
Vol.:(0123456789)

CCF Transactions on High Performance Computing
https://doi.org/10.1007/s42514-025-00224-3

REGULAR PAPER

�GNN: Non‑Uniformly partitioned full‑graph GNN training on mixed
GPUs

Hemeng Wang1 · Wenqing Lin1 · Qingxiao Sun1 · Weifeng Liu1

Received: 1 August 2024 / Accepted: 5 March 2025
© The Author(s) 2025

Abstract
Graph neural networks (GNNs) can be adapted to GPUs with high computing capability due to massive arithmetic opera-
tions. Compared with mini-batch training, full-graph training does not require sampling of the input graph and halo region,
avoiding potential accuracy losses. Current deep learning frameworks evenly partition large graphs to scale GNN training
to distributed multi-GPU platforms. On the other hand, the rapid revolution of hardware requires technology companies and
research institutions to frequently update their equipment to cope with the latest tasks. This results in a large-scale cluster
with a mixture of GPUs with various computational capabilities and hardware specifications. However, existing works fail
to consider sub-graphs adapted to different GPU generations, leading to inefficient resource utilization and degraded training
efficiency. Therefore, we propose �GNN, a Non-Uniformly partitioned full-graph GNN training framework on heterogeneous
distributed platforms. �GNN first models the GNN processing ability of hardware based on various theoretical parameters.
Then, �GNN automatically obtains a reasonable task partitioning scheme by combining hardware, model, and graph dataset
information. Finally, �GNN implements an irregular graph partitioning mechanism that allows GNN training tasks to execute
efficiently on distributed heterogeneous systems. The experimental results show that in real-world scenarios with a mixture
of GPU generations, �GNN can outperform other static partitioning schemes based on hardware specifications.

Keywords Graph neural network · Distributed training · Graph partitioning · GPU

1 Introduction

Graph neural networks (GNNs) emerge as a paradigm for
efficiently learning the relationship and interaction infor-
mation in irregular graph structures. GNNs have achieved
significant accuracy breakthroughs in tasks such as vertex
classification (Kipf and Welling 2016a; Hamilton et al.
2017), link prediction (Zhang and Chen 2018; Kipf and
Welling 2016b), and graph classification (Zhang et al.
2018; Ying et al. 2018) by combining graph operations and

neural computation to understand the relationships among
data objects. Due to their powerful performance, GNNs are
widely used in areas such as knowledge graph (Bordes et al.
2013; Schlichtkrull et al. 2018), hardware design (Hakha-
maneshi et al. 2022; Wu et al. 2022), and recommendation
systems (Berg et al. 2017; Fan et al. 2019).

With the increasing size of graph data and vertex dimen-
sions, the computational complexity of GNNs increases
dramatically, and the demand for computational resources
becomes more urgent (Shao et al. 2024; Dwivedi et al.
2023). To solve this problem, it has become a common
practice to deploy GNN training tasks to high-performance
graphics processing units (GPUs) and utilize their powerful
parallel computing capabilities to accelerate the GNN train-
ing and inference process (Tripathy et al. 2020; Thorpe et al.
2021; Zhang et al. 2020; Mostafa 2022).

Hardware technology iterates at an extremely fast
pace, with central processing units (CPUs), graphics pro-
cessing units (GPUs), and other specialized acceleration
units (Armeniakos et al. 2022; Xu et al. 2023) constantly
making breakthroughs in performance, energy efficiency,

 * Qingxiao Sun
 qingxiao.sun@cup.edu.cn

 Hemeng Wang
 hemeng.wang@student.cup.edu.cn

 Wenqing Lin
 wenqing.lin@student.cup.edu.cn

 Weifeng Liu
 weifeng.liu@cup.edu.cn

1 SSSLab, Department of CST, China University
of Petroleum-Beijing, Beijing 102249, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-025-00224-3&domain=pdf
http://orcid.org/0000-0003-2927-362X

 H. Wang et al.

and other metrics. Due to the uncertainty of technological
developments and commercial needs, researchers typically
do not purchase large quantities of the same hardware all at
once, but rather upgrade incrementally to ensure the stability
of software and business services.

While this incremental upgrade strategy brings flexibil-
ity, it also incurs a significant problem: uneven computing
capability in a distributed environment (Zhou et al. 2020;
Xu et al. 2024). Since GPUs purchased from various batches
have their own architectural characteristics, they may show
obvious performance differences when performing the same
tasks. In addition, the differences in support for mixed-preci-
sion further exacerbate the imbalance in computing capabili-
ties. The mixed-precision technique can be well applied to
large-scale tasks such as GNN training (Zheng et al. 2022a),
which can reduce memory consumption and computational
complexity while maintaining prediction accuracy.

Currently, mainstream deep learning frameworks, such as
Deep Graph Library (DGL Wang et al. 2019) and PyTorch
Geometric (PyG Fey and Lenssen 2019), usually adopt a
uniform partitioning scheme when dealing with full-graph
GNN training, where the vertices are evenly distributed to
individual GPUs. However, this method does not consider
the imbalance of computing capabilities during GNN train-
ing, which often leads to low resource utilization and makes
gradient synchronization a bottleneck.

On the other hand, the parallel capability of GPUs is not
always the key to improving the training speed of GNNs. In
some cases, data pre-processing, memory access, and data
communication may each become a performance bottleneck.
Therefore, it is necessary to adjust the task partitioning
according to the graph input to improve resource utilization
and reduce the end-to-end training time. In a mixed hetero-
geneous distributed environment, GNN full-graph training
faces unique challenges: (1) Uniform partitioning leads to
under-utilization of some GPUs and overload of other GPUs,
resulting in high synchronization latency; (2) Diverse sub-
graphs and GNN models have different resource require-
ments, and the partitioning scheme according to hardware
specifications leads to suboptimal performance.

To address the above challenges, we propose �GNN,
a Non-Uniformly partitioned full-graph GNN training
system on mixed GPUs. This paper makes the following
contributions:

• We propose a novel performance model for GNN training
on GPUs. To obtain the trained regression model, We
comprehensively analyze the behavior of GNNs across
GPU generations.

• We design an offline-online cooperative task assignment
mechanism to fully utilize the mixed GPU resources. We

search the scheme and adjust precision to balance the
workloads.

• We implement a non-uniformed graph partition system
on a cluster that equips different GPUs. The experimental
results show that �GNN outperforms other partitioning
methods by a factor of, on average, 1.33 on GCN (up to
2.75) and 1.23 on GAT (up to 2.41), respectively.

The rest of this paper is organized as follows. Sections 2
and 3 present the background and motivation. Section 4 pre-
sents the details of �GNN methodology. Sections 5 and 6
present the evaluation results of �GNN and the related work.
Section 7 concludes this paper.

2 Background

2.1 GPU hardware architecture

GPUs are connected to the host system via the PCI-Express
(PCIe) bus as a peripheral device that contains the GPU
processor and onboard memory modules. The GPU proces-
sor consists of a number of streaming multiprocessor (SM)
that share the main memory bus and the L2 cache but are
independent of each other. Each SM contains multiple ALU
(CUDA core), an instruction decoder, and local memory.
CUDA cores share the SM resources, including the instruc-
tion decoder, and therefore execute the same instructions
simultaneously.

GPUs differ significantly from CPU architectures (Zhang
et al. 2017) because of their many-core structure and multi-
ple types of memory; CPUs primarily use task parallelism,
where each core executes a different piece of code, whereas
GPUs are designed for data parallelism, where multiple
cores execute the same code at the same time but work with
different data (see Fig. 1).

Threads within a group are divided into subgroups (called
warps or wavefronts) equal to the number of GPU cores in
the SM. These subgroups run in true SIMT mode, with only
one subgroup actually running. When one subgroup waits
(e.g., for a memory transfer), SM performs a fast context
switch to allow other subgroups to continue computation.
SIMT execution suffers from branching problems, where all
branches must be executed by all threads when threads in the
group choose different branches, and branch-heavy code and
loops with large differences in the number of iterations don’t
perform well on the GPU. However, SIMT simplifies intra-
group synchronization by allowing threads to communicate
and collaborate through the shared local memory of the SM.
While CPUs typically employ task parallelism, GPUs focus
on data parallelism and are suitable for handling large-scale
graphical computations and data-parallel tasks.

�GNN: Non-Uniformly partitioned full-graph GNN training on mixed GPUs

GPUs have evolved significantly across generations, with
each introducing architectural improvements to enhance per-
formance and efficiency. For instance, the Pascal architecture
introduced higher memory bandwidth and energy efficiency,
while the Turing architecture added real-time ray tracing and
tensor cores for AI acceleration. The Ampere generation fur-
ther increased core counts and introduced second-generation
RT cores and third-generation tensor cores. Those architec-
tural differences lead to different computing capabilities and
memory bandwidths among GPUs, thus resulting in different
performance in terms of GNN training.

2.2 Graph neural network

Recently, there has been increasing interest in applying deep
learning to unstructured data. Unlike the dense objects (e.g.,
images and text) processed by traditional deep neural net-
works, graphs represent sparse and irregularly connected
links. Table 1 presents important GNN notations.

GNNs take graph-structured data as input (Wu et al.
2020), where each vertex is associated with a feature vector.
Edges between vertices represent the topology of the graph,

quantified by the weights of the edges. GNN learns data rela-
tionships by combining graph structure and feature vectors.
Figure 2 shows an example of GNN aggregation process.

2.2.1 GCN

Graph convolutional network (GCN) (Kipf and Welling
2016a) is one of the most successful networks for graph
learning, which alleviates the problem of overfitting local
neighborhood structures for graphs. It performs graph opera-
tion formulated as Eq. 1:

where U� ∈ ℝ
d×d , degi is the in-degree of vertex i.

2.2.2 GAT

The attention mechanism has been successfully used in many
sequence-based tasks such as machine translation (Vaswani
et al. 2017), machine reading (Cheng et al. 2016), and so
on. Graph attention network (GAT) (Veličković et al. 2018)

(1)h�+1
i

= ReLU

�
U� 1

√
degi

√
degj

�

j∈Ni

h�
j

�

Fig. 1 Hardware architecture of general-purpose GPUs

Table 1 Important GNN notations

Notation Definition

h�
i
 The feature vector of a vertex i in �th layer

U� Weight matrix of the � layer
degi Degree of vertex i
Ni The set of neighbors of vertex i

e
k,�

ij
 Learnable attention factor

ℝ Weight matrix space
Fig. 2 A simple GNN illustration

 H. Wang et al.

adopts attention mechanisms to learn the relative weights
between two connected vertices. GAT employs a multi-
headed architecture to improve the learning capacity, for-
mulated as Eq. 2:

where Uk,� ∈ ℝ
d

K
×d are K linear projection heads, the atten-

tion coefficients for each head ek,�
ij

 are defined as:

2.3 Distributed GNN training

A typical GNN training process comprises forward propaga-
tion and backward propagation (Lin et al. 2023). In forward
propagation, the input data traverses the layers of neural
networks towards the output. Neural networks generate dif-
ferences in the output of forward propagation by comparing
it to the predefined labels. Then, in backward propagation,
these differences are disseminated through the layers of neu-
ral networks in the opposite direction, generating gradients
for updating model parameters.

As shown in Fig. 3, distributed GNN training can be
classified into mini-batch training and full-graph training.
Depending on whether the whole graph is involved in each
model computation phase (forward, backward, and param-
eter update).

2.3.1 Mini‑batch training

Mini-batch training utilizes a portion of the vertices and
edges in the graph to update the model parameters in each
forward and backward propagation. The aim is to reduce the
number of vertices involved in a round of computation to
minimize computational and memory resource requirements.

(2)h�+1
i

= ConcatK
k=1

(
ELU

(
∑

j∈Ni

e
k,�

ij
Uk,�h�

k

))

(3)e
k,�

ij
=

exp
�
ê
k,�

ij

�

∑
j�∈Ni

exp
�
ê
k,�

ij�

�

Before each round of training, a mini-batch �s is sampled
from the training dataset �t . By replacing the full training
dataset �t in Eq. 6 with the sampled mini-batch �s , we obtain
the loss function for mini-batch training:

It is shown that for mini-batch training, the model param-
eters are updated multiple times per epoch because a large
number of mini-batches are needed to have the entire PASS
of the training dataset, resulting in many rounds in one
epoch.

Distributed mini-batch training is a distributed implemen-
tation of GNN mini-batch training. It also requires synchro-
nization of gradients before model parameters are updated,
so a round of distributed mini-batch training consists of
three phases: sampling, model computation, and gradient
synchronization. Model parameter updates are included in
the gradient synchronization phase.

Distributed mini-batch training parallelizes the train-
ing process by processing several mini-batches at the same
time, one mini-batch per node. Mini-batches can be sampled
by the computing node itself or by other devices, such as
another node dedicated to sampling. Each node performs
forward propagation and backward propagation on its own
mini-batch. The nodes then synchronize and accumulate
the gradients and update the model parameters accordingly.
Such a process can be performed by:

where Wi is the weight parameter of the model in the ith
round of computation, ∇gi,j is the gradient generated by the
backward propagation of the computing nodes j in the ith
round of computation, and n is the number of computing
nodes.

Mini-batch GNN training currently has many limita-
tions. The sampling stage introduces irregular calculations
and requires traversing the entire graph to obtain neighbor

(4)L =
1

|Vs|
∑

vi∈Vs

∇l
(
yi, zi

)

(5)Wi+1 = Wi +

n∑

j=1

∇gi,j

Fig. 3 Two implementations of distributed GNN Training

�GNN: Non-Uniformly partitioned full-graph GNN training on mixed GPUs

information (Wan et al. 2023). This causes subsequent stages
to stall waiting for input, resulting in performance pen-
alty (Lin et al. 2023). Also, mini-batch training may suffer
from low accuracy due to information loss (Jia et al. 2020).

2.3.2 Full‑graph training

Full-graph training utilizes the entire graph to update the
model parameters in each round. Given a training set Vt ⊂ V ,
the loss function for full-batch training is:

where ∇l() is the loss function, yi is the known labeling
of vertex vi , and zi is the output of the GNN model at fea-
ture xi of input vi . In each epoch, the GNN model needs to
aggregate the representations of all neighboring vertices of
each vertex in Vt once. Therefore, the model parameters are
updated only once in each epoch.

Distributed full-graph training is a distributed imple-
mentation of GNN full-graph training. In addition to graph
partitioning, a major difference is that multiple computing
nodes need to synchronize the gradients before updating
the model parameters so that the model across computing
nodes remains uniform. Thus, a round of distributed full-
graph training consists of two phases: model computation
(forward propagation + backward propagation) and gradient
synchronization. Model parameter updates are included in
the gradient synchronization phase.

Since each round involves the entire raw graph data, each
round requires a considerable amount of computation and
a large memory footprint. To cope with it, distributed full-
graph training mainly uses a workload partitioning approach:
the graph is split to generate small workloads that are given
to different computing nodes.

Such a workflow leads to a large number of irregular
communications in each round, mainly to transfer features
of vertices along the graph structure. This is due to the fact
that the graph data is partitioned and therefore stored in a

(6)L =
1

|Vt|
∑

vi∈Vt

∇l
(
yi, zi

)

distributed manner, as well as irregular connection patterns
in the graph, such as arbitrary numbers and locations of
neighbors of vertices. As a result, there are many uncertain-
ties in the communication of distributed full-graph train-
ing (Wan et al. 2022), including uncertainties in the content,
target, time and delay of the communication, leading to chal-
lenges in the optimization of distributed full-graph training.

3 Motivation

3.1 Performance gap among GPUs

3.1.1 Throughput of SpMM kernel

There are significant differences in hardware specification
among GPUs, such as architecture, number of compute
units, core frequency, memory bandwidth, etc. Generally
speaking, the key kernel during GNN training is SpMM,
which corresponds to the aggregation of neighbor infor-
mation. The throughput of SpMM kernel greatly impacts
the training speed of GNNs (Huang et al. 2021). Therefore,
we evaluation SpMM on three GPU generations, including
A100, TITAN RTX, and TITAN X, to understand how GPU
characteristics affect SpMM efficiency.

Figure 4 shows the GFlops of SpMM kernel on different
GPUs. As seen, the performance difference among GPUs
is not exactly equal to the constant ratios. Take ogbn-arxiv
as an example, the achieved GFlops on A100 is 1.6× and
6.4× higher than that on TITAN RTX and TITAN X, respec-
tively. While for ogbn-products, A100 achieves 2.3× and
6.7× higher GFlops than TITAN RTX and TITAN X. The
results indicate that SpMM performance is not only deter-
mined by hardware but also affected by other factors, such
as the graph dimensions and degrees.

Fig. 4 SpMM throughput on
three GPUs

 H. Wang et al.

3.1.2 Execution time of GNN training

The training process involves many steps, such as gradient
calculation and parameter update. Therefore, we evaluate
the end-to-end performance of GNN training on the same
platform mentioned above. Figure 5 shows the execution
time of GCN training with 100 epochs. We perform a log2
operation on the per-epoch execution time to better showcase
the performance differences among GPUs.

It can be observed that the gap in training time is much
greater than that in SpMM GFlops. Even for ogbn-arxiv,
Cora and Pubmed, the A100 does not achieve the short-
est training time. The results indicate that the graph input
has a considerable impact on both the key kernels and the
training process. To maximize the training performance of
each GPU, it is necessary to deeply analyze the performance
characteristics of GNNs to reasonably partition the training
tasks.

3.1.3 Mixed‑precision GNN training

Modern GPUs support computations with multiple preci-
sions, and lower precision usually results in faster memory
access and computation. However, low precision may lead
to numerical instability. Therefore, mixed-precision (16-bit

mixed with 32-bit) is usually used in deep learning to accel-
erate training (Micikevicius et al. 2018). PyTorch provide
the interface torch.cuda.amp for mixed-precision train-
ing. The SOTA GNN framework DGL also support auto-
matic mixed-precision (AMP). Table 2 shows the accuracy
and per-epoch execution time of GCN trained with AMP and
pure BF16 on A100 GPU with 100 epochs. Note that pure
FP16 is not listed because it fails to converge.

It can be seen from the results that AMP does not show
an advantage on GNN training. We also try the training of
pure BF16, which achieves accelerations compared with
FP32 on some datasets without loss of accuracy. Therefore,
we believe that if BF16 can be taken into account due to its
superior performance, the efficiency of full-graph training
will be further improved.

3.2 Limitation of DL frameworks

3.2.1 Uniform graph partitioning

The graph partitioning function of popular GNN training
frameworks is built on METIS (Karypis and Kumar 1998).
The function focuses on partitioning the graph evenly so
the workload of each process can be balanced. However, the
function does not take into account the mixed heterogeneous

Fig. 5 GCN execution time on
three GPUs

Table 2 Mixed-precision GCN
training performance on A100

The bold entries denote the fastest time recorded for each dataset across different precision

Graph Dataset FP32 AMP BF16 AMP FP16 BF16

Accuracy Time (s) Accuracy Time (s) Accuracy time(s) Accuracy Time (s)

ogbn-arxiv 43.44 2.04 44.39 2.47 44.88 2.40 43.96 2.39
ogbn-proteins 10.03 5.96 10.03 5.38 10.10 5.32 10.17 4.75
ogbn-products 72.65 25.13 72.53 23.22 72.30 23.18 72.43 19.63
ogbn-mag 10.08 16.38 9.99 34.00 9.99 33.75 9.98 49.49
Reddit 94.31 13.17 94.31 11.92 94.29 11.95 94.33 10.65
Cora 80.80 1.63 80.50 1.75 80.30 1.72 80.70 1.50
Citeseer 71.50 1.49 71.40 1.64 71.80 1.63 71.70 1.52
Pubmed 80.10 1.51 79.70 1.59 79.60 1.70 79.90 1.53
Flickr 52.97 1.78 53.04 2.10 52.78 2.04 52.74 1.92

�GNN: Non-Uniformly partitioned full-graph GNN training on mixed GPUs

situation. The typical proof is that when compiling DGL, the
architecture detection only extracts the information of the
first GPU, and does not take into account the multi-GPU sce-
narios. Uniform graph partitioning can not fully exploit the
heterogeneous platform with different generations of GPUs.

Figure 6 shows the vertex distribution partitioned by
DGL’s built-in function. The partitioned sub-graphs consist
of two parts, including HALO vertices and inner vertices.
We can see that the inner vertices are well-balanced. This is
very important in a homogeneous distributed environment,
as the number of inner vertices is one key factor determining
the computational time required for GNN training. However,
HALO vertices are not well balanced (for instance, in ogbn-
arxiv, rank 1 has 2.65× HALO vertices compared with rank
0), which will result in a severe imbalance in sub-graph com-
munication. Besides, if we deploy such evenly partitioned
training tasks in a mixed heterogeneous environment, there
will be a very obvious workload imbalance. This affects the
overall training efficiency. Therefore, we need a new parti-
tioning method to tackle the unbalanced processing capabili-
ties among GPU generations.

3.2.2 Gradient synchronization cost

The uniform graph partitioning does not consider the dif-
ferences in GNN processing capability among GPUs. In
this way, GPUs with higher capability will complete the
calculations quickly and waste time waiting for gradient
synchronization. As shown in Fig. 7, we break down the
computation and waiting time of different ranks during
full-graph training. Each bar indicates a different rank, and

y-axis represents the proportion of time spent on computa-
tion and waiting.

It can be observed that Rank 2 (TITAN X) has the high-
est utilization and almost no waiting time, whereas Rank 0
(A100) wastes a lot of time waiting. On the Reddit dataset,
Rank 0 even waits for half of the time to start comput-
ing, which causes significant resource idleness. This is
because the A100 GPU quickly completes the training task
and waits for data exchange with other GPUs. Therefore,
we need a better graph partitioning method to adapt to
the uneven GPU capabilities in heterogeneous distributed
environments.

Fig. 6 The vertex distribution after DGL’s built-in graph partitioning

Fig. 7 The time comparison of computation and waiting time among
three ranks

 H. Wang et al.

4 Methodology

4.1 Design overview

In this section, we propose an efficient full-graph GNN
training framework, �GNN, for heterogeneous distributed
platforms. In order to balance the processing capability
among different GPUs, �GNN first analyzes the input
graph dataset. �GNN designs a GNN performance model
by abstracting the graph and its matricized feature infor-
mation. After obtaining the performance differences of
GPUs, �GNN will find a partition scheme to perform a
non-uniformed graph partition. By abstracting the infor-
mation of GPUs, the key parameters affecting GNN
training performance are deeply analyzed. In terms of
underlying support, �GNN integrates a GPU-aware graph
partitioning algorithm in DGL.

Figure 8 shows the design overview of �GNN. Before
graph partitioning starts, �GNN first reads the hardware
specification of each GPU, such as the number of SMs,
memory bandwidth, Frequency, etc. �GNN uses this infor-
mation to model the computing capability and obtains
the initial graph partitioning scheme. Then, �GNN con-
ducts a detailed performance analysis of training tasks by
combining the GNN model and the input graph dataset
information. �GNN further refines the initial partitioning
scheme considering the performance modeling results. �
GNN calls the underlying algorithm to partition the graph
based on the final scheme, assigning non-uniform sub-
graphs to different GPUs. Finally, �GNN executes GNN

training tasks in parallel on GPUs, and warm up several
epochs to observe whether the workloads are balanced.
If not balanced, �GNN will enable low-precision units on
GPUs with larger workloads to reduce the communication
latency time among GPUs as much as possible.

4.2 Performance modeling

It is necessary to accurately model the performance of GNN
training tasks in order to fully utilize the resources of each
GPU and reduce communication time. As shown in Fig. 5,
when the input graph dataset changes, the execution time of
GNN will fluctuate greatly. This is because the input graph
and output tensor contain a larger amount of data compared
to the model weights. As a result, the execution time of the
GNN training task is mainly influenced by the input graph
dataset. Therefore, to model the execution performance of
GNN training tasks, it is necessary to combine the charac-
teristics of the input graph dataset and the network structure.

Figure 9 shows the performance modeling process of
distributed full-graph training. Due to the limited number
of graph datasets in real scenarios, overfitting may occur if
used directly as a training dataset. Therefore, we adopt a data
augmentation method based on graph sampling. Specifically,
we sample the input graph dataset by setting different sam-
pling ratios to obtain a smaller sub-graph dataset. Then, we
perform distributed GNN training on the sampled dataset
to collect the training set of the regression models. During
training, in addition to considering the number of nodes and
edges of the graph, we also matricized the graph to obtain
the adjacency matrix that reflects degree information. After

Fig. 8 The design overview of �GNN

�GNN: Non-Uniformly partitioned full-graph GNN training on mixed GPUs

that, we extract over 30 features from the adjacency matrix,
such as the number of non-zero elements in each row and the
coefficient of variation of non-zero elements among rows. �
GNN concatenates these features together as feature vectors
of the input data and passes them to multiple regression
models for training.

These models will predict the computational time per
epoch of a particular GNN structure for a specific GPU,
providing guidance for subsequent non-uniformed graph
partitioning. �GNN evaluates the prediction accuracy of the
regression algorithms and selects the algorithm based on the
trade-off between prediction accuracy and inference time.
The trained regression model will be used for the subsequent
graph partitioning.

4.3 Heterogeneity‑aware graph partitioning

As shown in Fig. 5, the training tasks of the same dataset
also vary greatly on different GPU hardware. This is due to
the different processing capabilities of different GPU genera-
tions. Therefore, to model the performance of GNN training
tasks, it is necessary to combine the characteristics of GPUs
and model characteristics.

We consider hardware properties in two parts of �GNN.
The first is the initial modeling of hardware computational
capability. We obtain a series of key metrics from the GPUs,
such as the number of SM, memory, frequency, bandwidth,
etc. We model the computing performance of each GPU
and generate a score for each GPU based on this model.
With this model, we can obtain an initial graph partition-
ing scheme. Then, combined with the GNN model and the
input graph dataset information, we will conduct a detailed
performance analysis of the GNN training task, adjust and

optimize the initial graph partitioning scheme. Based on the
above analysis, we can further refine the graph partitioning
scheme to ensure that each sub-graph can efficiently utilize
the corresponding hardware resources, thereby improving
the overall training throughput.

Once we have determined the partitioning scheme, we
can partition the graph dataset according to that scheme. We
deploy a weight-aware graph partitioning function in �GNN.
The function can partition a graph into several sub-graphs
according to the weight information. The ratio of the number
of vertices among sub-graphs is as close as possible to the
input partition weights. This way of partitioning ensures that
the workload of each GPU is reasonable.

4.4 Algorithm implementation

The graph partitioning function provided by DGL is based
on METIS. It divides the graph into multiple sub-graphs
with minimal edge-cuts while keeping the number of verti-
ces between the sub-graphs balanced. DGL provides settings
for parameters such as the number of partitions, the number
of hops, the type of nodes and edges, and the number of
training nodes for each machine.

However, it does not take into account the computing
capabilities of different GPUs in the case of heterogeneous
computing nodes. If the graph is divided evenly, the hard-
ware resources of some GPUs may not be fully utilized, thus
affecting the overall training efficiency. Therefore, we have
integrated an asymmetric heterogeneous GPU-aware graph
partitioning algorithm in DGL.

We use a three-stage process to partition the graph:
coarsening, initial-partition, and refinement. The coarsen-
ing merges vertices to reduce the size of the graph. In the

Fig. 9 The process of performance modeling of distributed full-graph training

 H. Wang et al.

initial-partition, a greedy region growth algorithm divides
the coarsened graph into partitions that satisfy the con-
straints. In the refinement, we project the partition infor-
mation of the coarsened graph back to the original graph.
During coarsening, multiple vertices of the original graph
are combined into a single vertex in the coarsened graph.
The partition labels assigned to these coarsened vertices are
now projected back, so all the vertices in the original graph
inherit the partition labels of their corresponding coarsened
vertex. After projection, the initial partition of the original
graph may not be optimal in terms of workload balance or
edge-cut minimization. So, by moving vertices between par-
titions, we refine the partition to balance the final workload.

This algorithm divides the graph according to the par-
titioning scheme calculated by the performance model of
�GNN, assigning different parts of the graph to different
GPUs. This way, we can make full use of the capabilities
of each GPU, reduce communication time, and reduce the
overall training time.

4.5 Online adjustment considering BF16 precision

As can be seen from Table 2, when the graph dataset is rela-
tively large, converting the model and graph data to BF16
format can significantly improve performance. The reason
is that adopting BF16 format can reduce the number of data
transfers during the training process, thereby alleviating
bandwidth conflicts. However, for small graph datasets, the
precision conversion overhead introduced by BF16 format
will actually hurts the training efficiency. On the other hand,
not all GPU generations support the BF16 format. For the
experimental platform in this paper, only A100 supports the
BF16 format from the hardware, while TITAN RTX and
TITAN X do not.

In order to solve the above problems, we add the judg-
ment of the precision supported by the hardware when parti-
tioning the graph data. If any GPU supports the BF16 format
and is capable of taking on more calculations, an exponential
decay function is utilized to adjust the weight of graph par-
titioning (formulated as Eq. 7).

Equation 7 illustrates the exponential decay function, where
t is the number of vertices, and N0 is the initial quantity
learned from hardware properties. By doing this, �GNN will
increase the weight of the partitioning corresponding to the
GPU that supports the BF16 format. As a result, more ver-
tices will be allocated to the specified GPU, thus improv-
ing the overall training performance. Note that the graph
re-partitioning is done online only once, which can further
reduce the time required for model training on GPU without
significant partitioning overhead.

(7)N(t) = N0e
−�t + b

5 Evaluation

5.1 Experiment Setup

5.1.1 Hardware and Software Configurations

The hardware specifications are presented in Table 3. The
experiments are conducted on Ubuntu 22.04 with GCC
v11.4 and NVCC v12.1. The �GNN is built on DGL v2.1
and PyTorch v2.2. In addition, DGL is modified to support
asymmetric graph partitioning for �GNN.

5.1.2 Graph datasets and GNN models

The graph datasets used for experiments are presented in
Table 4. As can be seen, the graph datasets have diverse
dimensions and feature lengths. Such diversity indicates
significant differences in computation and communication
complexity.

For GCN, we set the number of hidden units in each GNN
layer to 256 and the layer size to 4. For GAT, since the model
is more complex, we shrink the number of hidden units in
each GNN layer to 128 and the layer size to 3. We use the

Table 3 Hardware specifications

A100 TITAN RTX TITAN X

CUDA Cores 6912 4608 3072
GFLOPS (FP32) 19.49 16.31 6.691
Boost Clock (MHz) 1410 1770 1089
Memory Clock (MHz) 1215 1750 1753
L1 Cache (KB) 192 64 48
L2 Cache (MB) 40 6 3
Memory Size (GB) 40 24 12
Bandwidth (GB/s) 1560 672 337

Table 4 Graph datasets used for evaluation

Dataset #Vertex #Edge #Feature #Class

Yelp 716847 13954819 300 100
Reddit 232965 114615892 602 41
ogbn-products 2449029 61859140 100 47
ogbn-mag 1939743 21111007 128 349
ogbn-proteins 132534 39561252 128 10
ogbn-arxiv 169343 1166243 128 40
Flickr 89250 899756 500 7
Pubmed 19717 88651 500 3
Citeseer 3327 9228 3703 6
Cora 2708 10556 1433 7

�GNN: Non-Uniformly partitioned full-graph GNN training on mixed GPUs

Adam Optimizer with a learning rate of 0.01 for all models
and trains each model 100 epochs.

5.1.3 Comparison methods and metrics

We compare �GNN with three different partitioning schemes.
According to the core frequency, GFLOPS, and CUDA Core
number of the three GPUs, graph datasets are partitioned
following those ratios and compared with �GNN. We first
compare the overall performance of the two GNN models
with four methods on ten commonly used real-world data-
sets. Then, we perform a quantitative analysis of the models’
computation distribution by standard deviation. After that,
we conduct an in-depth analysis of the impact of different
schemes on communication volume. Finally, we analyze the
accuracy and inference overhead of regression models.

5.2 Overall comparison

To validate the effectiveness of �GNN, we conduct perfor-
mance evaluation on the datasets presented in Table 4. The
results of the GCN and GAT models are shown in Figs. 10
and 11, respectively. The three columns for each method
indicates different ranks (GPUs). Due to the large training
time gap among different datasets, we roughly divide the
graph into upper and lower parts according to the number of
vertices and edges, with the upper half being a larger dataset
and the lower half being a smaller dataset. The different pat-
terns in the figure represent the time breakdown of different
parts, including computation, communication and reduction.

Compared with other partitioning methods on the GCN
model, �GNN has an average speedup ratio of 1.39× , 1.32× ,
1.27× , and the highest speedup ratio is 2.63× , 2.75× , and
2.62× , respectively. Compared with other partitioning meth-
ods on the GAT model, �GNN achieves 1.33× , 1.17× , 1.19×
speedup ratios on average, and achieves the highest speedup
ratio of 2.41× , 2.08× , and 2.19×.

It can be seen that �GNN outperforms the three parti-
tioning schemes compared in most cases. This shows that
�GNN can effectively accelerate the training of full-graph
GNN training in distributed heterogeneous environments.
We have also observed a performance degradation of �GNN
in some cases. For example, on the Yelp dataset, the per-
formance of �GNN is poor due to the high communication
overhead. The experimental results show that although �
GNN do balance the computational load well, the commu-
nication overhead between vertices increases compared with
other methods, resulting in the performance degradation of
�GNN. This shows that the balance of computing load is not
the only factor, but also the communication overhead. This
situation also occurs in the ogbn-mag dataset of the GAT
model. Therefore, in future work, we would like to explore
the relationship between graph partitioning and communica-
tion overhead.

We also compared the device memory consumption with
different partitioning schemes in Table 5. The rank 0 is an
A100 with 40 GB device memory, rank 1 is a TITAN RTX
with 24 GB device memory and rank 2 is a TITAN X with
only 12 GB device memory. It can be seen that compared
with partition schemes based on hardware specifications, �

Fig. 10 The overall performance comparison of GCN

 H. Wang et al.

GNN is more suited to the device memory distribution. Also,
the overall memory consumption of �GNN is lower than the
other three partition schemes.

5.3 Load balancing comparison

To verify whether �GNN makes more efficient use of hetero-
geneous GPUs, it is necessary to analyze the load balance
among GPUs during training. To compare the difference
in computation time among GPUs, we obtain the standard
deviation of rank time using four methods. The experimental
results are shown in Table 6.

Overall, the mean standard deviation of �GNN is 30%,
4%, and 22% lower than that of other partitioning methods
on GCN. For Yelp dataset, �GNN even achieves 2 × lower
standard deviation than other methods. The results indicate
that �GNN ensures balanced task distribution among GPUs,
reducing the synchronization latency in the mixed hetero-
geneous system.

For GAT, �GNN is more balanced on half of the datasets.
However, from an average perspective, the standard devia-
tion of �GNN is slightly worse. This is because the stand-
ard deviation of the computation time of ogbn-mag is large
under all schemes. Since it is the only heterogeneous graph
in our experiments, we believe that the dataset trained by the
model is not universal enough, resulting in its low predic-
tion accuracy. We will further try more heterogeneous graph
datasets later to strengthen the model. If this is excluded, the
standard deviations of the four schemes are 14.8, 5.8, 8.3,
and 6.8, respectively.

5.4 Communication analysis

�GNN also has advantages in communication. Usually, the
graph partitioning algorithm will consider reducing the
number of edge cuts as much as possible, thereby reducing
the communication volume between GPUs. However, in the
uniformed partitioning algorithm, each partition has roughly
the same number of vertices. We analyze the communication
volume between �GNN and other three partitioning methods
normalized to �GNN. The results of GCN and GAT models
are shown in Fig. 12 and Fig. 13, respectively.

As can be seen, �GNN’s communication volume is sig-
nificantly lower than the other three partitioning schemes.
Overall, compared with the other three partitioning schemes
on GCN, �GNN reduced communication volume by 97.59%,
99.78%, and 87.05%, respectively. This is because in �GNN,
fewer vertices are allocated to GPUs with lower computa-
tional capability. When the number of vertices assigned to
the GPU is small, it is highly likely that the number of edge
cuts will decrease, thus reducing the total communication
volume.

On GAT, �GNN reduced communication volume by
208.84%, 213.49%, and 174.77%, respectively. This is
because the A100 GPU has an advantage over the other
two GPUs in computing the GAT, which results in a more
uneven partitioning. Therefore, on the GAT model, the
other two partitions have fewer vertices than the A100,
further reducing the communication volume between
GPUs.

Fig. 11 The overall performance comparison of GAT

�GNN: Non-Uniformly partitioned full-graph GNN training on mixed GPUs

5.5 Regression accuracy analysis

Accurately predicting the performance of a model is impor-
tant to manage the resources of GPU memory accurately.
Eight lightweight regression models are selected for perfor-
mance modeling in �GNN. We trained them on the gener-
ated dataset and then tested them on the real dataset, using
several metrics to evaluate the models’ performance. Table 7
shows the accuracy (MSE, MAE, MAPE) and inference cost
comparison of regression models on GCN and GAT.

It can be seen that random forest regression usually
achieves better accuracy, but its cost is the largest of all mod-
els. It is worth mentioning that, in the GCN, lasso regres-
sion has the lowest MSE. However, since MAPE takes into
account the ratio of error to the true value, we choose ran-
dom forest as the optimal model in the overall performance
analysis. At the same time, if both the inference cost and
prediction accuracy are valued, the linear and lasso regres-
sion model may be a good choice. When selecting a model,
it is necessary to weigh accuracy and inference time accord-
ing to the requirements of practical application scenarios.

5.6 Discussion and future work

At present, �GNN has considered and optimized the compu-
tation in heterogeneous distributed platforms. It can be seen
from the experiments that on some graph datasets, the com-
munication overhead cannot be ignored. Although �GNN
also has certain advantages in communication, the advantage
is generated by load balancing, not the optimization target-
ing at communication.

This advantage is generated by the optimization of com-
puting, not the optimization of communication. For future
work, we can consider further optimizing communication
to improve the performance of �GNN on heterogeneous dis-
tributed platforms. Besides, the current experimental plat-
form is only for GPUs from a single vendor. In a distributed
scenario, there are also multiple clusters of devices from
different vendors, such as AMD GPUs and Intel GPUs. How
to model these devices and optimize computation is also a
challenging issue. We would like to extend �GNN to support
more diverse devices.

Since we use heuristics to estimate the workload of each
partition, the accuracy of the performance model determines
the performance of �GNN. As a result, if we change the
model or use a unique graph dataset, the performance of �
GNN may be affected. In the future, we will explore more
accurate ways to estimate the workload of each partition to
further improve the performance of �GNN.

Ta
bl

e
5

 T
he

 m
em

or
y

co
ns

um
pt

io
n

of
 G

A
T

(M
B

)

D
at

as
et

Fr
eq

ue
nc

y
G

FL
O

PS
C

U
D

A
 C

or
e

�
G

N
N

ra
nk

 0
ra

nk
 1

ra
nk

 2
ov

er
al

l
ra

nk
 0

ra
nk

 1
ra

nk
 2

ov
er

al
l

ra
nk

 0
ra

nk
 1

ra
nk

 2
ov

er
al

l
ra

nk
 0

ra
nk

 1
ra

nk
 2

ov
er

al
l

og
bn

-a
rx

iv
47

5.
06

65
7.

62
43

1.
37

15
64

.0
5

65
8.

26
54

3.
97

37
2.

52
15

74
.7

5
70

3.
90

53
6.

14
27

4.
71

15
14

.7
5

12
55

.0
5

76
.9

5
39

.5
3

13
71

.5
3

og
bn

-p
ro

te
in

s
22

62
.0

7
44

03
.3

2
19

67
.0

2
86

32
.4

1
38

50
.9

5
33

06
.1

5
15

00
.4

5
86

57
.5

5
37

48
.2

4
36

78
.9

6
12

43
.3

8
86

70
.5

8
63

59
.9

7
15

06
.7

6
84

8.
61

87
15

.3
4

og
bn

-p
ro

du
ct

s
86

12
.5

8
12

92
6.

38
84

20
.3

9
29

,9
59

.3
5

12
,6

37
.4

6
10

,6
86

.0
1

65
38

.7
6

29
,8

62
.2

3
12

48
1.

96
12

41
0.

49
49

00
.9

7
29

,7
93

.4
2

22
41

1.
28

38
20

.0
9

25
15

.0
6

28
,7

46
.4

3
og

bn
-m

ag
62

46
.7

6
89

82
.2

4
46

55
.5

3
19

88
4.

53
10

,1
35

.0
3

57
32

.9
6

39
76

.5
7

19
,8

44
.5

6
81

32
.4

2
85

15
.1

4
32

29
.7

19
,8

77
.2

6
12

,1
43

.6
3

35
86

.6
3

28
59

.0
9

18
,5

89
.3

5
ye

lp
34

85
.4

5
43

47
.7

9
27

03
.8

6
10

53
7.

10
45

74
.3

5
34

65
.9

6
21

86
.3

1
10

,2
26

.6
2

44
10

.4
8

39
90

.6
3

16
59

.3
1

10
,0

60
.4

2
66

26
.9

0
21

67
.8

7
18

02
.6

1
10

,5
97

.3
8

re
dd

it
36

93
.6

6
67

51
.8

8
43

11
.1

5
14

75
6.

69
66

66
.2

8
25

03
.1

3
53

58
.6

9
14

,5
28

.1
0

58
04

.1
5

64
90

.9
8

22
42

.0
9

14
53

7.
22

11
,5

68
.7

4
11

39
.3

0
83

4.
76

13
,5

42
.8

0
co

ra
36

.1
2

40
.4

2
32

.0
1

10
8.

55
43

.8
9

34
.8

6
30

.1
9

10
8.

94
42

.3
5

40
.2

9
27

.9
6

11
0.

60
60

.9
0

26
.1

6
23

.2
5

11
0.

31
ci

te
se

er
63

.7
7

72
.7

6
54

.5
9

19
1.

12
80

.5
7

63
.1

1
49

.9
1

19
3.

59
80

.4
0

68
.3

2
43

.9
8

19
2.

70
12

1.
12

37
.6

2
34

.4
4

19
3.

18
pu

bm
ed

91
.8

5
10

8.
62

76
.6

7
27

7.
14

12
0.

38
87

.4
0

66
.1

7
27

3.
95

11
9.

97
99

.2
3

54
.8

2
27

4.
02

18
5.

20
45

.5
2

39
.5

2
27

0.
24

fli
ck

r
57

8.
61

64
1.

55
45

9.
15

16
79

.3
1

72
0.

82
53

4.
60

46
4.

41
17

19
.8

3
67

5.
07

58
9.

95
42

2.
05

16
87

.0
7

87
1.

29
11

7.
31

82
.0

4
10

70
.6

4

 H. Wang et al.

6 Related work

6.1 GNN kernel optimization

In the research of GNN acceleration, one of the core

challenges is how to improve the computational efficiency
on graph processing. In recent years, kernel optimizations
for GNN have emerged, aiming to improve performance.

GE-SpMM (Huang et al. 2020) improves access efficiency
by utilizing shared memory to cache rows of the sparse
matrix and by merging workloads across different warps.
FeatGraph (Hu et al. 2020) optimizes cache utilization dur-
ing GNN aggregation by integrating graph partitioning with
feature dimension tiling. Huang et al. (2021) addresses
the issue of load imbalance by clustering central vertices
through locality-sensitive hashing and further partitioning
the workload by grouping neighbors. GNNAdvisor (Wang
et al. 2021b) reduces thread divergence by employing warp-
aligned thread mapping along with neighbor and dimen-
sion partitioning. ES-SpMM (Lin et al. 2021) implements
in-kernel edge sampling to downsize the graph for fitting
into shared memory and eliminates the overhead associated
with pre-processing. TC-GNN (Wang et al. 2021a) adapts
the input graph to the dense computations of tensor cores by
identifying non-zero tiles through sparse graph translation.
QGTC (Wang et al. 2022) leverages Tensor Core to support
arbitrary bit width computation for quantum graph neural
networks (QGNNs) on GPUs. DA-SpMM (Dai et al. 2022)
introduces a three-loop model to extract orthogonal design
principles for SpMM on GPUs. HP-SpMM mixes node
and edge computation tasks (Fan et al. 2023) and employs
hierarchical vectorized memory access to enhance memory
efficiency. TurboMGNN (Wu et al. 2023) fuses forward and
backward propagation kernels, groups tasks, and matches
their operators according to resource contention.

The above works can be combined with �GNN to improve
the training and inferencing efficiency.

Table 6 Standard deviation
comparison of computation
time among GPUs

The bold entries denote the fastest time recorded for each dataset across different precision

Dataset GCN GAT

Frequency GFLOPS CUDA Core �GNN Frequency GFLOPS CUDA Core �GNN

ogbn-arxiv 0.12 1.04 1.34 0.74 4.04 1.31 3.78 3.16
ogbn-proteins 7.20 4.88 4.17 1.6 18.81 8.44 8.77 5.30
ogbn-products 60.86 32.84 44.03 25.89 61.38 24.21 31.55 25.23
ogbn-mag 19.81 33.07 35.35 32.42 127.51 178.36 130.04 188.44
Yelp 6.48 5.01 6.96 2.49 9.78 1.67 7.39 0.89
Reddit 19.19 7.37 11.23 16.67 36.1 13.18 20.92 25.57
Cora 0.50 0.11 0.41 0.36 1.54 1.03 0.56 0.26
Citeseer 0.22 0.25 0.45 0.10 0.33 0.69 0.59 0.47
Pubmed 0.50 0.23 0.27 0.49 0.36 0.25 0.72 0.12
Flickr 0.47 0.2 0.83 0.47 0.93 1.28 0.44 0.41
Average 11.53 8.50 10.50 8.12 26.08 23.04 20.48 24.99

Fig. 12 The overall communication volume of different partitioning
methods normalized to �GNN on GCN

Fig. 13 The overall communication volume of different partitioning
methods normalized to �GNN on GAT

�GNN: Non-Uniformly partitioned full-graph GNN training on mixed GPUs

6.2 GNN‑customized accelerators

GNN accelerators employ various techniques such as
dynamic distribution smoothing, ReRAM-based architec-
tures, graph restructuring, near-memory processing, tensor
decomposition, and hybrid precision quantization to address
computation, memory, and I/O bottlenecks.

AWB-GCN (Geng et al. 2020) utilizes dynamic distribu-
tion smoothing, remote switching, and row remapping to
accelerate GCN inference. ReGraphX (Arka et al. 2021) pro-
poses a NoC-supported 3D heterogeneous ReRAM architec-
ture for training GNN. Through the combination of hetero-
geneous ReRAM and 3D NoC, the performance and energy
efficiency of GNN training are improved. I-GCN (Geng
et al. 2021) introduces an online graph restructuring algo-
rithm, islandization, to improve data locality and reduces
unnecessary computation. MetaNMP (Li et al. 2022) is a
DIMM-based near-memory processing HGNNs accelera-
tor, which generates meta-path instances through Cartesian
product paradigm, reduces redundant computation, and uti-
lizes near-memory processing. Mao et al. (2023) propose a
node-centered graph attention network based on ReRAM
is proposed, which improves the computational efficiency
and energy efficiency of GNNs through optimized hard-
ware architecture and computing mode. TT-GNN (Qu et al.
2023) uses tensor-training decomposition to compress graph
embedding matrices. Celeritas (Li et al. 2024 targets the
memory and I/O bottlenecks in large-scale graph data pro-
cessing through cross-layer computation and optimized I/O
strategies. FlashGNN (Niu et al. 2024) implements critical
computation of GNN training in SSDs, reducing data trans-
mission and storage overhead and improving training effi-
ciency. MEGA (Zhu et al. 2024) uses degree-aware hybrid
precision quantization to reduce the memory footprint and
improve the training efficiency.

Customized accelerators pose a challenge to the perfor-
mance modeling part of �GNN, and new abstractions of

hardware features are required to achieve accurate predic-
tion results.

6.3 Distributed training system

In recent years, there has been many attempts to improve
the efficiency of distributed GNN training with a variety of
optimization techniques.

Roc (Jia et al. 2020) proposes an online-linear-regression-
based strategy to achieve load balance, and coordinates opti-
mized data transfers between GPU devices and host CPU
memories with a dynamic programming algorithm. Flex-
Graph (Wang et al. 2021c) presents a GNN programming
model, which utilizes hierarchical dependency graphs to
express hierarchical dependencies among vertices. Dory-
lus (Thorpe et al. 2021) designs a computation separation
mechanism and pipelines the different computation patterns
in the Amazon EC2 machine and serverless Lambdas in the
cloud environment. ByteGNN (Zheng et al. 2022b) abstracts
the sampling phase of a mini-batch as a DAG of small tasks
to support high parallelism, designs a two-level scheduling
to improve resource utilization and reduce the end-to-end
training time, tailors graph partitioning to reduce network
I/O and balance the workload. GNNLab (Yang et al. 2022)
proposes a space sharing design to tackle GPU memory con-
tention and a pre-sampling based caching policy to acceler-
ate sample-based GNN training. Legion (Sun et al. 2023)
is a cache-based GNN system which proposes an NVLink-
aware hierarchical partitioning technique and a novel hot-
ness-aware unified cache mechanism with cache manage-
ment. XGNN (Tang et al. 2024) utilizes global memory store
abstraction to improve GPU memory efficiency, NVLink and
host memory utilization.

However, previous works have not considered the mixed
heterogeneous distributed scenarios, and �GNN filled the
gap in such research.

Table 7 Performance regression model accuracy and inference cost comparison

The bold entries denote the fastest time recorded for each dataset across different precision

Model GCN GAT

MSE MAE MAPE Time (ms) MSE MAE MAPE Time (ms)

Linear 8.20E–05 5.94E–03 2.57E–01 2.60E+00 1.31E–04 7.77E–03 2.51E–01 5.23E+01
Ridge 1.82E+00 9.46E–01 4.78E+01 4.42E+00 2.92E–01 4.34E–01 1.71E+01 6.89E+00
Decision tree 1.27E–04 5.23E–03 1.34E–01 3.88E+00 2.49E–04 5.54E–03 1.02E–01 4.00E+00
SVR 4.67E–03 6.64E–02 4.94E+00 3.00E+00 8.97E–03 9.32E–02 4.18E+00 3.00E+00
Lasso 7.75E–05 4.91E–03 1.71E–01 3.52E+00 1.23E–04 6.49E–03 1.80E–01 6.41E+00
AdaBoost 9.91E–05 4.85E–03 1.63E–01 2.77E+01 2.31E–04 1.08E–02 3.94E–01 7.64E+01
Bagging 1.03E–04 4.30E–03 1.04E–01 2.51E+01 1.12E–04 3.81E–03 7.67E–02 2.66E+01
Random forest 9.38E–05 3.94E–03 1.01E–01 2.14E+02 7.05E–05 3.41E–03 6.92E–02 1.91E+02

 H. Wang et al.

7 Conclusion

In this paper, we propose �GNN, an efficient non-uniformly
partitioned full-graph GNN training system on heterogene-
ous distributed platforms. The �GNN combines the perfor-
mance modeling, the offline-online cooperative task assign-
ment mechanism, and non-uniformed graph partitioning
to accommodate the unbalanced computing capability of
GPUs. The experimental results show that �GNN outper-
forms other partitioning schemes by a factor of, on average,
1.33 on GCN (up to 2.75) and 1.23 on GAT (up to 2.41),
respectively.

Acknowledgements This work is supported by the National Natural
Science Foundation of China (Grant No. 62402525), and the Fun-
damental Research Funds for the Central Universities (Grant No.
2462023YJRC023). Qingxiao Sun is the corresponding author.

Data availability The data that support the findings of this study are
available from the first author (Hemeng Wang) upon reasonable request.

Declarations

Conflict of interest On behalf of all authors, the corresponding author
states that there is no Conflict of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Arka, A.I., Doppa, J.R., Pande, P.P., Joardar, B.K., Chakrabarty, K.:
Regraphx: Noc-enabled 3d heterogeneous reram architecture for
training graph neural networks. In: Design, Automation & Test in
Europe Conference & Exhibition, pp. 1667–1672 (2021)

Armeniakos, G., Zervakis, G., Soudris, D., Henkel, J.: Hardware
approximate techniques for deep neural network accelerators: a
survey. ACM Comput. Surv. 55(4), 1–36 (2022)

Berg, R.v.d., Kipf, T.N., Welling, M.: Graph convolutional matrix com-
pletion. arXiv preprint arXiv: 1706. 02263, 1–9 (2017)

Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.:
Translating embeddings for modeling multi-relational data. In:
Advances in neural information processing systems, 1–9. https://
doi. org/ 10. 5555/ 29997 92. 29999 23 (2013)

Cheng, J., Dong, L., Lapata, M.: Long short-term memory-networks for
machine reading. In: Proceedings of the Conference on Empirical
Methods in Natural Language Processing, pp. 1–11 (2016)

Dai, G., Huang, G., Yang, S., Yu, Z., Zhang, H., Ding, Y., Xie, Y.,
Yang, H., Wang, Y.: Heuristic adaptability to input dynamics for

spmm on gpus. In: Proceedings of the 59th ACM/IEEE Design
Automation Conference, pp. 595–600 (2022)

Dwivedi, V.P., Joshi, C.K., Luu, A.T., Laurent, T., Bengio, Y., Bresson,
X.: Benchmarking graph neural networks. J. Mach. Learn. Res.
24(43), 1–48 (2023)

Fan, W., Ma, Y., Li, Q., He, Y., Zhao, E., Tang, J., Yin, D.: Graph
neural networks for social recommendation. In: The World Wide
Web Conference, pp. 417–426 (2019)

Fan, R., Wang, W., Chu, X.: Fast sparse gpu kernels for accelerated
training of graph neural networks. In: IEEE International Paral-
lel and Distributed Processing Symposium, pp. 501–511 (2023)

Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch
Geometric. In: ICLR Workshop on Representation Learning on
Graphs and Manifolds, pp. 1–9 (2019)

Geng, T., Li, A., Shi, R., Wu, C., Wang, T., Li, Y., Haghi, P., Tumeo,
A., Che, S., Reinhardt, S., etal.: Awb-gcn: a graph convolutional
network accelerator with runtime workload rebalancing. In: 53rd
Annual IEEE/ACM International Symposium on Microarchitec-
tur, pp. 922–936 (2020)

Geng, T., Wu, C., Zhang, Y., Tan, C., Xie, C., You, H., Herbordt, M.,
Lin, Y., Li, A.: I-gcn: a graph convolutional network accelerator
with runtime locality enhancement through islandization. In: 54th
Annual IEEE/ACM International Symposium on Microarchitec-
ture, pp. 1051–1063 (2021)

Hakhamaneshi, K., Nassar, M., Phielipp, M., Abbeel, P., Stojanovic,
V.: Pretraining graph neural networks for few-shot analog circuit
modeling and design. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 42(7), 2163–2173 (2022)

Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learn-
ing on large graphs. Adv. Neural Inform. Process. Syst. 30, 1–11
(2017)

Hu, Y., Ye, Z., Wang, M., Yu, J., Zheng, D., Li, M., Zhang, Z., Zhang,
Z., Wang, Y.: Featgraph: a flexible and efficient backend for graph
neural network systems. In: Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage
and Analysis, pp. 1–13 (2020)

Huang, G., Dai, G., Wang, Y., Yang, H.: Ge-spmm: General-purpose
sparse matrix-matrix multiplication on gpus for graph neural net-
works. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, pp.
1–12 (2020)

Huang, K., Zhai, J., Zheng, Z., Yi, Y., Shen, X.: Understanding and
bridging the gaps in current gnn performance optimizations. In:
Proceedings of the 26th ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, pp. 119–132 (2021)

Jia, Z., Lin, S., Gao, M., Zaharia, M., Aiken, A.: Improving the accu-
racy, scalability, and performance of graph neural networks with
roc. In: Proceedings of Machine Learning and Systems, vol. 2,
pp. 187–198 (2020)

Karypis, G., Kumar, V.: A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1),
359–392 (1998)

Kipf, T.N., Welling, M.: Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv: 1609. 02907, 1–14
(2016a)

Kipf, T.N., Welling, M.: Variational graph auto-encoders. arXiv pre-
print arXiv: 1611. 07308, 1–3 (2016b)

Li, S., Niu, D., Wang, Y., Han, W., Zhang, Z., Guan, T., Guan, Y.,
Liu, H., Huang, L., Du, Z., et al.: Hyperscale fpga-as-a-service
architecture for large-scale distributed graph neural network. In:
Proceedings of the 49th Annual International Symposium on
Computer Architecture, pp. 946–961 (2022)

Li, Y., Yang, T.-Y., Yang, M.-C., Shen, Z., Li, B.: Celeritas: Out-of-
core based unsupervised graph neural network via cross-layer
computing 2024. In: IEEE International Symposium on High-
Performance Computer Architecture, pp. 91–107 (2024)

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1706.02263
https://doi.org/10.5555/2999792.2999923
https://doi.org/10.5555/2999792.2999923
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1611.07308

�GNN: Non-Uniformly partitioned full-graph GNN training on mixed GPUs

Lin, C.-Y., Luo, L., Ceze, L.: Accelerating spmm kernel with cache-first
edge sampling for graph neural networks. arXiv preprint arXiv:
2104. 10716, 1–12 (2021)

Lin, H., Yan, M., Ye, X., Fan, D., Pan, S., Chen, W., Xie, Y.: A compre-
hensive survey on distributed training of graph neural networks.
Proc. IEEE 111(12), 1572–1606 (2023)

Mao, R., Sheng, X., Graves, C., Xu, C., Li, C.: Reram-based graph
attention network with node-centric edge searching and ham-
ming similarity. In: Proceedings of the 60th ACM/IEEE Design
Automation Conference, pp. 1–6 (2023)

Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen, E., Garcia,
D., Ginsburg, B., Houston, M., Kuchaiev, O., Venkatesh, G.,
et al.: Mixed precision training. In: International Conference
on Learning Representations, pp. 1–12 (2018)

Mostafa, H.: Sequential aggregation and rematerialization: Dis-
tributed full-batch training of graph neural networks on large
graphs. In: Proceedings of Machine Learning and Systems, pp.
1–11 (2022)

Niu, F., Yue, J., Shen, J., Liao, X., Jin, H.: Flashgnn: An in-ssd accel-
erator for gnn training. In: IEEE International Symposium on
High-Performance Computer Architecture, pp. 361–378 (2024)

Qu, Z., Niu, D., Li, S., Zheng, H., Xie, Y.: Tt-gnn: Efficient on-chip
graph neural network training via embedding reformation and
hardware optimization. In: Proceedings of the 56th Annual
IEEE/ACM International Symposium on Microarchitecture, pp.
452–464 (2023)

Schlichtkrull, M., Kipf, T.N., Bloem, P., Van Den Berg, R., Titov, I.,
Welling, M.: Modeling relational data with graph convolutional
networks. In: The Semantic Web, pp. 593–607 (2018)

Shao, Y., Li, H., Gu, X., Yin, H., Li, Y., Miao, X., Zhang, W., Cui, B.,
Chen, L.: Distributed graph neural network training: a survey.
ACM Comput. Surv. 56(8), 1–39 (2024)

Sun, J., Su, L., Shi, Z., Shen, W., Wang, Z., Wang, L., Zhang, J., Li,
Y., Yu, W., Zhou, J., et al.: Legion: Automatically pushing the
envelope of multi-gpu system for billion-scale gnn training. In:
USENIX Annual Technical Conference, pp. 165–179 (2023)

Tang, D., Wang, J., Chen, R., Wang, L., Yu, W., Zhou, J., Li, K.: Xgnn:
boosting multi-gpu gnn training via global gnn memory store.
Proc. VLDB Endow. 17(5), 1105–1118 (2024)

Thorpe, J., Qiao, Y., Eyolfson, J., Teng, S., Hu, G., Jia, Z., Wei, J.,
Vora, K., Netravali, R., Kim, M., et al.: Dorylus: affordable, scal-
able, and accurate {GNN} training with distributed {CPU} servers
and serverless threads. In: USENIX Symposium on Operating
Systems Design and Implementation, pp. 495–514 (2021)

Tripathy, A., Yelick, K., Buluç, A.: Reducing communication in graph
neural network training. In: International Conference for High
Performance Computing, Networking, Storage and Analysis, pp.
1–14 (2020)

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A.N., Kaiser, Ł, Polosukhin, I.: Attention is all you need. Adv.
Neural. Inf. Process. Syst. 30, 1–11 (2017)

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Ben-
gio, Y.: Graph attention networks. In: International Conference on
Learning Representations, pp. 1–12 (2018)

Wan, C., Li, Y., Li, A., Kim, N.S., Lin, Y.: Bns-gcn: Efficient full-
graph training of graph convolutional networks with partition-
parallelism and random boundary node sampling. In: Proceedings
of Machine Learning and Systems, vol. 4, pp. 673–693 (2022)

Wan, X., Xu, K., Liao, X., Jin, Y., Chen, K., Jin, X.: Scalable and effi-
cient full-graph gnn training for large graphs. Proc. ACM Manag.
Data 1(2), 1–23 (2023)

Wang, M., Zheng, D., Ye, Z., Gan, Q., Li, M., Song, X., Zhou, J., Ma,
C., Yu, L., Gai, Y., Xiao, T., He, T., Karypis, G., Li, J., Zhang,
Z.: Deep graph library: A graph-centric, highly-performant pack-
age for graph neural networks. arXiv preprint arXiv: 1909. 01315,
1–18 (2019)

Wang, Y., Feng, B., Ding, Y.: Tc-gnn: Accelerating sparse graph neural
network computation via dense tensor core on gpus. arXiv pre-
print arXiv: 2112. 02052, 1–14 (2021a)

Wang, Y., Feng, B., Li, G., Li, S., Deng, L., Xie, Y., Ding, Y.: Gnnadvi-
sor: an adaptive and efficient runtime system for gnn acceleration
on gpus. In: USENIX Symposium on Operating Systems Design
and Implementation, pp. 515–531 (2021b)

Wang, L., Yin, Q., Tian, C., Yang, J., Chen, R., Yu, W., Yao, Z., Zhou,
J.: Flexgraph: a flexible and efficient distributed framework for
gnn training. In: Proceedings of Machine Learning and Systems,
pp. 67–82 (2021c)

Wang, Y., Feng, B., Ding, Y.: Qgtc: accelerating quantized graph neural
networks via gpu tensor core. In: Proceedings of the 27th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, pp. 107–119 (2022)

Wu, N., Yang, H., Xie, Y., Li, P., Hao, C.: High-level synthesis per-
formance prediction using gnns: benchmarking, modeling, and
advancing. In: Proceedings of the 59th ACM/IEEE Design Auto-
mation Conference, pp. 49–54 (2022)

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A com-
prehensive survey on graph neural networks. IEEE Trans. Neural
Netw. Learn. Syst. 32(1), 4–24 (2020)

Wu, W., Shi, X., He, L., Jin, H.: Turbomgnn: improving concurrent gnn
training tasks on gpu with fine-grained kernel fusion. IEEE Trans.
Parallel Distrib. Syst. 34(6), 1968–1981 (2023)

Xu, R., Ma, S., Guo, Y., Li, D.: A survey of design and optimization
for systolic array-based dnn accelerators. ACM Comput. Surv.
56(1), 1–37 (2023)

Xu, S., Huang, Z., Zeng, Y., Yan, S., Ning, X., Ye, H., Gu, S., Shui,
C., Lin, Z., Zhang, H., et al.: Hethub: a heterogeneous distrib-
uted hybrid training system for large-scale models. arXiv preprint
arXiv: 2405. 16256, 1–13 (2024)

Yang, J., Tang, D., Song, X., Wang, L., Yin, Q., Chen, R., Yu, W.,
Zhou, J.: Gnnlab: a factored system for sample-based gnn training
over gpus. In: Proceedings of the 17th European Conference on
Computer Systems, pp. 417–434 (2022)

Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., Leskovec, J.:
Hierarchical graph representation learning with differentiable
pooling. In: Advances in neural information processing systems,
1–11. https:// doi. org/ 10. 5555/ 33273 45. 33274 23 (2018)

Zhang, M., Chen, Y.: Link prediction based on graph neural networks.
In: Advances in neural information processing systems, 1–11.
https:// doi. org/ 10. 5555/ 33273 45. 33273 89 (2018)

Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep
learning architecture for graph classification. In: Proceedings of
the AAAI Conference on Artificial Intelligence, pp. 4438–4445
(2018)

Zhang, X., Tan, G., Xue, S., Li, J., Zhou, K., Chen, M.: Understand-
ing the gpu microarchitecture to achieve bare-metal performance
tuning. In: Proceedings of the 22nd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pp. 31–43
(2017)

Zhang, D., Huang, X., Liu, Z., Zhou, J., Hu, Z., Song, X., Ge, Z.,
Wang, L., Zhang, Z., Qi, Y.: Agl: a scalable system for industrial-
purpose graph machine learning. Proc. VLDB Endow. 13(12),
3125–3137 (2020)

Zheng, D., Song, X., Yang, C., LaSalle, D., Karypis, G.: Distributed
hybrid cpu and gpu training for graph neural networks on billion-
scale heterogeneous graphs. In: Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining,
vol. 32, pp. 1030–1043 (2022a)

Zheng, C., Chen, H., Cheng, Y., Song, Z., Wu, Y., Li, C., Cheng, J.,
Yang, H., Zhang, S.: Bytegnn: efficient graph neural network
training at large scale. Proc. VLDB Endow. 15(6), 1228–1242
(2022b)

http://arxiv.org/abs/2104.10716
http://arxiv.org/abs/2104.10716
http://arxiv.org/abs/1909.01315
http://arxiv.org/abs/2112.02052
http://arxiv.org/abs/2405.16256
https://doi.org/10.5555/3327345.3327423
https://doi.org/10.5555/3327345.3327389

 H. Wang et al.

Zhou, Q., Guo, S., Qu, Z., Li, P., Li, L., Guo, M., Wang, K.: Petrel:
heterogeneity-aware distributed deep learning via hybrid synchro-
nization. IEEE Trans. Parallel Distrib. Syst. 32(5), 1030–1043
(2020)

Zhu, Z., Li, F., Li, G., Liu, Z., Mo, Z., Hu, Q., Liang, X., Cheng, J.:
Mega: a memory-efficient gnn accelerator exploiting degree-aware
mixed-precision quantization. In: IEEE International Symposium
on High-Performance Computer Architecture, pp. 124–138 (2024)

Hemeng Wang received his BE
degree in Computer Science and
Technology in China University
of Petroleum-Beijing in 2021.
He is studying for the full time
Doctoral degree, majoring in
Advanced Science and Engineer-
ing Computing in College of
Artificial Intelligence in China
University of Petroleum-Bei-
jing. His research interests are in
high performance computing,
with a particular focus on paral-
lel and distributed computing,
numerical linear algebra and
deep learning systems.

Wenqing Lin is studying for the
full time Bachelor degree,
majoring in Computer Science
and Technology in College
of Artificial Intelligence in
China University of Petroleum-
Beijing. Her research interests
are in high performance comput-
ing, with a particular focus on
sparse tensor computation, paral-
lel computing and deep learning
systems.

Qingxiao Sun is currently an
associate professor at the China
University of Petroleum-Beijing.
He was awarded with ACM
SIGHPC China Doctoral Dis-
seration Award and CCF
TCARCH Doctoral Disseration
Award. He received his PhD
in 2023 from Beihang University
under supervision of Prof. Yi Liu
and Asso. Prof. Hailong Yang.
His research interests include
high performance computing,
computer architecture, deep
learning system and parallel
computing. His recent research

invetigates performance auto-tuning, GPU architecture extension, runt-
ime mechanism and graph neural network training. He has authored

about 20 publications in the leading international journals and confer-
ences. His papers have been selected as CLUSTER '21 Best Paper
Nomination and IEEE Computer's Spotlight on Transactions. He cur-
rently serves as reviewers in the premier journals including TPDS, TC,
TCC and THPC.

Weifeng Liu is currently a Full
Professor at the China University
of Petroleum–Beijing. Formerly,
he was a Marie Curie Fellow at
the Norwegian University of Sci-
ence and Technology. He
received his PhD in 2016 from
the Niels Bohr Institute of the
University of Copenhagen under
advisor Brian Vinter. He has
been shortly working as a
Research Associate with Iain S.
Duff at the STFC Rutherford
Appleton Laboratory in 2016.
He also has been working as a
Senior Researcher in high per-

formance computing technology at the SINOPEC Exploration and
Production Research Institute for about six years (2006-2012). He
received his BE and ME degrees in computer science, both from the
China University of Petroleum–Beijing, in 2002 and 2006, respectively.
He is a Senior Member of the IEEE and a Member of the ACM and the
SIAM. His research interests are in high performance numerical linear
algebra, in particular include domain specific architectures, data struc-
tures, parallel and distributed algorithms, linear solver mathemati-
cal software for sparse matrix computations.

	GNN: Non-Uniformly partitioned full-graph GNN training on mixed GPUs
	Abstract
	1 Introduction
	2 Background
	2.1 GPU hardware architecture
	2.2 Graph neural network
	2.2.1 GCN
	2.2.2 GAT​

	2.3 Distributed GNN training
	2.3.1 Mini-batch training
	2.3.2 Full-graph training

	3 Motivation
	3.1 Performance gap among GPUs
	3.1.1 Throughput of SpMM kernel
	3.1.2 Execution time of GNN training
	3.1.3 Mixed-precision GNN training

	3.2 Limitation of DL frameworks
	3.2.1 Uniform graph partitioning
	3.2.2 Gradient synchronization cost

	4 Methodology
	4.1 Design overview
	4.2 Performance modeling
	4.3 Heterogeneity-aware graph partitioning
	4.4 Algorithm implementation
	4.5 Online adjustment considering BF16 precision

	5 Evaluation
	5.1 Experiment Setup
	5.1.1 Hardware and Software Configurations
	5.1.2 Graph datasets and GNN models
	5.1.3 Comparison methods and metrics

	5.2 Overall comparison
	5.3 Load balancing comparison
	5.4 Communication analysis
	5.5 Regression accuracy analysis
	5.6 Discussion and future work

	6 Related work
	6.1 GNN kernel optimization
	6.2 GNN-customized accelerators
	6.3 Distributed training system

	7 Conclusion
	Acknowledgements
	References

