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Abstract
Efficient general matrix-matrix multiplication (GEMM) has at-
tracted significant research attention in HPC and AI workloads.
While large-scale GEMM has nearly achieved the peak floating-
point performance of GPUs, substantial opportunities for optimiza-
tion remain in small and batched GEMM operations.

We in this paper propose KAMI, a set of 1D, 2D, and 3D GEMM
algorithms that extend the theory of communication-avoiding (CA)
techniques within a single GPU. KAMI optimizes thread block-
level GEMM by utilizing tensor cores as computational units, low-
latency thread registers as local memory, and high-latency on-
chip shared memory as a communication medium. We provide a
theoretical analysis of CA performance from the perspective of GPU
clock cycles, rather than the traditional execution time. Also, we
implement sparse-dense matrix-matrix multiplication (SpMM) and
sparse general matrix-matrix multiplication (SpGEMM) with this
compute-communication pattern. Experimental results for general,
low-rank, batched, and sparse multiplication on NVIDIA, AMD,
and Intel GPUs show significant performance improvements over
existing libraries cuBLAS, cuBLASDx, CUTLASS, MAGMA, and
SYCL-Bench.

CCS Concepts
• Computing methodologies→ Parallel algorithms; Linear
algebra algorithms; • Theory of computation→ Communi-
cation complexity.
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1 Introduction
General matrix-matrix multiplication (GEMM) [88, 192] is in gen-
eral the most time-consuming operation in HPC applications [13,
19, 123, 158] and AI workloads [51, 79, 195]. In recent years, many
studies focused on optimizing large-scale GEMM on multi-core
and many-core processors, in particular GPUs, to achieve near
peak performance [106, 121, 124, 127, 140, 180, 181, 196, 202, 224].
Normally, as long as the matrix is sufficiently large, both square
matrix multiplication [49, 139] and tall-and-skinny matrix multi-
plication [53, 163, 167, 210] often achieve near peak performance.
However, small and batched matrices tend to struggle in reaching
peak performance at most sizes [10, 98, 169, 209, 211].

According to research [97, 122], the main cause of this phe-
nomenon is the excessive access to remote memory. Considering
the 𝑂 (𝑛3) computational complexity and 𝑂 (𝑛2) memory access
complexity of GEMM, a small value of 𝑛 fails to provide sufficient
arithmetic intensity to effectively utilize modern processors and
thus requires better data locality. On the other hand, taking a CUDA
thread on an NVIDIA Hopper GPU [57] as an example, the latency
and bandwidth for accessing its registers are about 20 times and
4 times faster, respectively, compared to accessing on-chip shared
memory [136]. Therefore, a more effective strategy is to ensure
that the data involved in GEMM is sourced directly from registers,
rather than from the significantly slower shared memory. However,
existing research largely overlooks this issue and fails to effectively
leverage the multiple memory hierarchies of GPUs to optimize
small-scale GEMM.

Reducing the cost of remote data access has been a longstanding
challenge in distributed computing. A series of communication-
avoiding (CA) algorithms proposed by Demmel et al. [18, 22, 65]
have demonstrated their great effectiveness across a broad spectrum
of distributed problems, including matrix computations [72, 91, 92,
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112, 141, 165], graph processing [172, 174], N-body simulations [77,
113], and machine learning [212, 215]. The necessity of accessing
faster local memories, combined with the theoretical foundations
of CA algorithms, motivates our exploration of CA techniques on a
single GPU to accelerate small-scale GEMM.

In this paper, we present KAMI, to the best of our knowledge, the
first attempt to extend CA theories and techniques within a single
GPU to accelerate matrix multiplication. We reorganize the three
primary on-chip components — tensor core units, registers, and
shared memory — to formulate our 1D, 2D and 3D CA algorithms
for GEMM. Specifically, tensor core units function as the computa-
tional units, registers serve as local memory for storing matrices A,
B, and C, while shared memory acts as a communication medium
for transferring submatrices between the computational units. Ad-
ditionally, rather than relying on execution time, we employ the
number of GPU clock cycles as the unit of theoretical analysis to
perform a more detailed study of our CA algorithms. To exploit
sparsity, KAMI also supports sparse-dense matrix-matrix multipli-
cation (SpMM) and sparse general matrix-matrix multiplication
(SpGEMM), utilizing the same CA schemes, built upon a Z-Morton
order storage format.

We conduct extensive experimental evaluations on four GPUs:
NVIDIA GH200 and 5090, as well as AMD 7900 XTX and Intel Max
1100, and compare KAMI with cuBLASDx [156], CUTLASS [157],
cuBLAS [155], MAGMA [149] and SYCL-Bench [120]. In block-level
GEMM, KAMI achieves up to 5.20x, 74.36x and 14.48x speedups
over cuBLASDx, CUTLASS, SYCL-Bench for square GEMM and
6.11x and 11.61x over cuBLASDx, CUTLASS for low-rank GEMM,
respectively. For batched tasks, KAMI achieves up to 713.93x and
332.02x speedups over cuBLAS and MAGMA.

This work makes the following contributions:
• We propose KAMI to extend CA algorithms within a single
GPU to accelerate small-scale matrix multiplication.
• We present a new theoretical analysis scheme for communi-
cation and computation in GPU clock cycles.
• We exploit sparsity and block-wise Z-Morton storage for
supporting SpMM and SpGEMM in our CA methods.
• We implement KAMI on NVIDIA, AMD and Intel GPUs, and
show obviously faster performance over SOTA works.

2 Background
2.1 Matrix Multiplication
GEMM operation multiplies a dense matrix A of size𝑚-by-𝑘 with
a dense matrix B of size 𝑘-by-𝑛, and gives a resulting dense matrix
C of size 𝑚-by-𝑛, as shown in Figure 1(a). When accounting for
sparsity, GEMM can become SpMM (sparse A, dense B and C, see
Figure 1(b)) and SpGEMM (sparse A, B and C, see Figure 1(c)).
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Figure 1: Different variants of matrix multiplication.
Moreover, there are two additional types of matrix multiplica-

tion: 1) Low-rank GEMM (see Figure 1(d)) leverages the observation

that matrices may exhibit an inherent low-rank structure and can
be approximated as products of smaller matrices to reduce the num-
ber of arithmetic operations [8, 133, 138]. 2) Batched GEMM (see
Figure 1(e)) collects a number of independent small-scale GEMM
operations and executes them in a single workload to saturate
many-core processors [10, 76, 117, 127].

2.2 CA Methods
For large-scale problems executed on distributed platforms, com-
munication often emerges as a bottleneck. CA algorithms aim to
minimize data transfer between computational nodes, thereby miti-
gating this performance problem [18, 22, 65].

CA methods can be broadly categorized into three distinct ap-
proaches: 1) The 1D algorithm minimizes data transfer by optimiz-
ing the allocation of matrix rows across processing units, thereby
reducing inter-node communication. 2) The 2D approach extends
this optimization by partitioning both rows and columns, effectively
minimizing communication along both dimensions of the matrix.
3) The 3D method further enhances communication efficiency by
introducing a third dimension of partitioning, which improves data
locality and substantially reduces memory access overhead, leading
to more efficient computational performance.
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Figure 2: Three CA algorithms.
Figures 2(a), (b) and (c) show the three methods, respectively.

It is worth noting that additional variants, such as 1.5D [109] and
2.5D [176], also exist. However, to maintain focus in our study, we
concentrate on the classic 1D, 2D, and 3D approaches in this paper.

3 Motivation
3.1 Performance Issue of Small-Scale GEMM
In general, while large-scale GEMM is primarily computation-
bound, small GEMM remains significantly constrained by memory
accesses, in terms of bandwidth and latency [97, 122, 132, 150, 160].
We evaluate double precision cuBLAS [155] using square matrices
of orders ranging from 1 to 8192, and cuBLASDx (a block-level
extension to cuBLAS) [156] from 1 to 98 (could not be larger due to
the limitation of shared memory capacity) on an NVIDIA GH200
GPU.

As illustrated in Figure 3, cuBLAS approaches near peak perfor-
mance for large-scale GEMM. In contrast, when the matrix size
is small, the performance of cuBLAS degrades significantly. For
example, when𝑚 = 64, the performance drops to only 28 GFLOPS.
Additionally, assuming no global memory load/store and executing
a large amount of block-level small-scale GEMM in cuBLASDx,
when𝑚 = 64, FP64 GEMM achieves only 31 TFLOPS, which corre-
sponds to merely 46% of the theoretical peak.
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Figure 3: A roofline model of GEMM performance on an
NVIDIA GH200 GPU. For cuBLAS, the kernel is repeated
1000 times to report the average, and cuBLASDx is evaluated
with 16384 concurrent thread blocks, each looping 1000 times
inside the CUDA kernel to ignore global I/O costs.

Although small-scale GEMM of specific sizes can achieve near-
peak performance (e.g., size𝑚 = 128, 𝑛 = 128 and 𝑘 = 32, 64, 128,
depending on precision and shared memory size, used as the build-
ing block for large GEMM in CUTLASS [157]), most arbitrary sizes
still exhibit substantial room for performance improvement. The
importance of small-scale GEMM arises from its prevalence in
real-world applications, such as low-rank approximation [90, 138],
block-wise scientific solvers [82, 135, 197], batched neural network
inference [86, 194], and transformer models with block-sparse at-
tention [218]. In these scenarios, matrix sizes are typically small
(often ≤128 in one or more dimensions), but must be computed
repeatedly and in parallel, making throughput-critical optimization
essential. This motivates our exploration of strategies to enhance
the efficiency of small-scale GEMM on GPUs.

3.2 Distributed and GPU Memory Hierarchies
In distributed environments, parallelism is typically achieved at the
process level, where each process stores its data in the local mem-
ory (e.g., DDR5 DRAM). When necessary, processes communicate
through networks (e.g., InfiniBand). The performance is commonly
evaluated by execution time.

Modern GPUs are composed of multiple streaming multipro-
cessors (SMs), each runs several thread blocks. Within a block,
a number of 32-thread warps are assigned to hardware compute
units. For a warp’s workload, data are stored in registers, and utilize
CUDA cores or tensor cores to perform operations such as matrix
multiplication. Inner-block data exchange between warps could
only be achieved by shared memory with synchronizations. Also,
unlike networks, where concurrent message passing is supported,
broadcast between warps are performed serially due to the limited
number of shared memory banks. The performance of GPU tasks
can be evaluated by GPU clock cycles.

To highlight the differences and similarities, Figure 4(a) illus-
trates the latency and bandwidth for a 4-node cluster, whereas
Figure 4(b) depicts similar metrics within an SM in a GPU.

As can be seen, distributed and GPU memory hierarchies show
similar latency and bandwidth differences between local and remote
storage. The latency differences are about 9x (70 ns vs. 600 ns,
see Figure 4(a)) and 20x (1 cycle vs. 20 cycles, see Figure 4(b)),
respectively. Moreover, the bandwidth differences are about 4x
(819.2 GB/s vs. 200 GB/s, see Figure 4(a)) and 4x (1013.6 GB/s vs.
253.6 GB/s, see Figure 4(b)), respectively.
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Figure 4: Latency and bandwidth comparison of the memory
hierarchy of a 4-node cluster and a 4-warp SM.

The variations in memory access across different hierarchical
levels are basically consistent in both distributed environments
and a single SM in a GPU. This similarity motivates us to investi-
gate whether the distributed CA algorithms can be transferred to
accelerate small-scale GEMM within a single GPU.

4 KAMI
4.1 Overview
In this paper, we propose KAMI, a set of CA algorithms accelerating
small-scale GEMM, SpMM and SpGEMM of order up to about 200
within a single GPU. The interfaces are aligned to thread block level
libraries such as cuBLASDx [157] and batched functions in libraries
such as cuBLAS [155] and MAGMA [182].

Concept Classic CA KAMI (our work)
Compute unit Process on CPU/GPU Warp on tensor core
Local storage DRAM Thread register

Communication Send/Recv by network LD/ST on shared mem.
Perf. metric Execution time GPU clock cycle

Table 1: Concept of classic CA and KAMI.

Table 1 compares KAMI with classic CA methods, highlighting
their differences in key concepts: 1) Classic CA operates at coarse-
grained process level on CPUs or GPUs in distributed environments,
whereas KAMI employs fine-grained parallelism at the warp level
within GPU thread blocks calling tensor cores; 2) Classic CA stores
data in the DRAM of the node, while KAMI utilizes registers for
local storage; 3) Classic CA depends on inter-connection networks
for process communication, in contrast to KAMI which utilizes
on-chip shared memory for inter-warp data exchange; 4) Classic
CA typically measures execution time, while KAMI adopts GPU
clock cycles as a hardware-centric metric.
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Figure 5: Matrix partitioning and memory hierarchy mapping before and after execution. Subfigures (a), (b), and (c) illustrate
the data layout under the 1D (𝑝 = 2), 2D (𝑝 = 4), and 3D (𝑝 = 8) CA algorithms where p is the number of warps, respectively. In all
algorithms, input matrices A and B are statically partitioned into 𝑝 submatrices and initially reside in global or shared memory.
The output matrix C is partitioned into 𝑝 submatrices for 1D and 2D, and into 3

2
√
𝑝 submatrices for 3D. After computation, each

warp holds 1
𝑝 of C in 1D and 2D, and 1

3
2
√
𝑝
in 3D aggregated from 3√𝑝 intermediate layers. This figure emphasizes the mapping

between global memory and register files.

In KAMI, matrix multiplication is executed using multiple warps
within a block, with each warp responsible for holding and pro-
cessing a portion of the submatrix (Section 4.2). KAMI implements
the CA algorithms in three fashions: 1D (Section 4.3), 2D (Sec-
tion 4.4) and 3D (Section 4.5). Through cycle-grained modeling, we
quantitatively characterize the computational and communication
costs, enabling more accurate performance prediction across var-
ious hardware configurations. Beyond GEMM, we also consider
sparsity to support both SpMM and SpGEMM (Section 4.6) on top
of a Z-Morton ordered sparse block storage [43, 143]. We further in-
troduce some key implementation details on NVIDIA tensor cores,
AMD matrix cores and Intel Xe Matrix eXtensions (Section 4.7).

Table 2 provides the notation and definitions in this paper.

Symbol Definition
A, B, C Matrices A, B and C of size𝑚-by-𝑘 , 𝑘-by-𝑛,𝑚-by-𝑛
A𝑖 , SmA𝑖 Submatrix 𝑖 of A in registers, and in shared memory
A[:] [𝑖 : 𝑗] The 𝑖𝑡ℎ column to ( 𝑗 − 1)𝑡ℎ column of matrix A

𝑠𝑒 Size of a single matrix element (bytes)
flops(A,B) Total arithmetic operations for multiplying A and B

𝑂𝑡𝑐 Arithmetic operations per cycle by each tensor core
𝑛𝑡𝑐 Number of tensor cores per SM
𝑝 Number of warps for parallel execution

𝐿𝑠𝑚 Latency from register to shared memory (cycles)
𝐵𝑠𝑚 Bandwidth of shared memory (bytes per cycle)
𝑉𝑐𝑚 Communication volume (bytes)

𝑇𝑐𝑚 , 𝑇𝑐𝑝 Number of communication, computation cycles (cycles)
𝑇𝑎𝑙𝑙 All costs, sum of 𝑇𝑐𝑚 and 𝑇𝑐𝑝 (cycles)

𝜃𝑟 , 𝜃𝑤
Bank conflict factors of read and write, respectively

(0 ≤ 𝜃 ≤ 1, 𝜃 = 1 means no conflicts)
A𝑖Send/Recv Submatrix 𝑖 of A to store/load between warps

Table 2: Notation and definitions.

4.2 Data Layout
In KAMI, matrices A, B, and C can be initially stored in global or
shared memory. These matrices are partitioned into submatrices

according to different CA algorithms during computation, as shown
in Figures 5(a), (b) and (c).

In the 1D algorithm (Figure 5(a)), matrices A, B, and C are parti-
tioned into 𝑝 row-wise submatrices, where 𝑝 is the number of warps.
Each warp loads its corresponding submatrices of A (size 𝑚

𝑝 × 𝑘)
and B (size 𝑘

𝑝 ×𝑛) from global or shared memory into registers and
performs matrix multiplication. Since matrix B is shared among
multiple warps, its submatrices are transferred through shared
memory in a row-wise manner, conceptually similar to process
communication. After multiplication, each warp writes its resulting
submatrix of C (size 𝑚

𝑝 × 𝑛) back to global or shared memory in
row-wise.

In the 2D algorithm (Figure 5(b)), matrices A, B, and C are fur-
ther partitioned into √𝑝 × √𝑝 two-dimensional submatrices. Each
warp loads its corresponding submatrix of A (size 𝑚√

𝑝
× 𝑘√

𝑝
) and

B (size 𝑘√
𝑝
× 𝑛√

𝑝
) from global or shared memory into registers and

performs matrix multiplication. During computation, the 2D al-
gorithm exchanges submatrices of A between warps in the same
row and submatrices of B between warps in the same column via
shared memory. After multiplication, each warp writes its resulting
submatrix of C (size 𝑚√

𝑝
× 𝑛√

𝑝
) back to global or shared memory

based on its two-dimensional position.
In the 3D algorithm (Figure 5(c)), matrices A and B are further

subdivided into 3√𝑝× 3√𝑝× 3√𝑝 three-dimensional submatrices, while
matrix C maintains the 3√𝑝 × 3√𝑝 two-dimensional submatrices par-
titioning. Each warp loads its corresponding submatrix of A (size
𝑚
3√𝑝 ×

𝑘
3
2
√
𝑝
) and B (size 𝑘

3
2
√
𝑝
× 𝑛

3√𝑝 ) from global or shared memory

into registers and performs matrix multiplication. Similar to the 2D
algorithm, the 3D algorithm exchanges submatrices of A between
warps in the same row and submatrices of B between warps in
the same column via shared memory as a communication medium.
After multiplication, each warp accumulates results for the corre-
sponding submatrix of C (size 𝑚

3√𝑝 ×
𝑛
3√𝑝 ) at the same position within

the two-dimensional subblock before writing the final accumulated
results back to global or shared memory.



KAMI: Communication-Avoiding General Matrix Multiplication within a Single GPU SC ’25, November 16–21, 2025, St Louis, MO, USA

Tensor Core Unit

Shared Memory

Register

warp0

C0A0

warp1

A1

S
M

S
m

B
0

Tensor Core Unit

Stage 0

Tensor Core Unit

Shared Memory

Register

warp0

C0A0

warp1

C1A1

S
M

S
m

B
1

Tensor Core Unit

Stage 1

B0Recv

B0Send

B1

B0Recv

C1

B1Recv

B0

B1Send

B1Recv

666

6 6 6333

333

1

1
2

4

4
5

2 5 Shared memory data transfer (communication)

Tensor core GEMM (computation)

1 4

3 6
2 5 Register data copy

(a) 1D algorithm in two stages with two warps.

A0,0

Tensor Core Unit

SmA0

A0,0SmB0

Register

warp0

C0

warp1

C1

warp2

C2

B2 warp3

C3

SmB1

A0,0SmA2

Shared 
Memory

1

2

Stage 0

A0,0

Shared 
Memory SmA2

A0,0SmB2

Register

warp0

C0

warp1

C1

warp2

C2

warp3

C3

A0,0SmB3

A0,0SmA3

Stage 1

5

Tensor Core Unit

Tensor Core Unit Tensor Core Unit

Tensor Core Unit Tensor Core Unit

Tensor Core Unit Tensor Core Unit

B0
Send

B0
Recv

A0
Send

A0
Recv

A2
Send

B0
Recv

A2
Recv

B1
Send

A1
B1

Recv

A0
Recv

B3

A3
B1

Recv

A2
Recv

B0

A0 B2
Recv

A1
Recv

B2
Send

A2 B2
Recv

A3
Recv

A3
Recv

B3
Recv

A3
Send

B3
Send

A1
Recv

B3
Recv

A1
Send

B1

666666333333

3 3 3 3 3 3 6 6 6 6 6 6

1

1

1

2

2

1 1

1

1

2 4

4
5

44

5

5

4

4

44

(b) 2D algorithm in two stages with four warps.
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(c) 3D algorithm in two stages with eight warps.

Figure 6: Examples of the 1D, 2D and 3D CA algorithms execution flow in KAMI. This figure depicts the interaction between
shared memory and register files across stages. All algorithms follow a unified execution pattern: 1) inter-warp data transfers
are performed via shared memory to enable intra-block communication (steps ❶ and ❹); 2) intra-warp register transfers
facilitate submatrix alignment (steps ❷ and ❺); and 3) submatrix multiplications are carried out using Tensor Cores (steps ❸

and ❻). This figure captures the dynamic data residency and flow across the memory hierarchy during execution.

4.3 1D Algorithm
In the 1D algorithm, 𝑝 warps work for one multiplication opera-
tion, and each warp (denoted as warp 𝑖 , where 0 ≤ 𝑖 < 𝑝) holds
submatrices A𝑖 (size 𝑚

𝑝 × 𝑘) and B𝑖 (size 𝑘
𝑝 × 𝑛). The GPU warps

work in the SPMD (Single Program Multiple Data) model, meaning
that each warp executes the same program concurrently.

The matrix multiplication task is then decomposed into 𝑝 stages,
each consisting of communication and computation phases. In the
𝑧th stage (0 ≤ 𝑧 < 𝑝), the communication phase broadcasts the

submatrix block B𝑧Send, which is the B𝑖 held by the 𝑧th warp, to
the other warps.

Notably, in the 1D algorithm, communication occurs only for ma-
trix B, and matrix A is not communicated. The communication runs
in two steps: 1) The submatrix B𝑧Send is loaded from registers into
shared memory and stored as SmB𝑧 ; 2) The other warps read SmB𝑧
from shared memory into their registers and store it as B𝑧Recv
(steps ❶ and ❹ in Figure 6(a), and lines 6 and 10 in Algorithm 1).

To reduce shared memory access pressure, after writing B𝑧Send
to shared memory, the 𝑧th warp also writes the same data into its
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local registers as B𝑧Recv, (steps ❷ and ❺ in Figure 6(a), and line 7
in Algorithm 1).

Algorithm 1 1D algorithm by 𝑝 warps
1: 𝑖 ← warpID
2: GMem2Reg(A𝑖 ← A, B𝑖 ← B, C𝑖 ← C)
3: __syncthreads()
4: for 𝑧 = 0 to 𝑝 do ⊲ The algorithm consists of 𝑝 stages.
5: if 𝑖 = z then
6: Reg2SMem(SmB← BSend) ⊲ Write BSend to shared memory.
7: Reg2Reg(BRecv← BSend) ⊲ Copy BSend within registers.
8: __syncthreads()
9: if 𝑖 ≠ z then
10: DTransSMem2Reg(BRecv← SmB) ⊲ Read SmB from shared memory.
11: __syncthreads()
12: C𝑖 ← TensorCoreGEMM(A𝑖 [:] [𝑧 × 𝑘

𝑝
: (𝑧 + 1) × 𝑘

𝑝
],BRecv)

⊲ Part of A𝑖 and BRecv multiplied by Tensor Core.
13: Reg2GMem(C← C𝑖)

Once all warps have their B𝑧Recv, they begin the computation
phase (steps ❸ and ❻ in Figure 6(a), and line 12 in Algorithm 1).
The computation is multiplying the 𝑧th portion of A𝑖 (size 𝑚

𝑝 ×
𝑘
𝑝 )

with the received B𝑧Recv (size 𝑘
𝑝 × 𝑛) on tensor cores.

After completing the computation for the current stage, the
algorithm proceeds to the next, repeating the procedure until all 𝑝
stages are finished. Now each warp can save its computed C𝑖 (size
𝑚
𝑝 × 𝑛) in the registers to global or shared memory.
We now analyze the communication and computation time over-

heads. To simplify, we assume that the communication within the
same warp is disregarded. Thus, the total communication volume
consists of two components: writing B𝑖 (size 𝑘

𝑝 ×𝑛) to shared mem-
ory by one warp, and reading it from shared memory by 𝑝 − 1
warps. Taking 𝑠𝑒 as the byte size of a matrix element, the total
communication volume 𝑉𝑐𝑚 is given by

𝑉𝑐𝑚 = 1 ×
(
𝑘

𝑝
× 𝑛

)
× 𝑠𝑒 + (𝑝 − 1) ×

(
𝑘

𝑝
× 𝑛

)
× 𝑠𝑒 = 𝑘𝑛 × 𝑠𝑒 . (1)

Besides communication volume, we also consider shared mem-
ory access latency 𝐿𝑠𝑚 , bandwidth 𝐵𝑠𝑚 , and bank conflict factors
𝜃𝑟 and 𝜃𝑤 . Then, the communication cost 𝑇𝑐𝑚 can be expressed as

𝑇𝑐𝑚 = 𝐿𝑠𝑚 +
𝑘𝑛 × 𝑠𝑒
𝜃𝑤𝑝𝐵𝑠𝑚

+ (𝑝 − 1)𝑘𝑛 × 𝑠𝑒
𝜃𝑟𝑝𝐵𝑠𝑚

. (2)

Next, we consider the algorithm’s computational cost

𝑇𝑐𝑝 =
flops(A𝑖 ,BRecv𝑧 )

𝑂𝑡𝑐
=

2 × 𝑚
𝑝 ×

𝑘
𝑝 × 𝑛

𝑂𝑡𝑐
=

2𝑚𝑛𝑘

𝑝2𝑂𝑡𝑐
, (3)

where𝑂𝑡𝑐 represents the number of arithmetic operations per cycle
by each tensor core.

The algorithm has 𝑝 stages, each consisting of one communica-
tion phase followed by 𝑝 concurrent computations. Therefore, the
total execution cost 𝑇𝑎𝑙𝑙 for the entire process is

𝑇𝑎𝑙𝑙 = 𝑝 × (𝑇𝑐𝑚 +
𝑝

𝑛𝑡𝑐
×𝑇𝑐𝑝 )

= 𝐿𝑠𝑚𝑝 + 𝑘𝑛 × 𝑠𝑒
𝜃𝑤𝐵𝑠𝑚

+ (𝑝 − 1)𝑘𝑛 × 𝑠𝑒
𝜃𝑟𝐵𝑠𝑚

+ 2𝑚𝑛𝑘

𝑛𝑡𝑐𝑂𝑡𝑐
.

(4)

To provide a more concrete example, suppose in Figure 6(a), two
warps (𝑝 = 2) multiply 8 × 8 matrices A and B (𝑚 = 𝑛 = 𝑘 = 8), and
𝑠𝑒 = 8 in FP64. Through Formula 1, 𝑉𝑐𝑚 = 512 bytes.

Assuming that the shared memory latency 𝐿𝑠𝑚 = 22 cycles,
the bank conflict factors 𝜃𝑟 = 𝜃𝑤 = 1, and the shared memory
bandwidth 𝐵𝑠𝑚 = 128 bytes per cycle, bring in Formula 2,𝑇𝑐𝑚 = 26
cycles.

If the tensor core performs 32 arithmetic operations per cycle
and we have 4 tensor cores each SM (𝑂𝑡𝑐 = 32 and 𝑛𝑡𝑐 = 4), bring in
Formula 3,𝑇𝑐𝑝 = 8 cycles. Thus, the total execution cost is𝑇𝑎𝑙𝑙 = 60
cycles as Formula 4.

4.4 2D Algorithm
In the 2D algorithm, 𝑝 warps are divided into a √𝑝 × √𝑝 grid for
one multiplication operation, and warp 𝑖 works in the SPMD model
and holds A𝑖 (size 𝑚√

𝑝
× 𝑘√

𝑝
) and B𝑖 (size 𝑘√

𝑝
× 𝑛√

𝑝
).

The multiplication task now has √𝑝 stages, each consisting of
communication and computation phases. In the 𝑧th stage (0 ≤
𝑧 <
√
𝑝), the communication phase broadcasts a submatrix block

A𝑗Send, which is the A𝑖 held by the 𝑧th column of the warp grid,
to the other warps in the same row, and B𝑗Send, i.e. B𝑖 held by the
𝑧th row of the warp grid, to the other warps in the same column.

The communication runs in two steps: 1) A𝑗Send is copied from
registers into shared memory and stored as SmA𝑗 , and B𝑗Send is
from registers to shared memory as SmB𝑗 . 2) The other warps in
the same row read SmA𝑗 from shared memory into their registers
as A𝑗Recv (steps ❶ and ❹ in Figure 6(b), and lines 6 and 13 in
Algorithm 2), and the other warps in the same column of the warp
grid read SmB𝑗 from shared memory into their registers as B𝑗Recv
(steps ❶ and ❹ in Figure 6(b), and lines 9 and 15 in Algorithm 2).
The data transfer within a warp is the same as in the 1D algorithm
(steps ❷ and ❺ in Figure 6(b), and lines 7 and 10 in Algorithm 2).

Once all warps have their A𝑗Recv (size 𝑚√
𝑝
× 𝑘√

𝑝
) and B𝑗Recv

(size 𝑘√
𝑝
× 𝑛√

𝑝
), the two submatrices are multiplied on tensor cores

(steps ❸ and ❻ in Figure 6(b), and line 17 in Algorithm 2).

Algorithm 2 2D algorithm by 𝑝 warps
1: 𝑖 ← warpID
2: GMem2Reg(A𝑖 ← A, B𝑖 ← B, C𝑖 ← C)
3: __syncthreads()
4: for 𝑧 = 0 to √𝑝 do ⊲ The algorithm consists of

√
𝑝 stages.

5: if 𝑖%√𝑝 = 𝑧 then
6: Reg2SMem(SmA← ASend) ⊲ Write ASend to shared memory.
7: Reg2Reg(ARecv← ASend) ⊲ Copy ASend between registers.
8: if 𝑖/√𝑝 = 𝑧 then
9: Reg2SMem(SmB← BSend) ⊲ Write BSend to shared memory.
10: Reg2Reg(BRecv← BSend) ⊲ Copy BSend between registers.
11: __syncthreads()
12: if 𝑖%√𝑝 ≠ 𝑧 then
13: SMem2Reg(ARecv← SmA) ⊲ Read SmA from shared memory.
14: if 𝑖/√𝑝 ≠ 𝑧 then
15: SMem2Reg(BRecv← SmB) ⊲ Read SmB from shared memory.
16: __syncthreads()
17: C𝑖 ← TensorCoreGEMM(ARecv,BRecv)

⊲ ARecv and BRecv multiplied by Tensor Core.
18: Reg2GMem(C𝑖 ← C)

We now analyze the communication and computational costs.
Same as the 1D algorithm, we also assume that the communication
overhead within the same warp can be ignored. Then the total
communication volume consists of two components: writing A𝑖
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(size 𝑚√
𝑝
× 𝑘√

𝑝
and B𝑖 (size 𝑘√

𝑝
× 𝑛√

𝑝
) to shared memory by√𝑝 warps,

and reading it from shared memory by√𝑝× (√𝑝−1) warps. Taking
𝑠𝑒 as the size of an element, the total communication volume

𝑉𝑐𝑚 =

(
√
𝑝 ×

(
𝑚
√
𝑝
× 𝑘
√
𝑝

)
+ √𝑝 × (√𝑝 − 1) ×

(
𝑚
√
𝑝
× 𝑘
√
𝑝

))
× 𝑠𝑒

+
(
√
𝑝 ×

(
𝑘
√
𝑝
× 𝑛
√
𝑝

)
+ √𝑝 × (√𝑝 − 1) ×

(
𝑘
√
𝑝
× 𝑛
√
𝑝

))
× 𝑠𝑒

= (𝑚𝑘 + 𝑘𝑛) × 𝑠𝑒 .
(5)

Considering shared memory access latency 𝐿𝑠𝑚 , bandwidth 𝐵𝑠𝑚 ,
and bank conflict factors 𝜃𝑟 and 𝜃𝑤 , the communication cost

𝑇𝑐𝑚 = 𝐿𝑠𝑚 +
(𝑚𝑘 + 𝑛𝑘) × 𝑠𝑒
𝜃𝑤
√
𝑝𝐵𝑠𝑚

+
(√𝑝 − 1) (𝑚𝑘 + 𝑛𝑘) × 𝑠𝑒

𝜃𝑟
√
𝑝𝐵𝑠𝑚

. (6)

When 𝑂𝑡𝑐 is the number of arithmetic operations per cycle by per
tensor core, the algorithm’s computational cost

𝑇𝑐𝑝 =
flops(ARecv

𝑗
,BRecv

𝑗
)

𝑂𝑡𝑐
=

2 × 𝑚√
𝑝
× 𝑘√

𝑝
× 𝑛√

𝑝

𝑂𝑡𝑐
=

2𝑚𝑛𝑘
2
3
√
𝑝𝑂𝑡𝑐

. (7)

The algorithm has√𝑝 stages, each has one communication phase
and 𝑝 concurrent computations. Then the total execution cost

𝑇𝑎𝑙𝑙 =
√
𝑝 × (𝑇𝑐𝑚 +

𝑝

𝑛𝑡𝑐
×𝑇𝑐𝑝 )

= 𝐿𝑠𝑚
√
𝑝 + (𝑚𝑘 + 𝑛𝑘) × 𝑠𝑒

𝜃𝑤𝐵𝑠𝑚
+
(√𝑝 − 1) (𝑚𝑘 + 𝑛𝑘) × 𝑠𝑒

𝜃𝑟𝐵𝑠𝑚
+ 2𝑚𝑛𝑘

𝑛𝑡𝑐𝑂𝑡𝑐
.

(8)

To provide a more concrete example, suppose in Figure 6(b), four
warps (𝑝 = 4) multiply 8 × 8 matrices A and B, and 𝑠𝑒 = 8 in FP64.
Through Formula 5, 𝑉𝑐𝑚 = 1024 bytes.

Assuming that the shared memory latency 𝐿𝑠𝑚 = 22 cycles,
the bank conflict factors𝜃𝑟 = 𝜃𝑤 = 1, and the shared memory
bandwidth 𝐵𝑠𝑚 = 128 bytes per cycle, bring in Formula 6,𝑇𝑐𝑚 = 30
cycles. If the tensor core performs 32 arithmetic operations per
cycle and we have 4 tensor cores each SM (𝑂𝑡𝑐 = 32 and 𝑛𝑡𝑐 = 4),
bring in formula 7, 𝑇𝑐𝑝 = 4 cycles. Thus, the total execution cost is
𝑇𝑎𝑙𝑙 = 68 cycles as Formula 8.

4.5 3D Algorithm
In the 3D algorithm, 𝑝 warps are divided into a 3√𝑝 × 3√𝑝 × 3√𝑝 warp
cube for one multiplication, and warp 𝑖 holds submatrices A𝑖 (size
𝑚
3√𝑝 ×

𝑘
3
2
√
𝑝
) and B𝑖 (size 𝑘

3
2
√
𝑝
× 𝑛

3√𝑝 ). The warp cube can be viewed as
3√𝑝 warp grids of size 3√𝑝 × 3√𝑝 , with A𝑖 and B𝑖 in the 2D algorithm
divided along the 𝑘-dimension into 3√𝑝 submatrices accordingly.
The warps also work in the SPMD model.

The multiplication now has 3√𝑝 stages, each with communication
and computation phases. In the 𝑧th stage (0 ≤ 𝑧 < 3√𝑝), the commu-
nication phase broadcasts the submatrix block A𝑗Send, which is
the A𝑖 held by the 𝑧th column of the warp cube, to the other warps
in the same row and same layer, and B𝑗Send, which is the B𝑖 held
by the 𝑧th row of the warp cube, to the other warps in the same
column and same layer.

The communication has two steps: 1) The submatrices A𝑗Send
and B𝑗Send are copied from registers to shared memory as SmA𝑗

and SmB𝑗 , respectively. 2) The other warps in the same row and
layer of the warp cube read SmA𝑗 from shared memory into their
registers asA𝑗Recv (steps ❶ and ❹ in Figure 6(c), and lines 6 and 13
in Algorithm 3), and the other warps in the same column and layer
read SmB𝑗 from shared memory into their registers as B𝑗Recv
(steps ❶ and ❹ in Figure 6(c), and lines 9 and 15 in Algorithm 3).
The data transfer within a warp is also the same as in the 1D and
2D algorithms (steps ❷ and ❺ in Figure 6(c), and lines 7 and 10 in
Algorithm 3).

Now all warps have their A𝑗Recv (size 𝑚
3√𝑝 ×

𝑘
3
2
√
𝑝
) and B𝑗Recv

(size 𝑘
3
2
√
𝑝
× 𝑛

3√𝑝 ) and multiply them on tensor cores (see steps ❸ and

❻ in Figure 6(c), and line 17 in Algorithm 3).

Algorithm 3 3D algorithm by 𝑝 warps
1: 𝑖 ← warpID
2: GMem2Reg(A𝑖 ← A, B𝑖 ← B, C𝑖 ← C)
3: __syncthreads()
4: for 𝑧 = 0 to 3√𝑝 do ⊲ The algorithm consists of 3√𝑝 stages.
5: if 𝑖/ 3√𝑝/ 3√𝑝 = 𝑧 then
6: Reg2SMem(SmA← ASend) ⊲ Write ASend to shared memory.
7: Reg2Reg(ARecv← ASend) ⊲ Copy ASend between registers.
8: if 𝑖/ 3√𝑝% 3√𝑝 = 𝑧 then
9: Reg2SMem(SmB← BSend) ⊲ Write BSend to shared memory.
10: Reg2Reg(BRecv← BSend) ⊲ Copy BSend between registers.
11: __syncthreads()
12: if 𝑖/ 3√𝑝/ 3√𝑝 ≠ 𝑧 then
13: SMem2Reg(ARecv← SmA) ⊲ Read SmA from shared memory.
14: if 𝑖/ 3√𝑝% 3√𝑝 ≠ 𝑧 then
15: SMem2Reg(BRecv← SmB) ⊲ Read SmB from shared memory.
16: __syncthreads()
17: C𝑖 ← TensorCoreGEMM(ARecv,BRecv)

⊲ ARecv and BRecv multiplied by Tensor Core.
18: Reg2GMem(C𝑖 ← C[𝑖% 3√𝑝 ])
19: C← C + C[𝑖% 3√𝑝 ]

With the two components: writing A𝑖 (size 𝑚
3√𝑝 ×

𝑘
3
2
√
𝑝
) and B𝑖

(size 𝑘
3
2
√
𝑝
× 𝑛

3√𝑝 ) to shared memory by 3
2
√
𝑝 warps, and reading them

by 3
2
√
𝑝 × ( 3√𝑝 − 1) warps, the total communication volume

𝑉𝑐𝑚 =

(
3
2
√
𝑝 ×

(
𝑚

3√𝑝 ×
𝑘
3
2
√
𝑝

)
+ 3

2
√
𝑝 × ( 3√𝑝 − 1) ×

(
𝑚

3√𝑝 ×
𝑘
3
2
√
𝑝

))
× 𝑠𝑒

+
(

3
2
√
𝑝 ×

(
𝑘
3
2
√
𝑝
× 𝑛

3√𝑝

)
+ 3

2
√
𝑝 × ( 3√𝑝 − 1) ×

(
𝑘
3
2
√
𝑝
× 𝑛

3√𝑝

))
× 𝑠𝑒

= (𝑚𝑘 + 𝑘𝑛) × 𝑠𝑒 .
(9)

Considering shared memory access latency 𝐿𝑠𝑚 , bandwidth 𝐵𝑠𝑚 ,
and bank conflict factors𝜃𝑟 and 𝜃𝑤 , the communication cost

𝑇𝑐𝑚 = 𝐿𝑠𝑚 +
(𝑚𝑘 + 𝑛𝑘) × 𝑠𝑒
𝜃𝑤 3√𝑝𝐵𝑠𝑚

+
( 3√𝑝 − 1) (𝑚𝑘 + 𝑛𝑘) × 𝑠𝑒

𝜃𝑟 3√𝑝𝐵𝑠𝑚
. (10)

The algorithm’s computational cost

𝑇𝑐𝑝 =
flops(ARecv

𝑗
,BRecv

𝑗
)

𝑂𝑡𝑐
=

2 × 𝑚
3√𝑝 ×

𝑘
3
2
√
𝑝
× 𝑛

3√𝑝

𝑂𝑡𝑐
=

2𝑚𝑛𝑘
3
4
√
𝑝𝑂𝑡𝑐

.

(11)
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The algorithm includes 3√𝑝 stages, each has one communication
and 𝑝 concurrent computation phases, and the total execution cost

𝑇𝑎𝑙𝑙 =
3√𝑝 × (𝑇𝑐𝑚 +

𝑝

𝑛𝑡𝑐
×𝑇𝑐𝑝 )

= 𝐿𝑠𝑚
3√𝑝 + (𝑚𝑘 + 𝑛𝑘) × 𝑠𝑒

𝜃𝑤𝐵𝑠𝑚
+
( 3√𝑝 − 1) (𝑚𝑘 + 𝑛𝑘) × 𝑠𝑒

𝜃𝑟𝐵𝑠𝑚
+ 2𝑚𝑛𝑘

𝑛𝑡𝑐𝑂𝑡𝑐
.

(12)
In Figure 6(c), four warps (𝑝 = 8) multiply 8×8 matrices A and B,

and 𝑠𝑒 = 8. Through Formula 9, 𝑉𝑐𝑚 is 1024 bytes. When 𝐿𝑠𝑚 = 22,
𝜃𝑟 = 𝜃𝑤 = 1, 𝐵𝑠𝑚 = 128, 𝑛𝑡𝑐 = 4 and 𝑂𝑡𝑐 = 32, we can compute
𝑇𝑐𝑚 = 30 cycles (Formula 10) and 𝑇𝑎𝑙𝑙 = 68 cycles (Formula 12).

4.6 Sparse Extension: SpMM and SpGEMM
We extend KAMI to support two sparse matrix multiplication opera-
tions SpMM and SpGEMM. To well exploit the tensor cores, we save
the sparse matrices in smaller dense blocks of user-configurable
size, with a default of 16 × 16 selected to align with various tensor
core shapes. Figure 7 illustrates the sparse storage using a 4 × 4
block as an example. For the 1D algorithm (Figure 7(a)), the blocks
are saved row-by-row. For the 2D and 3D algorithms (Figure 7(b)),
a multi-level Z-Morton order is implemented to facilitate efficient
submatrix indexing, which is similar to the sparse formats proposed
by Buluç et al. [43] and Yzelman et al. [219–221].
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Figure 7: Sparse matrix storage in KAMI.

In the sparse form of KAMI, the organization of warps and the
stages remain consistent with those in the dense schemes explained
in Sections 4.3-4.5. The entire process also includes communication
and computation phases. In the 1D algorithm, each warp processes
a distinct sparse row block. In the 2D and 3D algorithms, both A
and B are copied in the sparse warp grid or cube. During communi-
cation, besides transferring the Val array, it is necessary to transmit
the index arrays RowPtr and ColBlkIdx that represent the sparse
matrix structure. This data transfer requires allocating additional
space in shared memory for supporting the sparsity.

In SpMM, B and C are dense. After all the submatrices are com-
municated in KAMI, we follow the same compute pattern proposed
by Koanantakool et al. [112]. Specifically, the corresponding blocks
in B𝑖 are identified by every nonzero block in A𝑖 by traversing the
index arrays. Then the intermediate results are computed by tensor
cores, and accumulated into the appropriate locations of C𝑖 .

In SpGEMM, matrices A, B and C are all sparse, and a symbolic
phase is needed before the numeric computation. The symbolic
phase calls a separate kernel, before the CA numeric kernel, to
calculate the number of nonzero blocks and allocate the necessary
memory space. The symbolic kernel uses a classic sparse accumu-
lator by Gilbert et al. [87]. On top of our 1D, 2D and 3D compute
patterns in KAMI, the CA numeric kernel utilizes the indexing
method proposed by Hong and Buluç [99] to accumulate the result-
ing blocks into C𝑖 stored in registers.

4.7 Implementation Details
We elaborate on two core implementation details in KAMI. The
first arises from the limited register and shared memory capacities.
For example, storing three 128×128 matrices in FP64 (two 32-bit
registers per element) with eight warps (i.e., 256 threads) requires
3 × 128 × 128 × 2 ÷ 256 = 384 registers per thread, exceeding the
hardware limit of 255. To address this, KAMI slices the matrices
along the 𝑘 dimension, storing only a portion of A and B in regis-
ters, while offloading the inactive sub-matrices to shared memory.
The slicing ratio—i.e., the fraction of data kept in registers versus
shared memory—is a tunable parameter selected based on empirical
performance and varies by matrix size. In our implementation, each
𝑘-slice has a dimension of 16 to align with the MMA unit granular-
ity, thereby minimizing hardware fragmentation. This cooperation
applies to KAMI-1D/2D/3D, though optimal ratios differ with data
layouts. Slicing overhead is negligible; performance differences
arise mainly from shared-memory latency. Section 5.2.5 evaluates
different ratios and annotates when register demand exceeds hard-
ware limits, motivating fallback to shared memory.

The second detail concerns the overlap of communication and
computation, analogous to MPI_Isend() and MPI_Irecv(). KAMI
does not enforce explicit overlap strategies, as the CUDA warp
scheduling and underlying GPU hardware should be effective at
interleaving data transfer and computation. Section 5.6.2 validates
this by showing that actual clock cycles closely follow the theoreti-
cal model when considering communication-computation concur-
rency.

5 Experimental Results
5.1 Experimental Setup
KAMI is evaluated on four GPUs from NVIDIA, AMD, and Intel,
with implementations using CUDA, HIP, and SYCL, respectively.
The device specifications are shown in Table 3, and the program-
ming methods are listed in Table 4.

Vendor NVIDIA AMD Intel
Specifications GH200 RTX 5090 7900 XTX Max 1100

Boost clock (MHz) 1980 2655 2498 1550
#Banks × bank width (Bytes) 32×4 32×4 32×4 16×4
#SMs × #tensor cores/SM 132×4 170×4 96×2 448×1
Peak FP16 tensor (TFLOPS) 990 462 123 22
Peak FP64 tensor (TFLOPS) 67 N/A N/A N/A

Table 3: Four GPUs from NVIDIA, AMD and Intel.

We evaluate KAMI across a diverse set of workloads. For square
GEMM, we compare against cuBLASDx v0.2.0 [156] and CUTLASS
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Figure 8: Block-Level GEMM Performance across GPU Architectures.

GPU Vendor NVIDIA AMD Intel
Programming API CUDA HIP SYCL
Local storage Register fragment joint_matrix

Communication space Shared memory Shared memory Local memory
Tensor core func. mma mma_sync joint_matrix_mad

Instruction shape
m16n8k8 (FP64)
m16n8k16 (FP16)

m16n16k16 (FP16) m16n16k16 (FP16)

Table 4: Programming API supported by KAMI

v3.8.0 [157] on NVIDIA GH200 in FP64 and FP16, and 5090 in TF32,
FP16 and FP8. KAMI’s FP16 performance on AMD 7900 XTX and
Intel Max 1100 (vs. SYCL-Bench [120]) is also reported. Matrices
with orders 16, 32, 64, and 128 are used for FP64, TF32, FP16 and FP8,
with an additional 192 for FFP16 and 256 for FP8. We also analyze
the effect of varying block sizes and shared memory temporary
saving in FP16 on 5090.

For low-rank GEMM, we test KAMI, cuBLASDx and CUTLASS
on GH200 in FP16, using 𝑘 = 16 or 32, with𝑚 and 𝑛 aligning with
the square GEMM orders.

Batched GEMM is evaluated on GH200 in FP64, compared with
cuBLAS v12.8 [155] and MAGMA v2.9 [149]. Matrix orders follow
the square GEMM setup, with batch sizes of 1000 and 10000.

Block-level KAMI is further evaluated on SpMM and SpGEMM
on GH200 in FP16, using five sparse matrices (50% random sparsity)
of the same order as the square GEMM test. All block-level results
(square, low-rank, and sparse) are averaged over 1000 runs with
16,384 blocks launched simultaneously per run.

Finally, we provide a theoretical analysis of KAMI, including
register usage and execution cycles.

5.2 Block-Level square GEMM
5.2.1 KAMI on NVIDIA GPU. We evaluate block-level GEMM per-
formance of KAMI and cuBLASDx on GH200 and 5090 GPUs for
square matrices. Figures 8(a), (b), and (d) present FP64/FP16 results
on GH200 and FP16 on 5090.

For FP64 onGH200, KAMI-1D/2D/3D outperform cuBLASDx and
CUTLASS by 4.02x/2.29x/2.08x and 3.65x/1.90x/1.70x on average
(up to 5.20x/3.02x/2.99x and 4.68x/2.34x/2.32x). For FP16, KAMI-
1D/2D/3D achieve 2.56x/1.62x/1.67x and 4.54x/2.88x/2.95x speedups
on average (up to 4.93x/2.98x/2.98x and 10.31x/6.23x/6.23x) on
GH200, and, 2.46x/2.25x/2.24x and 19.98x/17.25x/17.01x (up to
3.38x/2.77x/2.76x and 74.36x/60.99x/60.66x) on 5090. For TF32
on 5090, KAMI-1D/2D/3D outperform cuBLASDx and CUT-
LASS by 2.72x/2.50x/2.28x and 14.38x/12.66x/11.22x on average
(up to 4.65x/3.98x/3.46x and 47.76x/40.87x/35.56x). For FP8 on

5090, KAMI-1D/2D/3D outperform cuBLASDx and CUTLASS
by 1.83x/1.81x/1.74x and 5.40x/3.39x/2.06x on average (up to
3.03x/2.97x/2.98x and 11.67x/5.64x/3.02x). KAMI supports larger
matrices with lightweight shared memory use compared with
cuBLASDx.

KAMI-1D generally outperforms KAMI-2D/3D. On GH200,
KAMI-3D can even underperform compared to cuBLASDx, proba-
bly due to more complex control flows, with additional branches,
loops, and synchronizations. Profiling a 128 × 128 FP16 kernel
shows KAMI-2D/3D incur 45.32%/152.38% more nop instructions
than KAMI-1D, making KAMI-1D more suitable for current single-
GPU use.

5.2.2 KAMI on AMD GPU. As no block-level library exists on
AMD, we report only KAMI’s performance in Figure 8(f). When
the matrix order exceeds 48, KAMI-1D’s performance drops, which
occurs later for KAMI-2D/3D.

5.2.3 KAMI on Intel GPU. Figure 8(g) shows KAMI’s performance
on the Intel Max 1100 GPU, compared with SYCL-Bench. KAMI-
1D/2D/3D outperform SYCL-Bench by 4.97x/2.20x/2.00x on average,
with peak speedups of 14.48x/5.63x/5.71x, respectively.

5.2.4 Block Size Effects. Figure 9 shows the GEMM performance
of two 64 × 64 matrices by KAMI-1D, KAMI-2D, and KAMI-3D on
5090, with peak performances of 469.80, 470.57, and 449.07 TFLOPS.
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Figure 9: Impact of block size in FP16 on 5090.

KAMI-1D delivers consistently high performance across a wide
range of block sizes. In contrast, KAMI-2D, with its 2D warp config-
uration, achieves only 54.22% of KAMI-1D’s performance at block
size 64. KAMI-3D is even more sensitive, performing well only
when the block size exceeds 256.

Thus, KAMI-1D is robust under tight block size constraints, while
KAMI-2D/3D is preferable when larger block sizes are available.
This also explainswhyKAMI-1D performs better than KAMI-2D/3D
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under the current architectures with limited number of thread
blocks.

5.2.5 Shared Memory and Register Cooperation. To validate the
effectiveness of temporary saving in shared memory as mentioned
in Section 4.7, we illustrate how the performance of GEMM (FP16)
varies with shared memory usage in Figure 10.
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Figure 10: Impact of shared memory ratio on block-level.

For small matrices (32-64), registers alone suffice to store all
necessary data, and using shared memory degrades performance.
As matrix order increases, registers become insufficient. Temporary
saving data in shared memory improves performance. At matrix or-
der 128, performance peaks at 1.34x when 50% is temporarily saved
in shared memory. However, excessive use of shared memory leads
to a slowdown due to its higher cost. For example, performance
drops to 0.71x when 75% of the data is in shared memory.

Results show that the optimal register–shared memory ratio is
scale-dependent: registers suffice for small matrices, whilemoderate
shared memory use benefits medium sizes; excessive use degrades
performance. Accordingly, we preset ratios in our implementation
and allow user tuning to balance generality and specialization.

5.3 Low-Rank GEMM
We compare KAMI and cuBLASDx on low-rank GEMM for 𝑘 = 16
(Figure 11(a)) and 𝑘 = 32 (Figure 11(b)) on GH200 in FP16.
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Figure 11: Low-rank GEMM in FP16 on GH200.

KAMI consistently outperforms cuBLASDx and CUTLASS, ach-
ieving average speedups of 3.66x, 4.89x (up to 6.11x, 11.61x) for
𝑘 = 16 and 3.65x, 3.09x for 𝑘 = 32 (up to 5.03x, 7.00x).

KAMI exhibits more pronounced advantages in low-rank GEMM
than in square matrix GEMM, mainly due to differing memory
access strategies. Traditional kernels, as in cuBLASDx/CUTLASS,
load data into shared memory and then into registers, enhancing
locality but offering limited benefit when 𝑘 is small. In contrast,
KAMI loads data directly into registers and uses shared memory
for communication, better matching low-rank GEMM patterns.

5.4 Batched GEMM
KAMI’s batched interface is consistent with cuBLAS and MAGMA,
and supports various matrix orders in a batch. We compare them
in a uniform order to focus on the GEMM efficiency in Figure 12.

KAMI achieves significant speedups, with average speedups of
31.60x and 340.37x for batch sizes of 1000, and 10.23x and 96.17x
for batch sizes of 10000, compared with MAGMA and cuBLAS.
We attribute this to the limited optimization of small-scale GEMM
operations in both MAGMA and cuBLAS.
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Figure 12: Comparison of batched GEMM in FP64 on GH200.

We also note that the absolute performance in batched GEMM is
lower than that in the standalone GEMM case (Figure 8), which is
expected. In the batched setting, each small matrix in the batch is
loaded separately from global memory, incurring higher memory
traffic per FLOP compared to monolithic GEMM where reuse and
shared memory optimization are more effective. This memory-
bound nature of batched GEMM constrains throughput despite
kernel efficiency.

5.5 SpMM and SpGEMM
Figure 13 presents the performance of SpMM and SpGEMM in FP16
on the GH200 platform.
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Figure 13: SpMM and SpGEMM in FP16 on GH200.

The performance trend of SpMM closely resembles that of
GEMM, as the input matrices B and C are dense. In this case, the
only sparsity lies in matrix A, which allows for highly regular com-
putations and memory accesses within the dense blocks of B and
C. As a result, SpMM benefits from efficient coalesced memory
accesses, reduced indexing overhead, and a computational pattern
similar to dense GEMM, which explains its relatively high perfor-
mance.

In contrast, SpGEMM introduces significantly more complex
indexing and results in less predictable memory access patterns
due to different sparse structures in both input matrices. These
irregularities lead to distinct performance behaviors and reduced
throughput of SpGEMM.
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5.6 Theoretical Analysis
5.6.1 Register Allocation. To validate the theoretical analysis pre-
sented in Section 4, we compare the theoretical register usage of
KAMI with the actual allocation measured during compilation.
We test KAMI-1D (4 warps), KAMI-2D (4 warps) and KAMI-3D (8
warps), with C fixed at 64 × 32 and A, B varying with 𝑘 (Figure 14).
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Figure 14: The register usage of KAMI in FP16.

Results show that actual register usage is lower than theoretical
predictions, reaching 76.86% for KAMI-1D, 73.14% for KAMI-2D, and
65.67% for KAMI-3D. The deviation is likely primarily attributable
to compiler optimizations, such as shortening variable lifetimes and
optimizing register reuse.

We also compare the overall on-chip memory usage to
cuBLASDx and CUTLASS. For a 64×64 GEMM in FP16, KAMI-
1D/2D/3D use 62/80/55 registers per thread—between cuBLASDx’s
40 and CUTLASS’s 96—and only 2–8 KB of shared memory per
block, significantly less than cuBLASDx’s 27 KB and CUTLASS’s
65 KB.

5.6.2 Cycles Breakdown. We break down execution cycles into
communication and computation on GH200 and 5090, comparing
results with the theoretical model in Section 4. Cycle counts are
measured using the clock() function with a single CUDA thread
block (4 warps of KAMI-1D/2D and 8 warps of KAMI-3D). Figure 15
shows the results.
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Figure 15: The theoretical and measured cycles in FP16.

Overall, the experimental results are largely consistent with the
theoretical model, aside from some discrepancies in a few cases.
For example, on GH200, the theoretical cycles of computation are
consistently lower than the measured values. We attribute this to
the tested 62% maximum MMA instruction execution efficiency on
the Hopper architecture [136].

6 Related Work
GEMM has been accelerated on a variety of CPUs, such as
x86 [139, 200] and ARM [195, 198, 199, 202, 208–210], GPUs [49, 79,
106, 118, 121, 124, 127, 148, 181, 193, 224], TPUs [100], DSPs [217],
and distributed platforms [6, 24, 31, 119, 129]. Representative open-
source libraries include ATLAS [58], GotoBLAS [88, 89, 137, 170],

OpenBLAS [223], BLIS [188–192, 206], LAPACK [63, 111], ScaLA-
PACK [56], MAGMA [149], SLATE [84], Iris [140], CUTLASS [157],
and Ozaki [145–147, 159, 185]. Beyond dense linear algebra, GEMM
has also been exploited in sparse computations, such as accelerating
SpMV [134], BFS [153], and sparse LU factorization [82, 197].

Besides manually tuned kernels, code generation techniques [33,
37, 151, 196] can bring better performance portability by selecting
methods [66, 107, 161] and block sizes [36, 50, 81, 116, 162]. Some
other factors in parallel GEMM, such as scheduling [30, 32, 45],
numerical stability [16, 34, 71], fault tolerant [38, 39, 152], low
precision [1, 96, 128], energy efficiency [11, 52, 68], multiplying
tall-and-skinny matrix [53], as well as tensor operations [123, 125],
were considered as well.

Low-rank can be very useful in many dense [110, 133, 138] and
sparse [8, 46] problems. Such scenarios highly require multiplying
small matrices [98, 142, 169] and its batched implementations [10,
76, 86, 117, 225]. Also, numerous studies consider sparsity in matrix
multiplication. Among them, SpMM [4, 7, 83, 95, 101, 126, 168, 184,
222] and SpGEMM [3, 55, 62, 99, 130, 131, 154, 163, 204, 205] have
been the most extensively studied. In this work, our KAMI shows
promising performance on low-rank and sparse matrix multiplica-
tions.

Communication is often the major bottleneck of distributed al-
gorithms [5, 12, 41, 42, 44, 54, 64, 80, 115, 186, 187]. To address the
problem, a series of CA algorithms were proposed [22, 85, 94, 175]
and analyzed theoretically [6, 18, 105]. The CA methods are highly
effective in linear algebra, particularly for dense problems in-
cluding GEMM [67, 102, 119, 173] and its Strassen’s optimiza-
tion [20, 23, 24, 33, 129], matrix factorization [9, 14, 15, 19, 19,
21, 27, 69, 70, 74, 75, 91–93, 104, 110, 176, 178], eigenvalue prob-
lems [25, 26, 171], and tensor operations [5, 177]. As for sparse
linear algebra, the CA research mainly focused on sparse matrix
multiplication [17, 28, 40, 72, 103, 109, 112, 167], sparse triangu-
lar solve [8, 164, 201], iterative solvers [29, 48, 73, 141, 179, 207]
and direct solvers [108, 165, 166]. The CA methods have also been
extended to write-avoiding methods [47], FFT [59, 114], AI oper-
ations [60, 144, 183, 212–216], graph processing [35, 61, 172, 174],
stencil computation [203], as well as N-body problems [2, 77, 78,
113]. To our knowledge, KAMI for the first time optimizes and
theoretically analyzes the CA GEMM within a single GPU.

7 Conclusion
In this paper, we have proposed KAMI, a set of 1D, 2D, and 3D
CA GEMM algorithms within a single GPU. KAMI improved the
utilization of high-speed registers for local storage and tensor cores
for computation, and used shared memory for communication.
A theoretical analysis in clock cycles was also provided. In the
experiments, KAMI achieved significant speedups over existing
work on GPUs from NVIDIA, AMD and Intel.
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