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Abstract
Graph neural networks (GNNs) can be adapted to GPUs with high computing capability due to massive arithmetic opera-
tions. Compared with mini-batch training, full-graph training does not require sampling of the input graph and halo region, 
avoiding potential accuracy losses. Current deep learning frameworks evenly partition large graphs to scale GNN training 
to distributed multi-GPU platforms. On the other hand, the rapid revolution of hardware requires technology companies and 
research institutions to frequently update their equipment to cope with the latest tasks. This results in a large-scale cluster 
with a mixture of GPUs with various computational capabilities and hardware specifications. However, existing works fail 
to consider sub-graphs adapted to different GPU generations, leading to inefficient resource utilization and degraded training 
efficiency. Therefore, we propose �GNN, a Non-Uniformly partitioned full-graph GNN training framework on heterogeneous 
distributed platforms. �GNN first models the GNN processing ability of hardware based on various theoretical parameters. 
Then, �GNN automatically obtains a reasonable task partitioning scheme by combining hardware, model, and graph dataset 
information. Finally, �GNN implements an irregular graph partitioning mechanism that allows GNN training tasks to execute 
efficiently on distributed heterogeneous systems. The experimental results show that in real-world scenarios with a mixture 
of GPU generations, �GNN can outperform other static partitioning schemes based on hardware specifications.

Keywords Graph neural network · Distributed training · Graph partitioning · GPU

1 Introduction

Graph neural networks (GNNs) emerge as a paradigm for 
efficiently learning the relationship and interaction infor-
mation in irregular graph structures. GNNs have achieved 
significant accuracy breakthroughs in tasks such as vertex 
classification  (Kipf and Welling 2016a; Hamilton et al. 
2017), link prediction (Zhang and Chen 2018; Kipf and 
Welling 2016b), and graph classification  (Zhang et  al. 
2018; Ying et al. 2018) by combining graph operations and 

neural computation to understand the relationships among 
data objects. Due to their powerful performance, GNNs are 
widely used in areas such as knowledge graph (Bordes et al. 
2013; Schlichtkrull et al. 2018), hardware design (Hakha-
maneshi et al. 2022; Wu et al. 2022), and recommendation 
systems (Berg et al. 2017; Fan et al. 2019).

With the increasing size of graph data and vertex dimen-
sions, the computational complexity of GNNs increases 
dramatically, and the demand for computational resources 
becomes more urgent  (Shao et  al. 2024; Dwivedi et  al. 
2023). To solve this problem, it has become a common 
practice to deploy GNN training tasks to high-performance 
graphics processing units (GPUs) and utilize their powerful 
parallel computing capabilities to accelerate the GNN train-
ing and inference process (Tripathy et al. 2020; Thorpe et al. 
2021; Zhang et al. 2020; Mostafa 2022).

Hardware technology iterates at an extremely fast 
pace, with central processing units (CPUs), graphics pro-
cessing units (GPUs), and other specialized acceleration 
units (Armeniakos et al. 2022; Xu et al. 2023) constantly 
making breakthroughs in performance, energy efficiency, 
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and other metrics. Due to the uncertainty of technological 
developments and commercial needs, researchers typically 
do not purchase large quantities of the same hardware all at 
once, but rather upgrade incrementally to ensure the stability 
of software and business services.

While this incremental upgrade strategy brings flexibil-
ity, it also incurs a significant problem: uneven computing 
capability in a distributed environment (Zhou et al. 2020; 
Xu et al. 2024). Since GPUs purchased from various batches 
have their own architectural characteristics, they may show 
obvious performance differences when performing the same 
tasks. In addition, the differences in support for mixed-preci-
sion further exacerbate the imbalance in computing capabili-
ties. The mixed-precision technique can be well applied to 
large-scale tasks such as GNN training (Zheng et al. 2022a), 
which can reduce memory consumption and computational 
complexity while maintaining prediction accuracy.

Currently, mainstream deep learning frameworks, such as 
Deep Graph Library (DGL Wang et al. 2019) and PyTorch 
Geometric (PyG Fey and Lenssen 2019), usually adopt a 
uniform partitioning scheme when dealing with full-graph 
GNN training, where the vertices are evenly distributed to 
individual GPUs. However, this method does not consider 
the imbalance of computing capabilities during GNN train-
ing, which often leads to low resource utilization and makes 
gradient synchronization a bottleneck.

On the other hand, the parallel capability of GPUs is not 
always the key to improving the training speed of GNNs. In 
some cases, data pre-processing, memory access, and data 
communication may each become a performance bottleneck. 
Therefore, it is necessary to adjust the task partitioning 
according to the graph input to improve resource utilization 
and reduce the end-to-end training time. In a mixed hetero-
geneous distributed environment, GNN full-graph training 
faces unique challenges: (1) Uniform partitioning leads to 
under-utilization of some GPUs and overload of other GPUs, 
resulting in high synchronization latency; (2) Diverse sub-
graphs and GNN models have different resource require-
ments, and the partitioning scheme according to hardware 
specifications leads to suboptimal performance.

To address the above challenges, we propose �GNN, 
a Non-Uniformly partitioned full-graph GNN training 
system on mixed GPUs. This paper makes the following 
contributions:

• We propose a novel performance model for GNN training 
on GPUs. To obtain the trained regression model, We 
comprehensively analyze the behavior of GNNs across 
GPU generations.

• We design an offline-online cooperative task assignment 
mechanism to fully utilize the mixed GPU resources. We 

search the scheme and adjust precision to balance the 
workloads.

• We implement a non-uniformed graph partition system 
on a cluster that equips different GPUs. The experimental 
results show that �GNN outperforms other partitioning 
methods by a factor of, on average, 1.33 on GCN (up to 
2.75) and 1.23 on GAT (up to 2.41), respectively.

The rest of this paper is organized as follows. Sections 2 
and  3 present the background and motivation. Section 4 pre-
sents the details of �GNN methodology. Sections 5 and  6 
present the evaluation results of �GNN and the related work. 
Section 7 concludes this paper.

2  Background

2.1  GPU hardware architecture

GPUs are connected to the host system via the PCI-Express 
(PCIe) bus as a peripheral device that contains the GPU 
processor and onboard memory modules. The GPU proces-
sor consists of a number of streaming multiprocessor (SM) 
that share the main memory bus and the L2 cache but are 
independent of each other. Each SM contains multiple ALU 
(CUDA core), an instruction decoder, and local memory. 
CUDA cores share the SM resources, including the instruc-
tion decoder, and therefore execute the same instructions 
simultaneously.

GPUs differ significantly from CPU architectures (Zhang 
et al. 2017) because of their many-core structure and multi-
ple types of memory; CPUs primarily use task parallelism, 
where each core executes a different piece of code, whereas 
GPUs are designed for data parallelism, where multiple 
cores execute the same code at the same time but work with 
different data (see Fig. 1).

Threads within a group are divided into subgroups (called 
warps or wavefronts) equal to the number of GPU cores in 
the SM. These subgroups run in true SIMT mode, with only 
one subgroup actually running. When one subgroup waits 
(e.g., for a memory transfer), SM performs a fast context 
switch to allow other subgroups to continue computation. 
SIMT execution suffers from branching problems, where all 
branches must be executed by all threads when threads in the 
group choose different branches, and branch-heavy code and 
loops with large differences in the number of iterations don’t 
perform well on the GPU. However, SIMT simplifies intra-
group synchronization by allowing threads to communicate 
and collaborate through the shared local memory of the SM. 
While CPUs typically employ task parallelism, GPUs focus 
on data parallelism and are suitable for handling large-scale 
graphical computations and data-parallel tasks.
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GPUs have evolved significantly across generations, with 
each introducing architectural improvements to enhance per-
formance and efficiency. For instance, the Pascal architecture 
introduced higher memory bandwidth and energy efficiency, 
while the Turing architecture added real-time ray tracing and 
tensor cores for AI acceleration. The Ampere generation fur-
ther increased core counts and introduced second-generation 
RT cores and third-generation tensor cores. Those architec-
tural differences lead to different computing capabilities and 
memory bandwidths among GPUs, thus resulting in different 
performance in terms of GNN training.

2.2  Graph neural network

Recently, there has been increasing interest in applying deep 
learning to unstructured data. Unlike the dense objects (e.g., 
images and text) processed by traditional deep neural net-
works, graphs represent sparse and irregularly connected 
links. Table 1 presents important GNN notations.

GNNs take graph-structured data as input  (Wu et al. 
2020), where each vertex is associated with a feature vector. 
Edges between vertices represent the topology of the graph, 

quantified by the weights of the edges. GNN learns data rela-
tionships by combining graph structure and feature vectors. 
Figure 2 shows an example of GNN aggregation process.

2.2.1  GCN

Graph convolutional network (GCN) (Kipf and Welling 
2016a) is one of the most successful networks for graph 
learning, which alleviates the problem of overfitting local 
neighborhood structures for graphs. It performs graph opera-
tion formulated as Eq. 1:

where U� ∈ ℝ
d×d , degi is the in-degree of vertex i.

2.2.2  GAT 

The attention mechanism has been successfully used in many 
sequence-based tasks such as machine translation (Vaswani 
et al. 2017), machine reading (Cheng et al. 2016), and so 
on. Graph attention network (GAT) (Veličković et al. 2018) 
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= ReLU
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√
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Fig. 1  Hardware architecture of general-purpose GPUs

Table 1  Important GNN notations

Notation Definition

h�
i
 The feature vector of a vertex i in �th layer

U� Weight matrix of the � layer
degi Degree of vertex i
Ni The set of neighbors of vertex i

e
k,�

ij
 Learnable attention factor

ℝ Weight matrix space
Fig. 2  A simple GNN illustration
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adopts attention mechanisms to learn the relative weights 
between two connected vertices. GAT employs a multi-
headed architecture to improve the learning capacity, for-
mulated as Eq. 2:

where Uk,� ∈ ℝ
d

K
×d are K linear projection heads, the atten-

tion coefficients for each head ek,�
ij

 are defined as:

2.3  Distributed GNN training

A typical GNN training process comprises forward propaga-
tion and backward propagation (Lin et al. 2023). In forward 
propagation, the input data traverses the layers of neural 
networks towards the output. Neural networks generate dif-
ferences in the output of forward propagation by comparing 
it to the predefined labels. Then, in backward propagation, 
these differences are disseminated through the layers of neu-
ral networks in the opposite direction, generating gradients 
for updating model parameters.

As shown in Fig. 3, distributed GNN training can be 
classified into mini-batch training and full-graph training. 
Depending on whether the whole graph is involved in each 
model computation phase (forward, backward, and param-
eter update).

2.3.1  Mini‑batch training

Mini-batch training utilizes a portion of the vertices and 
edges in the graph to update the model parameters in each 
forward and backward propagation. The aim is to reduce the 
number of vertices involved in a round of computation to 
minimize computational and memory resource requirements.
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Before each round of training, a mini-batch �s is sampled 
from the training dataset �t . By replacing the full training 
dataset �t in Eq. 6 with the sampled mini-batch �s , we obtain 
the loss function for mini-batch training:

It is shown that for mini-batch training, the model param-
eters are updated multiple times per epoch because a large 
number of mini-batches are needed to have the entire PASS 
of the training dataset, resulting in many rounds in one 
epoch.

Distributed mini-batch training is a distributed implemen-
tation of GNN mini-batch training. It also requires synchro-
nization of gradients before model parameters are updated, 
so a round of distributed mini-batch training consists of 
three phases: sampling, model computation, and gradient 
synchronization. Model parameter updates are included in 
the gradient synchronization phase.

Distributed mini-batch training parallelizes the train-
ing process by processing several mini-batches at the same 
time, one mini-batch per node. Mini-batches can be sampled 
by the computing node itself or by other devices, such as 
another node dedicated to sampling. Each node performs 
forward propagation and backward propagation on its own 
mini-batch. The nodes then synchronize and accumulate 
the gradients and update the model parameters accordingly. 
Such a process can be performed by:

where Wi is the weight parameter of the model in the ith 
round of computation, ∇gi,j is the gradient generated by the 
backward propagation of the computing nodes j in the ith 
round of computation, and n is the number of computing 
nodes.

Mini-batch GNN training currently has many limita-
tions. The sampling stage introduces irregular calculations 
and requires traversing the entire graph to obtain neighbor 

(4)L =
1

|Vs|
∑

vi∈Vs

∇l
(
yi, zi

)

(5)Wi+1 = Wi +

n∑

j=1

∇gi,j

Fig. 3  Two implementations of distributed GNN Training
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information (Wan et al. 2023). This causes subsequent stages 
to stall waiting for input, resulting in performance pen-
alty (Lin et al. 2023). Also, mini-batch training may suffer 
from low accuracy due to information loss (Jia et al. 2020).

2.3.2  Full‑graph training

Full-graph training utilizes the entire graph to update the 
model parameters in each round. Given a training set Vt ⊂ V , 
the loss function for full-batch training is:

where ∇l() is the loss function, yi is the known labeling 
of vertex vi , and zi is the output of the GNN model at fea-
ture xi of input vi . In each epoch, the GNN model needs to 
aggregate the representations of all neighboring vertices of 
each vertex in Vt once. Therefore, the model parameters are 
updated only once in each epoch.

Distributed full-graph training is a distributed imple-
mentation of GNN full-graph training. In addition to graph 
partitioning, a major difference is that multiple computing 
nodes need to synchronize the gradients before updating 
the model parameters so that the model across computing 
nodes remains uniform. Thus, a round of distributed full-
graph training consists of two phases: model computation 
(forward propagation + backward propagation) and gradient 
synchronization. Model parameter updates are included in 
the gradient synchronization phase.

Since each round involves the entire raw graph data, each 
round requires a considerable amount of computation and 
a large memory footprint. To cope with it, distributed full-
graph training mainly uses a workload partitioning approach: 
the graph is split to generate small workloads that are given 
to different computing nodes.

Such a workflow leads to a large number of irregular 
communications in each round, mainly to transfer features 
of vertices along the graph structure. This is due to the fact 
that the graph data is partitioned and therefore stored in a 

(6)L =
1

|Vt|
∑

vi∈Vt

∇l
(
yi, zi

)

distributed manner, as well as irregular connection patterns 
in the graph, such as arbitrary numbers and locations of 
neighbors of vertices. As a result, there are many uncertain-
ties in the communication of distributed full-graph train-
ing (Wan et al. 2022), including uncertainties in the content, 
target, time and delay of the communication, leading to chal-
lenges in the optimization of distributed full-graph training.

3  Motivation

3.1  Performance gap among GPUs

3.1.1  Throughput of SpMM kernel

There are significant differences in hardware specification 
among GPUs, such as architecture, number of compute 
units, core frequency, memory bandwidth, etc. Generally 
speaking, the key kernel during GNN training is SpMM, 
which corresponds to the aggregation of neighbor infor-
mation. The throughput of SpMM kernel greatly impacts 
the training speed of GNNs (Huang et al. 2021). Therefore, 
we evaluation SpMM on three GPU generations, including 
A100, TITAN RTX, and TITAN X, to understand how GPU 
characteristics affect SpMM efficiency.

Figure 4 shows the GFlops of SpMM kernel on different 
GPUs. As seen, the performance difference among GPUs 
is not exactly equal to the constant ratios. Take ogbn-arxiv 
as an example, the achieved GFlops on A100 is 1.6× and 
6.4× higher than that on TITAN RTX and TITAN X, respec-
tively. While for ogbn-products, A100 achieves 2.3× and 
6.7× higher GFlops than TITAN RTX and TITAN X. The 
results indicate that SpMM performance is not only deter-
mined by hardware but also affected by other factors, such 
as the graph dimensions and degrees.

Fig. 4  SpMM throughput on 
three GPUs
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3.1.2  Execution time of GNN training

The training process involves many steps, such as gradient 
calculation and parameter update. Therefore, we evaluate 
the end-to-end performance of GNN training on the same 
platform mentioned above. Figure 5 shows the execution 
time of GCN training with 100 epochs. We perform a log2 
operation on the per-epoch execution time to better showcase 
the performance differences among GPUs.

It can be observed that the gap in training time is much 
greater than that in SpMM GFlops. Even for ogbn-arxiv, 
Cora and Pubmed, the A100 does not achieve the short-
est training time. The results indicate that the graph input 
has a considerable impact on both the key kernels and the 
training process. To maximize the training performance of 
each GPU, it is necessary to deeply analyze the performance 
characteristics of GNNs to reasonably partition the training 
tasks.

3.1.3  Mixed‑precision GNN training

Modern GPUs support computations with multiple preci-
sions, and lower precision usually results in faster memory 
access and computation. However, low precision may lead 
to numerical instability. Therefore, mixed-precision (16-bit 

mixed with 32-bit) is usually used in deep learning to accel-
erate training (Micikevicius et al. 2018). PyTorch provide 
the interface torch.cuda.amp for mixed-precision train-
ing. The SOTA GNN framework DGL also support auto-
matic mixed-precision (AMP). Table 2 shows the accuracy 
and per-epoch execution time of GCN trained with AMP and 
pure BF16 on A100 GPU with 100 epochs. Note that pure 
FP16 is not listed because it fails to converge.

It can be seen from the results that AMP does not show 
an advantage on GNN training. We also try the training of 
pure BF16, which achieves accelerations compared with 
FP32 on some datasets without loss of accuracy. Therefore, 
we believe that if BF16 can be taken into account due to its 
superior performance, the efficiency of full-graph training 
will be further improved.

3.2  Limitation of DL frameworks

3.2.1  Uniform graph partitioning

The graph partitioning function of popular GNN training 
frameworks is built on METIS (Karypis and Kumar 1998). 
The function focuses on partitioning the graph evenly so 
the workload of each process can be balanced. However, the 
function does not take into account the mixed heterogeneous 

Fig. 5  GCN execution time on 
three GPUs

Table 2  Mixed-precision GCN 
training performance on A100

The bold entries denote the fastest time recorded for each dataset across different precision

Graph Dataset FP32 AMP BF16 AMP FP16 BF16

Accuracy Time (s) Accuracy Time (s) Accuracy time(s) Accuracy Time (s)

ogbn-arxiv 43.44 2.04 44.39 2.47 44.88 2.40 43.96 2.39
ogbn-proteins 10.03 5.96 10.03 5.38 10.10 5.32 10.17 4.75
ogbn-products 72.65 25.13 72.53 23.22 72.30 23.18 72.43 19.63
ogbn-mag 10.08 16.38 9.99 34.00 9.99 33.75 9.98 49.49
Reddit 94.31 13.17 94.31 11.92 94.29 11.95 94.33 10.65
Cora 80.80 1.63 80.50 1.75 80.30 1.72 80.70 1.50
Citeseer 71.50 1.49 71.40 1.64 71.80 1.63 71.70 1.52
Pubmed 80.10 1.51 79.70 1.59 79.60 1.70 79.90 1.53
Flickr 52.97 1.78 53.04 2.10 52.78 2.04 52.74 1.92
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situation. The typical proof is that when compiling DGL, the 
architecture detection only extracts the information of the 
first GPU, and does not take into account the multi-GPU sce-
narios. Uniform graph partitioning can not fully exploit the 
heterogeneous platform with different generations of GPUs.

Figure 6 shows the vertex distribution partitioned by 
DGL’s built-in function. The partitioned sub-graphs consist 
of two parts, including HALO vertices and inner vertices. 
We can see that the inner vertices are well-balanced. This is 
very important in a homogeneous distributed environment, 
as the number of inner vertices is one key factor determining 
the computational time required for GNN training. However, 
HALO vertices are not well balanced (for instance, in ogbn-
arxiv, rank 1 has 2.65× HALO vertices compared with rank 
0), which will result in a severe imbalance in sub-graph com-
munication. Besides, if we deploy such evenly partitioned 
training tasks in a mixed heterogeneous environment, there 
will be a very obvious workload imbalance. This affects the 
overall training efficiency. Therefore, we need a new parti-
tioning method to tackle the unbalanced processing capabili-
ties among GPU generations.

3.2.2  Gradient synchronization cost

The uniform graph partitioning does not consider the dif-
ferences in GNN processing capability among GPUs. In 
this way, GPUs with higher capability will complete the 
calculations quickly and waste time waiting for gradient 
synchronization. As shown in Fig. 7, we break down the 
computation and waiting time of different ranks during 
full-graph training. Each bar indicates a different rank, and 

y-axis represents the proportion of time spent on computa-
tion and waiting.

It can be observed that Rank 2 (TITAN X) has the high-
est utilization and almost no waiting time, whereas Rank 0 
(A100) wastes a lot of time waiting. On the Reddit dataset, 
Rank 0 even waits for half of the time to start comput-
ing, which causes significant resource idleness. This is 
because the A100 GPU quickly completes the training task 
and waits for data exchange with other GPUs. Therefore, 
we need a better graph partitioning method to adapt to 
the uneven GPU capabilities in heterogeneous distributed 
environments.

Fig. 6  The vertex distribution after DGL’s built-in graph partitioning

Fig. 7  The time comparison of computation and waiting time among 
three ranks
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4  Methodology

4.1  Design overview

In this section, we propose an efficient full-graph GNN 
training framework, �GNN, for heterogeneous distributed 
platforms. In order to balance the processing capability 
among different GPUs, �GNN first analyzes the input 
graph dataset. �GNN designs a GNN performance model 
by abstracting the graph and its matricized feature infor-
mation. After obtaining the performance differences of 
GPUs, �GNN will find a partition scheme to perform a 
non-uniformed graph partition. By abstracting the infor-
mation of GPUs, the key parameters affecting GNN 
training performance are deeply analyzed. In terms of 
underlying support, �GNN integrates a GPU-aware graph 
partitioning algorithm in DGL.

Figure 8 shows the design overview of �GNN. Before 
graph partitioning starts, �GNN first reads the hardware 
specification of each GPU, such as the number of SMs, 
memory bandwidth, Frequency, etc. �GNN uses this infor-
mation to model the computing capability and obtains 
the initial graph partitioning scheme. Then, �GNN con-
ducts a detailed performance analysis of training tasks by 
combining the GNN model and the input graph dataset 
information. �GNN further refines the initial partitioning 
scheme considering the performance modeling results. �
GNN calls the underlying algorithm to partition the graph 
based on the final scheme, assigning non-uniform sub-
graphs to different GPUs. Finally, �GNN executes GNN 

training tasks in parallel on GPUs, and warm up several 
epochs to observe whether the workloads are balanced. 
If not balanced, �GNN will enable low-precision units on 
GPUs with larger workloads to reduce the communication 
latency time among GPUs as much as possible.

4.2  Performance modeling

It is necessary to accurately model the performance of GNN 
training tasks in order to fully utilize the resources of each 
GPU and reduce communication time. As shown in Fig. 5, 
when the input graph dataset changes, the execution time of 
GNN will fluctuate greatly. This is because the input graph 
and output tensor contain a larger amount of data compared 
to the model weights. As a result, the execution time of the 
GNN training task is mainly influenced by the input graph 
dataset. Therefore, to model the execution performance of 
GNN training tasks, it is necessary to combine the charac-
teristics of the input graph dataset and the network structure.

Figure 9 shows the performance modeling process of 
distributed full-graph training. Due to the limited number 
of graph datasets in real scenarios, overfitting may occur if 
used directly as a training dataset. Therefore, we adopt a data 
augmentation method based on graph sampling. Specifically, 
we sample the input graph dataset by setting different sam-
pling ratios to obtain a smaller sub-graph dataset. Then, we 
perform distributed GNN training on the sampled dataset 
to collect the training set of the regression models. During 
training, in addition to considering the number of nodes and 
edges of the graph, we also matricized the graph to obtain 
the adjacency matrix that reflects degree information. After 

Fig. 8  The design overview of �GNN 
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that, we extract over 30 features from the adjacency matrix, 
such as the number of non-zero elements in each row and the 
coefficient of variation of non-zero elements among rows. �
GNN concatenates these features together as feature vectors 
of the input data and passes them to multiple regression 
models for training.

These models will predict the computational time per 
epoch of a particular GNN structure for a specific GPU, 
providing guidance for subsequent non-uniformed graph 
partitioning. �GNN evaluates the prediction accuracy of the 
regression algorithms and selects the algorithm based on the 
trade-off between prediction accuracy and inference time. 
The trained regression model will be used for the subsequent 
graph partitioning.

4.3  Heterogeneity‑aware graph partitioning

As shown in Fig. 5, the training tasks of the same dataset 
also vary greatly on different GPU hardware. This is due to 
the different processing capabilities of different GPU genera-
tions. Therefore, to model the performance of GNN training 
tasks, it is necessary to combine the characteristics of GPUs 
and model characteristics.

We consider hardware properties in two parts of �GNN. 
The first is the initial modeling of hardware computational 
capability. We obtain a series of key metrics from the GPUs, 
such as the number of SM, memory, frequency, bandwidth, 
etc. We model the computing performance of each GPU 
and generate a score for each GPU based on this model. 
With this model, we can obtain an initial graph partition-
ing scheme. Then, combined with the GNN model and the 
input graph dataset information, we will conduct a detailed 
performance analysis of the GNN training task, adjust and 

optimize the initial graph partitioning scheme. Based on the 
above analysis, we can further refine the graph partitioning 
scheme to ensure that each sub-graph can efficiently utilize 
the corresponding hardware resources, thereby improving 
the overall training throughput.

Once we have determined the partitioning scheme, we 
can partition the graph dataset according to that scheme. We 
deploy a weight-aware graph partitioning function in �GNN. 
The function can partition a graph into several sub-graphs 
according to the weight information. The ratio of the number 
of vertices among sub-graphs is as close as possible to the 
input partition weights. This way of partitioning ensures that 
the workload of each GPU is reasonable.

4.4  Algorithm implementation

The graph partitioning function provided by DGL is based 
on METIS. It divides the graph into multiple sub-graphs 
with minimal edge-cuts while keeping the number of verti-
ces between the sub-graphs balanced. DGL provides settings 
for parameters such as the number of partitions, the number 
of hops, the type of nodes and edges, and the number of 
training nodes for each machine.

However, it does not take into account the computing 
capabilities of different GPUs in the case of heterogeneous 
computing nodes. If the graph is divided evenly, the hard-
ware resources of some GPUs may not be fully utilized, thus 
affecting the overall training efficiency. Therefore, we have 
integrated an asymmetric heterogeneous GPU-aware graph 
partitioning algorithm in DGL.

We use a three-stage process to partition the graph: 
coarsening, initial-partition, and refinement. The coarsen-
ing merges vertices to reduce the size of the graph. In the 

Fig. 9  The process of performance modeling of distributed full-graph training
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initial-partition, a greedy region growth algorithm divides 
the coarsened graph into partitions that satisfy the con-
straints. In the refinement, we project the partition infor-
mation of the coarsened graph back to the original graph. 
During coarsening, multiple vertices of the original graph 
are combined into a single vertex in the coarsened graph. 
The partition labels assigned to these coarsened vertices are 
now projected back, so all the vertices in the original graph 
inherit the partition labels of their corresponding coarsened 
vertex. After projection, the initial partition of the original 
graph may not be optimal in terms of workload balance or 
edge-cut minimization. So, by moving vertices between par-
titions, we refine the partition to balance the final workload.

This algorithm divides the graph according to the par-
titioning scheme calculated by the performance model of 
�GNN, assigning different parts of the graph to different 
GPUs. This way, we can make full use of the capabilities 
of each GPU, reduce communication time, and reduce the 
overall training time.

4.5  Online adjustment considering BF16 precision

As can be seen from Table 2, when the graph dataset is rela-
tively large, converting the model and graph data to BF16 
format can significantly improve performance. The reason 
is that adopting BF16 format can reduce the number of data 
transfers during the training process, thereby alleviating 
bandwidth conflicts. However, for small graph datasets, the 
precision conversion overhead introduced by BF16 format 
will actually hurts the training efficiency. On the other hand, 
not all GPU generations support the BF16 format. For the 
experimental platform in this paper, only A100 supports the 
BF16 format from the hardware, while TITAN RTX and 
TITAN X do not.

In order to solve the above problems, we add the judg-
ment of the precision supported by the hardware when parti-
tioning the graph data. If any GPU supports the BF16 format 
and is capable of taking on more calculations, an exponential 
decay function is utilized to adjust the weight of graph par-
titioning (formulated as Eq. 7).

Equation 7 illustrates the exponential decay function, where 
t is the number of vertices, and N0 is the initial quantity 
learned from hardware properties. By doing this, �GNN will 
increase the weight of the partitioning corresponding to the 
GPU that supports the BF16 format. As a result, more ver-
tices will be allocated to the specified GPU, thus improv-
ing the overall training performance. Note that the graph 
re-partitioning is done online only once, which can further 
reduce the time required for model training on GPU without 
significant partitioning overhead.

(7)N(t) = N0e
−�t + b

5  Evaluation

5.1  Experiment Setup

5.1.1  Hardware and Software Configurations

The hardware specifications are presented in Table 3. The 
experiments are conducted on Ubuntu 22.04 with GCC 
v11.4 and NVCC v12.1. The �GNN is built on DGL v2.1 
and PyTorch v2.2. In addition, DGL is modified to support 
asymmetric graph partitioning for �GNN.

5.1.2  Graph datasets and GNN models

The graph datasets used for experiments are presented in 
Table 4. As can be seen, the graph datasets have diverse 
dimensions and feature lengths. Such diversity indicates 
significant differences in computation and communication 
complexity.

For GCN, we set the number of hidden units in each GNN 
layer to 256 and the layer size to 4. For GAT, since the model 
is more complex, we shrink the number of hidden units in 
each GNN layer to 128 and the layer size to 3. We use the 

Table 3  Hardware specifications

A100 TITAN RTX TITAN X

CUDA Cores 6912 4608 3072
GFLOPS (FP32) 19.49 16.31 6.691
Boost Clock (MHz) 1410 1770 1089
Memory Clock (MHz) 1215 1750 1753
L1 Cache (KB) 192 64 48
L2 Cache (MB) 40 6 3
Memory Size (GB) 40 24 12
Bandwidth (GB/s) 1560 672 337

Table 4  Graph datasets used for evaluation

Dataset #Vertex #Edge #Feature #Class

Yelp 716847 13954819 300 100
Reddit 232965 114615892 602 41
ogbn-products 2449029 61859140 100 47
ogbn-mag 1939743 21111007 128 349
ogbn-proteins 132534 39561252 128 10
ogbn-arxiv 169343 1166243 128 40
Flickr 89250 899756 500 7
Pubmed 19717 88651 500 3
Citeseer 3327 9228 3703 6
Cora 2708 10556 1433 7
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Adam Optimizer with a learning rate of 0.01 for all models 
and trains each model 100 epochs.

5.1.3  Comparison methods and metrics

We compare �GNN with three different partitioning schemes. 
According to the core frequency, GFLOPS, and CUDA Core 
number of the three GPUs, graph datasets are partitioned 
following those ratios and compared with �GNN. We first 
compare the overall performance of the two GNN models 
with four methods on ten commonly used real-world data-
sets. Then, we perform a quantitative analysis of the models’ 
computation distribution by standard deviation. After that, 
we conduct an in-depth analysis of the impact of different 
schemes on communication volume. Finally, we analyze the 
accuracy and inference overhead of regression models.

5.2  Overall comparison

To validate the effectiveness of �GNN, we conduct perfor-
mance evaluation on the datasets presented in Table 4. The 
results of the GCN and GAT models are shown in Figs. 10 
and  11, respectively. The three columns for each method 
indicates different ranks (GPUs). Due to the large training 
time gap among different datasets, we roughly divide the 
graph into upper and lower parts according to the number of 
vertices and edges, with the upper half being a larger dataset 
and the lower half being a smaller dataset. The different pat-
terns in the figure represent the time breakdown of different 
parts, including computation, communication and reduction.

Compared with other partitioning methods on the GCN 
model, �GNN has an average speedup ratio of 1.39× , 1.32× , 
1.27× , and the highest speedup ratio is 2.63× , 2.75× , and 
2.62× , respectively. Compared with other partitioning meth-
ods on the GAT model, �GNN achieves 1.33× , 1.17× , 1.19× 
speedup ratios on average, and achieves the highest speedup 
ratio of 2.41× , 2.08× , and 2.19×.

It can be seen that �GNN outperforms the three parti-
tioning schemes compared in most cases. This shows that 
�GNN can effectively accelerate the training of full-graph 
GNN training in distributed heterogeneous environments. 
We have also observed a performance degradation of �GNN 
in some cases. For example, on the Yelp dataset, the per-
formance of �GNN is poor due to the high communication 
overhead. The experimental results show that although �
GNN do balance the computational load well, the commu-
nication overhead between vertices increases compared with 
other methods, resulting in the performance degradation of 
�GNN. This shows that the balance of computing load is not 
the only factor, but also the communication overhead. This 
situation also occurs in the ogbn-mag dataset of the GAT 
model. Therefore, in future work, we would like to explore 
the relationship between graph partitioning and communica-
tion overhead.

We also compared the device memory consumption with 
different partitioning schemes in Table 5. The rank 0 is an 
A100 with 40 GB device memory, rank 1 is a TITAN RTX 
with 24 GB device memory and rank 2 is a TITAN X with 
only 12 GB device memory. It can be seen that compared 
with partition schemes based on hardware specifications, �

Fig. 10  The overall performance comparison of GCN
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GNN is more suited to the device memory distribution. Also, 
the overall memory consumption of �GNN is lower than the 
other three partition schemes.

5.3  Load balancing comparison

To verify whether �GNN makes more efficient use of hetero-
geneous GPUs, it is necessary to analyze the load balance 
among GPUs during training. To compare the difference 
in computation time among GPUs, we obtain the standard 
deviation of rank time using four methods. The experimental 
results are shown in Table 6.

Overall, the mean standard deviation of �GNN is 30%, 
4%, and 22% lower than that of other partitioning methods 
on GCN. For Yelp dataset, �GNN even achieves 2 × lower 
standard deviation than other methods. The results indicate 
that �GNN ensures balanced task distribution among GPUs, 
reducing the synchronization latency in the mixed hetero-
geneous system.

For GAT, �GNN is more balanced on half of the datasets. 
However, from an average perspective, the standard devia-
tion of �GNN is slightly worse. This is because the stand-
ard deviation of the computation time of ogbn-mag is large 
under all schemes. Since it is the only heterogeneous graph 
in our experiments, we believe that the dataset trained by the 
model is not universal enough, resulting in its low predic-
tion accuracy. We will further try more heterogeneous graph 
datasets later to strengthen the model. If this is excluded, the 
standard deviations of the four schemes are 14.8, 5.8, 8.3, 
and 6.8, respectively.

5.4  Communication analysis

�GNN also has advantages in communication. Usually, the 
graph partitioning algorithm will consider reducing the 
number of edge cuts as much as possible, thereby reducing 
the communication volume between GPUs. However, in the 
uniformed partitioning algorithm, each partition has roughly 
the same number of vertices. We analyze the communication 
volume between �GNN and other three partitioning methods 
normalized to �GNN. The results of GCN and GAT models 
are shown in Fig. 12 and Fig. 13, respectively.

As can be seen, �GNN’s communication volume is sig-
nificantly lower than the other three partitioning schemes. 
Overall, compared with the other three partitioning schemes 
on GCN, �GNN reduced communication volume by 97.59%, 
99.78%, and 87.05%, respectively. This is because in �GNN, 
fewer vertices are allocated to GPUs with lower computa-
tional capability. When the number of vertices assigned to 
the GPU is small, it is highly likely that the number of edge 
cuts will decrease, thus reducing the total communication 
volume.

On GAT, �GNN reduced communication volume by 
208.84%, 213.49%, and 174.77%, respectively. This is 
because the A100 GPU has an advantage over the other 
two GPUs in computing the GAT, which results in a more 
uneven partitioning. Therefore, on the GAT model, the 
other two partitions have fewer vertices than the A100, 
further reducing the communication volume between 
GPUs.

Fig. 11  The overall performance comparison of GAT 
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5.5  Regression accuracy analysis

Accurately predicting the performance of a model is impor-
tant to manage the resources of GPU memory accurately. 
Eight lightweight regression models are selected for perfor-
mance modeling in �GNN. We trained them on the gener-
ated dataset and then tested them on the real dataset, using 
several metrics to evaluate the models’ performance. Table 7 
shows the accuracy (MSE, MAE, MAPE) and inference cost 
comparison of regression models on GCN and GAT.

It can be seen that random forest regression usually 
achieves better accuracy, but its cost is the largest of all mod-
els. It is worth mentioning that, in the GCN, lasso regres-
sion has the lowest MSE. However, since MAPE takes into 
account the ratio of error to the true value, we choose ran-
dom forest as the optimal model in the overall performance 
analysis. At the same time, if both the inference cost and 
prediction accuracy are valued, the linear and lasso regres-
sion model may be a good choice. When selecting a model, 
it is necessary to weigh accuracy and inference time accord-
ing to the requirements of practical application scenarios.

5.6  Discussion and future work

At present, �GNN has considered and optimized the compu-
tation in heterogeneous distributed platforms. It can be seen 
from the experiments that on some graph datasets, the com-
munication overhead cannot be ignored. Although �GNN 
also has certain advantages in communication, the advantage 
is generated by load balancing, not the optimization target-
ing at communication.

This advantage is generated by the optimization of com-
puting, not the optimization of communication. For future 
work, we can consider further optimizing communication 
to improve the performance of �GNN on heterogeneous dis-
tributed platforms. Besides, the current experimental plat-
form is only for GPUs from a single vendor. In a distributed 
scenario, there are also multiple clusters of devices from 
different vendors, such as AMD GPUs and Intel GPUs. How 
to model these devices and optimize computation is also a 
challenging issue. We would like to extend �GNN to support 
more diverse devices.

Since we use heuristics to estimate the workload of each 
partition, the accuracy of the performance model determines 
the performance of �GNN. As a result, if we change the 
model or use a unique graph dataset, the performance of �
GNN may be affected. In the future, we will explore more 
accurate ways to estimate the workload of each partition to 
further improve the performance of �GNN.
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6  Related work

6.1  GNN kernel optimization

In the research of GNN acceleration, one of the core 

challenges is how to improve the computational efficiency 
on graph processing. In recent years, kernel optimizations 
for GNN have emerged, aiming to improve performance.

GE-SpMM (Huang et al. 2020) improves access efficiency 
by utilizing shared memory to cache rows of the sparse 
matrix and by merging workloads across different warps. 
FeatGraph (Hu et al. 2020) optimizes cache utilization dur-
ing GNN aggregation by integrating graph partitioning with 
feature dimension tiling.  Huang et al. (2021) addresses 
the issue of load imbalance by clustering central vertices 
through locality-sensitive hashing and further partitioning 
the workload by grouping neighbors. GNNAdvisor (Wang 
et al. 2021b) reduces thread divergence by employing warp-
aligned thread mapping along with neighbor and dimen-
sion partitioning. ES-SpMM (Lin et al. 2021) implements 
in-kernel edge sampling to downsize the graph for fitting 
into shared memory and eliminates the overhead associated 
with pre-processing. TC-GNN (Wang et al. 2021a) adapts 
the input graph to the dense computations of tensor cores by 
identifying non-zero tiles through sparse graph translation. 
QGTC (Wang et al. 2022) leverages Tensor Core to support 
arbitrary bit width computation for quantum graph neural 
networks (QGNNs) on GPUs. DA-SpMM (Dai et al. 2022) 
introduces a three-loop model to extract orthogonal design 
principles for SpMM on GPUs. HP-SpMM mixes node 
and edge computation tasks (Fan et al. 2023) and employs 
hierarchical vectorized memory access to enhance memory 
efficiency. TurboMGNN (Wu et al. 2023) fuses forward and 
backward propagation kernels, groups tasks, and matches 
their operators according to resource contention.

The above works can be combined with �GNN to improve 
the training and inferencing efficiency.

Table 6  Standard deviation 
comparison of computation 
time among GPUs

The bold entries denote the fastest time recorded for each dataset across different precision

Dataset GCN GAT 

Frequency GFLOPS CUDA Core �GNN Frequency GFLOPS CUDA Core �GNN 

ogbn-arxiv 0.12 1.04 1.34 0.74 4.04 1.31 3.78 3.16
ogbn-proteins 7.20 4.88 4.17 1.6 18.81 8.44 8.77 5.30
ogbn-products 60.86 32.84 44.03 25.89 61.38 24.21 31.55 25.23
ogbn-mag 19.81 33.07 35.35 32.42 127.51 178.36 130.04 188.44
Yelp 6.48 5.01 6.96 2.49 9.78 1.67 7.39 0.89
Reddit 19.19 7.37 11.23 16.67 36.1 13.18 20.92 25.57
Cora 0.50 0.11 0.41 0.36 1.54 1.03 0.56 0.26
Citeseer 0.22 0.25 0.45 0.10 0.33 0.69 0.59 0.47
Pubmed 0.50 0.23 0.27 0.49 0.36 0.25 0.72 0.12
Flickr 0.47 0.2 0.83 0.47 0.93 1.28 0.44 0.41
Average 11.53 8.50 10.50 8.12 26.08 23.04 20.48 24.99

Fig. 12  The overall communication volume of different partitioning 
methods normalized to �GNN on GCN

Fig. 13  The overall communication volume of different partitioning 
methods normalized to �GNN on GAT 
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6.2  GNN‑customized accelerators

GNN accelerators employ various techniques such as 
dynamic distribution smoothing, ReRAM-based architec-
tures, graph restructuring, near-memory processing, tensor 
decomposition, and hybrid precision quantization to address 
computation, memory, and I/O bottlenecks.

AWB-GCN (Geng et al. 2020) utilizes dynamic distribu-
tion smoothing, remote switching, and row remapping to 
accelerate GCN inference. ReGraphX (Arka et al. 2021) pro-
poses a NoC-supported 3D heterogeneous ReRAM architec-
ture for training GNN. Through the combination of hetero-
geneous ReRAM and 3D NoC, the performance and energy 
efficiency of GNN training are improved. I-GCN (Geng 
et al. 2021) introduces an online graph restructuring algo-
rithm, islandization, to improve data locality and reduces 
unnecessary computation. MetaNMP (Li et al. 2022) is a 
DIMM-based near-memory processing HGNNs accelera-
tor, which generates meta-path instances through Cartesian 
product paradigm, reduces redundant computation, and uti-
lizes near-memory processing. Mao et al. (2023) propose a 
node-centered graph attention network based on ReRAM 
is proposed, which improves the computational efficiency 
and energy efficiency of GNNs through optimized hard-
ware architecture and computing mode. TT-GNN (Qu et al. 
2023) uses tensor-training decomposition to compress graph 
embedding matrices. Celeritas (Li et al. 2024 targets the 
memory and I/O bottlenecks in large-scale graph data pro-
cessing through cross-layer computation and optimized I/O 
strategies. FlashGNN (Niu et al. 2024) implements critical 
computation of GNN training in SSDs, reducing data trans-
mission and storage overhead and improving training effi-
ciency. MEGA (Zhu et al. 2024) uses degree-aware hybrid 
precision quantization to reduce the memory footprint and 
improve the training efficiency.

Customized accelerators pose a challenge to the perfor-
mance modeling part of �GNN, and new abstractions of 

hardware features are required to achieve accurate predic-
tion results.

6.3  Distributed training system

In recent years, there has been many attempts to improve 
the efficiency of distributed GNN training with a variety of 
optimization techniques.

Roc (Jia et al. 2020) proposes an online-linear-regression-
based strategy to achieve load balance, and coordinates opti-
mized data transfers between GPU devices and host CPU 
memories with a dynamic programming algorithm. Flex-
Graph (Wang et al. 2021c) presents a GNN programming 
model, which utilizes hierarchical dependency graphs to 
express hierarchical dependencies among vertices. Dory-
lus (Thorpe et al. 2021) designs a computation separation 
mechanism and pipelines the different computation patterns 
in the Amazon EC2 machine and serverless Lambdas in the 
cloud environment. ByteGNN (Zheng et al. 2022b) abstracts 
the sampling phase of a mini-batch as a DAG of small tasks 
to support high parallelism, designs a two-level scheduling 
to improve resource utilization and reduce the end-to-end 
training time, tailors graph partitioning to reduce network 
I/O and balance the workload. GNNLab (Yang et al. 2022) 
proposes a space sharing design to tackle GPU memory con-
tention and a pre-sampling based caching policy to acceler-
ate sample-based GNN training. Legion (Sun et al. 2023) 
is a cache-based GNN system which proposes an NVLink-
aware hierarchical partitioning technique and a novel hot-
ness-aware unified cache mechanism with cache manage-
ment. XGNN (Tang et al. 2024) utilizes global memory store 
abstraction to improve GPU memory efficiency, NVLink and 
host memory utilization.

However, previous works have not considered the mixed 
heterogeneous distributed scenarios, and �GNN filled the 
gap in such research.

Table 7  Performance regression model accuracy and inference cost comparison

The bold entries denote the fastest time recorded for each dataset across different precision

Model GCN GAT 

MSE MAE MAPE Time (ms) MSE MAE MAPE Time (ms)

Linear 8.20E–05 5.94E–03 2.57E–01 2.60E+00 1.31E–04 7.77E–03 2.51E–01 5.23E+01
Ridge 1.82E+00 9.46E–01 4.78E+01 4.42E+00 2.92E–01 4.34E–01 1.71E+01 6.89E+00
Decision tree 1.27E–04 5.23E–03 1.34E–01 3.88E+00 2.49E–04 5.54E–03 1.02E–01 4.00E+00
SVR 4.67E–03 6.64E–02 4.94E+00 3.00E+00 8.97E–03 9.32E–02 4.18E+00 3.00E+00
Lasso 7.75E–05 4.91E–03 1.71E–01 3.52E+00 1.23E–04 6.49E–03 1.80E–01 6.41E+00
AdaBoost 9.91E–05 4.85E–03 1.63E–01 2.77E+01 2.31E–04 1.08E–02 3.94E–01 7.64E+01
Bagging 1.03E–04 4.30E–03 1.04E–01 2.51E+01 1.12E–04 3.81E–03 7.67E–02 2.66E+01
Random forest 9.38E–05 3.94E–03 1.01E–01 2.14E+02 7.05E–05 3.41E–03 6.92E–02 1.91E+02
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7  Conclusion

In this paper, we propose �GNN, an efficient non-uniformly 
partitioned full-graph GNN training system on heterogene-
ous distributed platforms. The �GNN combines the perfor-
mance modeling, the offline-online cooperative task assign-
ment mechanism, and non-uniformed graph partitioning 
to accommodate the unbalanced computing capability of 
GPUs. The experimental results show that �GNN outper-
forms other partitioning schemes by a factor of, on average, 
1.33 on GCN (up to 2.75) and 1.23 on GAT (up to 2.41), 
respectively.
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