-Aziz, J.-S. Park, H. Lee, D. Lee,
M. W. Kim, H. Jung, H. Nam, D. Lim, S. Lee, J.-H. Song, S. Kwon,
J. Hassoun, S. Lim, and C. Choi, “Sparsity-aware and re-configurable
npu architecture for samsung flagship mobile soc,” in ISCA, 2021.

[33] G. Jeong, S. Damani, A. R. Bambhaniya, E. Qin, C. J. Hughes,
S. Subramoney, H. Kim, and T. Krishna, “Vegeta: Vertically-integrated
extensions for sparse/dense gemm tile acceleration on cpus,” in HPCA,
2023.

[34] H. Ji, H. Song, S. Lu, Z. Jin, G. Tan, and W. Liu, “Tilespmspv: A
tiled algorithm for sparse matrix-sparse vector multiplication on gpus,”
in ICPP, 2023.

[35] N. P. Jouppi, D. H. Yoon, M. Ashcraft, M. Gottscho, T. B. Jablin,
G. Kurian, J. Laudon, S. Li, P. Ma, X. Ma, T. Norrie, N. Patil,
S. Prasad, C. Young, Z. Zhou, and D. Patterson, “Ten lessons from
three generations shaped google’s tpuv4i: Industrial product,” in ISCA,
2021.

[36] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. luc Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,
T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R.
Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey,
A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar,
S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke,
A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Na-
garajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani,
C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,
M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Wal-
ter, W. Wang, E. Wilcox, and D. H. Yoon, “In-datacenter performance
analysis of a tensor processing unit,” in ISCA, 2017.

[37] K. Kanellopoulos, N. Vijaykumar, C. Giannoula, R. Azizi, S. Koppula,
N. M. Ghiasi, T. Shahroodi, J. G. Luna, and O. Mutlu, “Smash: Co-
designing software compression and hardware-accelerated indexing for
efficient sparse matrix operations,” in MICRO, 2019.

[38] M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers, “Accel-sim: An
extensible simulation framework for validated gpu modeling,” in ISCA,
2020.

[39] J. Kim, M. Jang, H. Nam, and S. Kim, “Harp: Hardware-based pseudo-
tiling for sparse matrix multiplication accelerator,” in MICRO, 2023.

[40] J. S. Lew, Y. Liu, W. Gong, N. Goli, R. D. Evans, and T. M. Aamodt,
“Anticipating and eliminating redundant computations in accelerated
sparse training,” in ISCA, 2022.

[41] H. Li, Z. Li, Z. Bai, and T. Mitra, “Asadi: Accelerating sparse attention
using diagonal-based in-situ computing,” in HPCA, 2024.

[42] W. Li, H. Cheng, Z. Lu, Y. Lu, and W. Liu, “Haspmv: Heterogeneity-
aware sparse matrix-vector multiplication on modern asymmetric mul-
ticore processors,” in CLUSTER, 2023.

[43] Z. Li, J. Li, T. Chen, D. Niu, H. Zheng, Y. Xie, and M. Gao, “Spada:
Accelerating sparse matrix multiplication with adaptive dataflow,” in
ASPLOS, 2023.

[44] J. Liu, S. Zeng, J. Zhao, L. Ding, Z. Wang, J. Li, Z. Zhu, X. Ning,
C. Zhang, Y. Wang, and G. Dai, “Tb-stc: Transposable block-wise n:m
structured sparse tensor core,” in HPCA, 2025.

[45] J. Liu, X. He, W. Liu, and G. Tan, “Register-aware optimizations for
parallel sparse matrix-matrix multiplication,” International Journal of
Parallel Programming, 2019.

https://storage.googleapis.com/sgk-sc2020/dlmc.tar.gz

[46] W. Liu and B. Vinter, “An efficient gpu general sparse matrix-matrix
multiplication for irregular data,” in IPDPS, 2014.

[47] W. Liu and B. Vinter, “Csr5: An efficient storage format for cross-
platform sparse matrix-vector multiplication,” in ICS, 2015.

[48] W. Liu and B. Vinter, “A framework for general sparse matrix-matrix
multiplication on gpus and heterogeneous processors,” Journal of Par-
allel and Distributed Computing, 2015.

[49] W. Liu and B. Vinter, “Speculative segmented sum for sparse matrix-
vector multiplication on heterogeneous processors,” Parallel Computing,
2015.

[50] Z.-G. Liu, P. N. Whatmough, Y. Zhu, and M. Mattina, “S2ta: Exploiting
structured sparsity for energy-efficient mobile cnn acceleration,” in
HPCA, 2022.

[51] X. Lu, B. Long, X. Chen, Y. Han, and X.-H. Sun, “Aces: Acceler-
ating sparse matrix multiplication with adaptive execution flow and
concurrency-aware cache optimizations,” in ASPLOS, 2024.

[52] Y. Lu and W. Liu, “Dasp: Specific dense matrix multiply-accumulate
units accelerated general sparse matrix-vector multiplication,” in SC,
2023.

[53] Y. Lu, L. Zeng, T. Wang, X. Fu, W. Li, H. Cheng, D. Yang, Z. Jin,
M. Casas, and W. Liu, “Amgt: Algebraic multigrid solver on tensor
cores,” in SC, 2023.

[54] M. Mahmoud, I. Edo, A. H. Zadeh, O. M. Awad, G. Pekhimenko,
J. Albericio, and A. Moshovos, “Tensordash: Exploiting sparsity to
accelerate deep neural network training,” in MICRO, 2020.

[55] H. Mi, X. Yu, X. Yu, S. Wu, and W. Liu, “Balancing computation and
communication in distributed sparse matrix-vector multiplication,” in
CCGrid, 2023.

[56] Y. Niu and M. Casas, “Berrybees: Breadth first search by bit-tensor-
cores,” in PPoPP, 2025.

[57] Y. Niu, Z. Lu, M. Dong, Z. Jin, W. Liu, and G. Tan, “Tilespmv: A tiled
algorithm for sparse matrix-vector multiplication on gpus,” in IPDPS,
2021.

[58] Y. Niu, Z. Lu, H. Ji, S. Song, Z. Jin, and W. Liu, “Tilespgemm: A
tiled algorithm for parallel sparse general matrix-matrix multiplication
on gpus,” in PPoPP, 2022.

[59] F. M. noz Martı́nez, R. Garg, M. Pellauer, J. L. Abellán, M. E. Acacio,
and T. Krishna, “Flexagon: A multi-dataflow sparse-sparse matrix mul-
tiplication accelerator for efficient dnn processing,” in ASPLOS, 2023.

[60] Nvidia, “NVIDIA A100 Tensor Core GPU Architecture,” White Paper,
2020. [Online]. Available: https://images.nvidia.com/aem-dam/en-zz/
Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf

[61] T. O. Odemuyiwa, H. Asghari-Moghaddam, M. Pellauer, K. Hegde, P.-
A. Tsai, N. C. Crago, A. Jaleel, J. D. Owens, E. Solomonik, J. S. Emer,
and C. W. Fletcher, “Accelerating sparse data orchestration via dynamic
reflexive tiling,” in ASPLOS, 2023.

[62] C. Oliveira, M. T. Moreira, R. Guazzelli, and N. L. V. Calazans,
“Ascend-freepdk45: An open source standard cell library for asyn-
chronous design,” ICECS, 2016.

[63] S. Pal, J. Beaumont, D.-H. Park, A. Amarnath, S. Feng, C. Chakrabarti,
H.-S. Kim, D. Blaauw, T. Mudge, and R. Dreslinski, “Outerspace: An
outer product based sparse matrix multiplication accelerator,” in HPCA,
2018.

[64] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “Scnn: An
accelerator for compressed-sparse convolutional neural networks,” ACM
SIGARCH Computer Architecture News, 2017.

[65] J. Pavon, I. V. Valdivieso, A. Barredo, J. Marimon, M. Moreto, F. Moll,
O. Unsal, M. Valero, and A. Cristal, “Via: A smart scratchpad for vector
units with application to sparse matrix computations,” in HPCA, 2021.

[66] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das,
B. Kaul, and T. Krishna, “Sigma: A sparse and irregular gemm ac-
celerator with flexible interconnects for dnn training,” in HPCA, 2020.

[67] H. Shabani, A. Singh, B. Youhana, and X. Guo, “Hirac: A hierarchical
accelerator with sorting-based packing for spgemms in dnn applica-
tions,” in HPCA, 2023.

[68] J. H. Shin, A. Shafiee, A. Pedram, H. Abdel-Aziz, L. Li, and J. Hassoun,
“Griffin: Rethinking sparse optimization for deep learning architectures,”
in HPCA, 2022.

[69] K. Shivdikar, N. B. Agostini, M. Jayaweera, G. Jonatan, J. L. Abellán,
A. Joshi, J. Kim, and D. Kaeli, “Neurachip: Accelerating gnn computa-
tions with a hash-based decoupled spatial accelerator,” in ISCA, 2024.

[70] M. Siracusa, V. Soria-Pardos, F. Sgherzi, J. Randall, D. J. Joseph, M. M.
Planas, and A. Armejach, “A tensor marshaling unit for sparse tensor
algebra on general-purpose processors,” in MICRO, 2023.

[71] A. Smith and N. James, “Amd instinct™ mi200 series accelerator and
node architectures,” HCS, 2022.

[72] L. Song, Y. Chi, L. Guo, and J. Cong, “Serpens: A high bandwidth
memory based accelerator for general-purpose sparse matrix-vector
multiplication,” in DAC, 2022.

[73] J. Tong, A. Itagi, P. Chatarasi, and T. Krishna, “Feather: A reconfigurable
accelerator with data reordering support for low-cost on-chip dataflow
switching,” in ISCA, 2024.

[74] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in NIPS, 2017.

[75] H. Wang, Z. Zhang, and S. Han, “Spatten: Efficient sparse attention
architecture with cascade token and head pruning,” in HPCA, 2021.

[76] H. Wang, Y. Du, S. Li, X. Tian, Q. Sun, and W. Liu, “Kami:
Communication-avoiding general matrix multiplication within a single
gpu,” in SC, 2025.

[77] H. Wang, J. Fang, X. Tang, Z. Yue, J. Li, Y. Qin, S. Guan, Q. Yang,
Y. Wang, C. Li, Y. Hu, and S. Yin, “Sofa: A compute-memory optimized
sparsity accelerator via cross-stage coordinated tiling,” in MICRO, 2024.

[78] Y. Wang, C. Zhang, Z. Xie, C. Guo, Y. Liu, and J. Leng, “Dual-side
sparse tensor core,” in ISCA, 2021.

[79] C. Wolf, “Yosys open synthesis suite,” https://yosyshq.net/yosys/.
[80] Y. N. Wu, P.-A. Tsai, A. Parashar, V. Sze, and J. S. Emer, “Sparseloop:

An analytical approach to sparse tensor accelerator modeling,” in MI-
CRO, 2022.

[81] X. Xie, Z. Liang, P. Gu, A. Basak, L. Deng, L. Liang, X. Hu, and Y. Xie,
“Spacea: Sparse matrix vector multiplication on processing-in-memory
accelerator,” in HPCA, 2021.

[82] Z. Xie, G. Tan, W. Liu, and N. Sun, “Ia-spgemm: An input-aware auto-
tuning framework for parallel sparse matrix-matrix multiplication,” in
ICS, 2019.

[83] Z. Xie, G. Tan, W. Liu, and N. Sun, “A pattern-based spgemm library
for multi-core and many-core architectures,” TPDS, 2022.

[84] Z. Y. Xue, Y. N. Wu, J. S. Emer, and V. Sze, “Tailors: Accelerating sparse
tensor algebra by overbooking buffer capacity,” in MICRO, 2023.

[85] D. Yang, P. J. Nair, and M. Lis, “Huffduff: Stealing pruned dnns from
sparse accelerators,” in ASPLOS, 2023.

[86] T.-H. Yang, H.-Y. Cheng, C.-L. Yang, I.-C. Tseng, H.-W. Hu, H.-
S. Chang, and H.-P. Li, “Sparse reram engine: joint exploration of
activation and weight sparsity in compressed neural networks,” in ISCA,
2019.

[87] Y. Yang, J. S. Emer, and D. Sanchez, “Trapezoid: A versatile accelerator
for dense and sparse matrix multiplications,” in ISCA, 2024.

[88] E. Yi, J. Bai, Y. Nie, D. Niu, Z. Jin, and W. Liu, “Leda: Leveraging
tiling dataflow to accelerate spmm on hbm-equipped fpgas for gnns,” in
ICCAD, 2024, pp. 215:1–215:9.

[89] E. Yi, Y. Duan, Y. Bai, K. Zhao, Z. Jin, and W. Liu, “Cuper: Customized
dataflow and perceptual decoding for sparse matrix-vector multiplication
on hbm-equipped fpgas,” in DATE, 2024, pp. 1–6.

[90] M. Yoo, J. Song, J. Lee, N. Kim, Y. Kim, and J. Lee, “Sgcn: Exploiting
compressed-sparse features in deep graph convolutional network accel-
erators,” in HPCA, 2023.

[91] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke,
“Scalpel: Customizing dnn pruning to the underlying hardware paral-
lelism,” in ISCA, 2017.

[92] C. Zhang, Y. Wang, Z. Xie, C. Guo, Y. Liu, J. Leng, G. Sun, Z. Ji,
R. Wang, Y. Xie, and R. Huang, “Dstc: Dual-side sparsity tensor core
for dnns acceleration on modern gpu architectures,” IEEE Transactions
on Computers, 2024.

[93] G. Zhang, N. Attaluri, J. S. Emer, and D. Sanchez, “Gamma: Leveraging
gustavson’s algorithm to accelerate sparse matrix multiplication,” in
ASPLOS, 2021.

[94] Z. Zhang, H. Wang, S. Han, and W. J. Dally, “Sparch: Efficient
architecture for sparse matrix multiplication,” in HPCA, 2020.

[95] K. Zhong, Z. Zhu, G. Dai, H. Wang, X. Yang, H. Zhang, J. Si, Q. Mao,
S. Zeng, K. Hong, G. Zhang, H. Yang, and Y. Wang, “Feasta: A flexible
and efficient accelerator for sparse tensor algebra in machine learning,”
in ASPLOS, 2024.

[96] M. Zhu, T. Zhang, Z. Gu, and Y. Xie, “Sparse tensor core: Algorithm and
hardware co-design for vector-wise sparse neural networks on modern
gpus,” in MICRO, 2019.

https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://yosyshq.net/yosys/

A. Artifact Appendix
A.1 Abstract
This artifact appendix describes the experimental workflow to
reproduce the results presented in the paper “Uni-STC: Unified
Sparse Tensro Core” (Paper #313). We provide a containerized en-
vironment (Docker) pre-installed with the simulators, scripts, and
small-scale datasets. The experiments are categorized into two lev-
els: Fast Verification (approx. 5 hours) for functional validation and
Complete Verification (approx. 75 hours) for full reproduction.

A.2 Artifact check-list (meta-information)
• Program: Python 3.9, Bash Scripts, C++ Simulators.

• Compilation: GCC 9+, OpenMP 4.5+, OpenCV 4.x.

• Data set: SuiteSparse Matrix Collection (2,800+ matrices) and DLMC.

• Run-time environment: Ubuntu 22.04 LTS (via Docker).

• Hardware: X86-64 CPU, ≥64 GB DRAM.

• Storage: ≥100 GB (Fast Mode) / ≥500 GB (Complete Mode).

• Experiments: Format overhead analysis, Performance comparison,
AMG solver, and Energy Efficiency Density.

• Prepare workflow time: 3 hours to download a 40GB Image.

• Execution time: Fast mode: 5 hours; complete mode: 75 hours.

• Publicly available: Yes.

• Workflow automation framework used: Yes.

A.3 Description
A.3.1 How to access
We provide a persistent artifact package hosted on Google Drive,
which includes:

1. Docker Image (HPCA-Pap313-AE.tar1): Contains the OS,
dependencies, small data set, simulators, and plotting scripts.

2. Full Dataset (matrix.7z2): The complete SuiteSparse collec-
tion required for complete verification.

A.3.2 Hardware dependencies
To fully reproduce the results reported in the paper, we recommend
the following hardware configuration:

• Processor: X86-64 CPU with at least 16 cores.
• Memory: Minimum 64 GB DRAM is required to load large

matrices in the complete dataset.
• Disk: 100 GB for the docker image and fast verification. 600

GB for the full dataset decompression.ss

A.3.3 Software dependencies
The artifact is encapsulated in a Docker container to ensure envi-
ronment consistency. The host machine requires:

• OS: Linux (Ubuntu 20.04/22.04 recommended).
• Docker Engine: Version ≥ 20.10.

Inside the container, the environment is pre-configured with:

• Compilers: GCC 11.4, CMake 3.22.
• Python Env: Python 3.10 with necessary libraries.
• OpenCV: Version 4.x for image processing.

1 https://drive.google.com/file/d/1o_
pdtPdox7aEdRE2e4GtbEPiMFGpPHCu
2 https://drive.google.com/file/d/
1Pp3BBOvU8nGoB12bb4o3wZs41twiXwXM

A.4 Installation
A.4.1 Deployment
1. Download and Decompress. Download HPCA-Pap313-AE.tar
from the link3.

2. Load and Start Container. Load the image into your local
Docker registry and launch the container in the background. Note
that if you encounter permission errors, please prepend sudo.

$ docker load < HPCA-Pap313-AE.tar

Optional: remove the tar file to save space
$ rm HPCA-Pap313-AE.tar

$ docker run -itd --name HPCA-Pap313 hpca-pap313-ae:v2

A.4.2 Initialization
Access the container, upgrade python package and execute the
initialization script. This script compiles the simulator binaries and
checks library integrity.

$ docker exec -it HPCA-Pap313 /bin/bash

(container)$ cd /root

upgrade package and compile
(container)$ pip3 install pip setuptools wheel -U
(container)$ pip3 install quickstart-rhy -U
(container)$./init.sh

Expected Output: The initialization is successful if the follow-
ing logs appear:

[INFO] Compile ResNet50 (sparse) Succeeded!
[INFO] Compile ResNet50 (dense) Succeeded!
[INFO] Compile Simulator (Scheduler = 8) Succeeded!

A.5 Experiment workflow
We provide a unified automation tool qrun to manage experiments.
All commands should be executed in the /root/Sim directory:

(container)$ cd /root/Sim

Note on Pre-computed Results. To enable rapid inspection, we
have pre-packaged execution logs and generated figures. This al-
lows the subsequent verification instructions to complete in under
10 minutes.

If you prefer to execute the full simulation from scratch to verify
the functional reproduction, please clean the pre-existing data using
the following commands:

remove figures and execution logs
(container)$ rm /root/Sim/fig/*
(container)$ cd /root/Sim/dist && rm transformer*.csv
spmv/sample.csv spmm/sample.csv spmspv/sample.csv
spgemm/sample.csv spmv/amg.csv spgemm/amg.csv ai/*

(container)$ cd /root/Sim && rm resnet50/dense/*.csv
reset50/sparse/*.csv

3 https://drive.google.com/file/d/1o_
pdtPdox7aEdRE2e4GtbEPiMFGpPHCu

https://drive.google.com/file/d/1o_pdtPdox7aEdRE2e4GtbEPiMFGpPHCu
https://drive.google.com/file/d/1o_pdtPdox7aEdRE2e4GtbEPiMFGpPHCu
https://drive.google.com/file/d/1Pp3BBOvU8nGoB12bb4o3wZs41twiXwXM
https://drive.google.com/file/d/1Pp3BBOvU8nGoB12bb4o3wZs41twiXwXM
https://drive.google.com/file/d/1o_pdtPdox7aEdRE2e4GtbEPiMFGpPHCu
https://drive.google.com/file/d/1o_pdtPdox7aEdRE2e4GtbEPiMFGpPHCu

A.5.1 Part 1: Fast Verification (L1)
Estimated Time: ∼5 hours — Storage: No extra storage required.

This mode uses small-scale datasets included in the image to
reproduce key figures (Fig. 15–19, 21).

• Task 1.1: Format Overhead (Fig. 15)

(container)$ qrun format

Explanation: Evaluates the storage compression ratio of the
BBC format across varying sparsity levels.

• Task 1.2: Hardware Comparison (Fig. 17, 18, 19)

(container)$ qrun run-sample

Explanation: Runs SpMV, SpMSpV, SpMM and SpGEMM
kernels on representative matrices. Measures performance and
energy.

• Task 1.3: Random SpGEMM Evaluation (Fig. 16)

(container)$ qrun spgemm2

• Task 1.4: AMG Application (Fig. 21)

(container)$ qrun run-amg

A.5.2 Part 2: Complete Verification (L2)
Estimated Time: ∼75 hours — Storage: ∼500GB required.

This mode downloads the full SuiteSparse collection4 to repro-
duce the remaining distribution figures (Figures 20 and 22).

Step 1: Mount Dataset. Download matrix.7z on your host
machine, copy it to the container, and extract it.

On Host Machine
$ docker cp matrix.7z HPCA-Pap313:/root

On Container
(container)$ cd /root
(container)$ 7zz x matrix.7z
(container)$ mv matrix/* /matrix

Step 2: Execution.

• Task 2.1: Full Dataset Distribution (Fig. 20)

(container)$ qrun run-all # Takes ~24 hours

• Task 2.2: Energy Efficiency Density (Fig. 22)

(container)$ qrun eed # Takes ~48 hours

A.6 Evaluation and expected results
Upon completion of the experiments, all generated charts are stored
in the container directory /root/Sim/fig/. We provide two meth-
ods to inspect these results.

4 https://drive.google.com/file/d/
1Pp3BBOvU8nGoB12bb4o3wZs41twiXwXM

A.6.1 Result Inspection
Option 1: Export to Host (Recommended)

For the best viewing experience and to facilitate comparison
with the paper, we recommend copying all generated figures to
host. Execute the following command on your host terminal:

$ docker cp HPCA-Pap313:/root/Sim/fig ./uni-stc-results

Explanation: This will create a folder named uni-stc-results
in your current directory containing all generated .png files.

Option 2: In-Terminal Preview
For users employing modern terminal emulators capable of im-

age rendering (e.g., Kitty, iTerm2, or Ghostty), you can preview
results directly inside the container without exporting.

Inside the container
(container)$ qs icat /root/Sim/fig/15.png

A.6.2 Detailed Analysis
We outline the specific observations required to validate the ar-
tifacts below. Note: The simulator provided in this artifact is a
lightweight version extracted from Accel-Sim to facilitate rapid
verification. As it excludes power modeling for register I/O, the
observed energy savings for Uni-STC may be higher than the con-
servative figures reported in the paper.

• Fig. 15 (Format Overhead): Verify that the BBC format space-
reduction (y-axis) increases as the density (x-axis) increases.

• Fig. 16 (Random SpGEMM Performance): Uni-STC should
demonstrate performance that is equal to or greater than other
baseline hardwares.

• Fig. 17 & 20 (Overall Performance & Efficiency):
Fig. 17 (Representative): Confirm that Uni-STC achieves
the highest values in speedup, energy reduction, and area
efficiency.

Fig. 20 (Full Dataset): Confirm that these performance
gains are consistent across the full SuiteSparse collection
(2,800+ matrices).

• Fig. 18 (Energy Breakdown): Verify that Uni-STC achieves
the lowest total energy consumption. Observe that the energy
consumption is balanced across the three internal operations
(Fetch, Schedule, Compute), showing similar values.

• Fig. 19 (Traffic & Network Scale): Verify that Uni-STC incurs
the lowest data traffic compared to other architectures. Confirm
that Uni-STC supports the required enabled network scale as
depicted in the figure.

• Fig. 21 (AMG Solver): Uni-STC should exhibit a higher
speedup ratio compared to other baseline hardwares.

• Fig. 22 (Scalability - EED): Compare the Energy Efficiency
Density (EED) between Uni-STC(8) and Uni-STC(4): For
SpMV / SpMSpV, Uni-STC(8) is slightly lower than Uni-
STC(4). For SpMM / SpGEMM, Uni-STC(8) is higher than
Uni-STC(4).

A.7 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifa
ct-review-and-badging-current

• https://cTuning.org/ae

https://drive.google.com/file/d/1Pp3BBOvU8nGoB12bb4o3wZs41twiXwXM
https://drive.google.com/file/d/1Pp3BBOvU8nGoB12bb4o3wZs41twiXwXM

	Introduction
	Background
	CSR and Bitmap Storage Formats
	Sparse Kernels
	Dataflows

	Motivation
	Challenge 1: Acceleration of sparse applications
	Demand for generality
	Unified data structure

	Challenge 2: Task scheduling
	Inefficiency of data gathering
	Insufficient parallelism within STC

	Challenge 3: Task concatenation
	Coarse Task Granularity
	Concatenating restrictions

	Uni-STC Design Principles

	Uni-STC Architecture
	Task Generation Using TMS and DPG
	Tile multiply scheduler (TMS) in Fig. 8
	Dot-product generators (DPGs)

	Segmented Dot Product Unit (SDPU)
	Internal Pipeline and Datapath
	Three-Stage Pipeline
	Datapath

	BBC Format
	 Hardware Integration with GPU
	Instruction Set
	Execution Lifecycle and Control Interaction

	Uni-STC Dataflow
	Software Dataflow
	Hardware Dataflow
	Task preparation
	Task execution

	Evaluation
	Experimental Setup
	Data Structure Comparison
	Hardware Comparison
	Comparison using random matrices
	Comparison using real world matrices

	Case study: AMG
	Energy Efficiency Density
	Area Analysis and Time Budget

	Related Work
	Sparse Kernel Acceleration
	Other Sparsity-Aware Optimisation

	Conclusion
	Acknowledgments
	References

