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Abstract

Large language models (LLMs) are popular around the world
due to their powerful understanding capabilities. As the core
component of LLMs, accelerating Transformer through par-
allelization has gradually become a hot research topic. Mask
layers introduce sparsity into Transformer to reduce calcu-
lations. However, previous works rarely focus on the per-
formance optimization of sparse Transformer. In addition,
current static operator fusion schemes fail to adapt to diverse
application scenarios. To address the above problems, we
propose STOF, a framework that incorporates optimizations
for Sparse Transformer that enables flexible masking and
Operator Fusion on GPU. For multi-head attention (MHA)
structure, STOF maps the computation to row-wise or block-
wise kernels with unique storage formats according to ana-
lytical modeling. For downstream operators, STOF maps the
fusion scheme to compilation templates and determines the
optimal running configuration through two-stage searching.
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The experimental results show that compared to the state-
of-the-art work, STOF achieves maximum speedups of 1.6X
in MHA computation and 1.4x in end-to-end inference.
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1 Introduction

Large language models (LLMs) have attracted widespread
attention from industry and academia around the world [1,
9, 26]. The massive parameters enable LLMs to capture the
subtleties of human language [44]. In addition to general un-
derstanding, Transformer is the foundation of LLMs and the
core of its powerful capabilities [75]. A variety of neural net-
works [17, 47, 48] have evolved based on Transformer, while
still retaining its encoding or decoding structure. The tensor
operations involved in Transformer have rich parallelism,
making it suitable for execution on many-core processors
such as GPUs [24]. This forces the performance optimization
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of Transformer for GPU architectures to become an impor-
tant issue, which can bring huge economic benefits [3].

Multi-head attention (MHA) is the essential building block
in the Transformer model, where the attention module calcu-
lates the correlation among tokens in the input sequence [60].
The high-performance implementation of MHA fuses all ten-
sor operations into one kernel, efficiently utilizing the mem-
ory hierarchy and function units [16, 71]. The novel MHA
variants introduce mask layers to reduce the computational
volume while maintaining accuracy [13]. The mask layer in-
troduces sparsity to Transformer, and fragmented computa-
tion exacerbates the memory bandwidth bottleneck [63]. Fur-
thermore, the explosive growth of masking patterns [6, 70]
makes it impractical to manually optimize each MHA vari-
ant separately. Although recent approaches [18, 61] have
supported a broader range of masking patterns with sparse
representation or score modification, they are limited to con-
tinuous element distribution or suboptimal performance.

There are still potential optimization opportunities for
downstream operators of MHA. Compilation-based operator
fusion is adopted to reduce kernel launches and frequent
I/O operations [38, 76]. DL frameworks [4, 81] generally
only fuse memory-intensive (MI) operators, while compute-
intensive (CI) operators are handled separately using vendor
libraries. Other studies [40, 53, 78] have further explored the
fusion of CI operator and MI operator to complement re-
source utilization such as memory bandwidth and streaming
processors. The latest works [72, 79] focus on the fusion of
CI operators and improve performance in small-scale ten-
sor computation with short sequences. However, the above
rule-driven operator fusion schemes cannot adapt to diverse
model hyperparameters and sequence lengths.

From the above analysis, sparse Transformer optimization
faces the following challenges: 1) efficient kernel implemen-
tations with flexible representation of masking patterns; 2)
adaptive operator fusion with sustained high performance
for various computation scales; 3) fast exploration of hierar-
chical search space with fusion schemes and kernel param-
eters. We propose the STOF framework, which optimizes
sparse Transformer inference through customized MHA ker-
nels and adaptive operator fusion. STOF first determines the
kernel implementation for MHA computation according to
mask sparsity and sequence length. Then, STOF uses the
encoding representation to specify the fusion scheme and
maps it to compilation templates. Finally, STOF gradually
expands the fusion range and determines the optimal scheme
and its parameter setting via two-stage searching.

To the best of our knowledge, STOF is the first system to
enable both flexible masking patterns and diverse operator
fusion schemes for sparse Transformer scenarios. Specifi-
cally, STOF integrates hand-tuned MHA kernels with gen-
erative compilation templates, providing a complete stack
that establishes broader optimization opportunities. We have
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selected typical networks with encoding or decoding struc-
tures including BERT [17], GPT [47], LLaMA [59], ViT [20],
and T5 [48] to verify the effectiveness of STOF. This paper
makes the following contributions:

e We comprehensively analyze the impact of different
masking patterns and inference configurations to ex-
pose potential optimization opportunities.

e We propose a unified MHA module that implements
row-wise and block-wise kernels with unique stor-
age formats and optimizations. Besides, an analytical
model is designed to determine kernel selection.

e We propose an operator fusion module that converts
the fusion scheme into compilation templates via nu-
merical decoding. The search engine processes the
encoded numerical representation and expands the
fusion range based on performance feedback.

e We develop an inference framework STOF that enables
flexible masking patterns and determines the optimal
operator fusion setting on GPU. The experimental re-
sults show that STOF achieves maximum speedups
of 1.6x in MHA computation and 1.4X in end-to-end
inference compared to the state-of-the-art work.

2 Background
2.1 Sparsity in Transformer Models

2.1.1 Transformer Structure. Transformer [60] is widely
recognized, where each encoder or decoder contains multi-
ple multi-head attention (MHA) layers. The key operation
of the MHA layer is scaled dot product attention (SDPA),
which calculates the dot product of Q and K, scales the re-
sult, optionally applies a mask at this stage, then applies
the Softmax function to obtain the probabilities (P) and fi-
nally calculates the dot product of P and V. Beyond MHA,
Transformer includes downstream components: Add retains
non-linear transformation information, Norm mitigates inter-
nal covariate shift via mean/variance normalization, and the
Feed Forward layer comprises chained general matrix mul-
tiply (GEMM) operations with activations like GELU or ReLU.
These components enable Transformer to handle complex
cross-domain tasks while introducing operator characteris-
tics that facilitate fusion-based optimizations.

Atomic Pattern

Compound Pattern

(a) Causal (b) Global (c) Sliding Window (d) Random (e) Longformer  (f) Bigbird

Figure 1. Atomic and compound sparse attention patterns.

2.1.2 Sparse Attention Patterns. Atomic sparse atten-
tion patterns are the building blocks of current popular
sparse attention modules [2, 6, 13, 35, 36, 51, 70]. Figure 1
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(a)-(d) depict four most common atomic sparse attention
patterns. The details are as follows.

e Causal Attention. To maintain temporal order, the query
can access only preceding information, restricting con-
nections to earlier nodes (the colored triangular).

o Global Attention. Certain “global” nodes serve as cen-
tral hubs, which receive information from others (the
colored rows) and send it back (the colored columns).

e Sliding Window Attention. Considering the concept of
locality, the query only focuses on the neighboring
nodes within a defined window size, with its mask ma-
trix presenting a banded pattern (the colored bands).

e Random Attention. The query block is randomly asso-
ciated with the preceding and following information.
By adjusting the filling rate, it has the possibility to
discover accidental correlations (the colored blocks).

2.2 Fused Kernel for MHA Structure

Numerous works [7, 16, 18, 24, 42, 61, 63, 65, 71, 72, 79] have
explored fusing MHA on GPU. Figure 2 shows a typical work-
flow of MHA fusion. The DL framework firstly parses the
computational graph and captures the MHA sub-graph com-
posed of coarse-grained native operators. Then, MHA fusion
can be achieved manually or automatically. However, if the
fusion of MHA with a certain mask layer is not supported,
the sub-graph will be split into fine-grained meta operators
to discover small-scale fusion opportunities.

Suby St Suby Manual Fusion
Computational
Graph Sub,; Suby LightSeq2 [65] ByteTransformer [71]

l . FlashAttention [16] FlashMask [61]
o T
i ‘‘‘‘‘‘‘ FasterTransformer [42] xFormers [7]

Native =~ TurboTransformer [24] Raptor-T [63]
Automatic Fusion

TR0 | Chimera[79]  MCFuser [72]
Kernel FlexAttention [18] SPLAT [27]

Figure 2. Kernel fusion for MHA computation.

Early works focus on the manual fusion of dense atten-
tion without the mask layer. ByteTransformer [71] adopts
hand-written kernels: short sequences store the intermedi-
ate matrix entirely in shared memory (SMEM) and registers;
longer sequences employ grouped GEMM to ease resource
constraint. The customized kernels limit ByteTransformer to
a maximum sequence length of 1,024. FlashAttention (FA) se-
ries' becomes the most typical open source implementation.
FA [16] partitions the input into blocks and passes the blocks
to SMEM multiple times, gradually performing Softmax re-
duction. FA2 [15] further partitions the work between warps
within one block of attention computation to reduce the

1FA3 [52] is only for GPUs with Hopper architecture and later.
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read and write of SMEM. However, FA only supports com-
mon masking patterns such as causal and sliding window.
FlashMask [61] extends FA with column-wise representa-
tion to exploit attention sparsity for skipped computations,
integrated into PaddlePaddle [39] but unable to represent
discrete distributions such as random attention.

For automatic fusion, the captured MHA sub-graph un-
dergoes multi-level intermediate representation (IR) with
hardware-independent (e.g., constant folding) and hardware-
dependent (e.g., instruction scheduling) optimizations. MC-
Fuser [72] and Chimera [79] accelerate MHA via GEMM
chain loop scheduling but ignore hardware details like bank
conflicts, performing poorly for long sequences. FlexAtten-
tion [18] supports arbitrary masks by combining block masks
with expression-based descriptions, but it is still constrained
to fixed optimizations and achieves sub-optimal performance.
SPLAT [27] focuses on bridging the performance gap of reg-
ular sparse kernels (R-SDDMM and R-SpMM) under struc-
tured sparsity (10%—-50% non-zeros), yet this approach for-
goes the opportunity to optimize MHA as a whole kernel.

2.3 Hierarchical Space Exploration

The hierarchical framework introduces a huge optimization
space, making manual optimization on a case-by-case basis
unrealistic. DL compilers [10, 58, 73] automatically explore
opportunities across operator and kernel levels, deploying
tensor programs on target hardware via IR conversion.

2.3.1 Operator Fusion Opportunities. DL compilers pre-
define fusion rules that apply only to specific combinations,
severely limiting the optimization space. Researchers fur-
ther classify tensor operators into MI and CI categories for
selective fusion. Early works [4, 81] treat CI operators as
non-fusion boundaries, fusing only MI operators to reduce
off-chip accesses. Others [40, 53] merge the CI operator with
adjacent MI operators to balance hardware resource usage.
Recent works [72, 79] explore fusing CI chains by decom-
posing operators into blocks to break dependencies. How-
ever, due to GPU resource constraints, we notice that CI
chain fusion only benefits on small scales. Moreover, oper-
ator categories may shift with tensor dimensions, making
category-based fusion schemes potentially suboptimal.

2.3.2 Search Space Construction. When fine-tuning the
performance of DL models, the search space can be con-
structed by loop-based or template-based methods. The loop-
based methods [34, 76] represent operators as deeply nested
loops and optimize the statement execution via loop schedul-
ing. Although hardware-universal, they lag vendor libraries
due to ignoring hardware-specific instructions. The template-
based methods [11, 66, 68, 80] evolve as a new trend, which
uses template primitives as building blocks to assemble com-
plete DL models. The template primitives can map tensor
programs to special function units like tensor cores. With
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hardware knowledge-driven tuning, they match vendor li-
brary performance. Bolt [66] derives primitives from CUT-
LASS [43] to support common fused operators. Due to the
complex kernel structure of CUTLASS, further expanding
the fusion range is too demanding for programmers.

2.3.3 Auto-tuning Techniques. For loop-based construc-
tion, rule-based pruning first suppresses search space explo-
sion, yet still amounts of configurations persist. Machine
learning-driven cost models are trained online [76] or of-
fline [77] to predict performance, integrated into heuristic
searches (e.g., genetic algorithms) to speed up convergence.
However, they all require sufficient runtime statistics. Ag-
gressive techniques [4, 49] unfold the computation graph
sequentially, reducing search ranges from product to sum of
operator spaces. But individual tuning without graph context
leads to global suboptimal decisions. In contrast, template-
based construction maintains a constrained space aided by
analytical models [32, 33] considering hardware and program
details. Nevertheless, changes in the search space caused by
operator fusion expansion remains unsolved.

We summarize comparisons of representative works and
STOF in Table 1. We implement compilation templates via the
hardware abstraction of Triton [58] and TileLang [12]. Both
of them offer high-level programming interfaces that facili-
tate the template derivation for a wider fusion range. Then,
the two-stage procedure encapsulating the AutoTune module
quickly determines high-performance configurations.

Table 1. Comparison of representative works with STOF.

Operator Fusion [ Hierarchical Search Space l

Name ‘

’ ‘ l Category [ Expansion [ Construction [ Pruning [ Searching ]
AStitch [81] MI-MI Yes Rule No Breadth-First
Welder [53] CI-MI Yes Loop No Cost Model
Chimera [79] CI-CI No Loop No Analytical
MCFuser [72] CI-CI No Loop Rule Analytical
Bolt [66] General No Template No Analytical
STOF (ours) General Yes Template Analytical | Reward-based

3 Motivation
3.1 Diverse Features of Masking Patterns

Within the MHA structure, sparse mask blocks part of the
data elements, making it easier for the model to “focus” on
the critical information. The mask layer is inserted between
GEMM and Sof'tmax operations, and the weights of the score
matrix corresponding to the mask part are close to 0. Ta-
ble 2 lists the features of typical masking patterns with the
sequence length (seq_len) of 1,024. Consistent with previ-
ous works [13], the band width and global width are set
to y/seq_len (i.e., 32). As seen, all masking patterns except
the causal achieve a sparsity of over 80%, while the slid-
ing window even reaches 93.8%. The above results provide
optimization opportunities to skip useless computations.

Dai et al.

Table 2. Features of typical masking patterns.

Masking Masking l Element Distribution [ Sparsity l
Pattern Parameters l Row [ Column [ Type [ Ratio [
Causal - Continuous | Continuous | Structured 50.0%
Slidi
1_ g band width = 32 Continuous Continuous Structured 93.8%
Window
global width = 32 X X
Longformer X Discrete Discrete Structured 88.8%
band width = 32
global width = 32
Bigbird band width = 32 Discrete Discrete Unstructured | 80.8%
filling rate = 10%

It is difficult for a data structure to represent sparsity fea-
tures of various masking patterns. To achieve high kernel
efficiency, FlashMask [61] only supports the cases where the
valid elements on the columns are continuous. This is be-
cause its data structure consists of four arrays that represent
the start and end of two skipped regions. However, the dis-
crete distribution of valid elements involves more skipped re-
gions that cannot be represented. Bigbird integrates random
patterns with unstructured sparsity, further complicating
the mask representation. For unsupported masking patterns,
previous works [18, 71] fall back to resetting the score ma-
trix by subtraction after GEMM. This approach fails to jointly
optimize GEMM and Sof'tmax operations in the fused kernel.

3.2 DPotential Fusion Opportunities

Transformer structure still remains opportunities for oper-
ator fusion unexplored. If we roughly identify the opera-
tor types as MI or CI, the operator mixes can be enumer-
ated into three categories. We fuse the operators of Trans-
former to evaluate the performance, where Bias+Layernorm,
GEMM+Layernorm, and GEMM+GEMM represent MI+MI, CI+MI,
and CI+CI mixes, respectively. Figure 3 shows the speedup of
the fused operator over the detached operators on NVIDIA
RTX 4090 and A100 GPUs, where the x-axis represents the
running configurations (detailed in Table 3).

Table 3. The running configurations of fused operators.

Name H Batch Size [ Sequence Length [ Hidden Dimension

G1/G2 1 128 512/1024
G3/G4 1 4096 512/1024
G5/G6 8 128 512/1024
G7/G8 8 4096 512/1024

It can be observed that the effect of operator fusion varies
significantly under different cases. For example, the fused
GEMM+Layernorm operator achieves a maximum speedup
of 16.5% and 39.1x when the hidden dimension is 512. But
when the hidden dimension is 1,024, it results in significant
slowdowns in most cases. The fused GEMM+GEMM operator
achieves more than 2x speedup on RTX 4090 GPU when
batch size and sequence length are 1 and 128, whereas it is
inferior to the detached operators under all cases on A100



Accelerating Sparse Transformer Inference on GPU

[ Detached [ Fused

PPoPP 26, January 31 - February 4, 2026, Sydney, NSW, Australia

[ Detached 1 Fused

Speedup

YHHHHHHHHHHHH(H(HMHHRWHH [h ﬂﬁﬂnﬂﬂﬂﬂﬂﬂ

Speedup

Uil

39.1]

259
+Layernorip GEMM+GEMM

gl L0

32|
Bias+[hyernorm H

G1 G2 G3 G4 G5 G6 G7 G8 Gl G2 G3 G4 G5 G6 G7 G8 Gl G2 G3 G4 G5 G6 G7 G8

(a) NVIDIA RTX 4090 GPU

Gl G2 G3 G4 G5 G6 G7 G8 Gl G2 G3 G4 G5 G6 G7 G8 Gl G2 G3 G4 G5 G6 G7 G8

(b) NVIDIA A100 GPU

Figure 3. Performance comparison of detached operators and fused operator under different configurations.
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Figure 4. Performance comparison of fused operators using parameter settings from individual tuning and post-fusion tuning.

GPU. The above results indicate that fixed operator fusion
schemes cannot adapt to diverse inference scenarios.

3.3 Challenges in Parameter Tuning

The combination of fusion schemes and kernel parameters
constructs a hierarchical optimization space, making param-
eter tuning challenging. This stems from two key insights:
1) the search space of individual operators differs fundamen-
tally from that of the fused operator; 2) the optimal parameter
settings for individual and fused operators are inherently
distinct. Figure 4 shows the speedup of fused operators using
parameter settings from post-fusion tuning over those from
individual tuning on NVIDIA RTX 4090 and A100 GPUs. The
x-axis represents the experimental configuration consisting
of batch size, sequence length and hidden dimension. As seen,
directly applying the optimal setting of individual operators
to their fused implementation often leads to suboptimal per-
formance. For example, Bias+Layernorm, GEMM+Layernorm,
and GEMM+GEMM mixes achieve an average speedup of 2.4,
10.1%, and 2.2X on A100 GPU, respectively. The results in-
dicate that operator-by-operator sequential tuning is not a
viable solution. On the other hand, naive global tuning can
be inefficient due to the inconsistent search space.

4 Methodology
4.1 Design Overview

We propose STOF, accelerating Sparse Transformer inference
with flexible masking patterns and operator fusion schemes
on GPU. STOF consists of a unified MHA module and an
operator fusion module. The unified MHA module integrates
row-wise and block-wise kernels with different storage for-
mats, each with unique optimizations. The operator fusion
module is embodied as the interaction between the fusion
scheme converter and the hierarchical search engine.
Figure 5 illustrates the design overview of STOF. STOF di-
vides the sparse Transformer model into MHA structure and

downstream operators. This ensures both the customization
of MHA and the flexibility of operator fusion. For MHA struc-
ture, STOF maps its calculations directly to GPU kernels with
fine-grained optimization. The kernel selector determines the
MHA kernel by applying an analytical model that takes hard-
ware specifications into account. For downstream operators,
the scheme converter expresses the fusion scheme as a binary
array through hash coding upwards and maps it to compi-
lation templates through numerical decoding downwards.
The search engine initializes scheme, expands fusion, and
samples parameters via analytical modeling, performance
feedback, and reward algorithm, respectively.

Multi-head Attention ! Downstream Operators

ot a) -0 T B0
$

Unified MHA Module

Operator Fusion Module

Row-wise Kernel | [ Block-wise Kernel Fusion Scheme Convertor
v row-sliced Q parallel| [v" mask bitmap storage | HHSI} Numer%cal Compilation
v sync-elimination v Q register resident Encoding Decoding Template
v shuffle within warp ) (v async data copying

fusion scheme I 1numcrical expression

[ Hierarchical Search Engine ]

Scheme
Initialization

Hardware Specification

Figure 5. The design overview of STOF.

| kernel parameters I

( Analysis-driven Kernel Selector J

Fusion

Parameter
Expanding li

We have implemented two sets of kernels depending on
the data partitioning granularity. The row-wise kernel slices
Q into rows to achieve high locality. Moreover, the row-
wise kernel applies shuffle within a warp and eliminates the
synchronization among warps, improving performance at
small input sizes. In contrast, the block-wise kernel is more
general with fine-grained block partitioning, where Q, K,
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and V are partitioned into sub-blocks and put into SMEM to
utilize the GPU memory hierarchy. Since row partitioning
can be regarded as an extreme case of block partitioning, we
elaborate on the block-wise optimizations in Section 4.2.
The main takeaway of STOF is a novel co-design that
bridges manual kernel implementation for sparse MHA struc-
ture and automatic fusion for dense downstream operators.
Specifically, the sparsity in STOF is exclusively handled
within the MHA module, where mask-based computation is
explicitly managed by customized kernels. All subsequent op-
erators after MHA are dense and executed via template-based
fusion, ensuring both high performance and compositional
flexibility. Beyond the specific optimizations for Transformer
architectures, the core methodology of STOF is readily ex-
tensible to emerging LLM architectures. For instance, in
Mixture-of-Experts (MoE) models [8], we can accelerate ac-
tivated experts via specialized kernels while optimizing the
routing logic through template-based fusion, potentially sup-
porting dynamic computation paths at minimal cost.

4.2 Unified MHA Kernels

4.2.1 Sparse Storage Format. Figure 6 shows the block-
wise computation with a sparse storage format that can repre-
sent arbitrary mask. Inspired by literature [23, 41], we adopt
a two-level storage format combining Block Compressed
Sparse Row (BSR) and bitmap, preserving sparsity while en-
abling structured computation. As shown in Figure 6, we
abstract two levels as OuterTile (OT) and InnerTile (IT) to
reveal globally skipped blocks and intra-block element dis-
tribution, respectively. Each OT is composed of 64 8x8 ITs
(only 4 are shown in the figure for clarity). An OT is marked
as “full” if all of its ITs are not empty, otherwise “part”. For
the “full” OTs, the difference between full_row_pir[i] and
full_row_ptr[i — 1] indicates the number of “full” OTs in
the i-th row. The array full_col_idx specifies the column
indices of “full” OTs. For example, as can be inferred from
full_row_ptr and full_col_idx arrays in the figure, the col-
umn indices of “full” OTs in the 2-nd row are 0 and 2.

For the “part” OTs, there are also two similar arrays in-
cluding part_row_ptr and part_col_idx. The part_col_idx
further points to the corresponding IT with sparse element
distribution. Since each IT contains exactly 64 elements, it
can be efficiently represented by a single uint64 value. Con-
sequently, for each “part” OT, the internal mask information
is stored as a bitmap_mask array consisting of 64 uint64
elements. During the processing of the innermost loop, each
bitmap_mask[i] is retrieved to obtain the precise masking
pattern. By combining the structures of “full” and “part” OTs,
we obtain load_row_ptr and load_col_idx arrays that di-
rectly specify the location of non-empty OTs in the mask.

4.2.2 Kernel Implementation. We cut the input tensor
Q into sub-blocks of size (OT_Size_M, head_size) along the
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Figure 6. MHA computation with two-level storage format.

seq_len dimension, as illustrated in Algorithm 1. Each sub-
block Q; (line 2) corresponds to a Row-Parallel Dimension

(PD;), where i € [0, f%]). To enhance data local-
ity, for each row processed by Q;, K and V are divided

into sub-blocks K].T and V; of size (OT_Size_N, head_size)

(lines 7-9), where j € [0, f%}). The workload of
OTs per row is determined by the arrays load_row_ptr and
load_num (lines 4-6). Under the coarse-grained block of size
(OT_Size_M, OT_Size_N), only valid OTs that require com-
putation are loaded, while others are skipped. This alleviates
bandwidth conflicts by greatly reducing global memory ac-
cess. The asynchronous copy of V; (line 9) allows the GEMM
(line 10) to proceed without waiting for the completion of
V;’s transfer. Furthermore, it eliminates the need for data
loading stalls in the subsequent GEMM (line 16). After obtain-
ing P;j, the presence of any “part” OTs in the current row
is checked to determine whether ITs’ storage information
should be loaded from the uint64 array bitmap_mask and
applied to mask S;; (lines 11-14). Due to the consistency of
KJT and V; blocks on the Iteration Dimension (IDj), the skip
operation on KJT is also applied to Vj, thus reducing amounts
of calculation and storage. After the Softmax operation, S;;
and the scaling factor a within the OT are obtained to ensure
the correctness of reduction operations (lines 15-16). Finally,
the results are written back to HBM (line 18).

We further conduct advanced optimizations on the MHA
kernel, primarily based on FA2 [15]. For example, the 88 size
of ITs not only matches the uint64 size but also aligns with
the data granularity operable by Tensor Cores. Notably, OTs
are stored in row-major order to accommodate the row-wise
iterative computation of Softmax, whereas ITs are stored in
col-major order to enable bank conflict-free accesses. The
OT size is determined by considering cache capacity and the
number of SMs. During each iteration, Q; is kept in registers,
KJT and V; share a single physical portion of shared memory.
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Algorithm 1: MHA Kernel with Unified Format

Input: flattened tensors on HBM Q_HBM, K_HBM, V_HBM; unified
mask storage structures part_row_ptr, partfcolfidx,
load_row_ptr,load_col_idx, bitmap_mask

Output: MHA result on HBM result_HBM

.. seq_len

1 foriin [0, [m]) do

2 Q; «Load_from_ HBM(Q_HBM;);

3 tmp_part_col_idx, O; « 0;

4 load_num « load_row_ptr[i+ 1] — load_row_ptr[i];

5 part_num «— part_row_ptr[i+ 1] — part_row_ptr[i];

6

7

8

9

for ko_idx in [0, load_num) do

j < load_col_idx[load_row_ptr[i] + kv_id];
K]T «Load_from_HBM(K_HBM;);
Vj « __async_memcpy (Load_from_HBM(V_HBMj}));
10 P;j < Compute_GEMM (Qi,K]T);
1 if tmp_part_col_idx < part_num and
Jj == part_col_idx[part_row_ptr[i] + tmp_part_idx]
then
12 Apply_Mask(S;j, bitmap_mask[tmp_part_col_idx]);
13 tmp_part_col_idx « tmp_part_col_idx + 1;
14 end
15 Sij, a «Softmax (P;;);
16 O; < O; X a+Compute_GEMM(S;;, V;);
17 end
18 result_HBM «Write_back_to_HBM(O;).
19 end

4.2.3 Kernel Selection. By comprehensively considering
the influence of masking patterns and sequence lengths, we
decide whether to apply a row-wise or block-wise kernel for
MHA computation. As formulated in Equation 1, we empiri-
cally set the coefficient 7 to 1.2 and calculate the threshold.
We select row-wise kernel if threshold is less than 0, indi-
cating that the ratio of valid OTs (i.e., “full” and “part”) is
sufficiently low. Note that we use log operation to penalize
the extremely sparse situation due to the increase of sep_len
while the mask width remains unchanged. By doing so, we
have limited row-wise kernel to cases where the number of
valid OTs is small and the sep_len is short. In such cases,
centralized row-wise computation of mask elements brings
excellent data locality. For other general cases, we apply
block-wise kernel to maximize performance.

T

([2eateny)2 * (log,[2e4ten 2

load_row_ptr([ % 11

threshold = (1)

4.3 Fusion Scheme Conversion

It is essential to express the fusion scheme appropriately,
quantifying the dependencies among vertical operators and
identifying the fusion boundaries. Inspired by the high-low
voltage levels of digital circuits, we use binary hash codes
as the numerical expression of fusion schemes. STOF maps
the fused operators to compilation templates so that the
compiler can further add kernel-level optimizations. From
the perspective of the computational graph, the captured
adjacent nodes are replaced with fused nodes.

Figure 7 shows the workflow of the fusion scheme con-
verter in STOF. Take the forward propagation of BERT as
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Figure 7. The workflow of fusion scheme converter.

an example, STOF traverses the computational graph con-
structed by the DL framework and extracts subgraphs that
conform to the patterns of fusion schemes. Each subgraph is
mapped to the target compilation template, which is carefully
implemented to achieve optimal performance. Specifically,
the templates decompose tensor operations into tiles to max-
imize data reuse, leverage warp-level primitives for efficient
reductions, and apply multi-stage pipelining to overlap mem-
ory accesses and computation. Although we customize the
compilation template according to the functionality of the
fused operator, the graph mapping process is highly flexible.
For instance, the template that computes a GEMM chain
with CI+CI pattern can also incorporate simple MI opera-
tions, such as adding bias element by element (i.e., Bias). On
the other hand, the compilation template hides the hardware
execution details and only exposes key kernel parameters
for performance tuning. For the GEMM chain, the sub-block
sizes and the launch configuration (e.g., number of stages)
constitute the search space, providing the possibility of fur-
ther optimization targeting at a specified case.

The fusion scheme is quantized by hash encoding, and
the native operators are represented as arrays with a length
equal to the number of operators according to the vertical
fusion situation. In this way, hash encoding translates ab-
stract fusion patterns into a quantifiable space, a process
that establishes a bidirectional mapping consistent with the
definition of “hash”. We assume that in addition to mapping
MHA ([#2-#6]) to the fused kernel, the fusion scheme also
specifies three other downstream fused operators including
[#7-#9], [#10-#12], and [#13,#14]. The numbers representing
the operators in the subgraph are the same, which is similar
to the high-low voltage levels of the circuit. For example,
the numbers corresponding to the subgraph [#7-#9] are all
1. Besides, the different numbers of adjacent operators refer
to the boundary of adjacent subgraphs. Note that the num-
bers are unrelated to the operator characteristics, they are
introduced solely to facilitate the subsequent tuning process.
The numerical expression is usually in binary, but it can also
be converted to hexadecimal format with a higher compres-
sion rate. Intuitively, this expression approach constructs a
flexible search space that can represent any fusion scheme.
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On this basis, we propose a two-stage search mechanism to
tune the running configuration during inference.

4.4 Search Space Exploration

STOF deploys a search engine featuring scalable fusion bound-
aries and parameter-tuning capabilities. As depicted in Fig-
ure 8, the search engine first uses neural hashing and pre-
defined rules to derive an initial fusion scheme. Then, the

two-stage procedure is conducted to determine the bound-
aries of the fused operators and their kernel parameters.

Scheme Initialization
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Figure 8. The workflow of hierarchical search engine.

4.4.1 Fusion Scheme Initialization. STOF leverages both
pattern discovery and expert knowledge to derive the initial
fusion scheme. First, STOF adopts a convolutional subgraph
analysis method neural hashing to discover representative
subgraphs that frequently appear during the inference, for-
malized as: H(G) = Fhash(Feonv(G)). Here, G is the input
computational graph structure; Fcony is a convolutional fea-
ture extractor that extracts local structural features from the
graph G. Fpash is a hash mapper, which compresses and dis-
cretizes the extracted features into a unique hash fingerprint
H(G). By analyzing the frequency distribution of these fin-
gerprints, STOF can rapidly detect classical subgraph struc-
tures across Transformer-based models. Second, STOF uses
predefined rules to extract potentially high-performance sub-
graphs from the identified subgraph structures to form the
initial scheme. For example, according to the conclusion in
Section 3, the GEMM chain is preferentially fused into one
segment under smaller batch sizes and sequence lengths.

4.4.2 Two-Stage Tuning Procedure. In the first stage,
STOF tends to expand the boundaries of the segments until
there is no additional benefit after fusion. Since DL frame-
works have implemented the fusion of common MI operators,
we mark CI operators and adjust the fusion scheme around
them for complementarity. We have restricted that there are
at most two CI operators in each segment, and classified the
fusion rules into the following three categories.

e expand: merge existing individual or fused operators to
form a new segment without disrupting the structure
of other segments, such as the transition from Sy to S;.
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o seize: a segment with at least one CI operator preempts
an operator from a segment consisting of only MI
operators, such as the transition from S; to S;.

e compete: if two segments compete for an individual
operator, the segment with only one CI operator will
be extended first, such as the transition from S, to Ss.

Based on the above rules, we apply depth-first search (DFS)
to gradually expand the fusion range. In this process, STOF
randomly samples a fixed number of parameter settings of
the pre-fusion and post-fusion operators, then takes the best
setting to compare the performance. If there is a performance
gain, STOF will keep the new fusion scheme, otherwise roll
back. As long as the scheme has appeared and the perfor-
mance under specific parameter settings is recorded in the
cache, the same attempt will not be made later.

In the second stage, STOF conducts parameter sampling for
the determined scheme. Specifically, we fix the total number
of configurations during each iteration and retrieve perfor-
mance data. In the first iteration, STOF ensures the number
of sampled settings for each segment is the same. When
the highest overall gain is achieved when tuning a segment,
STOF rewards it by increasing the sampled settings in the
next iteration. Similarly, STOF caches performance data to
avoid repeated execution of the same parameter setting.

4.5 Implementation Details

We have implemented a system prototype of STOF based on
PyTorch [4], Triton [58] and TileLang [12], involving approx-
imately 5,000 LOC of Python and 2,500 LOC of C/CUDA. The
block-wise kernel is developed based on FA2 [15] with the
CuTe structure, but introduces an efficient two-level storage
format and corresponding optimizations. Subsequently, the
customized MHA kernel is loaded into PyTorch through the
torch/cpp_extension interface, which encapsulates the
kernel in the form of a native function. When the MHA
kernel is first called, it is just-in-time (JIT) compiled into a
shared object file (.so) using the ninja tool, enabling dy-
namic linking at runtime without repeated compilation.
Regarding the operator fusion module, we find that the
Triton- and TileLang-based compilation templates demon-
strate performance variance under different fused operators,
so we select the implementation that achieves superior per-
formance in each case. We enable the graph capture and re-
placement by manipulating objects of type fx.GraphModule.
Since the overall implementation of STOF is compatible with
the torch.compile function, its related compilation opti-
mizations can be reused to maximize performance.

5 Evaluation
5.1 Experiment Setup

5.1.1 Hardware and Software Platforms. We evaluate
STOF on two generations of GPUs, including NVIDIA RTX
4090 of Ada model and NVIDIA A100 of Ampere model.
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Figure 9. The MHA performance of the methods normalized to that of PyTorch Native on NVIDIA RTX 4090 GPU.
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Figure 10. The MHA performance of the methods normalized to that of PyTorch Native on NVIDIA A100 GPU.

The experiments are conducted in the software environment
configured with Ubuntu 22.04, CUDA v12.6, and PyTorch
2.7.0. We package Docker containers to quickly migrate the
software environment between hardware platforms.

5.1.2 Comparison Configurations and Methods. We
conduct evaluation on both atomic and compound masking
patterns including causal, sliding window, Longformer [6],
and Bigbird [70]. The sequence length ranges from 128 to
4,096 with a stride of 2%, and the batch size ranges from 1 to
16. For MHA computation, we follow the configuration of
BERT-Base. For end-to-end inference, the configuration is
set to be consistent with the standard models of BERT [17],
GPT2 [47], LLaMA [59], T5 [48] and ViT [21]. We compare
STOF with PyTorch Native, PyTorch Compile [4], FlashAtten-
tion2 (FA2) [15], FlexAttention [18], ByteTransformer [71],
Bolt [66], MCFuser [72], and SPLAT [27]. Note that FlexAt-
tention, FA2, and SPLAT are optimized only for MHA, while
PyTorch Compile integrates FA2 for MHA computation. In
addition, Bolt has no MHA-specific optimizations and only
appears in the end-to-end evaluation. Since SPLAT is not
open source, we reproduce it based on the contents in the pa-
per. We adopt the half precision (FP16) for evaluation, which
is commonly used for model inference in industry [3], ensur-
ing a unified comparison across all methods. To minimize

machine errors, we perform warm-ups for all experiments
and run 100 times to record the average performance.

5.2 MHA Performance

Figure 9 and Figure 10 present the MHA performance of the
methods normalized to that of PyTorch Native on RTX 4090
and A100 GPUs. The missing bars are attributed to two rea-
sons: 1) ByteTransformer lacks support for sequence lengths
greater than 1,024; 2) MCFuser runs out of memory (OOM)
when the input scale is large. As seen, STOF shows consistent
superior performance on both GPU platforms. Compared
to the state-of-the-art FlexAttention implementation, STOF
achieves the average speedups of 1.8x and 1.6X on RTX 4090
and A100 GPUs, respectively. STOF achieves superior perfor-
mance on sliding window mask because its high sparsity and
concentration of valid blocks facilitate computation skipping.
Even for causal masks, STOF still achieves a certain speedup
over FA2 and FlexAttention under most cases. The reason is
that the two-level storage format combining BSR and bitmap
further improves on-chip memory locality. In contrast, due
to the lack of tensor core support, SPLAT achieves decent
performance on RTX 4090 GPU with higher CUDA core ratio,
achieving a maximum speedup of 3.6x compared to PyTorch
Native; but it lags behind on A100 GPU across all cases.
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Figure 11. The end-to-end performance of the methods normalized to that of PyTorch Native on RTX 4090 and A100 GPUs.

Table 4. Tuning time of STOF, MCFuser, and Bolt for end-to-end inference on A100 GPU in seconds.

Input Size (1,128) (8,512) (16, 2048)

Name BERT-B [ BERT-L [ GPT [LLaMA | T5 [ ViT |[BERT-B [BERT-L[ GPT [LLaMA| T5 [ ViT |[BERT-B|BERT-L| GPT [LLaMA| T5 [ ViT
MCFuser 514 524 | 495| 488 |719 [100.2 91.8 132.3 | 100.8 | 110.8 | 239.0 | 437.8 660.2 1049.7 | 664.4 | 820.6 | 1987.6 | 4264.3
Bolt 53.3 573 | 488 | 521 70.7 | 120.7 90.8 126.1 | 99.8 | 124.6 |244.7 | 468.8 652.2 1067.7 | 738.6 | 837.0 | 1860.8 | 3848.6
STOF (ours) 23.3 22.6 [23.8| 295 [43.1|93.9 40.9 55.0 |40.9 | 43.6 | 80.3 | 99.3 99.6 225.3 | 122.2| 264.6 | 388.3 | 412.8

The above figures illustrate the MHA performance at dif-
ferent input scales in detail. At small scales, STOF achieves
relatively better performance than FA2 and FlexAttention un-
der most cases. STOF enables the row-wise kernel, where the
use of shuffle operations within the warp incurs extremely
low synchronization cost. On the other hand, STOF achieves
significant speedup compared to other methods at large input
scales. For example, when the setting of (batch size, sequence
length) is (16, 4,096), STOF achieves 4.8x and 4.9 speedups
over FA2 and FlexAttention on A100 GPU, respectively. This
is mainly because the block-wise kernel makes full use of
the mask sparsity to skip unnecessary calculations. Besides,
the optimizations such as asynchronous data copying and
Q register resident serve as the foundation for performance
improvement. Note that PyTorch Native, MCFuser, and Byte-
Transformer do not natively support sparse masks. The basic
approach is to subtract the mask matrix, thus missing the
opportunity to reduce the amount of calculation.

5.3 End-to-end Performance

We benchmark five models including BERT-Base, BERT-
Large, GPT2, LLaMA, T5 and ViT. Among them, BERT and
ViT are encoder-only, GPT2 and LLaMA are decoder-only,
whereas T5 contains both encoder and decoder. We adopt the
Bigbird mask and conduct experiments under three distinct
settings of (batch size, sequence length): (1, 128), (8, 512), and
(16, 2,048). Figure 11 presents the end-to-end performance of
the methods normalized to that of PyTorch Native on RTX
4090 and A100 GPUs. The missing bars indicate OOM for MC-
Fuser or unsupported sequence length for ByteTransformer.
As seen, STOF consistently delivers the highest speedups
across the majority of models and settings on both GPU
platforms. Even compared to the state-of-the-art PyTorch
Compile, STOF achieves an average speedup of 1.3x and 1.4x
on RTX 4090 and A100 GPUs, respectively. In addition to

customizing the MHA kernel, the performance gain of STOF
also comes from operator fusion and parameter tuning,.

For the setting (16, 2,048), STOF achieves 1.5%, 1.5X, 1.2X,
1.3%, 1.1%, and 1.2X speedups over PyTorch Compile for the
six models on RTX 4090 GPU. A similar trend can be observed
on A100 GPU. The results indicate that the advantages of
STOF are particularly pronounced for larger input scales.
The reason is attributed to the significant reduction in the
absolute time of the bottleneck MHA computation. This
demonstrates that STOF has the potential to be applied to
future GPU generations with larger memory capacity.

5.4 Tuning Cost

Table 4 lists the tuning time of STOF, MCFuser, and Bolt
for end-to-end inference on A100 GPU in seconds, where
BERT-B/L is BERT-Base/Large. Note that PyTorch Native,
PyTorch Compile, and ByteTransformer are not included due
to the lack of tuning support. As seen, the tuning time of
STOF is less than that of MCFuser and Bolt in all cases. This
advantage becomes more prominent when the input scale
is large. Since the tuning process of operator fusion module
in STOF is positively correlated with the input tensor, the
tuning cost per iteration increases moderately, but it does not
grow linearly with respect to the overall tuning time. For the
setting (16, 2,048), STOF is on average 6.7X and 6.9 faster
than MCFuser and Bolt. This is mainly because reward-based
sampling enables STOF to find high-performance settings
in a shorter time. On the other hand, the caching mecha-
nism ensures that the same parameter setting in each fusion
scheme will not be executed repeatedly, which particularly
saves tuning time in scenarios with large input scales.

5.5 Ablation Study

Figure 12 presents the speedup of STOF with only unified
MHA module or only operator fusion module over PyTorch
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Native and PyTorch Compile on A100 GPU. For reference,
the speedup of STOF with both modules is also shown in
the figure. For PyTorch Compile, we also break the MHA
boundary, transforming the whole computation graph into
low-level meta operators for compilation optimization.

As seen, the operator fusion module contributes more to
the performance when the input scale is small. Taking the
setting of (1, 128) as an example, the speedup achieved by
only fusion module is 19.5% higher than that of only MHA
module on average. In fact, the low sequence length and
batch size lead to a small computational workload, which is
particularly friendly to the fusion of CI operators. However,
the contribution of the MHA module exceeds that of fusion
module as the input scale increases. For the (16, 2,048) set-
ting, the speedup of only MHA module is 2.0X on average,
higher than that of only fusion module. Since MHA compu-
tation becomes the bottleneck, the high parallelism of the
block-wise kernel is reflected in end-to-end inference. Note
that STOF with both modules always achieves the highest
speedup, indicating that the optimizations can complement
each other. On the other hand, we find that breaking the
MHA boundary would compromise these tailored kernel op-
timizations. The results show that such boundary breaking
causes up to 1.5X slowdown compared to preserving it.
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Figure 12. The speedup of STOF with only MHA module or
only fusion module over PyTorch Native on A100 GPU.

5.6 Overhead Analysis

The STOF overhead mainly includes the analysis model,
scheme conversion (i.e., hash encoding and numerical decod-
ing), and reward algorithm. The analysis model is reflected
in MHA kernel selection and fusion scheme initialization.
Figure 13 presents the time breakdown of STOF overhead
normalized to the tuning process on A100 GPU. As seen, the
time proportion of scheme conversion and reward algorithm
is relatively smaller when the input scale is large. This is be-
cause these overheads are dominated by the model structure,
and a larger input scale will lead to a longer tuning time, thus
diluting this proportion. In contrast, the proportion of analyt-
ical model increases with the input scale. The primary reason
is that the overhead for analyzing mask blocks increases with
longer sequence lengths. Nevertheless, the analysis consti-
tutes at most 0.5% of the total time. Overall, STOF accounts
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for less than 3% of the total tuning time, making it highly
acceptable in the context of model fine-tuning.
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Figure 13. Time breakdown of the STOF overhead normal-
ized to the tuning process on A100 GPU.

5.7 Discussion

5.7.1 Newer GPU Architectures. In addition to NVIDIA
Ampere and Ada architectures, we have conducted prelimi-
nary tests on newer hopper architecture (i.e., NVIDIA H20
GPU). The results show that STOF consistently outperforms
FA2, achieving up to 1.4x speedup for MHA computation.
This proves that kernel optimizations of STOF are universal
across GPU architectures. We plan to extend this evaluation
to include FA3 for future work.

5.7.2 Longer Sequence Lengths. We explore sequence
lengths ranging from 4k to 16k and batch size of 1 on NVIDIA
A100 GPU. STOF achieves significant speedups over the
SOTA PyTorch Compile, reaching 4.1%, 11.1%, and 16.8%
at 4k, 8k, and 16k, respectively. In addition, all baselines
except STOF encounter Out-of-Memory (OOM) errors at
sequence length of 32k, whereas STOF reaches OOM at 64k.
The results indicate that STOF exhibits greater performance
improvement for ultra-long sequence lengths, as well as
significantly saving GPU memory.

5.7.3 Dynamic Mask Patterns. STOF is inherently posi-
tioned to support dynamic mask patterns due to its flexible
design. For example, MInference [31] could serve as a sophis-
ticated frontend to discover dynamic patterns, with STOF as
the execution backend. The main challenge lies in efficiently
integrating MInference’s offline pattern determination and
online index generation into STOF’s compilation pipeline
with minor overhead. For future work, we plan to extend
the analytical model to determine optimal configurations at
runtime based on input token sequence.

6 Related Work

Hardware Accelerators for Attention. Recent works have
considered the inherent parallelism and memory access pat-
terns to design customized accelerators [5, 22, 25, 28-30,
37, 46, 62, 69, 74, 82]. ELSA [29] utilizes an approximate
similarity computation scheme to filter out insignificant re-
lations. ViTCoD [69] polarizes attention maps into denser
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and sparser patterns to reduce data movement. He et al. [30]
propose a PIM-enabled heterogeneous system that acceler-
ates LLM decoding with a dynamic online scheduler. This
work focuses on attention optimizations on GPU, but has
the potential to be applied to the emerging accelerators.

Auto-tuning for Scientific Applications. Existing works
have designed auto-tuning approaches to handle the com-
plexity of scientific applications [14, 19, 45, 50, 54-57, 64, 67].
Donggarra et al. [19] perform batched calculation self-tuning
on GPU for a series of numerically dense linear algebra op-
erators. Randall et al. [50] propose a generative method that
achieves automatic adjustment based on few-shot transfer-
learning. Plasticine [64] introduces multi-level stencil rep-
resentations and selects the better fusion strategy of stencil
operators with a CNN-GNN-based model. The above works
provide references for the implementation of this paper.

7 Conclusion

In this paper, we propose STOF, an efficient framework with
flexible masking and operator fusion for optimizing sparse
Transformer on GPU. First, we propose a unified MHA mod-
ule that implements row-wise and block-wise kernels with
unique storage formats and optimizations. Then, we propose
an operator fusion module that enables fusion expansion
and parameter tuning as well as mapping the fusion schemes
to compilation templates. The experimental results show
that STOF outperforms the state-of-the-art works in terms
of MHA computation and end-to-end inference. For future
work, we plan to extend STOF to support PaddlePaddle? and
to incorporate it transparently into the compiler stack.
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