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Abstract

Sparse direct solvers are critical building blocks in a range
of scientific applications on heterogeneous supercomputers.
However, existing sparse direct solvers have not been able to
well leverage the high bandwidth and floating-point perfor-
mance of modern GPUs. The primary challenges are twofold:
(1) the absence of a mechanism for aggregating small tasks
to saturate the GPU, and (2) the lack of a mechanism for
executing a diverse set of small tasks in batch mode on a
single GPU.

We in this paper propose a strategy called Trojan Horse,
which significantly enhances the execution efficiency of
sparse direct solvers on GPU clusters. This mechanism di-
vides each process’s work into two stages: Aggregate (with
two modules Prioritizer and Container) and Batch (with two
modules Collector and Executor). In the Aggregate stage, a
process first assesses the urgency of the input tasks through
the Prioritizer module, and based on their priority, sends
them to the Collector module or the Container module. In the
batch stage, the Collector module receives high-priority het-
erogeneous tasks from the Prioritizer module and retrieves
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enough tasks from the Container module to send them to
the Executor module for batch execution on GPU. In addi-
tion, our strategy is independent of solver libraries, and is
integrated into SuperLU_DIST and PanguLU.

In the scale-up evaluation on a single NVIDIA A100 GPU,
the Trojan Horse strategy delivers speedups of up to 418.79x
(5.47x on average) for SuperLU_DIST and up to 5.59x (2.84x
on average) for PanguLU. In the scale-out evaluation on
two 16-GPU clusters from NVIDIA and AMD, respectively,
Trojan Horse continues to deliver strong performance gains
for both SuperLU_DIST and PanguLU across different GPU
counts.
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1 Introduction

Sparse direct methods [31, 41] use Gaussian elimination to
solve a sparse linear system Ax = b, where A is a sparse
matrix, typically representing the coefficients of a linear
system, x is a vector of unknown variables, and b is a vector
of constants on the right-hand side of the linear equations. A
number of scientific fields, such as finite element analysis [46,
60, 84] and circuit simulation [55, 89, 101, 111], particularly
require sparse direct solvers.

As the scale of the problems to be solved increases, it
becomes essential to leverage heterogeneous supercomput-
ers [1, 8,9, 14, 16, 98]. However, current sparse direct solvers
primarily emphasize scaling out to more compute nodes [44,
67, 68], often neglecting the need to scale up the efficiency
of the individual GPUs in a cluster.

There are two primary factors limit current distributed het-
erogeneous sparse direct solvers SuperLU [66, 68], PaStiX [52,
70] and PanguLU [44] from effectively scaling up the com-
putational power of a single process managing an individual
GPU.

The first reason is the absence of a mechanism for col-
lecting small tasks to saturate a GPU. Unlike dense direct
methods, which provide sufficiently large tasks (typically
involving dense submatrix blocks with thousands of orders
and millions of elements) to well use a GPU [20], sparse
direct methods generally only offer small submatrix blocks
(often with tens of orders and thousands of nonzero ele-
ments). This limitation arises from the sparsity inherent in
scientific problems and the use of the multifrontal [5, 40, 42]
and supernodal [35, 36] methods, as well as the sparse block-
ing [44] schemes. It is evident that executing these small
submatrices individually is insufficient to well utilize a high
performance GPU. Therefore, it is required to first evaluate
the dependencies of tasks, and then identify and collect small
tasks that can be executed together on a single GPU.

The second reason is the lack of a mechanism for executing
a diverse set of small tasks in parallel in batch mode on a sin-
gle GPU. Specifically, current batched methods [50, 58, 62, 77]
are good at executing similar linear algebra operations, but
fail to effectively address the diverse characteristics of the
small tasks generated by sparse direct solvers, including: (1)
arbitrary matrix sizes (typically up to a few thousand orders);
(2) variable sparsity levels (ranging from fully dense to highly
sparse); (3) three kinds of kernels (i.e., (i) LU factorisation for
diagonal blocks, (ii) triangular solves for row/column non-
diagonal blocks, and (iii) Schur complement matrix multipli-
cation for trailing submatrices); and (4) two kinds of depen-
dency relationships (i.e., (i) strongly dependent tasks with
a fixed execution order, and (ii) order-independent Schur
complement tasks, where the only dependency arises dur-
ing the final accumulation step, allowing atomic-add update
operations despite potential write conflicts). To meet the
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aforementioned requirements, a further strategy is neces-
sary to execute these parallelisable small tasks in batch mode
on a single GPU.

To tackle the two issues outlined above, we in this paper
propose an aggregate-and-batch strategy called Trojan Horse
to accelerate the most time-consuming numeric factorisation
phase of sparse direct solver. Unlike the existing task execu-
tion model of running batched dense kernels on the same
level of the elimination tree (in the newer versions of Su-
perLU [53] and rank-structured STRUMPACK [26]) and exe-
cuting relatively large sparse block tasks one-by-one without
batching (in the PanguLU [44]), our Trojan Horse strategy
divides each process’s task management into two stages:
Aggregate and Batch, and introduces four functional mod-
ules: (a) a Prioritizer, (b) a Container, (c) a Collector,
and (d) an Executor. The first two modules belong to the
Aggregate stage running on CPU, while the latter two be-
long to the Batch stage running on single GPU.

During the execution of the numeric phase, the tasks in
our strategy are processed as follows: (1) In the Aggregate
stage, the Prioritizer module of a process assesses the
urgency of each task based on the overall task dependencies.
If the task lies on the critical path, it is directly forwarded to
the Collector module in the Batch stage; otherwise, it is
placed in the Container module. (2) In the Batch stage, the
Collector receives urgent tasks from the Prioritizer and
gathers enough non-urgent tasks from the Container to bet-
ter utilize the GPU resources. Finally, the Executor processes
the heterogeneous tasks, with arbitary matrix sizes, variable
sparsity levels, and three kinds of kernels, in a single-kernel
batch mode. Upon completion, the results are communicated
with other processes to progress the overall execution.

We integrate the Trojan Horse strategy into SuperLU_DIST
and PanguLU, and evaluate their performance using 200
sparse matrices from 31 different kinds of the SuiteSparse
Matrix Collection [33]. On an NVIDIA A100 GPU, compared
to the latest original versions of SuperLU_DIST and PanguLU,
the Trojan Horse strategy scales up the single-GPU execu-
tion efficiency by an average of 5.47x and 2.84x (up to 418.79x
and 5.59x), respectively. Furthermore, on a 16-card NVIDIA
H100 GPU cluster, the Trojan Horse strategy enhances the
overall performance of SuperLU_DIST and PanguLU by an
average of 3.5x and 1.9x, respectively.

This work makes the following contributions:

e We propose the Trojan Horse strategy for efficiently
aggregating and batching fine-grained small tasks to
saturate high-end GPUs.

e We integrate the Trojan Horse strategy into
SuperLU_DIST and PangulU to effectively improve
their task management and kernel performance.

e We bring SuperLU_DIST and PanguLU obviously bet-
ter scale-up throughput and comparable scale-out per-
formance.
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2 Background and Motivation
2.1 Sparse LU Factorisation

Sparse direct solvers, such as sparse LU factorisation, typ-
ically consist of three major phases: reordering, symbolic,
and numeric, as shown in Figure 1. The reordering phase
aims to permute the matrix A to improve computational and
storage costs [7], the symbolic phase identifies the sparsity
structures of the resulting matrices L and U [27, 45, 48], and
the numeric phase performs the actual factorisation, which
is generally the only phase processing a large amount of
floating point operations.

4 2 3 4
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(a)input (b)Reordered  (c)Symbolic (d)Numeric
matrix matrix factorised factorised
matrix matrix

@nonzeros Asymbolic fill-ins @A nonzeros in LOAnonzeros in U

Figure 1. The major phases of sparse LU factorisation.

Figure 2 shows the time breakdown of the three phases of
10 matrices (see Tables 2 and 4) running with SuperLU on one
core of an Intel Xeon 6230 CPU. As can be seen, the numeric
phase spends most execution time, on average 97%, and is
almost the only stage scales to a large amount of compute
nodes [49]. This motivates us to focus on optimizing the
numeric phase on heterogeneous GPU clusters.
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Figure 2. Time breakdown of the three phases.

The main approaches for computing the numeric phase
include multifrontal [40, 42], supernodal [35, 36], and sparse
blocking [44] approaches. These methods break the matrix
into small dense or sparse blocks, which can be processed in-
dependently. The block-cyclic data distribution is commonly
employed to assign the submatrices to processes for efficient
scheduling on elimination trees [9, 11]. These tasks may
vary greatly in sizes and compute patterns, and irregular
task dependencies complicate their parallelisation.
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Due to the small sizes and the dependencies of the matri-
ces associated with each task, traditional task management
methods are not well-suited for leveraging modern GPUs.
This limitation highlights the need for our Trojan Horse
strategy to aggregate and batch small tasks for saturating
high-end GPUs.

2.2 Aggregate: to Prepare More Tasks for a GPU

A right-looking sparse LU factorisation includes three kinds
of compute tasks: local LU factorisation on diagonal blocks,
triangular solve on row/column blocks, and Schur comple-
ment matrix multiplication on trailing blocks. SuperLU or-
ganizes dense tasks using supernodes, while PanguLU con-
structs sparse tasks using sparse blocks, and whether dense
or sparse, their dependencies formed by an elimination tree
or directed acyclic graphs (DAGs) are similar.

In the numeric phase, tasks that are mutually independent
can be executed concurrently. To assess the potential degree
of parallelism, we conduct a static analysis on the DAGs
derived from the supernode and block structures of SuperLU
and PanguLU. Specifically, we iteratively traverse a DAG,
removing nodes of no in-degrees at each step, and record the
number of tasks that can be executed in parallel, continuing
this process until the entire DAG is eliminated to empty.
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Figure 3. A static analysis of parallelisable task counts. Note
that the supernodal tasks in SuperLU are in general much
smaller than the sparse block tasks in PanguLU, leading to
distinct total numbers of tasks and time steps.

Figure 3 presents the results of a static analysis of the
distribution of parallelisable tasks during the execution of
ten sparse matrices on SuperLU and PanguLU. In the violin
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plots depicting the distributions, the width at each vertical
position indicates the density of occurrences for a specific
batch size (the wider the shape, the more frequently that
batch size appears during factorisation). As can be seen,
both solvers generate a substantial number of parallelisable
tasks in the time steps (i.e., DAG levels). Taking the matrix
‘Si41Ge41H72’ highlighted, the highest numbers of tasks can
run in parallel are 975 and 153 on SuperLU and PanguLU,
respectively. The observation brings the potential to run the
tasks in a batch mode throughout the matrix factorisation.

To ensure an adequate number of tasks while respecting
dependency constraints, an effective runtime task aggrega-
tion approach is crucial. The strategy becomes even more
complex, when considering the assignment of tasks to mul-
tiple processes distributed across multiple compute nodes in
a 2D block-cyclic pattern. Furthermore, task priority must
also be taken into account, necessitating the use of a task
container to store low-priority tasks for deferred execution.
Such considerations motivate us to design the Aggregate
stage with two modules called Prioritizer and Container
in our Trojan Horse strategy.

2.3 Batch: to Selectively Run the Tasks

The three types of tasks, i.e., diagonal LU factorisation, up-
per/lower triangular solve, and Schur complement matrix
multiplication, may also work in parallel, leading to a require-
ment to batch diverse tasks. Figure 4 shows the diversity by
giving an example of factorising a sparse matrix of size 6-
by-6. The matrix is organized as 3x3 sparse blocks (blocks
6, 8 and 9 are dense, while the remaining blocks are sparse).
There are in total 14 tasks (three diagonal LU factorisation,
six triangular solve, and five Schur complement operations)
and their dependencies are shown in the DAG of Figure 4.

It is possible to run the 14 tasks through a number of
combinations corresponding to distinct scheduling consider-
ations [81, 103]. In this example, we choose to combine tasks
with high and low priorities, allowing non-critical tasks to
be deferred and executed alongside critical ones, thereby
optimizing the utilisation of GPU resources. The execution
of this example includes five batches:

Tasks ‘2T and ‘4T’ (triangular solves on blocks 2 and 4)
are triggered by task ‘1F’ (LU factorisation on diagonal block
1) and are mutually independent, allowing them to run in a
batch mode.

Tasks ‘5S0° (Schur update on block 5) and ‘7T’ can also be
executed in batch mode, despite involving different kernel
operations.

Tasks ‘5F” and ‘850’ are triggered by different diagonal
blocks and can be batched, despite calling different kernels.

Tasks 3T" and ‘8T’ are triggered by different diagonal
blocks and can be batched. Additionally, since block 3 is
sparse and block 8 is dense, the use of distinct kernels for
each will improve performance.
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Tasks ‘9S0’ (sparse) and ‘9S1’ (dense), triggered by differ-
ent diagonal blocks, both compute Schur update on block 9.
Although running them in parallel brings write conflict, their
floating point operations are independent. Thus, batching
them may be beneficial if the write conflict can be resolved.
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Figure 4. An example of the need to batch diverse tasks.

As illustrated by the above example, greater performance
gains can be achieved by exploiting diverse parallelism. How-
ever, existing batched work fails to fully accommodate such
diversities, including various input size and sparsity, ker-
nel types, and potential write conflicts. A dedicated batched
kernel is necessary. Such limitations motivate us to design
the Batch stage with two modules called Collector and
Executor in our Trojan Horse strategy.

3 Trojan Horse
3.1 Overview

The Trojan Horse focuses on scaling up the execution ef-
ficiency of a single GPU in heterogeneous GPU clusters,
and in conjunction with existing distributed libraries such as
SuperLU_DIST and PanguLU, enhances overall performance.

In traditional SuperLU_DIST and PanguLU solvers, the
workflow of each process is basically three steps, i.e., re-
ceive a task, execute the task, and send results to other
processes. Moreover, SuperLU can batch triangular solve
and Schur complement tasks independently in one level of
the elimination tree when the compute workload is large
enough [49]. When the two solvers integrate with the Tro-
jan Horse, the workflow of each process will be divided into
two stages: Aggregate and Batch, and four functional mod-
ules: the Prioritizer and Container (both belong to the
Aggregate stage), and the Collector and Executor (both-
pipi belong to the Batch stage). Figure 5 illustrates the two
stages and four modules of a process with the Trojan Horse.
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The goal of the Aggregate stage is to identify and collect
tasks. The Prioritizer module (see the upper left part of
Figure 5) in this stage is responsible for making an initial
judgment on the tasks received by the process, dividing them
into two cases: If the task is on the critical path, it is marked
as high priority and directly sent to the Collector of the
Batch stage. Otherwise, it is marked as low priority and
sent to the Container module (see the lower left part of
Figure 5). Tasks in the Container are managed according to
their criticality, and are deferred for execution. When they
are executed depends on how many tasks are needed in the
Batch stage to saturate GPU resources.

/| The Trojan Horse strategy in the process Pij

Aggregate Batch
High
Input priority: ' Collector| Executor
tasks tasks ® Tastlr(]s to
YPrioriti other
) OOWPrlormzerO_O ® brocesses
Low @ 00O
l priority —
tasks (OXO)

Container ——>

@ Task, high priority Task, low priority
(OTask, priority not decided

Figure 5. An overview of the Trojan Horse strategy with two
stages Aggregate and Batch. The Aggregate stage has two
modules Prioritizer (on CPU) and Container (on CPU),
and the Batch stage has two modules Collector (on CPU)
and Executor (on GPU).

The goal of the Batch stage is to efficiently execute tasks.
The Collector module (see the left of the right part of Fig-
ure 5) extracts tasks from the Prioritizer and Container
modules of the Aggregate stage. Once the task volume is
sufficient to saturate the GPU or reaches delay threshold, the
tasks are sent to the Executor module (see the right of the
right part of Figure 5) for batch execution. The Executor
module is also responsible for executing highly diverse tasks,
including those that may be dense or sparse, involve LU
factorisation, triangular solves, or Schur complement multi-
plication, and may have write conflicts between some tasks.

3.2 An Example of Using the Trojan Horse

Before the detailed explanation in the following subsections,
we begin by presenting an example in Figure 6 that illustrates
how the Trojan Horse strategy enhances the task execution
behavior of SuperLU and PanguLU. Figure 6 has six sub-
figures. In Figure 6(a), each number on the blocked matrix
labels a non-empty block, while numbers adjacent to the
matrix represent the supernodes or indices of the diagonal

PPoPP 26, January 31 - February 4, 2026, Sydney, NSW, Australia

blocks. In Figure 6(b), an elimination tree, or a DAG, of the
numeric factorisation procedure is plotted. In Figure 6(c), the
complete dependencies of all 22 tasks are shown in a more
detailed DAG, and these tasks are divided into 5 parts by the
diagonal blocks 0-4 triggering them.

Figures 6(d) and 6(e) show the timeline of SuperLU and
PanguLU with four processes. To execute these tasks, Su-
perLU spends 10 time units, and PanguLU spends 11. Su-
perLU batches tasks of the same type and from the same
elimination tree level. For example, three triangular solves in
step 2 (labeled as purple @), and four Schur updates in step
3 (labeled as purple @) can be batched. The two batches are
both associated with level 0 of elimination tree (containing
supernodes 0 and 1). In contrast, PanguLU executes tasks
based on priority and without batching.

Figure 6(f) shows the timeline of SuperLU or PanguLU
with the Trojan Horse. On process 0, two tasks ‘7F” and ‘1551’
are batched in timestep 4 (labeled as purple ®), although
their types are different. On process 1, two triangular solve
tasks ‘6T” and ‘2T’, though belong to different blocks, are
batched in timestep 2 (labeled as purple @). On process 2, two
triangular solve tasks ‘4T’ and ‘10T, are batched in timestep
2 (labeled as purple ®), although they are led by different
diagonal blocks. The following two subsections, Aggregate
stage and Batch stage, will illustrate this in detail.

In SuperLU, matrix blocks can have varying sizes, while in
PangulLU, blocks may exhibit different sparsity. This example
shows that the Trojan Horse strategy could batch tasks from
different blocks, of different sizes, sparsity and types.

3.3 Aggregate Stage

In this subsection, we introduce the two modules named
Prioritizer and Container in the Aggregate stage. The
Aggregate stage functions as a task scheduler, supplying
tasks to the Collector module within the Batch stage.
Module 1: Prioritizer

The Prioritizer is designed to tag tasks ready to be
executed and separate them into high- and low-priority ones.
Firstly, the Prioritizer needs to find tasks ready to be
executed. It traverses the supernode elimination tree (Figure
6(b)) or the DAG (Figure 6(c)), and then identifies each node
with no predecessors and ready to be executed. For example,
at the first time step, nodes ‘1F’ and ‘3F’ in Figure 6(c) have
no predecessors. They should be tagged ready.

Secondly, after tagging tasks, the Prioritizer determines
which of them are more urgent. Tasks belonging to the same
block are assigned the same priority, and those closer to the
main diagonal are given higher priority to make the subse-
quent diagonal blocks ready to be factorised earlier. Here we
use the difference between the row and the column index of
amatrix block as its distance to the main diagonal. For exam-
ple, if tasks ‘6T (distance=1) and ‘12T (distance=3) in Figure
6(c) are tagged available, ‘6T should be more urgent than
‘12T". When a task is determined urgent, it would be pushed
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Figure 6. SuperLU and PanguLU without/with the Trojan Horse. (a) is the blocked
tree of numeric factorisation, and (c) is the complete dependencies of all 22 tasks.
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matrix to be factorised. (b) is the elimination
(d), (e) and (f) show the timeline of SuperLU

and PanguLU, without/with the Trojan Horse to perform numeric factorisation with four processes.

to the Collector in the Batch stage. Otherwise, it would be
temporarily stored in the Container for later execution.
Module 2: Container

The Container serves as a temporary buffer for tasks with
relatively lower priority, as classified by the Prioritizer.

in lines 15 and

These tasks are not immediately needed for execution but
may become necessary to fill computational capability and
maintain high GPU utilisation in later timesteps. As shown

16 of Algorithm 1, the Collector requests



Trojan Horse

low-priority tasks from the Container when high-priority
tasks are insufficient to saturate GPU resources.

To prevent low-priority tasks from being executed ahead
of more urgent ones, the Container must always return the
highest-priority task among those it stores. This requires
maintaining strict order among stored tasks based on their
priority. We adopt a priority queue (implemented as a heap)
to manage tasks, ensuring that both insertion and retrieval
operations are fast while preserving the priority ordering.

Algorithm 1: Task Collection in the Trojan Horse

1 DAG = BuildNumericFactDAG()
2 Container = []
3 while 'DAG.isEmpty do

4 Collector = []
5 while !Container.isEmpty or DAG.haveAvailableTask do
6 UrgentTask = Prioritizer(DAG.AvailableTasks)
7 if Collector.isFull then
8 Container.Push(UrgentTask)
9 Container.PushAll(DAG.AvailableTasks)
10 break
11 end
12 Collector.Push(UrgentTask)
13 end
14 while !Collector.isFull do
15 NotUrgentTask = Container.Pop()
16 Collector.Push(NotUrgentTask)
17 end
18 GPU.AsyncExecutor(Collector)
19 end

3.4 Batch Stage

In this subsection, we introduce the two modules of the
Batch stage: the Collector and the Executor. The Collector
gets tasks from the Aggregate stage and the Executor exe-
cutes them in batch mode on GPU.
Module 1: Collector

The Collector is responsible for assembling a batch of
tasks from the Aggregate stage to be dispatched to the GPU
for execution. As described in Algorithm 1, it follows a two-
phase strategy: first, it receives high-priority tasks pushed by
the Prioritizer; then, if capacity permits, it supplements
the batch with lower-priority tasks from the Container. This
ensures that the most urgent tasks are always considered
first, while still maintaining high throughput.

To improve hardware utilisation, the Collector features
a fixed capacity aligned with the count and shared memory
size of GPU stream multiprocessor (SM). Each task consumes
a certain number of CUDA blocks and a portion of shared
memory. When a task is collected, the Collector calculates
its CUDA block count and shared memory usage. Once the
CUDA block count or the shared memory usage of collected
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tasks is too high, restricting the number of active blocks, the
Collector is considered full and ready for execution.

If the Collector becomes full before all urgent tasks can
be collected, the remaining urgent tasks are deferred by
the Prioritizer, which pushes them to the Container for
future collection. These tasks, despite being delayed by ca-
pacity constraints, will remain marked as urgent and will be
prioritized for collection in the subsequent batch execution.
Module 2: Executor

The Executor module provides a flexible batched kernel
supporting heterogeneous tasks. Each task can be indepen-
dently customized, supporting four types: GETRF (LU fac-
torisation), TSTRF (upper triangular solve), GESSM (lower
triangular solve), and SSSSM (Schur complement GEMM).
Tasks can operate on either sparse or dense matrix blocks and
optionally enable atomic operations to avoid write conflicts.

To execute diverse tasks within a single kernel, we design
an array mapping from CUDA blocks to tasks. Before kernel
launch, the array elements are set to the starting block inde-
ces of each task. During execution, each CUDA block finds
the task should be executed via binary search on this array.

[ CUDA Block

EE]from (o) Q) [T
A U U B X

csc/ | . \} csc/ csc/
Dense L Dense Dense

one column per CUDA blo

B C
CsC/ [-| csC/ CsC/ CSC/ |=| €sCc/
L Dense Dense Dense Dense Dense

one column in B or X per CUDA block |one column in A or C per CUDA block

Each task can use Each matrix block ach task can execute
atomic operation or not. || can be dense or sparse. || different types of kernels.

0 10 19 30 45

GETRF
(10 columns)

TSTRF
(9 rows)

GESSM
(11 columns)

SSSSM
(15 columns)
Index Array

Figure 7. An overview of Batch stage. The upper part shows
the implementation of each task type, and the lower part
shows the mapping between tasks and CUDA blocks.

The lower part of Figure 7 shows the task-to-block map-
ping for these four tasks. The GETRF task, which processes
10 columns, is assigned 10 CUDA blocks, starting from block
0 (blocks 0 to 9). The TSTREF task, handling 9 rows, begins
at block 10 and occupies 9 blocks (blocks 10 to 18). The sub-
sequent GESSM task, corresponding to 11 columns, starts
at block 19 and uses 11 blocks (blocks 19 to 29). Finally, the
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SSSSM task, which involves 15 columns, starts from block
30 and occupies 15 blocks (blocks 30 to 44).

As illustrated in the top section of Figure 7, each GETRF
task is assigned one CUDA block per column and follows
a synchronization-free left-looking approach [110] for LU
factorisation. Prior to factorisation, the input matrix is gath-
ered into a dense global memory space to expedite element
addressing. During factorisation, each CUDA block sequen-
tially processes the elements within its assigned column,
leveraging all available threads to perform vectorized multi-
plications for element updates. Once completed, the results
are scattered back to the original sparse memory spaces.

TSTRF and GESSM tasks are each assigned one CUDA
block per row (for TSTRF) or per column (for GESSM) of
matrix B. When the corresponding row or column fits within
shared memory, the CUDA block first gathers the data into
dense shared memory before factorisation and scatters the
results back afterward. Otherwise, the computation proceeds
directly in global memory. In either case, each CUDA block
processes its assigned row or column sequentially, with all
threads in the block cooperating to perform parallel updates.

The SSSSM tasks employ a column-column multiplication
method, where each element of matrix B independently mul-
tiplies a column of matrix A. For dense GEMM tasks, the
Executor directly treats the value arrays as column-major
dense data, avoiding the overhead of processing sparse in-
dices.

3.5 Integration into SuperLU_DIST and PanguLU

The Trojan Horse is not an independent solver, and needs
integration into a sparse direct solver to work. We integrate
the Trojan Horse into SuperLU_DIST and PanguLU.

3.5.1 Integration into SuperLU_DIST. In SuperLU, the
most significant difficulty is the high scheduling overhead.
SuperLU uses very small supernode sizes, which causes the
total task counts to increase significantly. The bottleneck
arises at the task aggregation stage on the CPU. To over-
come this challenge, we aggregate all vectors of matrix U
in advance, therefore all Schur complement tasks in one
supernode can be done in a relative larger GEMM.

3.5.2 Integration into PanguLU. PanguLU maintains its
own internal task queue, making the integration of the Tro-
jan Horse’s Container nontrivial. We delegate all Schur com-
plement tasks from the task queue of PanguLU to the Trojan
Horse, while allowing the original task queue in PanguLU
to manage all other task types. This strategy is based on two
considerations: firstly, Schur complement tasks are numer-
ous enough to represent the dominant workload; secondly,
offloading these tasks does not disrupt the synchronization-
free architecture that PanguLU originally maintains.
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4 Experiments
4.1 Experimental Setup

In our experiments, we evaluate six solver variants: v9.1.0 of
SuperLU_DIST [67] and v5.0.0 of PanguLU [44] as baselines,
along with their respective versions enhanced with the Tro-
jan Horse. For PanguLU with Trojan Horse, we also evaluate
a version replacing the Executor module with four CUDA
streams. We also evaluate PaStiX v6.4.0 scheduling with the
‘dmdas’ strategy of StarPU v1.4.8. For all solvers, their nu-
meric factorisation phase always uses double precision. It is
worth noting that a recent work, Caracal [88], is not eval-
uated because it is not open sourced, and its closed-source
version cannot run on our platforms.

The evaluation is conducted in two parts: the first exam-
ines scalability on single-GPU (scale-up), while the second
extends to distributed multi-GPU environments (scale-out).

The scale-up experiments, detailed in Sections 4.2-4.3, are
conducted on NVIDIA RTX 5060Ti and 5090 GPUs (Table 1).
These platforms share the same architecture but differ in
theoretical performance, enabling a fair comparison of GPU
utilisation. We use four matrices from SuiteSparse [33], pre-
viously employed in SuperLU and PanguLU benchmarks [44,
73]. They are moderately sized, large enough for GPU paral-
lelism yet small enough for a single GPU memory capacity.
To verify generality, we also evaluate 200 additional square
matrices from SuiteSparse on an NVIDIA A100 40GB GPU.

GPU #Cores FP64 peak Memory B/W
RTX 5060Ti 4,608 0.37 TFlops 16 GB 0.45 TB/s
RTX 5090 21,760  1.64 TFlops 32 GB 1.79 TB/s
A100 PCle 6,912 9.75 TFlops 40 GB 1.56 TB/s

Table 1. Three GPU platforms for scale-up evaluation.

. SuperLU  PangulLU

Matrix  n(4)  nnz(4) nnz(L +U) nnz(L +U)
c-71 76.6K 860K 49.4M 249M
cagel2 130K 2.03M 550M 537M
para-8 156K  2.09M 187M 178M
Lin 256K 1.77M 216M 194M

Table 2. The matrices tested in scale-up evaluation.

The scale-out experiments, detailed in Section 4.4, are
conducted on two GPU clusters listed in Table 3, respectively
equipped with 16 NVIDIA H100 GPUs (two nodes linked
with 400 Gbps InfiniBand, eight GPUs per node) and 16 AMD
MI50 GPUs (four nodes linked with 200 Gbps InfiniBand, four
GPUs per node). Each GPU is managed by a dedicated MPI
process, and the processes are evenly distributed across the
evaluated nodes (for example, eight H100 GPUs are tested
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on two nodes, with four GPUs activated per node). The six
matrices used, listed in Table 4, are also from SuiteSparse [33]
and were tested in earlier studies [44, 68, 90]. Their L and U
are generally much larger than those in the scale-up tests,
reflecting scale-out behavior on distributed platforms.

16 GPUs #Cores FP64 peak Memory B/W
H100 SXM 14,592  25.61 TFlops 80 GB 2.04 TB/s
MI50 PCle 3,840 6.71 TFlops 16 GB 1.02 TB/s

Table 3. Two 16-card GPU clusters for scale-out evaluation.

. SuperLU PangulLU

Matrix n(4)  nnz(4) nnzIZL +U) nnz(% +U)
Ga41As41H72 268K 18.5M 4.61G 4.59G
RMO7R 381K 37.4M 2.68G 2.14G
cagel3 445K  7.48M 4.68G 4.66G
audikw_1 943K 77.6M 2.46G 2.43G
nlpkkt80 1.06M 28.1M 3.80G 3.28G
Serena 1.39M  64.1M 5.42G 5.38G

Table 4. The matrices tested in scale-out evaluation.

Across both experimental phases, we compile these solver
libraries with Intel MPI 2021.1 and OpenBLAS 0.3.29. All
experiments are performed by using CUDA 12.8 and ROCm
4.3. Based on prior tuning experience, we set the maximum
supernode size in SuperLU to 256, the block size in PanguLU
to 512, and the range of block size in PaStiX from 160 to 320,
as these yields generally the best performance.

In Section 4.5, we compare four solver variants of Su-
perLU_DIST and PanguLU without and with the Trojan
Horse on an NVIDIA H100 GPU against two CPU-based
solvers SuperLU_DIST v9.1.0 and MUMPS v5.6.0 running on
an Intel Xeon 6462C CPU of 32 cores (Sapphire Rapids) and
512 GB DDR5 memory at 4800 MT/s.

4.2 Scale-Up Evaluation

We first demonstrate the improvement in absolute perfor-
mance of our work (Figure 8), then examine the scale-up
effects on the RTX 5060Ti and RTX 5090 GPUs (Figure 9),
and finally evaluate a broader set of matrices on the A100
GPU (Figure 10).

Figure 8 records the CUDA kernel execution performance
during numeric factorisation, measured in GFLOPS on the
y-axis over time on the x-axis. The blue line and the corre-
sponding light blue area represent the original SuperLU or
PanguLU without Trojan Horse, while the red line and area
correspond to the two solvers enhanced with Trojan Horse.
As can be seen, the red curves achieve substantially higher
throughput and therefore complete the numeric factorisation
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much faster than the blue ones. Specifically, integrating Tro-
jan Horse accelerates kernel execution by 15.02x for SuperLU
and 2.92x for PanguLU. Consequently, the overall numeric
factorisation efficiency is improved by 15.05x and 2.14x for
the two solvers, respectively.

—— SuperlU —— SuperLU w/ Trojan Horse
3100 c-71 300 cagel? 800 para-8 240 Lin
é 50 | 150 400 120
% 900 & “1000% 5 10 % 9 18
Time (s) Time (s) Time (s) Time (s)
(a) SuperLU
—— PangulU —— PangulU w/ Trojan Horse
3400 c-71 400,52 el2 400 para-8 400 Lin
2200 m 200 200 200
G] o
% o612 % 2550 © 4 8 %9 5 10
Time (s) Time (s) Time (s) Time (s)

(b) PanguLU

Figure 8. Numeric factorisation timelines of SuperLU and
PanguLU without and with the Trojan Horse. The x-axis is
the execution timeline, and the y-axis represents the through-
put (in GFlops) of kernels running on the RTX 5090 GPU.

SuperLU, 5060Ti M SuperLU w/ Trojan Horse, 5060Ti
SuperLU, 5090 SuperLU w/ Trojan Horse, 5090
PanguLU, 5060Ti“ PanguLU (CUDA stream), 5060Ti
PanguLU, 5090 PangulLU (CUDA stream), 5090
WPaStiX, 5060Ti mPanguLU w/ Trojan Horse, 5060Ti
PaStiX, 5090 PanguLU w/ Trojan Horse, 5090
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300
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8200
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50/

0
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c-71  cagel2 para-8 Lin
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Figure 9. Numeric factorisation performance of solver vari-
ants across four matrices. Each bar corresponds to a solver
variant, with the full segment indicating performance on the
RTX 5090 and the lower segment on the RTX 5060Ti.

Figure 9 presents the numeric factorisation performance
of different solver variants on the four example matrices.
Across platforms, SuperLU achieves an average speedup of
1.09x (up to 1.54x) on the RTX 5090 compared to the RTX
5060T1, increasing to 1.26x (up to 1.93x) when integrated
with the Trojan Horse. As for PanguLU, before integrating
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Trojan Horse, the RTX 5090 is only 1.56x (up to 1.83x) faster
than the RTX 5060Ti; after applying Trojan Horse, the RTX
5090 becomes 3.22x (up to 4.00x) faster, approaching the
ratio of the peak performance and memory bandwidth of the
two GPUs (see Table 1). Notably, over the RTX 5060Ti, the
performance gains by the RTX 5090 are obviously amplified
when Trojan Horse is employed, highlighting its strong scale-
up capability in leveraging increasingly powerful GPUs.

The performance improvement depends on both the solver
design and the characteristics of the input matrix. PanguLU
benefits more from scaling due to its higher degree of par-
allelism, whereas SuperLU remains constrained by longer
task dependencies. For instance, the matrix ‘cage12’, with its
numerous off-diagonal nonzeros, enables more effective task
aggregation and higher GPU utilisation.

SuperLU ) PanguLU
+SuperLU w/ Trojan Horse «PanguLU w/ Trojan Horse
240 300
") 2 7)) ‘/
_8'160 7 _8'200 7
5 80 Al B100p

0 50100 150 200
Matrices

0 50100 150 200
Matrices

(a) SuperLU_DIST (b) PanguLU

Figure 10. Numeric factorisation scale-up evaluation on 200
matrices on the A100 GPU. The x-axis shows the matrices
sorted by the performance of the solvers with Trojan Horse.

To assess the general speedup on various matrices, we con-
duct further performance evaluations on an NVIDIA A100
GPU using 200 square matrices from the SuiteSparse. These
matrices cover 31 different kinds, a wide range of sizes, nonze-
ros in L+U, and flop counts. As shown in Figure 10, Trojan
Horse yields an average (Geomean) speedup of 5.47x (up to
418.79x) for SuperLU, and 2.84x (up to 5.59x) for PanguLU.

4.3 Kernel Count Reduction and Time Breakdown

The reduction in kernel execution count reflects the effec-
tiveness of the Aggregate stage. As shown in Table 5, for
SuperLU, the total kernel count decreases to 1.10% on aver-
age, with a minimum reduction to 0.28%. Similarly, in Table
6, for PanguLU, the count is reduced to 1.48% on average,
with a minimum of 0.37%. Despite the reductions, the to-
tal floating-point operations remain unchanged. With much
fewer kernels, each execution often processes a much larger
batch of work, leading to obviously higher GPU efficiency.
Figure 11 shows the total kernel time comparison between
solvers without and with the Trojan Horse. After integrating,
the kernel execution efficiency is improved by an average
of 15.02x for SuperLU and 2.92x for PanguLU. Notably, with
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Trojan Horse, the kernel’s share in the execution time basi-
cally remains unchanged, suggesting that the Trojan Horse
enhances GPU utilisation with similar scheduling overhead.

Matrix  w/o Trojan Horse w/ Trojan Horse Rate
c-71 12,991,278 110,227 0.85%
cagel2 28,722,440 80,157 0.28%
para-8 2,241,384 40,627 1.81%
Lin 3,345,581 112,727 3.37%
Geomean 1.10%

Table 5. Kernel count comparison of SuperLU_DIST.

Matrix  w/o Trojan Horse w/ Trojan Horse Rate
c-71 17,678 515 2.91%
cagel2 226,568 847 0.37%
para-8 47,617 1,009 2.12%
Lin 81,844 1,699 2.08%
Geomean 1.48%

Table 6. Kernel count comparison of PanguLU.
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Figure 11. Numeric factorisation time breakdown of two
solvers without and with the Trojan Horse.

4.4 Scale-Out Evaluation

The scale-out evaluation tests strong scaling of six large ma-
trices on two 16-card GPU clusters. When using 16 H100
GPUs, SuperLU with Trojan Horse achieves speedups of up
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Figure 12. Scale-out comparison of three solvers, PaStiX with StarPU, SuperLU_DIST (without and with Trojan Horse), and
PanguLU (without Trojan Horse, using CUDA stream, and with Trojan Horse), running six large matrices on 16-card NVIDIA
H100 and AMD MI50 clusters. Some small GPU counts on the MI50 cluster cannot complete due to out-of-memory errors.

to 24.6x (3.5x on average) compared to its version without
Trojan Horse, while PanguLU with Trojan Horse reaches
up to 2.3x (1.9x on average). When using 16 MI50 GPUs,
SuperLU with Trojan Horse delivers speedups of up to 12.8x
(4.7x on average), and PanguLU with Trojan Horse achieves
up to 1.4x (1.3x on average). Also, both solvers continue to
deliver strong performance gains as the number of GPUs in-
creases, and the versions with Trojan Horse are consistently
faster than PaStiX and the CUDA stream-based PanguLU.

4.5 Comparison with Solvers on Modern CPUs

In Table 7, we compare three groups of performance data:
(1) two existing GPU packages SuperLU_DIST and PanguLU
without Trojan Horse (columns 2 and 3); (2) two existing CPU
packages SuperLU_DIST and MUMPS (columns 4 and 5); and
(3) two enhanced versions of SuperLU_DIST and PanguLU
with Trojan Horse (columns 6 and 7). As shown, the two
CPU libraries are often significantly faster than the two
existing GPU implementations. However, when enhanced
with Trojan Horse, the two GPU solvers match or surpass
their CPU counterparts.

5 Related Work

A number of software packages were developed to accel-
erate sparse direct solvers. Representative libraries include
UMFPACK [30], PARDISO [93], CHOLMOD [23], KLU [34]
and SuiteSparseQR [32] for shared memory systems, as well
as MUMPS [10], SuperLU [67, 92], PaStiX [51, 52, 70] and
PanguLU [44] for distributed memory systems. Also, some

solvers can use a single GPU for sparse Cholesky [57], LU [22],
and QR [109]. In particular, SuperLU, PaStiX and PanguLU
also support distributed heterogeneous systems. Compared
to those studies, our Trojan Horse concentrates on scaling
up the performance of modern GPUs, and can be integrated
into existing solvers such as SuperLU and PanguLU.

The most commonly used fundamental patterns of
sparse direct solvers contain the multifrontal method by
Duff and Reid [42] and the supernodal method by Li and
Demmal [35]. The two methods both find similar structure
of columns and update level-2 dense BLAS to level-3 for
higher processor utilisation. In contrast, PanguLU [44] pre-
serves sparsity in 2D blocks and calls sparse BLAS for com-
putation. In addition to the numeric methods, other critical
components, such as reordering [99], symbolic factorisa-
tion [45, 48, 94], out-of-core management [56, 105], sparse
triangular solve [12, 71, 73, 75, 76, 83, 107], sparse general
matrix-matrix multiplication [24, 72], low-rank [6], batch-
ing [53] and performance modeling [25, 28] are also essential
components. This paper shows that our Trojan Horse effec-
tively accelerates the numeric phase, and works with both
the supernodal and the sparse block methods.

There has been much work on general scheduling tech-
niques and runtime systems. The studies are mostly for
task representation [97], task placement [4, 61, 80, 81], data
partitioning [82, 87, 104], communication [100], task steal-
ing [79, 95], dynamic task scheduling [78, 85, 102], accelerator-
aware scheduling [86], reduced synchronization [29, 103], re-
liability [17, 18], energy efficiency [64], scheduling algorithm
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MUMPS CPU
Time | Perf.

SuperLU GPU
(w/ Trojan Horse)
Time | Perf.

PangulLU GPU
(w/ Trojan Horse)
Time | Perf.

. SuperLU GPU PangulLU GPU
Matrix (w/o "Il)“rojan Horse) (w/o Tfojan Horse) SuperLU CPU
Time | Perf. Time | Perf. Time | Perf.

cagel3 25141 s | 3 GFlops 897 s | 96 GFlops 1143 s | 75 GFlops
Ga41As41H72 10679 s | 9 GFlops 792 s | 119 GFlops 425 s | 222 GFlops
RMO7R 1157 s | 17 GFlops 197 s | 99 GFlops 92 s | 212 GFlops
audikw_1 267 s | 43 GFlops 140 s | 83 GFlops 19 s | 609 GFlops
nlpkkt80 700 s | 41 GFlops 395 s | 72 GFlops 43 s | 665 GFlops
Serena 1248 s | 46 GFlops 733 s | 78 GFlops 81 s | 703 GFlops

201 s | 428 GFlops

141 s | 668 GFlops

41 s | 476 GFlops
29 s | 399 GFlops
Fail
110 s | 518 GFlops

301 s | 286 GFlops
279 s | 338 GFlops
86 s | 227 GFlops
65 s | 178 GFlops
119 s | 240 GFlops
150 s | 380 GFlops

157 s | 548 GFlops
148 s | 636 GFlops
35 s | 557 GFlops
24 s | 482 GFlops
68 s | 421 GFlops
112 s | 508 GFlops

Table 7. Performance comparison of sparse direct solvers across six large matrices on an Intel Xeon Gold 6462C CPU and an
NVIDIA H100 GPU. The table evaluates execution time (Time in seconds) and floating-point performance (Perf. in GFlops) for
SuperLU_DIST, MUMPS and PanguLU. Columns include CPU libraries (SuperLU CPU and MUMPS CPU) and GPU libraries
without or with Trojan Horse. The fastest result for each matrix is indicated by an underlined and bold font, while the
second-fastest result is shown in bold. “Fail” indicates a solver’s inability to factorise the matrix due to internal errors.

benchmark [96] and autotuning [54]. Also, a number of task-
level runtime systems such as PaRSEC [3] and StarPU [15]
could enhance sparse factorisation [63, 88]. However, though
they can be efficient in dense problems [38], it is hard to ef-
fectively merge runtime systems with sparse direct solvers,
mainly because that the solvers are too complex to rewrite in
aruntime system with general scheduling objectives. Instead,
sparse direct solvers often prefer specific scheduling schemes,
such as asynchronous scheduling [9, 11], task layout [47],
critical path improvement [59, 106], and communication-
avoiding methods [91]. In this paper, we show that the Trojan
Horse works as a lightweight plug-in to efficiently aggregate
and batch a large amount of small tasks inside solvers.
Dense, sparse and batched kernels are fundamental
working units of sparse direct solvers. Based on a series of
standard interfaces [37], their fast implementations [39] can
efficiently run the tasks in sparse direct solvers. Also, the
widely studied batched kernels include GEMM [2], dense
matrix factorisation [13, 21], as well as sparse computa-
tions [58, 77]. In this work, the batched interface in the Tro-
jan Horse is more complete compared to existing work, and
demonstrates high utilisation for modern GPUs.

6 Conclusion: Toward the Onset of a
Renaissance for GPU-Accelerated Sparse
Direct Solvers

In this paper, we have proposed the Trojan Horse strategy
to significantly enhance the execution efficiency of sparse
direct solvers on modern GPU clusters. We argue that it
marks a clear starting point toward a broader Renaissance
in GPU-accelerated sparse direct solvers.

Since Duff and Reid introduced the multifrontal method
in 1983 [42], sparse direct solvers have pursued the promise
of parallelism on CPUs for more than four decades. Over
the past twenty years, general-purpose GPU computing has
delivered dramatically higher peak floating-point perfor-
mance and memory bandwidth than CPUs, translating into

clear performance gains for bandwidth-intensive iterative
methods [19, 43, 65, 74, 108]. However, unfortunately, due to
highly interdependent fine-grained tasks, sparse direct meth-
ods are far from saturating modern GPUs and have therefore
remained less competitive on GPUs than their CPU counter-
parts, as reflected in the first four data columns of Table 7.

Today, with the introduction of the Trojan Horse strategy,
this longstanding barrier has been overcome. The strategy
restructures each process’s workflow into two stages: Ag-
gregate and Batch, grouping one to two orders of magnitude
more small tasks to efficiently saturate high-end GPUs, as
demonstrated by both scale-up and scale-out evaluations.
The approach is also solver-independent and has been inte-
grated into SuperLU_DIST and PanguLU. For the first time,
GPU-accelerated sparse direct solvers finally achieve overall
performance comparable to or better than their CPU coun-
terparts, as shown in the last four data columns of Table 7.

We believe that more advanced scheduling techniques and
faster kernels can further accelerate sparse direct solvers on
GPUs. Therefore, the work presented in this paper serves
only as a starting point and opens the door to a broader
Renaissance of sparse direct solvers on GPUs.
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Artifact Description

This artifact for our submission #231, entitled

"Trojan Horse: Aggregate-and-Batch for Scaling Up Sparse
Direct Solvers on GPU Clusters," includes the following com-
ponents: (1) Prerequisites, introducing the hardware and
software requirements; (2) Introduction to Each Figure, ana-
lyzing data and trends from each figure in our experimental
results; and (3) Step-by-Step Instructions, a detailed eval-
uation guide for reproducing all experiments, available in
either a 30-minute fast mode or a full mode.

1 Artifact DOI
https://doi.org/10.5281/zenodo.17706095

2 Docker Image

https://hub.docker.com/repository/docker/jakebomber/
trojan_horse_ae/tags/release_v1

3 Prerequisites

Quick Guide: Running AE needs x86_64 machines with
5060Ti, 5090 and 8-card A100 respectively, with NVIDIA
driver >= 570.124.06, Docker 28 with NVIDIA Container
Toolkit. Require 128GB main memory for 5060Ti and 5090,
and 256GB for 8-card A100. Require 200GB disk space. Net-
work is recommended for convenience.

e Libraries and Versions.

— Intel MPI 2021 or above.

— OpenBLAS 0.3.26 or above.

— NVIDIA GPU Driver 570.124.06 or above.

- NVIDIA CUDA Toolkit 12.4 or above.

— ParMETIS 4.0.3 or above, METIS 5.1.0 or above.

— Build Tools: CMake 3.2.0 or above, GCC 11.0.0 or
above, GFortran 11.0.0 or above.

— Python Libraries: Python 3.10.16, pandas 2.2.3, mat-
plotlib 3.9.1, numpy 2.1.3, scipy 1.15.2, openpyxl
3.1.0.

All of these libraries are prepared in our provided

Docker image.

e Hardware Requirements.

— GPU: For scale-up evaluation: NVIDIA RTX 5060Ti,
NVIDIA RTX 5090 and NVIDIA A100 80G; For scale-
out evaluation: 8-card NVIDIA A100 80G GPU clus-
ter.

— Disk Space: About 200GB, sufficient space to store
about 200 test matrices and all programs.

— Memory: 128GB for single GPUs and 256GB for
clusters.

e Matrices. 200 matrices from SuiteSparse Matrix Col-
lection (publicly available at https://sparse.tamu.edu)
are needed in total, and all of them are included in our
Docker image.

Yida Li, Siwei Zhang, Yiduo Niu, Yang Du, Qingxiao Sun, Zhou Jin, and Weifeng Liu

4 Step-by-Step Instructions

Quick Guide: Please run Docker image
“trojan_horse_ae_lite_matrices.docker.img” on 5060Ti, 5090
and 8-card A100 respectively. In “/ppopp26trojanhorseae” of
the Docker container, running script “<AE_FAST=1> bash
run_<machine>_docker.sh” to get results in directory “/p-
popp26trojanhorseae/results”. Without or with “AE_FAST=1"
before the command line represents full or 30-minutes-fast
AE execution. If network is available, each machine automat-
ically upload results to a configured SSH server. Running
“bash generate_all_figures_online.sh”, the results will be au-
tomatically fetched and merged, then generate all figures
into “/ppopp26trojanhorseae/figures”.

Execution Time Estimation: We provided 30-minutes-fast
mode for tests on each machine (5060Ti, 5090 and 8-card
A100). If fast mode is disabled, the execution time will be
about 2h, 3h and 120h on 5060Ti, 5090 and 8-card A100 re-
spectively.

4.1 Checking Docker Version (28 or above) and
NVIDIA CUDA Driver Version (570.124.06 or
above)

$ docker —version
$ nvidia-smi

4.2 Confirming the Processor Architecture (x86_64)

$ uname -m

4.3 Running Docker: Importing Images and
Launching Containers

You can directly run
$ sudo docker pull jakebomber/trojan_horse_ae:release_v1
on your servers to import the Docker image.

4.4 Running the Code Inside the Docker Container

Once inside the container, you can list the files in the current
directory using:

$1s

You would see a directory named ppopp26trojanhorseae.

Enter this directory.

$ cd ppopp26trojanhorseae

Running Scripts on Different Machines. Please note
that above operations are same on three machines. The
following operations are different on three machines.

e On the 5060Ti:
If you want to run the script with the 30-minutes-fast
mode, use:
$ AE_FAST=1 bash run_5060Ti_docker.sh
In fast mode, ensure the output contains: Fast AE mode
is enabled (about 25 minutes).
If you want to run the full matrix set, use:
$ bash run_5060Ti_docker.sh
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Ensure the output contains: The Full AE would be very
slow (about 2 hours).

e On the 5090:
To run the the script with the 30-minutes-fast mode,
use:
$ AE_FAST=1 bash run_5090_docker.sh
Ensure the output contains: Fast AE mode is enabled
(about 30 minutes).
To run the full matrix set, use:
$ bash run_5090_docker.sh
Ensure the output contains: The Full AE would be very
slow (about 3 hours).

e On the 8-card A100:
To run the script with the 30-minutes-fast mode, use:
$ AE_FAST=1 bash run_A100_docker.sh
Ensure the output contains: Fast AE mode is enabled
(about 30 minutes).
To run the full matrix set, use:
$ bash run_A100_docker.sh
Ensure the output contains: The Full AE would be very
slow (about 120 hours).

4.5 Collecting and Merging CSV Results from
Multiple Machines

Please to manually rename the results directories gener-
ated on each machine and copy to /ppopp26trojanhorseae
inside the Docker container on the 5060Ti.

First, outside the Docker container on the 5090 and A100
respectively, copy the results folder from inside the con-
tainer to the outside host machine:

$ sudo docker cp TrojanHorse:/ppopp26trojanhorse/results
Jresults
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Next, on your computer, copy the results folders from
the 5090 and A100 machines to the 5060Ti host:

$ scp -r user@5090:~/results user@5060Ti:~/
results_5090

$ scp -r user@A100:~/results user@5060Ti:~/
results_A100

Connect to the 5060Ti machine:

$ ssh user@5060Ti

Check the data copied earlier from the 5090 and A100
machines:

$1s

Copy the data into the Docker container:

$ sudo docker cp results_5090 TrojanHorse:/
ppopp26trojanhorseae/

$ sudo docker cp results_A100 TrojanHorse:/
ppopp26trojanhorseae/

Re-enter the Docker container:

$ sudo docker start TrojanHorse

$ sudo docker attach TrojanHorse

4.6 Generating Figures

The script will automatically merge results,
results_5090, and results_A109, then generate figures:

$ bash generate_all_figures_offline.sh

Copy the generated figures out of Docker and download
them to your local machine.

Outside the 5060Ti Docker, on the host:

$ sudo docker cp TrojanHorse:/ppopp26trojanhorseae
/figures .

On your computer:

$ scp -r user@5060Ti:~/figures .

And the figures will be downloaded to your computer.
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