
KAMI: Communication-Avoiding General Matrix Multiplication
within a Single GPU

Hemeng Wang
SSSLab, Dept. of CST, China

University of Petroleum-Beijing
Beijing, China

hemeng.wang@student.cup.edu.cn

Yang Du
SSSLab, Dept. of CST, China

University of Petroleum-Beijing
Beijing, China

yang.du@student.cup.edu.cn

Sidu Li
SSSLab, Dept. of CST, China

University of Petroleum-Beijing
Beijing, China

sidu.li@student.cup.edu.cn

Xiaowen Tian
SSSLab, Dept. of CST, China

University of Petroleum-Beijing
Beijing, China

xiaowen.tian@student.cup.edu.cn

Qingxiao Sun
SSSLab, Dept. of CST, China

University of Petroleum-Beijing
Beijing, China

qingxiao.sun@cup.edu.cn

Weifeng Liu
SSSLab, Dept. of CST, China

University of Petroleum-Beijing
Beijing, China

weifeng.liu@cup.edu.cn

Abstract
Efficient general matrix-matrix multiplication (GEMM) has at-
tracted significant research attention in HPC and AI workloads.
While large-scale GEMM has nearly achieved the peak floating-
point performance of GPUs, substantial opportunities for optimiza-
tion remain in small and batched GEMM operations.

We in this paper propose KAMI, a set of 1D, 2D, and 3D GEMM
algorithms that extend the theory of communication-avoiding (CA)
techniques within a single GPU. KAMI optimizes thread block-
level GEMM by utilizing tensor cores as computational units, low-
latency thread registers as local memory, and high-latency on-
chip shared memory as a communication medium. We provide a
theoretical analysis of CA performance from the perspective of GPU
clock cycles, rather than the traditional execution time. Also, we
implement sparse-dense matrix-matrix multiplication (SpMM) and
sparse general matrix-matrix multiplication (SpGEMM) with this
compute-communication pattern. Experimental results for general,
low-rank, batched, and sparse multiplication on NVIDIA, AMD,
and Intel GPUs show significant performance improvements over
existing libraries cuBLAS, cuBLASDx, CUTLASS, MAGMA, and
SYCL-Bench.

CCS Concepts
• Computing methodologies→ Parallel algorithms; Linear
algebra algorithms; • Theory of computation→ Communi-
cation complexity.

Keywords
GPU, Communication-avoiding, GEMM, SpMM, SpGEMM

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SC ’25, November 16–21, 2025, St Louis, MO, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1466-5/2025/11
https://doi.org/10.1145/3712285.3759895

ACM Reference Format:
HemengWang, Yang Du, Sidu Li, Xiaowen Tian, Qingxiao Sun, andWeifeng
Liu. 2025. KAMI: Communication-Avoiding General Matrix Multiplication
within a Single GPU. In The International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’25), November 16–21, 2025,
St Louis, MO, USA. ACM, New York, NY, USA, 16 pages. https://doi.org/10.
1145/3712285.3759895

1 Introduction
General matrix-matrix multiplication (GEMM) [88, 192] is in gen-
eral the most time-consuming operation in HPC applications [13,
19, 123, 158] and AI workloads [51, 79, 195]. In recent years, many
studies focused on optimizing large-scale GEMM on multi-core
and many-core processors, in particular GPUs, to achieve near
peak performance [106, 121, 124, 127, 140, 180, 181, 196, 202, 224].
Normally, as long as the matrix is sufficiently large, both square
matrix multiplication [49, 139] and tall-and-skinny matrix multi-
plication [53, 163, 167, 210] often achieve near peak performance.
However, small and batched matrices tend to struggle in reaching
peak performance at most sizes [10, 98, 169, 209, 211].

According to research [97, 122], the main cause of this phe-
nomenon is the excessive access to remote memory. Considering
the 𝑂 (𝑛3) computational complexity and 𝑂 (𝑛2) memory access
complexity of GEMM, a small value of 𝑛 fails to provide sufficient
arithmetic intensity to effectively utilize modern processors and
thus requires better data locality. On the other hand, taking a CUDA
thread on an NVIDIA Hopper GPU [57] as an example, the latency
and bandwidth for accessing its registers are about 20 times and
4 times faster, respectively, compared to accessing on-chip shared
memory [136]. Therefore, a more effective strategy is to ensure
that the data involved in GEMM is sourced directly from registers,
rather than from the significantly slower shared memory. However,
existing research largely overlooks this issue and fails to effectively
leverage the multiple memory hierarchies of GPUs to optimize
small-scale GEMM.

Reducing the cost of remote data access has been a longstanding
challenge in distributed computing. A series of communication-
avoiding (CA) algorithms proposed by Demmel et al. [18, 22, 65]
have demonstrated their great effectiveness across a broad spectrum
of distributed problems, including matrix computations [72, 91, 92,

https://doi.org/10.1145/3712285.3759895
https://doi.org/10.1145/3712285.3759895
https://doi.org/10.1145/3712285.3759895

SC ’25, November 16–21, 2025, St Louis, MO, USA Wang et al.

112, 141, 165], graph processing [172, 174], N-body simulations [77,
113], and machine learning [212, 215]. The necessity of accessing
faster local memories, combined with the theoretical foundations
of CA algorithms, motivates our exploration of CA techniques on a
single GPU to accelerate small-scale GEMM.

In this paper, we present KAMI, to the best of our knowledge, the
first attempt to extend CA theories and techniques within a single
GPU to accelerate matrix multiplication. We reorganize the three
primary on-chip components — tensor core units, registers, and
shared memory — to formulate our 1D, 2D and 3D CA algorithms
for GEMM. Specifically, tensor core units function as the computa-
tional units, registers serve as local memory for storing matrices A,
B, and C, while shared memory acts as a communication medium
for transferring submatrices between the computational units. Ad-
ditionally, rather than relying on execution time, we employ the
number of GPU clock cycles as the unit of theoretical analysis to
perform a more detailed study of our CA algorithms. To exploit
sparsity, KAMI also supports sparse-dense matrix-matrix multipli-
cation (SpMM) and sparse general matrix-matrix multiplication
(SpGEMM), utilizing the same CA schemes, built upon a Z-Morton
order storage format.

We conduct extensive experimental evaluations on four GPUs:
NVIDIA GH200 and 5090, as well as AMD 7900 XTX and Intel Max
1100, and compare KAMI with cuBLASDx [156], CUTLASS [157],
cuBLAS [155], MAGMA [149] and SYCL-Bench [120]. In block-level
GEMM, KAMI achieves up to 5.20x, 74.36x and 14.48x speedups
over cuBLASDx, CUTLASS, SYCL-Bench for square GEMM and
6.11x and 11.61x over cuBLASDx, CUTLASS for low-rank GEMM,
respectively. For batched tasks, KAMI achieves up to 713.93x and
332.02x speedups over cuBLAS and MAGMA.

This work makes the following contributions:
• We propose KAMI to extend CA algorithms within a single
GPU to accelerate small-scale matrix multiplication.
• We present a new theoretical analysis scheme for communi-
cation and computation in GPU clock cycles.
• We exploit sparsity and block-wise Z-Morton storage for
supporting SpMM and SpGEMM in our CA methods.
• We implement KAMI on NVIDIA, AMD and Intel GPUs, and
show obviously faster performance over SOTA works.

2 Background
2.1 Matrix Multiplication
GEMM operation multiplies a dense matrix A of size𝑚-by-𝑘 with
a dense matrix B of size 𝑘-by-𝑛, and gives a resulting dense matrix
C of size 𝑚-by-𝑛, as shown in Figure 1(a). When accounting for
sparsity, GEMM can become SpMM (sparse A, dense B and C, see
Figure 1(b)) and SpGEMM (sparse A, B and C, see Figure 1(c)).

A

B

C

(a) GEMM

A

B

C

(b) SpMM

A

B

C

(c) SpGEMM

A

B

C

(d) Low-rank

A1

B1

C1 A2

B2

C2

(e) Batched GEMM

Figure 1: Different variants of matrix multiplication.
Moreover, there are two additional types of matrix multiplica-

tion: 1) Low-rank GEMM (see Figure 1(d)) leverages the observation

that matrices may exhibit an inherent low-rank structure and can
be approximated as products of smaller matrices to reduce the num-
ber of arithmetic operations [8, 133, 138]. 2) Batched GEMM (see
Figure 1(e)) collects a number of independent small-scale GEMM
operations and executes them in a single workload to saturate
many-core processors [10, 76, 117, 127].

2.2 CA Methods
For large-scale problems executed on distributed platforms, com-
munication often emerges as a bottleneck. CA algorithms aim to
minimize data transfer between computational nodes, thereby miti-
gating this performance problem [18, 22, 65].

CA methods can be broadly categorized into three distinct ap-
proaches: 1) The 1D algorithm minimizes data transfer by optimiz-
ing the allocation of matrix rows across processing units, thereby
reducing inter-node communication. 2) The 2D approach extends
this optimization by partitioning both rows and columns, effectively
minimizing communication along both dimensions of the matrix.
3) The 3D method further enhances communication efficiency by
introducing a third dimension of partitioning, which improves data
locality and substantially reduces memory access overhead, leading
to more efficient computational performance.

C2

A2

C1
B
1A1

C0

A0

B
0

B
2

(a) 1D algorithm

C20

A20

B
20 C21

A21

B
21 C22

A22

B
22

C10

A10

B
10 C11

A11

B
11 C12

A12

B
12

C00 B
00 C01 B
01 C02

B
02

A00 A01 A02

(b) 2D algorithm

C002 C012 C022

A002 A012 A022

B
22
2

B
12
2

B
02
2

C102 C112 C122

C202 C212 C222

A102 A112 A122

A222A212A202

B
01
2

B
00
2

B
10
2

B
11
2

B
21
2

B
20
2

C001 C011 C021

A001 A011 A021

B
22
1

B
12
1

B
02
1

C101 C111 C121

C201 C211 C221

A101 A111 A121

A221A211A201

B
01
1

B
00
1

B
10
1

B
11
1

B
21
1

B
20
1

C000 C010 C020

A000 A010

B
22
0

B
12
0

B
02
0

C100 C110 C120

C200 C210 C220

A100 A110 A120

A220A210A200

B
01
0

B
00
0

B
10
0

B
11
0

B
21
0

B
20
0

A020

(c) 3D algorithm

Figure 2: Three CA algorithms.
Figures 2(a), (b) and (c) show the three methods, respectively.

It is worth noting that additional variants, such as 1.5D [109] and
2.5D [176], also exist. However, to maintain focus in our study, we
concentrate on the classic 1D, 2D, and 3D approaches in this paper.

3 Motivation
3.1 Performance Issue of Small-Scale GEMM
In general, while large-scale GEMM is primarily computation-
bound, small GEMM remains significantly constrained by memory
accesses, in terms of bandwidth and latency [97, 122, 132, 150, 160].
We evaluate double precision cuBLAS [155] using square matrices
of orders ranging from 1 to 8192, and cuBLASDx (a block-level
extension to cuBLAS) [156] from 1 to 98 (could not be larger due to
the limitation of shared memory capacity) on an NVIDIA GH200
GPU.

As illustrated in Figure 3, cuBLAS approaches near peak perfor-
mance for large-scale GEMM. In contrast, when the matrix size
is small, the performance of cuBLAS degrades significantly. For
example, when𝑚 = 64, the performance drops to only 28 GFLOPS.
Additionally, assuming no global memory load/store and executing
a large amount of block-level small-scale GEMM in cuBLASDx,
when𝑚 = 64, FP64 GEMM achieves only 31 TFLOPS, which corre-
sponds to merely 46% of the theoretical peak.

KAMI: Communication-Avoiding General Matrix Multiplication within a Single GPU SC ’25, November 16–21, 2025, St Louis, MO, USA

10 1 100 101 102 103

Arithmetic intensity (FLOPs/Byte, log scale)

10 6

10 3

100

103

Pe
rf

or
m

an
ce

(T
FL

O
PS

, l
og

 sc
al

e)

Far from peak

 Roofline Memory Bound Compute Bound cuBLAS cuBLASDx Roofline Memory Bound Compute Bound cuBLAS cuBLASDx

Almost peak

m = 64 (28 GFLOPS)

m = 64 (31 TFLOPS)

Shared Memory (32 TB/s)

Global Memory (4 TB/s)

FP64:

Peak FP64 (67 TFLOPS)

Figure 3: A roofline model of GEMM performance on an
NVIDIA GH200 GPU. For cuBLAS, the kernel is repeated
1000 times to report the average, and cuBLASDx is evaluated
with 16384 concurrent thread blocks, each looping 1000 times
inside the CUDA kernel to ignore global I/O costs.

Although small-scale GEMM of specific sizes can achieve near-
peak performance (e.g., size𝑚 = 128, 𝑛 = 128 and 𝑘 = 32, 64, 128,
depending on precision and shared memory size, used as the build-
ing block for large GEMM in CUTLASS [157]), most arbitrary sizes
still exhibit substantial room for performance improvement. The
importance of small-scale GEMM arises from its prevalence in
real-world applications, such as low-rank approximation [90, 138],
block-wise scientific solvers [82, 135, 197], batched neural network
inference [86, 194], and transformer models with block-sparse at-
tention [218]. In these scenarios, matrix sizes are typically small
(often ≤128 in one or more dimensions), but must be computed
repeatedly and in parallel, making throughput-critical optimization
essential. This motivates our exploration of strategies to enhance
the efficiency of small-scale GEMM on GPUs.

3.2 Distributed and GPU Memory Hierarchies
In distributed environments, parallelism is typically achieved at the
process level, where each process stores its data in the local mem-
ory (e.g., DDR5 DRAM). When necessary, processes communicate
through networks (e.g., InfiniBand). The performance is commonly
evaluated by execution time.

Modern GPUs are composed of multiple streaming multipro-
cessors (SMs), each runs several thread blocks. Within a block,
a number of 32-thread warps are assigned to hardware compute
units. For a warp’s workload, data are stored in registers, and utilize
CUDA cores or tensor cores to perform operations such as matrix
multiplication. Inner-block data exchange between warps could
only be achieved by shared memory with synchronizations. Also,
unlike networks, where concurrent message passing is supported,
broadcast between warps are performed serially due to the limited
number of shared memory banks. The performance of GPU tasks
can be evaluated by GPU clock cycles.

To highlight the differences and similarities, Figure 4(a) illus-
trates the latency and bandwidth for a 4-node cluster, whereas
Figure 4(b) depicts similar metrics within an SM in a GPU.

As can be seen, distributed and GPU memory hierarchies show
similar latency and bandwidth differences between local and remote
storage. The latency differences are about 9x (70 ns vs. 600 ns,
see Figure 4(a)) and 20x (1 cycle vs. 20 cycles, see Figure 4(b)),
respectively. Moreover, the bandwidth differences are about 4x
(819.2 GB/s vs. 200 GB/s, see Figure 4(a)) and 4x (1013.6 GB/s vs.
253.6 GB/s, see Figure 4(b)), respectively.

Quad-Channel
DDR5-6400

400 Gbps NDR InfiniBand

Lat.: ~70 ns

B/W: 50 GB/s
Lat.: ~600 ns

Quad-Channel
DDR5-6400

Lat.: ~70 ns

B/W: 50 GB/s
Lat.: ~600 ns

B/W: 204.8 GB/s

Quad-Channel
DDR5-6400

Lat.: ~70 ns

B/W: 50 GB/s
Lat.: ~600 ns

Quad-Channel
DDR5-6400

Lat.: ~70 ns

B/W: 50 GB/s
Lat.: ~600 ns

The bandwidth from CPU to DDR5: overall 819.2 GB/s

The bandwidth from DDR5 to NDRInfiniBand: overall 200 GB/s

CPU CPU CPU CPU

Node 0 Node 1 Node 2 Node 3

4 Nodes Cluster

B/W: 204.8 GB/s B/W: 204.8 GB/s B/W: 204.8 GB/s

Lat.
9xB/W

4x

(a) Latency and bandwidth of each node on a cluster.

16384 Registers

228KB Shared Memory

Lat.: 1 cycle

B/W: 63.4 GB/s
Lat.: 20+ cycles

16384 Registers

Lat.: 1 cycle

B/W: 63.4 GB/s
Lat.: 20+ cycles

16384 Registers

Lat.: 1 cycle

B/W: 63.4 GB/s
Lat.: 20+ cycles

16384 Registers

Lat.: 1 cycle

B/W: 63.4 GB/s
Lat.: 20+ cycles

The bandwidth from Tensor Core to Registers: overall 1013.6 GB/s

The bandwidth from Registers to Shared Memory: overall 253.6 GB/s

Tensor Core Tensor Core Tensor Core Tensor Core

Warp 0 Warp 1 Warp 3

Streaming Multiprocessor

Lat.
20xB/W

4x

B/W: 253.4 GB/s B/W: 253.4 GB/s B/W: 253.4 GB/s B/W: 253.4 GB/s

Warp 2

(b) Latency and bandwidth of each warp on an SM.

Figure 4: Latency and bandwidth comparison of the memory
hierarchy of a 4-node cluster and a 4-warp SM.

The variations in memory access across different hierarchical
levels are basically consistent in both distributed environments
and a single SM in a GPU. This similarity motivates us to investi-
gate whether the distributed CA algorithms can be transferred to
accelerate small-scale GEMM within a single GPU.

4 KAMI
4.1 Overview
In this paper, we propose KAMI, a set of CA algorithms accelerating
small-scale GEMM, SpMM and SpGEMM of order up to about 200
within a single GPU. The interfaces are aligned to thread block level
libraries such as cuBLASDx [157] and batched functions in libraries
such as cuBLAS [155] and MAGMA [182].

Concept Classic CA KAMI (our work)
Compute unit Process on CPU/GPU Warp on tensor core
Local storage DRAM Thread register

Communication Send/Recv by network LD/ST on shared mem.
Perf. metric Execution time GPU clock cycle

Table 1: Concept of classic CA and KAMI.

Table 1 compares KAMI with classic CA methods, highlighting
their differences in key concepts: 1) Classic CA operates at coarse-
grained process level on CPUs or GPUs in distributed environments,
whereas KAMI employs fine-grained parallelism at the warp level
within GPU thread blocks calling tensor cores; 2) Classic CA stores
data in the DRAM of the node, while KAMI utilizes registers for
local storage; 3) Classic CA depends on inter-connection networks
for process communication, in contrast to KAMI which utilizes
on-chip shared memory for inter-warp data exchange; 4) Classic
CA typically measures execution time, while KAMI adopts GPU
clock cycles as a hardware-centric metric.

SC ’25, November 16–21, 2025, St Louis, MO, USA Wang et al.

B0

B1

A1
C0

C1

A0

warp1

warp0

(a) 1D algorithm

C0 C1

C3C2
B1

B3B2

B0

A0 A1

A3A2
warp0 warp1

warp3warp2

(b) 2D algorithm

B0

B1

B4

B5 B7

B5

B3

B2

A4 A5

A7A6

A1

A3

C4+C5

C0+C1warp0 C2+C3

C6+C7

warp2

warp4

warp5

warp6

warp7

warp3warp1
A2

A0

(c) 3D algorithm

Figure 5: Matrix partitioning and memory hierarchy mapping before and after execution. Subfigures (a), (b), and (c) illustrate
the data layout under the 1D (𝑝 = 2), 2D (𝑝 = 4), and 3D (𝑝 = 8) CA algorithms where p is the number of warps, respectively. In all
algorithms, input matrices A and B are statically partitioned into 𝑝 submatrices and initially reside in global or shared memory.
The output matrix C is partitioned into 𝑝 submatrices for 1D and 2D, and into 3

2
√
𝑝 submatrices for 3D. After computation, each

warp holds 1
𝑝 of C in 1D and 2D, and 1

3
2
√
𝑝
in 3D aggregated from 3√𝑝 intermediate layers. This figure emphasizes the mapping

between global memory and register files.

In KAMI, matrix multiplication is executed using multiple warps
within a block, with each warp responsible for holding and pro-
cessing a portion of the submatrix (Section 4.2). KAMI implements
the CA algorithms in three fashions: 1D (Section 4.3), 2D (Sec-
tion 4.4) and 3D (Section 4.5). Through cycle-grained modeling, we
quantitatively characterize the computational and communication
costs, enabling more accurate performance prediction across var-
ious hardware configurations. Beyond GEMM, we also consider
sparsity to support both SpMM and SpGEMM (Section 4.6) on top
of a Z-Morton ordered sparse block storage [43, 143]. We further in-
troduce some key implementation details on NVIDIA tensor cores,
AMD matrix cores and Intel Xe Matrix eXtensions (Section 4.7).

Table 2 provides the notation and definitions in this paper.

Symbol Definition
A, B, C Matrices A, B and C of size𝑚-by-𝑘 , 𝑘-by-𝑛,𝑚-by-𝑛
A𝑖 , SmA𝑖 Submatrix 𝑖 of A in registers, and in shared memory
A[:] [𝑖 : 𝑗] The 𝑖𝑡ℎ column to (𝑗 − 1)𝑡ℎ column of matrix A

𝑠𝑒 Size of a single matrix element (bytes)
flops(A,B) Total arithmetic operations for multiplying A and B

𝑂𝑡𝑐 Arithmetic operations per cycle by each tensor core
𝑛𝑡𝑐 Number of tensor cores per SM
𝑝 Number of warps for parallel execution

𝐿𝑠𝑚 Latency from register to shared memory (cycles)
𝐵𝑠𝑚 Bandwidth of shared memory (bytes per cycle)
𝑉𝑐𝑚 Communication volume (bytes)

𝑇𝑐𝑚 , 𝑇𝑐𝑝 Number of communication, computation cycles (cycles)
𝑇𝑎𝑙𝑙 All costs, sum of 𝑇𝑐𝑚 and 𝑇𝑐𝑝 (cycles)

𝜃𝑟 , 𝜃𝑤
Bank conflict factors of read and write, respectively

(0 ≤ 𝜃 ≤ 1, 𝜃 = 1 means no conflicts)
A𝑖Send/Recv Submatrix 𝑖 of A to store/load between warps

Table 2: Notation and definitions.

4.2 Data Layout
In KAMI, matrices A, B, and C can be initially stored in global or
shared memory. These matrices are partitioned into submatrices

according to different CA algorithms during computation, as shown
in Figures 5(a), (b) and (c).

In the 1D algorithm (Figure 5(a)), matrices A, B, and C are parti-
tioned into 𝑝 row-wise submatrices, where 𝑝 is the number of warps.
Each warp loads its corresponding submatrices of A (size 𝑚

𝑝 × 𝑘)
and B (size 𝑘

𝑝 ×𝑛) from global or shared memory into registers and
performs matrix multiplication. Since matrix B is shared among
multiple warps, its submatrices are transferred through shared
memory in a row-wise manner, conceptually similar to process
communication. After multiplication, each warp writes its resulting
submatrix of C (size 𝑚

𝑝 × 𝑛) back to global or shared memory in
row-wise.

In the 2D algorithm (Figure 5(b)), matrices A, B, and C are fur-
ther partitioned into √𝑝 × √𝑝 two-dimensional submatrices. Each
warp loads its corresponding submatrix of A (size 𝑚√

𝑝
× 𝑘√

𝑝
) and

B (size 𝑘√
𝑝
× 𝑛√

𝑝
) from global or shared memory into registers and

performs matrix multiplication. During computation, the 2D al-
gorithm exchanges submatrices of A between warps in the same
row and submatrices of B between warps in the same column via
shared memory. After multiplication, each warp writes its resulting
submatrix of C (size 𝑚√

𝑝
× 𝑛√

𝑝
) back to global or shared memory

based on its two-dimensional position.
In the 3D algorithm (Figure 5(c)), matrices A and B are further

subdivided into 3√𝑝× 3√𝑝× 3√𝑝 three-dimensional submatrices, while
matrix C maintains the 3√𝑝 × 3√𝑝 two-dimensional submatrices par-
titioning. Each warp loads its corresponding submatrix of A (size
𝑚
3√𝑝 ×

𝑘
3
2
√
𝑝
) and B (size 𝑘

3
2
√
𝑝
× 𝑛

3√𝑝) from global or shared memory

into registers and performs matrix multiplication. Similar to the 2D
algorithm, the 3D algorithm exchanges submatrices of A between
warps in the same row and submatrices of B between warps in
the same column via shared memory as a communication medium.
After multiplication, each warp accumulates results for the corre-
sponding submatrix of C (size 𝑚

3√𝑝 ×
𝑛
3√𝑝) at the same position within

the two-dimensional subblock before writing the final accumulated
results back to global or shared memory.

KAMI: Communication-Avoiding General Matrix Multiplication within a Single GPU SC ’25, November 16–21, 2025, St Louis, MO, USA

Tensor Core Unit

Shared Memory

Register

warp0

C0A0

warp1

A1

S
M

S
m

B
0

Tensor Core Unit

Stage 0

Tensor Core Unit

Shared Memory

Register

warp0

C0A0

warp1

C1A1

S
M

S
m

B
1

Tensor Core Unit

Stage 1

B0Recv

B0Send

B1

B0Recv

C1

B1Recv

B0

B1Send

B1Recv

666

6 6 6333

333

1

1
2

4

4
5

2 5 Shared memory data transfer (communication)

Tensor core GEMM (computation)

1 4

3 6
2 5 Register data copy

(a) 1D algorithm in two stages with two warps.

A0,0

Tensor Core Unit

SmA0

A0,0SmB0

Register

warp0

C0

warp1

C1

warp2

C2

B2 warp3

C3

SmB1

A0,0SmA2

Shared
Memory

1

2

Stage 0

A0,0

Shared
Memory SmA2

A0,0SmB2

Register

warp0

C0

warp1

C1

warp2

C2

warp3

C3

A0,0SmB3

A0,0SmA3

Stage 1

5

Tensor Core Unit

Tensor Core Unit Tensor Core Unit

Tensor Core Unit Tensor Core Unit

Tensor Core Unit Tensor Core Unit

B0
Send

B0
Recv

A0
Send

A0
Recv

A2
Send

B0
Recv

A2
Recv

B1
Send

A1
B1

Recv

A0
Recv

B3

A3
B1

Recv

A2
Recv

B0

A0 B2
Recv

A1
Recv

B2
Send

A2 B2
Recv

A3
Recv

A3
Recv

B3
Recv

A3
Send

B3
Send

A1
Recv

B3
Recv

A1
Send

B1

666666333333

3 3 3 3 3 3 6 6 6 6 6 6

1

1

1

2

2

1 1

1

1

2 4

4
5

44

5

5

4

4

44

(b) 2D algorithm in two stages with four warps.

warp0 warp2

warp4 warp6

Shared
Memory

Register

2

SmA0
1

2

Stage 0

Tensor Core Unit

3

C0

warp0 warp2

warp4 warp6

Shared
Memory

Register

4

SmA2

SmA6

Stage 1

C4

C2

C6

Tensor Core Unit

Tensor Core Unit Tensor Core Unit

C1

warp1 warp3

warp5 warp7

Shared
Memory

Register

2

SmA1
1

SmA5

Tensor Core Unit

C3

C7C5

Tensor Core Unit

Tensor Core Unit Tensor Core Unit Tensor Core Unit Tensor Core Unit

Tensor Core Unit Tensor Core Unit

C1

warp1 warp3

warp5 warp7

Shared
Memory

Register

SmA3

SmA7

C5

C3

C7

Tensor Core Unit Tensor Core Unit

Tensor Core Unit Tensor Core Unit

A
0S

A
0R

B0R

B0S

C0

B2S

B2R

A
2

A
0R C2

A
4S

A
4R

B0R

B4

C4

B6

B2R

A
4RA
6 C6

S
m

B
0

S
m

B
2

S
m

B
1

SmA4

B0B1S

B1R

A
1R

A
1S

B5

B1R

A
5S

A
5R A
7

A
5R

B3R

B7

S
m

B
3

A
1RA
3

B3R

B3S

B4R

S
m

B
4

A
0

A
2R

B4S

B4R

A
4

A
6R

A
6S

A
6R

B6R

B6S

A
2S

A
2R

B6S

B2

S
m

B
6

B1

B5R

A
1

A
3R

S
m

B
5

B5S

B5R

A
5

A
7R

A
7S

A
7R

B7R

B7S

A
3S

A
3R

S
m

B
7

B7S

B3

33333

3 3 3 3 3 3 3 3 3 3 3 3

333333 6 6 6 6 6 6

6 6 6 6 6 6 6 6 6 66 6

4
6 6 6 6 6 6

1

1

1

2

21 1

1

1 1

1

2

1

1

1

11 2

4

4

4 4

4

4
5

5

5

4 5

4

4
5

4 5

5

4 4

4

4
5

2

(c) 3D algorithm in two stages with eight warps.

Figure 6: Examples of the 1D, 2D and 3D CA algorithms execution flow in KAMI. This figure depicts the interaction between
shared memory and register files across stages. All algorithms follow a unified execution pattern: 1) inter-warp data transfers
are performed via shared memory to enable intra-block communication (steps ❶ and ❹); 2) intra-warp register transfers
facilitate submatrix alignment (steps ❷ and ❺); and 3) submatrix multiplications are carried out using Tensor Cores (steps ❸

and ❻). This figure captures the dynamic data residency and flow across the memory hierarchy during execution.

4.3 1D Algorithm
In the 1D algorithm, 𝑝 warps work for one multiplication opera-
tion, and each warp (denoted as warp 𝑖 , where 0 ≤ 𝑖 < 𝑝) holds
submatrices A𝑖 (size 𝑚

𝑝 × 𝑘) and B𝑖 (size 𝑘
𝑝 × 𝑛). The GPU warps

work in the SPMD (Single Program Multiple Data) model, meaning
that each warp executes the same program concurrently.

The matrix multiplication task is then decomposed into 𝑝 stages,
each consisting of communication and computation phases. In the
𝑧th stage (0 ≤ 𝑧 < 𝑝), the communication phase broadcasts the

submatrix block B𝑧Send, which is the B𝑖 held by the 𝑧th warp, to
the other warps.

Notably, in the 1D algorithm, communication occurs only for ma-
trix B, and matrix A is not communicated. The communication runs
in two steps: 1) The submatrix B𝑧Send is loaded from registers into
shared memory and stored as SmB𝑧 ; 2) The other warps read SmB𝑧
from shared memory into their registers and store it as B𝑧Recv
(steps ❶ and ❹ in Figure 6(a), and lines 6 and 10 in Algorithm 1).

To reduce shared memory access pressure, after writing B𝑧Send
to shared memory, the 𝑧th warp also writes the same data into its

SC ’25, November 16–21, 2025, St Louis, MO, USA Wang et al.

local registers as B𝑧Recv, (steps ❷ and ❺ in Figure 6(a), and line 7
in Algorithm 1).

Algorithm 1 1D algorithm by 𝑝 warps
1: 𝑖 ← warpID
2: GMem2Reg(A𝑖 ← A, B𝑖 ← B, C𝑖 ← C)
3: __syncthreads()
4: for 𝑧 = 0 to 𝑝 do ⊲ The algorithm consists of 𝑝 stages.
5: if 𝑖 = z then
6: Reg2SMem(SmB← BSend) ⊲ Write BSend to shared memory.
7: Reg2Reg(BRecv← BSend) ⊲ Copy BSend within registers.
8: __syncthreads()
9: if 𝑖 ≠ z then
10: DTransSMem2Reg(BRecv← SmB) ⊲ Read SmB from shared memory.
11: __syncthreads()
12: C𝑖 ← TensorCoreGEMM(A𝑖 [:] [𝑧 × 𝑘

𝑝
: (𝑧 + 1) × 𝑘

𝑝
],BRecv)

⊲ Part of A𝑖 and BRecv multiplied by Tensor Core.
13: Reg2GMem(C← C𝑖)

Once all warps have their B𝑧Recv, they begin the computation
phase (steps ❸ and ❻ in Figure 6(a), and line 12 in Algorithm 1).
The computation is multiplying the 𝑧th portion of A𝑖 (size 𝑚

𝑝 ×
𝑘
𝑝)

with the received B𝑧Recv (size 𝑘
𝑝 × 𝑛) on tensor cores.

After completing the computation for the current stage, the
algorithm proceeds to the next, repeating the procedure until all 𝑝
stages are finished. Now each warp can save its computed C𝑖 (size
𝑚
𝑝 × 𝑛) in the registers to global or shared memory.
We now analyze the communication and computation time over-

heads. To simplify, we assume that the communication within the
same warp is disregarded. Thus, the total communication volume
consists of two components: writing B𝑖 (size 𝑘

𝑝 ×𝑛) to shared mem-
ory by one warp, and reading it from shared memory by 𝑝 − 1
warps. Taking 𝑠𝑒 as the byte size of a matrix element, the total
communication volume 𝑉𝑐𝑚 is given by

𝑉𝑐𝑚 = 1 ×
(
𝑘

𝑝
× 𝑛

)
× 𝑠𝑒 + (𝑝 − 1) ×

(
𝑘

𝑝
× 𝑛

)
× 𝑠𝑒 = 𝑘𝑛 × 𝑠𝑒 . (1)

Besides communication volume, we also consider shared mem-
ory access latency 𝐿𝑠𝑚 , bandwidth 𝐵𝑠𝑚 , and bank conflict factors
𝜃𝑟 and 𝜃𝑤 . Then, the communication cost 𝑇𝑐𝑚 can be expressed as

𝑇𝑐𝑚 = 𝐿𝑠𝑚 +
𝑘𝑛 × 𝑠𝑒
𝜃𝑤𝑝𝐵𝑠𝑚

+ (𝑝 − 1)𝑘𝑛 × 𝑠𝑒
𝜃𝑟𝑝𝐵𝑠𝑚

. (2)

Next, we consider the algorithm’s computational cost

𝑇𝑐𝑝 =
flops(A𝑖 ,BRecv𝑧)

𝑂𝑡𝑐
=

2 × 𝑚
𝑝 ×

𝑘
𝑝 × 𝑛

𝑂𝑡𝑐
=

2𝑚𝑛𝑘

𝑝2𝑂𝑡𝑐
, (3)

where𝑂𝑡𝑐 represents the number of arithmetic operations per cycle
by each tensor core.

The algorithm has 𝑝 stages, each consisting of one communica-
tion phase followed by 𝑝 concurrent computations. Therefore, the
total execution cost 𝑇𝑎𝑙𝑙 for the entire process is

𝑇𝑎𝑙𝑙 = 𝑝 × (𝑇𝑐𝑚 +
𝑝

𝑛𝑡𝑐
×𝑇𝑐𝑝)

= 𝐿𝑠𝑚𝑝 + 𝑘𝑛 × 𝑠𝑒
𝜃𝑤𝐵𝑠𝑚

+ (𝑝 − 1)𝑘𝑛 × 𝑠𝑒
𝜃𝑟𝐵𝑠𝑚

+ 2𝑚𝑛𝑘

𝑛𝑡𝑐𝑂𝑡𝑐
.

(4)

To provide a more concrete example, suppose in Figure 6(a), two
warps (𝑝 = 2) multiply 8 × 8 matrices A and B (𝑚 = 𝑛 = 𝑘 = 8), and
𝑠𝑒 = 8 in FP64. Through Formula 1, 𝑉𝑐𝑚 = 512 bytes.

Assuming that the shared memory latency 𝐿𝑠𝑚 = 22 cycles,
the bank conflict factors 𝜃𝑟 = 𝜃𝑤 = 1, and the shared memory
bandwidth 𝐵𝑠𝑚 = 128 bytes per cycle, bring in Formula 2,𝑇𝑐𝑚 = 26
cycles.

If the tensor core performs 32 arithmetic operations per cycle
and we have 4 tensor cores each SM (𝑂𝑡𝑐 = 32 and 𝑛𝑡𝑐 = 4), bring in
Formula 3,𝑇𝑐𝑝 = 8 cycles. Thus, the total execution cost is𝑇𝑎𝑙𝑙 = 60
cycles as Formula 4.

4.4 2D Algorithm
In the 2D algorithm, 𝑝 warps are divided into a √𝑝 × √𝑝 grid for
one multiplication operation, and warp 𝑖 works in the SPMD model
and holds A𝑖 (size 𝑚√

𝑝
× 𝑘√

𝑝
) and B𝑖 (size 𝑘√

𝑝
× 𝑛√

𝑝
).

The multiplication task now has √𝑝 stages, each consisting of
communication and computation phases. In the 𝑧th stage (0 ≤
𝑧 <
√
𝑝), the communication phase broadcasts a submatrix block

A𝑗Send, which is the A𝑖 held by the 𝑧th column of the warp grid,
to the other warps in the same row, and B𝑗Send, i.e. B𝑖 held by the
𝑧th row of the warp grid, to the other warps in the same column.

The communication runs in two steps: 1) A𝑗Send is copied from
registers into shared memory and stored as SmA𝑗 , and B𝑗Send is
from registers to shared memory as SmB𝑗 . 2) The other warps in
the same row read SmA𝑗 from shared memory into their registers
as A𝑗Recv (steps ❶ and ❹ in Figure 6(b), and lines 6 and 13 in
Algorithm 2), and the other warps in the same column of the warp
grid read SmB𝑗 from shared memory into their registers as B𝑗Recv
(steps ❶ and ❹ in Figure 6(b), and lines 9 and 15 in Algorithm 2).
The data transfer within a warp is the same as in the 1D algorithm
(steps ❷ and ❺ in Figure 6(b), and lines 7 and 10 in Algorithm 2).

Once all warps have their A𝑗Recv (size 𝑚√
𝑝
× 𝑘√

𝑝
) and B𝑗Recv

(size 𝑘√
𝑝
× 𝑛√

𝑝
), the two submatrices are multiplied on tensor cores

(steps ❸ and ❻ in Figure 6(b), and line 17 in Algorithm 2).

Algorithm 2 2D algorithm by 𝑝 warps
1: 𝑖 ← warpID
2: GMem2Reg(A𝑖 ← A, B𝑖 ← B, C𝑖 ← C)
3: __syncthreads()
4: for 𝑧 = 0 to √𝑝 do ⊲ The algorithm consists of

√
𝑝 stages.

5: if 𝑖%√𝑝 = 𝑧 then
6: Reg2SMem(SmA← ASend) ⊲ Write ASend to shared memory.
7: Reg2Reg(ARecv← ASend) ⊲ Copy ASend between registers.
8: if 𝑖/√𝑝 = 𝑧 then
9: Reg2SMem(SmB← BSend) ⊲ Write BSend to shared memory.
10: Reg2Reg(BRecv← BSend) ⊲ Copy BSend between registers.
11: __syncthreads()
12: if 𝑖%√𝑝 ≠ 𝑧 then
13: SMem2Reg(ARecv← SmA) ⊲ Read SmA from shared memory.
14: if 𝑖/√𝑝 ≠ 𝑧 then
15: SMem2Reg(BRecv← SmB) ⊲ Read SmB from shared memory.
16: __syncthreads()
17: C𝑖 ← TensorCoreGEMM(ARecv,BRecv)

⊲ ARecv and BRecv multiplied by Tensor Core.
18: Reg2GMem(C𝑖 ← C)

We now analyze the communication and computational costs.
Same as the 1D algorithm, we also assume that the communication
overhead within the same warp can be ignored. Then the total
communication volume consists of two components: writing A𝑖

KAMI: Communication-Avoiding General Matrix Multiplication within a Single GPU SC ’25, November 16–21, 2025, St Louis, MO, USA

(size 𝑚√
𝑝
× 𝑘√

𝑝
and B𝑖 (size 𝑘√

𝑝
× 𝑛√

𝑝
) to shared memory by√𝑝 warps,

and reading it from shared memory by√𝑝× (√𝑝−1) warps. Taking
𝑠𝑒 as the size of an element, the total communication volume

𝑉𝑐𝑚 =

(
√
𝑝 ×

(
𝑚
√
𝑝
× 𝑘
√
𝑝

)
+ √𝑝 × (√𝑝 − 1) ×

(
𝑚
√
𝑝
× 𝑘
√
𝑝

))
× 𝑠𝑒

+
(
√
𝑝 ×

(
𝑘
√
𝑝
× 𝑛
√
𝑝

)
+ √𝑝 × (√𝑝 − 1) ×

(
𝑘
√
𝑝
× 𝑛
√
𝑝

))
× 𝑠𝑒

= (𝑚𝑘 + 𝑘𝑛) × 𝑠𝑒 .
(5)

Considering shared memory access latency 𝐿𝑠𝑚 , bandwidth 𝐵𝑠𝑚 ,
and bank conflict factors 𝜃𝑟 and 𝜃𝑤 , the communication cost

𝑇𝑐𝑚 = 𝐿𝑠𝑚 +
(𝑚𝑘 + 𝑛𝑘) × 𝑠𝑒
𝜃𝑤
√
𝑝𝐵𝑠𝑚

+
(√𝑝 − 1) (𝑚𝑘 + 𝑛𝑘) × 𝑠𝑒

𝜃𝑟
√
𝑝𝐵𝑠𝑚

. (6)

When 𝑂𝑡𝑐 is the number of arithmetic operations per cycle by per
tensor core, the algorithm’s computational cost

𝑇𝑐𝑝 =
flops(ARecv

𝑗
,BRecv

𝑗
)

𝑂𝑡𝑐
=

2 × 𝑚√
𝑝
× 𝑘√

𝑝
× 𝑛√

𝑝

𝑂𝑡𝑐
=

2𝑚𝑛𝑘
2
3
√
𝑝𝑂𝑡𝑐

. (7)

The algorithm has√𝑝 stages, each has one communication phase
and 𝑝 concurrent computations. Then the total execution cost

𝑇𝑎𝑙𝑙 =
√
𝑝 × (𝑇𝑐𝑚 +

𝑝

𝑛𝑡𝑐
×𝑇𝑐𝑝)

= 𝐿𝑠𝑚
√
𝑝 + (𝑚𝑘 + 𝑛𝑘) × 𝑠𝑒

𝜃𝑤𝐵𝑠𝑚
+
(√𝑝 − 1) (𝑚𝑘 + 𝑛𝑘) × 𝑠𝑒

𝜃𝑟𝐵𝑠𝑚
+ 2𝑚𝑛𝑘

𝑛𝑡𝑐𝑂𝑡𝑐
.

(8)

To provide a more concrete example, suppose in Figure 6(b), four
warps (𝑝 = 4) multiply 8 × 8 matrices A and B, and 𝑠𝑒 = 8 in FP64.
Through Formula 5, 𝑉𝑐𝑚 = 1024 bytes.

Assuming that the shared memory latency 𝐿𝑠𝑚 = 22 cycles,
the bank conflict factors𝜃𝑟 = 𝜃𝑤 = 1, and the shared memory
bandwidth 𝐵𝑠𝑚 = 128 bytes per cycle, bring in Formula 6,𝑇𝑐𝑚 = 30
cycles. If the tensor core performs 32 arithmetic operations per
cycle and we have 4 tensor cores each SM (𝑂𝑡𝑐 = 32 and 𝑛𝑡𝑐 = 4),
bring in formula 7, 𝑇𝑐𝑝 = 4 cycles. Thus, the total execution cost is
𝑇𝑎𝑙𝑙 = 68 cycles as Formula 8.

4.5 3D Algorithm
In the 3D algorithm, 𝑝 warps are divided into a 3√𝑝 × 3√𝑝 × 3√𝑝 warp
cube for one multiplication, and warp 𝑖 holds submatrices A𝑖 (size
𝑚
3√𝑝 ×

𝑘
3
2
√
𝑝
) and B𝑖 (size 𝑘

3
2
√
𝑝
× 𝑛

3√𝑝). The warp cube can be viewed as
3√𝑝 warp grids of size 3√𝑝 × 3√𝑝 , with A𝑖 and B𝑖 in the 2D algorithm
divided along the 𝑘-dimension into 3√𝑝 submatrices accordingly.
The warps also work in the SPMD model.

The multiplication now has 3√𝑝 stages, each with communication
and computation phases. In the 𝑧th stage (0 ≤ 𝑧 < 3√𝑝), the commu-
nication phase broadcasts the submatrix block A𝑗Send, which is
the A𝑖 held by the 𝑧th column of the warp cube, to the other warps
in the same row and same layer, and B𝑗Send, which is the B𝑖 held
by the 𝑧th row of the warp cube, to the other warps in the same
column and same layer.

The communication has two steps: 1) The submatrices A𝑗Send
and B𝑗Send are copied from registers to shared memory as SmA𝑗

and SmB𝑗 , respectively. 2) The other warps in the same row and
layer of the warp cube read SmA𝑗 from shared memory into their
registers asA𝑗Recv (steps ❶ and ❹ in Figure 6(c), and lines 6 and 13
in Algorithm 3), and the other warps in the same column and layer
read SmB𝑗 from shared memory into their registers as B𝑗Recv
(steps ❶ and ❹ in Figure 6(c), and lines 9 and 15 in Algorithm 3).
The data transfer within a warp is also the same as in the 1D and
2D algorithms (steps ❷ and ❺ in Figure 6(c), and lines 7 and 10 in
Algorithm 3).

Now all warps have their A𝑗Recv (size 𝑚
3√𝑝 ×

𝑘
3
2
√
𝑝
) and B𝑗Recv

(size 𝑘
3
2
√
𝑝
× 𝑛

3√𝑝) and multiply them on tensor cores (see steps ❸ and

❻ in Figure 6(c), and line 17 in Algorithm 3).

Algorithm 3 3D algorithm by 𝑝 warps
1: 𝑖 ← warpID
2: GMem2Reg(A𝑖 ← A, B𝑖 ← B, C𝑖 ← C)
3: __syncthreads()
4: for 𝑧 = 0 to 3√𝑝 do ⊲ The algorithm consists of 3√𝑝 stages.
5: if 𝑖/ 3√𝑝/ 3√𝑝 = 𝑧 then
6: Reg2SMem(SmA← ASend) ⊲ Write ASend to shared memory.
7: Reg2Reg(ARecv← ASend) ⊲ Copy ASend between registers.
8: if 𝑖/ 3√𝑝% 3√𝑝 = 𝑧 then
9: Reg2SMem(SmB← BSend) ⊲ Write BSend to shared memory.
10: Reg2Reg(BRecv← BSend) ⊲ Copy BSend between registers.
11: __syncthreads()
12: if 𝑖/ 3√𝑝/ 3√𝑝 ≠ 𝑧 then
13: SMem2Reg(ARecv← SmA) ⊲ Read SmA from shared memory.
14: if 𝑖/ 3√𝑝% 3√𝑝 ≠ 𝑧 then
15: SMem2Reg(BRecv← SmB) ⊲ Read SmB from shared memory.
16: __syncthreads()
17: C𝑖 ← TensorCoreGEMM(ARecv,BRecv)

⊲ ARecv and BRecv multiplied by Tensor Core.
18: Reg2GMem(C𝑖 ← C[𝑖% 3√𝑝])
19: C← C + C[𝑖% 3√𝑝]

With the two components: writing A𝑖 (size 𝑚
3√𝑝 ×

𝑘
3
2
√
𝑝
) and B𝑖

(size 𝑘
3
2
√
𝑝
× 𝑛

3√𝑝) to shared memory by 3
2
√
𝑝 warps, and reading them

by 3
2
√
𝑝 × (3√𝑝 − 1) warps, the total communication volume

𝑉𝑐𝑚 =

(
3
2
√
𝑝 ×

(
𝑚

3√𝑝 ×
𝑘
3
2
√
𝑝

)
+ 3

2
√
𝑝 × (3√𝑝 − 1) ×

(
𝑚

3√𝑝 ×
𝑘
3
2
√
𝑝

))
× 𝑠𝑒

+
(

3
2
√
𝑝 ×

(
𝑘
3
2
√
𝑝
× 𝑛

3√𝑝

)
+ 3

2
√
𝑝 × (3√𝑝 − 1) ×

(
𝑘
3
2
√
𝑝
× 𝑛

3√𝑝

))
× 𝑠𝑒

= (𝑚𝑘 + 𝑘𝑛) × 𝑠𝑒 .
(9)

Considering shared memory access latency 𝐿𝑠𝑚 , bandwidth 𝐵𝑠𝑚 ,
and bank conflict factors𝜃𝑟 and 𝜃𝑤 , the communication cost

𝑇𝑐𝑚 = 𝐿𝑠𝑚 +
(𝑚𝑘 + 𝑛𝑘) × 𝑠𝑒
𝜃𝑤 3√𝑝𝐵𝑠𝑚

+
(3√𝑝 − 1) (𝑚𝑘 + 𝑛𝑘) × 𝑠𝑒

𝜃𝑟 3√𝑝𝐵𝑠𝑚
. (10)

The algorithm’s computational cost

𝑇𝑐𝑝 =
flops(ARecv

𝑗
,BRecv

𝑗
)

𝑂𝑡𝑐
=

2 × 𝑚
3√𝑝 ×

𝑘
3
2
√
𝑝
× 𝑛

3√𝑝

𝑂𝑡𝑐
=

2𝑚𝑛𝑘
3
4
√
𝑝𝑂𝑡𝑐

.

(11)

SC ’25, November 16–21, 2025, St Louis, MO, USA Wang et al.

The algorithm includes 3√𝑝 stages, each has one communication
and 𝑝 concurrent computation phases, and the total execution cost

𝑇𝑎𝑙𝑙 =
3√𝑝 × (𝑇𝑐𝑚 +

𝑝

𝑛𝑡𝑐
×𝑇𝑐𝑝)

= 𝐿𝑠𝑚
3√𝑝 + (𝑚𝑘 + 𝑛𝑘) × 𝑠𝑒

𝜃𝑤𝐵𝑠𝑚
+
(3√𝑝 − 1) (𝑚𝑘 + 𝑛𝑘) × 𝑠𝑒

𝜃𝑟𝐵𝑠𝑚
+ 2𝑚𝑛𝑘

𝑛𝑡𝑐𝑂𝑡𝑐
.

(12)
In Figure 6(c), four warps (𝑝 = 8) multiply 8×8 matrices A and B,

and 𝑠𝑒 = 8. Through Formula 9, 𝑉𝑐𝑚 is 1024 bytes. When 𝐿𝑠𝑚 = 22,
𝜃𝑟 = 𝜃𝑤 = 1, 𝐵𝑠𝑚 = 128, 𝑛𝑡𝑐 = 4 and 𝑂𝑡𝑐 = 32, we can compute
𝑇𝑐𝑚 = 30 cycles (Formula 10) and 𝑇𝑎𝑙𝑙 = 68 cycles (Formula 12).

4.6 Sparse Extension: SpMM and SpGEMM
We extend KAMI to support two sparse matrix multiplication opera-
tions SpMM and SpGEMM. To well exploit the tensor cores, we save
the sparse matrices in smaller dense blocks of user-configurable
size, with a default of 16 × 16 selected to align with various tensor
core shapes. Figure 7 illustrates the sparse storage using a 4 × 4
block as an example. For the 1D algorithm (Figure 7(a)), the blocks
are saved row-by-row. For the 2D and 3D algorithms (Figure 7(b)),
a multi-level Z-Morton order is implemented to facilitate efficient
submatrix indexing, which is similar to the sparse formats proposed
by Buluç et al. [43] and Yzelman et al. [219–221].

02 00 003 4 6

0 20 001 00 002 003

RowPtr

Val

ColBlkIdx

a b
c d

e f
hg

i j
lk
m n

po
q r
s t w x

vu

2

Matrix

a b
c d

e f
hg

i j
lk

m n
po

q r
s t w x

vu

(a) 1D layout

10

0 10 000 000 000 001

a b
c d

e f
hg

i j
lk
m n
po

q r
s t w x

vu

a b
c d

i j
lk
e f
hg
m n
po
q r
s t w x

vu

2 3 3 3 3 4 6

Matrix

RowPtr

ColBlkIdx

Val

(b) 2D and 3D layout

Figure 7: Sparse matrix storage in KAMI.

In the sparse form of KAMI, the organization of warps and the
stages remain consistent with those in the dense schemes explained
in Sections 4.3-4.5. The entire process also includes communication
and computation phases. In the 1D algorithm, each warp processes
a distinct sparse row block. In the 2D and 3D algorithms, both A
and B are copied in the sparse warp grid or cube. During communi-
cation, besides transferring the Val array, it is necessary to transmit
the index arrays RowPtr and ColBlkIdx that represent the sparse
matrix structure. This data transfer requires allocating additional
space in shared memory for supporting the sparsity.

In SpMM, B and C are dense. After all the submatrices are com-
municated in KAMI, we follow the same compute pattern proposed
by Koanantakool et al. [112]. Specifically, the corresponding blocks
in B𝑖 are identified by every nonzero block in A𝑖 by traversing the
index arrays. Then the intermediate results are computed by tensor
cores, and accumulated into the appropriate locations of C𝑖 .

In SpGEMM, matrices A, B and C are all sparse, and a symbolic
phase is needed before the numeric computation. The symbolic
phase calls a separate kernel, before the CA numeric kernel, to
calculate the number of nonzero blocks and allocate the necessary
memory space. The symbolic kernel uses a classic sparse accumu-
lator by Gilbert et al. [87]. On top of our 1D, 2D and 3D compute
patterns in KAMI, the CA numeric kernel utilizes the indexing
method proposed by Hong and Buluç [99] to accumulate the result-
ing blocks into C𝑖 stored in registers.

4.7 Implementation Details
We elaborate on two core implementation details in KAMI. The
first arises from the limited register and shared memory capacities.
For example, storing three 128×128 matrices in FP64 (two 32-bit
registers per element) with eight warps (i.e., 256 threads) requires
3 × 128 × 128 × 2 ÷ 256 = 384 registers per thread, exceeding the
hardware limit of 255. To address this, KAMI slices the matrices
along the 𝑘 dimension, storing only a portion of A and B in regis-
ters, while offloading the inactive sub-matrices to shared memory.
The slicing ratio—i.e., the fraction of data kept in registers versus
shared memory—is a tunable parameter selected based on empirical
performance and varies by matrix size. In our implementation, each
𝑘-slice has a dimension of 16 to align with the MMA unit granular-
ity, thereby minimizing hardware fragmentation. This cooperation
applies to KAMI-1D/2D/3D, though optimal ratios differ with data
layouts. Slicing overhead is negligible; performance differences
arise mainly from shared-memory latency. Section 5.2.5 evaluates
different ratios and annotates when register demand exceeds hard-
ware limits, motivating fallback to shared memory.

The second detail concerns the overlap of communication and
computation, analogous to MPI_Isend() and MPI_Irecv(). KAMI
does not enforce explicit overlap strategies, as the CUDA warp
scheduling and underlying GPU hardware should be effective at
interleaving data transfer and computation. Section 5.6.2 validates
this by showing that actual clock cycles closely follow the theoreti-
cal model when considering communication-computation concur-
rency.

5 Experimental Results
5.1 Experimental Setup
KAMI is evaluated on four GPUs from NVIDIA, AMD, and Intel,
with implementations using CUDA, HIP, and SYCL, respectively.
The device specifications are shown in Table 3, and the program-
ming methods are listed in Table 4.

Vendor NVIDIA AMD Intel
Specifications GH200 RTX 5090 7900 XTX Max 1100

Boost clock (MHz) 1980 2655 2498 1550
#Banks × bank width (Bytes) 32×4 32×4 32×4 16×4
#SMs × #tensor cores/SM 132×4 170×4 96×2 448×1
Peak FP16 tensor (TFLOPS) 990 462 123 22
Peak FP64 tensor (TFLOPS) 67 N/A N/A N/A

Table 3: Four GPUs from NVIDIA, AMD and Intel.

We evaluate KAMI across a diverse set of workloads. For square
GEMM, we compare against cuBLASDx v0.2.0 [156] and CUTLASS

KAMI: Communication-Avoiding General Matrix Multiplication within a Single GPU SC ’25, November 16–21, 2025, St Louis, MO, USA

cuBLASDx CUTLASS SYCL-Bench KAMI-1D KAMI-2D KAMI-3D

25 50 75 100 125
Matrix order

 10

 20

 30

 40

 50

 60

T
FL

O
PS

(a) FP64 on GH200

50 100 150 200
Matrix order

0

100

200

300

400

500

(b) FP16 on GH200

25 50 75 100 125
Matrix order

0
20
40
60
80

100
120

(c) TF32 on 5090

50 100 150 200
Matrix order

0

100

200

300

400

500

(d) FP16 on 5090

50 100 150 200 250
Matrix order

100

200

300

400

500

(e) FP8 on 5090

50 100 150 200
Matrix order

 30

 40

 50

 60

 70

(f) FP16 on 7950 XTX

50 100 150 200
Matrix order

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(g) FP16 on Max 1100

Figure 8: Block-Level GEMM Performance across GPU Architectures.

GPU Vendor NVIDIA AMD Intel
Programming API CUDA HIP SYCL
Local storage Register fragment joint_matrix

Communication space Shared memory Shared memory Local memory
Tensor core func. mma mma_sync joint_matrix_mad

Instruction shape
m16n8k8 (FP64)
m16n8k16 (FP16)

m16n16k16 (FP16) m16n16k16 (FP16)

Table 4: Programming API supported by KAMI

v3.8.0 [157] on NVIDIA GH200 in FP64 and FP16, and 5090 in TF32,
FP16 and FP8. KAMI’s FP16 performance on AMD 7900 XTX and
Intel Max 1100 (vs. SYCL-Bench [120]) is also reported. Matrices
with orders 16, 32, 64, and 128 are used for FP64, TF32, FP16 and FP8,
with an additional 192 for FFP16 and 256 for FP8. We also analyze
the effect of varying block sizes and shared memory temporary
saving in FP16 on 5090.

For low-rank GEMM, we test KAMI, cuBLASDx and CUTLASS
on GH200 in FP16, using 𝑘 = 16 or 32, with𝑚 and 𝑛 aligning with
the square GEMM orders.

Batched GEMM is evaluated on GH200 in FP64, compared with
cuBLAS v12.8 [155] and MAGMA v2.9 [149]. Matrix orders follow
the square GEMM setup, with batch sizes of 1000 and 10000.

Block-level KAMI is further evaluated on SpMM and SpGEMM
on GH200 in FP16, using five sparse matrices (50% random sparsity)
of the same order as the square GEMM test. All block-level results
(square, low-rank, and sparse) are averaged over 1000 runs with
16,384 blocks launched simultaneously per run.

Finally, we provide a theoretical analysis of KAMI, including
register usage and execution cycles.

5.2 Block-Level square GEMM
5.2.1 KAMI on NVIDIA GPU. We evaluate block-level GEMM per-
formance of KAMI and cuBLASDx on GH200 and 5090 GPUs for
square matrices. Figures 8(a), (b), and (d) present FP64/FP16 results
on GH200 and FP16 on 5090.

For FP64 onGH200, KAMI-1D/2D/3D outperform cuBLASDx and
CUTLASS by 4.02x/2.29x/2.08x and 3.65x/1.90x/1.70x on average
(up to 5.20x/3.02x/2.99x and 4.68x/2.34x/2.32x). For FP16, KAMI-
1D/2D/3D achieve 2.56x/1.62x/1.67x and 4.54x/2.88x/2.95x speedups
on average (up to 4.93x/2.98x/2.98x and 10.31x/6.23x/6.23x) on
GH200, and, 2.46x/2.25x/2.24x and 19.98x/17.25x/17.01x (up to
3.38x/2.77x/2.76x and 74.36x/60.99x/60.66x) on 5090. For TF32
on 5090, KAMI-1D/2D/3D outperform cuBLASDx and CUT-
LASS by 2.72x/2.50x/2.28x and 14.38x/12.66x/11.22x on average
(up to 4.65x/3.98x/3.46x and 47.76x/40.87x/35.56x). For FP8 on

5090, KAMI-1D/2D/3D outperform cuBLASDx and CUTLASS
by 1.83x/1.81x/1.74x and 5.40x/3.39x/2.06x on average (up to
3.03x/2.97x/2.98x and 11.67x/5.64x/3.02x). KAMI supports larger
matrices with lightweight shared memory use compared with
cuBLASDx.

KAMI-1D generally outperforms KAMI-2D/3D. On GH200,
KAMI-3D can even underperform compared to cuBLASDx, proba-
bly due to more complex control flows, with additional branches,
loops, and synchronizations. Profiling a 128 × 128 FP16 kernel
shows KAMI-2D/3D incur 45.32%/152.38% more nop instructions
than KAMI-1D, making KAMI-1D more suitable for current single-
GPU use.

5.2.2 KAMI on AMD GPU. As no block-level library exists on
AMD, we report only KAMI’s performance in Figure 8(f). When
the matrix order exceeds 48, KAMI-1D’s performance drops, which
occurs later for KAMI-2D/3D.

5.2.3 KAMI on Intel GPU. Figure 8(g) shows KAMI’s performance
on the Intel Max 1100 GPU, compared with SYCL-Bench. KAMI-
1D/2D/3D outperform SYCL-Bench by 4.97x/2.20x/2.00x on average,
with peak speedups of 14.48x/5.63x/5.71x, respectively.

5.2.4 Block Size Effects. Figure 9 shows the GEMM performance
of two 64 × 64 matrices by KAMI-1D, KAMI-2D, and KAMI-3D on
5090, with peak performances of 469.80, 470.57, and 449.07 TFLOPS.

32 64 96 128 256 512
Block size

100
200
300
400
500

T
FL

O
PS

KAMI-1D KAMI-2D KAMI-3D

Figure 9: Impact of block size in FP16 on 5090.

KAMI-1D delivers consistently high performance across a wide
range of block sizes. In contrast, KAMI-2D, with its 2D warp config-
uration, achieves only 54.22% of KAMI-1D’s performance at block
size 64. KAMI-3D is even more sensitive, performing well only
when the block size exceeds 256.

Thus, KAMI-1D is robust under tight block size constraints, while
KAMI-2D/3D is preferable when larger block sizes are available.
This also explainswhyKAMI-1D performs better than KAMI-2D/3D

SC ’25, November 16–21, 2025, St Louis, MO, USA Wang et al.

under the current architectures with limited number of thread
blocks.

5.2.5 Shared Memory and Register Cooperation. To validate the
effectiveness of temporary saving in shared memory as mentioned
in Section 4.7, we illustrate how the performance of GEMM (FP16)
varies with shared memory usage in Figure 10.

0% 16% 25% 33% 50% 66% 75% 83%
Shared memory ratio

200

300

400

500

T
FL

O
PS

Matrix order: 32 64 96 128

Figure 10: Impact of shared memory ratio on block-level.

For small matrices (32-64), registers alone suffice to store all
necessary data, and using shared memory degrades performance.
As matrix order increases, registers become insufficient. Temporary
saving data in shared memory improves performance. At matrix or-
der 128, performance peaks at 1.34x when 50% is temporarily saved
in shared memory. However, excessive use of shared memory leads
to a slowdown due to its higher cost. For example, performance
drops to 0.71x when 75% of the data is in shared memory.

Results show that the optimal register–shared memory ratio is
scale-dependent: registers suffice for small matrices, whilemoderate
shared memory use benefits medium sizes; excessive use degrades
performance. Accordingly, we preset ratios in our implementation
and allow user tuning to balance generality and specialization.

5.3 Low-Rank GEMM
We compare KAMI and cuBLASDx on low-rank GEMM for 𝑘 = 16
(Figure 11(a)) and 𝑘 = 32 (Figure 11(b)) on GH200 in FP16.

cuBLASDx CUTLASS KAMI

16 32 64 128 192
Matrix order (m & n)

0

200

400

600

T
FL

O
PS

(a) k = 16

16 32 64 128 192
Matrix order (m & n)

(b) k = 32

Figure 11: Low-rank GEMM in FP16 on GH200.

KAMI consistently outperforms cuBLASDx and CUTLASS, ach-
ieving average speedups of 3.66x, 4.89x (up to 6.11x, 11.61x) for
𝑘 = 16 and 3.65x, 3.09x for 𝑘 = 32 (up to 5.03x, 7.00x).

KAMI exhibits more pronounced advantages in low-rank GEMM
than in square matrix GEMM, mainly due to differing memory
access strategies. Traditional kernels, as in cuBLASDx/CUTLASS,
load data into shared memory and then into registers, enhancing
locality but offering limited benefit when 𝑘 is small. In contrast,
KAMI loads data directly into registers and uses shared memory
for communication, better matching low-rank GEMM patterns.

5.4 Batched GEMM
KAMI’s batched interface is consistent with cuBLAS and MAGMA,
and supports various matrix orders in a batch. We compare them
in a uniform order to focus on the GEMM efficiency in Figure 12.

KAMI achieves significant speedups, with average speedups of
31.60x and 340.37x for batch sizes of 1000, and 10.23x and 96.17x
for batch sizes of 10000, compared with MAGMA and cuBLAS.
We attribute this to the limited optimization of small-scale GEMM
operations in both MAGMA and cuBLAS.

20 40 60 80 100 120
Matrix order

0

10

20

T
FL

O
PS

#Batches=1000 MAGMA cuBLAS KAMI
#Batches=10000 MAGMA cuBLAS KAMI

Figure 12: Comparison of batched GEMM in FP64 on GH200.

We also note that the absolute performance in batched GEMM is
lower than that in the standalone GEMM case (Figure 8), which is
expected. In the batched setting, each small matrix in the batch is
loaded separately from global memory, incurring higher memory
traffic per FLOP compared to monolithic GEMM where reuse and
shared memory optimization are more effective. This memory-
bound nature of batched GEMM constrains throughput despite
kernel efficiency.

5.5 SpMM and SpGEMM
Figure 13 presents the performance of SpMM and SpGEMM in FP16
on the GH200 platform.

KAMI-1D KAMI-2D KAMI-3D

50 100 150 200
Matrix order

100
150
200
250

T
FL

O
PS

(a) SpMM

50 100 150 200
Matrix order

20

40

(b) SpGEMM

Figure 13: SpMM and SpGEMM in FP16 on GH200.

The performance trend of SpMM closely resembles that of
GEMM, as the input matrices B and C are dense. In this case, the
only sparsity lies in matrix A, which allows for highly regular com-
putations and memory accesses within the dense blocks of B and
C. As a result, SpMM benefits from efficient coalesced memory
accesses, reduced indexing overhead, and a computational pattern
similar to dense GEMM, which explains its relatively high perfor-
mance.

In contrast, SpGEMM introduces significantly more complex
indexing and results in less predictable memory access patterns
due to different sparse structures in both input matrices. These
irregularities lead to distinct performance behaviors and reduced
throughput of SpGEMM.

KAMI: Communication-Avoiding General Matrix Multiplication within a Single GPU SC ’25, November 16–21, 2025, St Louis, MO, USA

5.6 Theoretical Analysis
5.6.1 Register Allocation. To validate the theoretical analysis pre-
sented in Section 4, we compare the theoretical register usage of
KAMI with the actual allocation measured during compilation.
We test KAMI-1D (4 warps), KAMI-2D (4 warps) and KAMI-3D (8
warps), with C fixed at 64 × 32 and A, B varying with 𝑘 (Figure 14).

64 96 128 160 192 224 256 320 352 384 448 512
Dimision of k (m = 64, n = 32)

0

200

400

#R
eg

is
te

rs
 p

er
 th

re
ad

Max register count

Measured
1D
2D
3D

Theoretical
1D
2D
3D

Figure 14: The register usage of KAMI in FP16.

Results show that actual register usage is lower than theoretical
predictions, reaching 76.86% for KAMI-1D, 73.14% for KAMI-2D, and
65.67% for KAMI-3D. The deviation is likely primarily attributable
to compiler optimizations, such as shortening variable lifetimes and
optimizing register reuse.

We also compare the overall on-chip memory usage to
cuBLASDx and CUTLASS. For a 64×64 GEMM in FP16, KAMI-
1D/2D/3D use 62/80/55 registers per thread—between cuBLASDx’s
40 and CUTLASS’s 96—and only 2–8 KB of shared memory per
block, significantly less than cuBLASDx’s 27 KB and CUTLASS’s
65 KB.

5.6.2 Cycles Breakdown. We break down execution cycles into
communication and computation on GH200 and 5090, comparing
results with the theoretical model in Section 4. Cycle counts are
measured using the clock() function with a single CUDA thread
block (4 warps of KAMI-1D/2D and 8 warps of KAMI-3D). Figure 15
shows the results.

Tcm(1D) Tcm(2D) Tcm(3D) Tcp(1D) Tcp(2D) Tcp(3D)
0

2000

4000

#C
yc

le
s GH200 5090

 GH200 5090

Measured:

Theoretical:

Figure 15: The theoretical and measured cycles in FP16.

Overall, the experimental results are largely consistent with the
theoretical model, aside from some discrepancies in a few cases.
For example, on GH200, the theoretical cycles of computation are
consistently lower than the measured values. We attribute this to
the tested 62% maximum MMA instruction execution efficiency on
the Hopper architecture [136].

6 Related Work
GEMM has been accelerated on a variety of CPUs, such as
x86 [139, 200] and ARM [195, 198, 199, 202, 208–210], GPUs [49, 79,
106, 118, 121, 124, 127, 148, 181, 193, 224], TPUs [100], DSPs [217],
and distributed platforms [6, 24, 31, 119, 129]. Representative open-
source libraries include ATLAS [58], GotoBLAS [88, 89, 137, 170],

OpenBLAS [223], BLIS [188–192, 206], LAPACK [63, 111], ScaLA-
PACK [56], MAGMA [149], SLATE [84], Iris [140], CUTLASS [157],
and Ozaki [145–147, 159, 185]. Beyond dense linear algebra, GEMM
has also been exploited in sparse computations, such as accelerating
SpMV [134], BFS [153], and sparse LU factorization [82, 197].

Besides manually tuned kernels, code generation techniques [33,
37, 151, 196] can bring better performance portability by selecting
methods [66, 107, 161] and block sizes [36, 50, 81, 116, 162]. Some
other factors in parallel GEMM, such as scheduling [30, 32, 45],
numerical stability [16, 34, 71], fault tolerant [38, 39, 152], low
precision [1, 96, 128], energy efficiency [11, 52, 68], multiplying
tall-and-skinny matrix [53], as well as tensor operations [123, 125],
were considered as well.

Low-rank can be very useful in many dense [110, 133, 138] and
sparse [8, 46] problems. Such scenarios highly require multiplying
small matrices [98, 142, 169] and its batched implementations [10,
76, 86, 117, 225]. Also, numerous studies consider sparsity in matrix
multiplication. Among them, SpMM [4, 7, 83, 95, 101, 126, 168, 184,
222] and SpGEMM [3, 55, 62, 99, 130, 131, 154, 163, 204, 205] have
been the most extensively studied. In this work, our KAMI shows
promising performance on low-rank and sparse matrix multiplica-
tions.

Communication is often the major bottleneck of distributed al-
gorithms [5, 12, 41, 42, 44, 54, 64, 80, 115, 186, 187]. To address the
problem, a series of CA algorithms were proposed [22, 85, 94, 175]
and analyzed theoretically [6, 18, 105]. The CA methods are highly
effective in linear algebra, particularly for dense problems in-
cluding GEMM [67, 102, 119, 173] and its Strassen’s optimiza-
tion [20, 23, 24, 33, 129], matrix factorization [9, 14, 15, 19, 19,
21, 27, 69, 70, 74, 75, 91–93, 104, 110, 176, 178], eigenvalue prob-
lems [25, 26, 171], and tensor operations [5, 177]. As for sparse
linear algebra, the CA research mainly focused on sparse matrix
multiplication [17, 28, 40, 72, 103, 109, 112, 167], sparse triangu-
lar solve [8, 164, 201], iterative solvers [29, 48, 73, 141, 179, 207]
and direct solvers [108, 165, 166]. The CA methods have also been
extended to write-avoiding methods [47], FFT [59, 114], AI oper-
ations [60, 144, 183, 212–216], graph processing [35, 61, 172, 174],
stencil computation [203], as well as N-body problems [2, 77, 78,
113]. To our knowledge, KAMI for the first time optimizes and
theoretically analyzes the CA GEMM within a single GPU.

7 Conclusion
In this paper, we have proposed KAMI, a set of 1D, 2D, and 3D
CA GEMM algorithms within a single GPU. KAMI improved the
utilization of high-speed registers for local storage and tensor cores
for computation, and used shared memory for communication.
A theoretical analysis in clock cycles was also provided. In the
experiments, KAMI achieved significant speedups over existing
work on GPUs from NVIDIA, AMD and Intel.

Acknowledgments
We greatly appreciate the invaluable comments of all reviewers.
Weifeng Liu is the corresponding author of this paper. This work
was partially supported by the National Natural Science Foundation
of China (Grant No. U23A20301, No. 62372467, and No. 62402525).

SC ’25, November 16–21, 2025, St Louis, MO, USA Wang et al.

References
[1] Ahmad Abdelfattah, Hartwig Anzt, Erik G Boman, Erin Carson, Terry Cojean,

Jack Dongarra, Alyson Fox, Mark Gates, Nicholas J Higham, Xiaoye S Li, et al.
2021. A survey of numerical linear algebra methods utilizing mixed-precision
arithmetic. The International Journal of High Performance Computing Applica-
tions 35, 4 (2021), 344–369.

[2] Mustafa Abduljabbar, George S. Markomanolis, Huda Ibeid, Rio Yokota, and
David Keyes. 2017. Communication Reducing Algorithms for Distributed Hier-
archical N-Body Problems with Boundary Distributions. In International Con-
ference on High Performance Computing (ISC).

[3] Kadir Akbudak and Cevdet Aykanat. 2017. Exploiting locality in sparse matrix-
matrix multiplication on many-core architectures. IEEE Transactions on Parallel
and Distributed Systems 28, 8 (2017), 2258–2271.

[4] Hasan Metin Aktulga, Aydın Buluç, Samuel Williams, and Chao Yang. 2014. Op-
timizing sparse matrix-multiple vectors multiplication for nuclear configuration
interaction calculations. In IEEE International Parallel and Distributed Processing
Symposium (IPDPS).

[5] Hussam Al Daas, Grey Ballard, Laura Grigori, Suraj Kumar, and Kathryn Rouse.
2024. Communication lower bounds and optimal algorithms for multiple tensor-
times-matrix computation. SIAM J. Matrix Anal. Appl. 45, 1 (2024), 450–477.

[6] Hussam Al Daas, Grey Ballard, Laura Grigori, Suraj, and Kathryn Rouse. 2023.
Parallel Memory-Independent Communication Bounds for SYRK. In ACM Sym-
posium on Parallelism in Algorithms and Architectures (SPAA).

[7] José I Aliaga, Hartwig Anzt, Enrique S Quintana-Ortí, and Andrés E Tomás. 2023.
Sparse matrix-vector and matrix-multivector products for the truncated SVD
on graphics processors. Concurrency and Computation: Practice and Experience
35, 28 (2023), e7871.

[8] Patrick Amestoy, Olivier Boiteau, Alfredo Buttari, Matthieu Gerest, Fabienne
Jézéquel, Jean-Yves L’excellent, and Theo Mary. 2024. Communication avoiding
block low-rank parallel multifrontal triangular solve with many right-hand
sides. SIAM J. Matrix Anal. Appl. 45, 1 (2024), 148–166.

[9] Michael Anderson, Grey Ballard, James Demmel, and Kurt Keutzer. 2011.
Communication-avoiding QR decomposition for GPUs. In IEEE International
Parallel and Distributed Processing Symposium (IPDPS).

[10] Hartwig Anzt, Jack Dongarra, Goran Flegar, and Enrique S Quintana-Ortí. 2017.
Variable-size batched LU for small matrices and its integration into block-Jacobi
preconditioning. In International Conference on Parallel Processing (ICPP).

[11] Hartwig Anzt, Blake Haugen, Jakub Kurzak, Piotr Luszczek, and Jack Dongarra.
2015. Experiences in autotuning matrix multiplication for energy minimization
on GPUs. Concurrency and Computation: Practice and Experience 27, 17 (2015),
5096–5113.

[12] Hartwig Anzt, Axel Huebl, and Xiaoye S. Li. 2024. Then and Now: Improving
Software Portability, Productivity, and 100× Performance. Computing in Science
& Engineering 26, 1 (2024), 61–70.

[13] Mochamad Asri, Dhairya Malhotra, Jiajun Wang, George Biros, Lizy K. John,
and Andreas Gerstlauer. 2021. Hardware Accelerator Integration Tradeoffs for
High-Performance Computing: A Case Study of GEMM Acceleration in N-Body
Methods. IEEE Transactions on Parallel and Distributed Systems 32, 8 (2021),
2035–2048.

[14] Marc Baboulin, Simplice Donfack, Jack Dongarra, Laura Grigori, Adrien Rémy,
and Stanimire Tomov. 2012. A class of communication-avoiding algorithms for
solving general dense linear systems on CPU/GPU parallel machines. Procedia
Computer Science 9 (2012), 17–26.

[15] Grey Ballard, Dulceneia Becker, James Demmel, Jack Dongarra, Alex Druin-
sky, Inon Peled, Oded Schwartz, Sivan Toledo, and Ichitaro Yamazaki. 2014.
Communication-avoiding symmetric-indefinite factorization. SIAM J. Matrix
Anal. Appl. 35, 4 (2014), 1364–1406.

[16] Grey Ballard, Austin R Benson, Alex Druinsky, Benjamin Lipshitz, and Oded
Schwartz. 2016. Improving the numerical stability of fast matrix multiplication.
SIAM J. Matrix Anal. Appl. 37, 4 (2016), 1382–1418.

[17] Grey Ballard, Aydın Buluç, James Demmel, Laura Grigori, Benjamin Lipshitz,
Oded Schwartz, and Sivan Toledo. 2013. Communication optimal parallel mul-
tiplication of sparse random matrices. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA).

[18] Grey Ballard, Erin Carson, James Demmel, Mark Hoemmen, Nicholas Knight,
and Oded Schwartz. 2014. Communication lower bounds and optimal algorithms
for numerical linear algebra. Acta Numerica 23 (2014), 1–155.

[19] Grey Ballard, James Demmel, Laura Grigori, Mathias Jacquelin, and Nicholas
Knight. 2018. A 3d parallel algorithm for qr decomposition. In ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA).

[20] Grey Ballard, James Demmel, Olga Holtz, Benjamin Lipshitz, and Oded Schwartz.
2012. Communication-optimal parallel algorithm for strassen’s matrix multi-
plication. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA).

[21] Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz. 2010.
Communication-optimal Parallel and Sequential CholeskyDecomposition. SIAM
Journal on Scientific Computing 32, 6 (2010), 3495–3523.

[22] Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz. 2011. Minimizing
communication in numerical linear algebra. SIAM J. Matrix Anal. Appl. 32, 3
(2011), 866–901.

[23] Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz. 2012. Graph
expansion and communication costs of fast matrix multiplication. J. ACM 59, 6
(2012), 1–23.

[24] Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz. 2014. Commu-
nication costs of Strassen’s matrix multiplication. Commun. ACM 57, 2 (2014),
107–114.

[25] Grey Ballard, James Demmel, and Nicholas Knight. 2012. Communication
avoiding successive band reduction. In ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP).

[26] Grey Ballard, James Demmel, and Nicholas Knight. 2015. Avoiding communica-
tion in successive band reduction. ACM Transactions on Parallel Computing 1, 2
(2015), 1–37.

[27] Grey Ballard, James Demmel, Benjamin Lipshitz, Oded Schwartz, and Sivan
Toledo. 2013. Communication efficient Gaussian elimination with partial pivot-
ing using a shape morphing data layout. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA).

[28] Grey Ballard, Christopher Siefert, and Jonathan Hu. 2016. Reducing communi-
cation costs for sparse matrix multiplication within algebraic multigrid. SIAM
Journal on Scientific Computing 38, 3 (2016), C203–C231.

[29] Protonu Basu, Anand Venkat, Mary Hall, Samuel Williams, Brian Van Straalen,
and Leonid Oliker. 2013. Compiler generation and autotuning of communication-
avoiding operators for geometric multigrid. In International Conference on High
Performance Computing, Data, and Analytics (HiPC).

[30] O. Beaumont, V. Boudet, F. Rastello, and Y. Robert. 2001. Matrix multiplication on
heterogeneous platforms. IEEE Transactions on Parallel and Distributed Systems
12, 10 (2001), 1033–1051.

[31] Olivier Beaumont, Lionel Eyraud-Dubois, and Thomas Lambert. 2016. Cuboid
Partitioning for Parallel Matrix Multiplication on Heterogeneous Platforms. In
European Conference on Parallel and Distributed Computing (Euro-Par).

[32] Olivier Beaumont and Loris Marchal. 2014. Analysis of dynamic scheduling
strategies for matrix multiplication on heterogeneous platforms. In International
Symposium on High-Performance Parallel and Distributed Computing (HPDC).

[33] Austin R Benson and Grey Ballard. 2015. A framework for practical parallel fast
matrix multiplication. In ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP).

[34] Jérémy Berthomieu, Stef Graillat, Dimitri Lesnoff, and Theo Mary. 2025. Multi-
word matrix multiplication over large finite fields in floating-point arithmetic.
HAL preprint hal-04917201 (2025).

[35] Maciej Besta, Raghavendra Kanakagiri, Harun Mustafa, Mikhail Karasikov,
Gunnar Rätsch, Torsten Hoefler, and Edgar Solomonik. 2020. Communication-
efficient jaccard similarity for high-performance distributed genome compar-
isons. In IEEE International Parallel and Distributed Processing Symposium
(IPDPS).

[36] Paolo Bientinesi, John A Gunnels, Margaret E Myers, Enrique S Quintana-Ortí,
and Robert A van de Geijn. 2005. The science of deriving dense linear algebra
algorithms. ACM Trans. Math. Software 31, 1 (2005), 1–26.

[37] Jeff Bilmes, Krste Asanovic, Chee-Whye Chin, and Jim Demmel. 1997. Opti-
mizing matrix multiply using PHiPAC: a portable, high-performance, ANSI C
coding methodology. In ACM International Conference on Supercomputing (ICS).

[38] Noam Birnbaum, Roy Nissim, and Oded Schwartz. 2020. Fault Tolerance with
High Performance for Fast Matrix Multiplication. In The SIAM Workshop on
Combinatorial Scientific Computing (CSC).

[39] Noam Birnbaum and Oded Schwartz. 2018. Fault tolerant resource efficient ma-
trix multiplication. In The SIAMWorkshop on Combinatorial Scientific Computing
(CSC).

[40] Charles Block, Gerasimos Gerogiannis, Charith Mendis, Ariful Azad, and Josep
Torrellas. 2024. Two-face: Combining collective and one-sided communication
for efficient distributed spmm. In ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS).

[41] Benjamin Brock, Aydın Buluç, and Katherine Yelick. 2024. RDMA-Based Algo-
rithms for Sparse Matrix Multiplication on GPUs. In ACM International Confer-
ence on Supercomputing (ICS).

[42] Benjamin Brock, Robert Cohn, Suyash Bakshi, Tuomas Karna, Jeongnim Kim,
Mateusz Nowak, Łukasz undefinedlusarczyk, Kacper Stefanski, and Timothy G.
Mattson. 2024. Distributed Ranges: A Model for Distributed Data Structures,
Algorithms, and Views. In ACM International Conference on Supercomputing
(ICS).

[43] Aydın Buluç, Jeremy T Fineman, Matteo Frigo, John R Gilbert, and Charles E
Leiserson. 2009. Parallel sparse matrix-vector and matrix-transpose-vector mul-
tiplication using compressed sparse blocks. In ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA).

[44] Kirk W Cameron and Rong Ge. 2004. Predicting and evaluating distributed
communication performance. In The ACM/IEEE Conference on Supercomputing
(SC).

KAMI: Communication-Avoiding General Matrix Multiplication within a Single GPU SC ’25, November 16–21, 2025, St Louis, MO, USA

[45] Qinglei Cao, Thomas Herault, Aurelien Bouteiller, Joseph Schuchart, and George
Bosilca. 2024. Evaluating PaRSEC Through Matrix Computations in Scientific
Applications. In Asynchronous Many-Task Systems and Applications (WAMTA).

[46] Qinglei Cao, Yu Pei, Kadir Akbudak, George Bosilca, Hatem Ltaief, David Keyes,
and Jack Dongarra. 2021. Leveraging PaRSEC Runtime Support to Tackle
Challenging 3D Data-Sparse Matrix Problems. In IEEE International Parallel and
Distributed Processing Symposium (IPDPS).

[47] Erin Carson, James Demmel, Laura Grigori, Nicholas Knight, Penporn Koanan-
takool, Oded Schwartz, and Harsha Vardhan Simhadri. 2016. Write-avoiding
algorithms. In IEEE International Parallel and Distributed Processing Symposium
(IPDPS).

[48] Erin Carson, Nicholas Knight, and James Demmel. 2013. Avoiding communica-
tion in nonsymmetric Lanczos-based Krylov subspace methods. SIAM Journal
on Scientific Computing 35, 5 (2013), S42–S61.

[49] Noel Chalmers, Jakub Kurzak, Damon McDougall, and Paul Bauman. 2023.
Optimizing high-performance linpack for exascale accelerated architectures. In
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC).

[50] Ernie Chan, Field G Van Zee, Paolo Bientinesi, Enrique S Quintana-Orti, Grego-
rio Quintana-Orti, and Robert Van de Geijn. 2008. Supermatrix: a multithreaded
runtime scheduling system for algorithms-by-blocks. In ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming (PPoPP).

[51] Lorenzo Chelini, Henrik Barthels, Paolo Bientinesi, Marcin Copik, Tobias
Grosser, and Daniele G Spampinato. 2022. MOM: Matrix Operations in MLIR.
arXiv preprint arXiv:2208.10391 (2022).

[52] Jieyang Chen, Li Tan, Panruo Wu, Dingwen Tao, Hongbo Li, Xin Liang, Si-
huan Li, Rong Ge, Laxmi Bhuyan, and Zizhong Chen. 2016. GreenLA: Green
Linear Algebra Software for GPU-accelerated Heterogeneous Computing. In
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC).

[53] Jieyang Chen, Nan Xiong, Xin Liang, Dingwen Tao, Sihuan Li, Kaiming Ouyang,
Kai Zhao, Nathan DeBardeleben, Qiang Guan, and Zizhong Chen. 2019. TSM2:
optimizing tall-and-skinny matrix-matrix multiplication on GPUs. In ACM
International Conference on Supercomputing (ICS).

[54] Yuxin Chen, Benjamin Brock, Serban Porumbescu, Aydın Buluç, Katherine
Yelick, and John D Owens. 2022. Scalable irregular parallelism with GPUs:
Getting CPUs out of the way. In International Conference for High Performance
Computing, Networking, Storage and Analysis (SC).

[55] Helin Cheng, Wenxuan Li, Yuechen Lu, and Weifeng Liu. 2023. HASpGEMM:
Heterogeneity-Aware Sparse General Matrix-Matrix Multiplication on Mod-
ern Asymmetric Multicore Processors. In International Conference on Parallel
Processing (ICPP).

[56] Jaeyoung Choi, James Demmel, Inderjiit Dhillon, Jack Dongarra, Susan Os-
trouchov, Antoine Petitet, Ken Stanley, David Walker, and R Clinton Whaley.
1996. ScaLAPACK: A portable linear algebra library for distributed memory
computers—Design issues and performance. Computer Physics Communications
97, 1-2 (1996), 1–15.

[57] Jack Choquette. 2023. NVIDIA Hopper H100 GPU: Scaling Performance. IEEE
Micro 43, 3 (2023), 9–17.

[58] R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. 2001. Automated empir-
ical optimizations of software and the ATLAS project. Parallel Comput. 27, 1
(2001), 3–35.

[59] Kenneth Czechowski, Casey Battaglino, Chris McClanahan, Kartik Iyer, P-K
Yeung, and Richard Vuduc. 2012. On the communication complexity of 3D
FFTs and its implications for exascale. In ACM International Conference on
Supercomputing (ICS).

[60] Swapnil Das, James Demmel, Kimon Fountoulakis, Laura Grigori, Michael W
Mahoney, and Shenghao Yang. 2021. Parallel and communication avoiding least
angle regression. SIAM Journal on Scientific Computing 43, 2 (2021), C154–C176.

[61] Roshan Dathathri, Gurbinder Gill, Loc Hoang, Hoang-Vu Dang, Alex Brooks,
Nikoli Dryden, Marc Snir, and Keshav Pingali. 2018. Gluon: A communication-
optimizing substrate for distributed heterogeneous graph analytics. In ACM SIG-
PLAN conference on programming language design and implementation (PLDI).

[62] Gunduz Vehbi Demirci and Cevdet Aykanat. 2020. Cartesian partitioning models
for 2d and 3d parallel spgemm algorithms. IEEE Transactions on Parallel and
Distributed Systems 31, 12 (2020), 2763–2775.

[63] James Demmel. 1991. LAPACK: A portable linear algebra library for high-
performance computers. Concurrency: Practice and Experience 3, 6 (1991), 655–
666.

[64] Jim Demmel. 2011. Rethinking algorithms for future architectures:
Communication-avoiding algorithms. In IEEE Hot Chips Symposium (HCS).

[65] Jim Demmel. 2012. Communication avoiding algorithms. In International Con-
ference for High Performance Computing, Networking, Storage and Analysis (SC).

[66] Jim Demmel, Jack Dongarra, Victor Eijkhout, Erika Fuentes, Antoine Petitet,
Rich Vuduc, R Clint Whaley, and Katherine Yelick. 2005. Self-adapting linear
algebra algorithms and software. Proc. IEEE 93, 2 (2005), 293–312.

[67] James Demmel, David Eliahu, Armando Fox, Shoaib Kamil, Benjamin Lipshitz,
Oded Schwartz, and Omer Spillinger. 2013. Communication-optimal parallel

recursive rectangular matrix multiplication. In IEEE International Parallel and
Distributed Processing Symposium (IPDPS).

[68] James Demmel, Andrew Gearhart, Benjamin Lipshitz, and Oded Schwartz. 2013.
Perfect strong scaling using no additional energy. In IEEE International Parallel
and Distributed Processing Symposium (IPDPS).

[69] James Demmel, Laura Grigori, Ming Gu, and Hua Xiang. 2015. Communication
avoiding rank revealing QR factorization with column pivoting. SIAM J. Matrix
Anal. Appl. 36, 1 (2015), 55–89.

[70] James Demmel, Laura Grigori, Mark Hoemmen, and Julien Langou. 2012.
Communication-optimal parallel and sequential QR and LU factorizations. SIAM
Journal on Scientific Computing 34, 1 (2012), A206–A239.

[71] James Demmel and Nicholas J Higham. 1992. Stability of block algorithms with
fast level-3 BLAS. ACM Trans. Math. Software 18, 3 (1992), 274–291.

[72] James Demmel, Mark Hoemmen, Marghoob Mohiyuddin, and Katherine Yelick.
2008. Avoiding communication in sparse matrix computations. In IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS).

[73] Aditya Devarakonda, Kimon Fountoulakis, James Demmel, and Michael W
Mahoney. 2019. Avoiding communication in primal and dual block coordinate
descent methods. SIAM Journal on Scientific Computing 41, 1 (2019), C1–C27.

[74] Simplice Donfack, Laura Grigori, and Alok Kumar Gupta. 2010. Adapting
communication-avoiding LU and QR factorizations to multicore architectures.
In IEEE International Parallel and Distributed Processing Symposium (IPDPS).

[75] Simplice Donfack, Laura Grigori, and Amal Khabou. 2012. Avoiding communi-
cation through a multilevel LU factorization. In European Conference on Parallel
and Distributed Computing (Euro-Par).

[76] Jack Dongarra, Sven Hammarling, Nicholas J Higham, Samuel D Relton, Pedro
Valero-Lara, andMawussi Zounon. 2017. The design and performance of batched
BLAS on modern high-performance computing systems. Procedia Computer
Science 108 (2017), 495–504.

[77] Michael Driscoll, Evangelos Georganas, Penporn Koanantakool, Edgar
Solomonik, and Katherine Yelick. 2013. A communication-optimal n-body
algorithm for direct interactions. In IEEE International Parallel and Distributed
Processing Symposium (IPDPS).

[78] Marquita Ellis, Aydın Buluç, and Katherine Yelick. 2021. Scaling generalized
n-body problems, a case study from genomics. In International Conference on
Parallel Processing (ICPP).

[79] Boyuan Feng, Yuke Wang, Tong Geng, Ang Li, and Yufei Ding. 2021. Apnn-tc:
Accelerating arbitrary precision neural networks on ampere gpu tensor cores. In
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC).

[80] Oliver Fortmeier, H Martin Bücker, BO Fagginger Auer, and Rob H Bisseling.
2013. A new metric enabling an exact hypergraph model for the communication
volume in distributed-memory parallel applications. Parallel Comput. 39, 8
(2013), 319–335.

[81] Jeremy D Frens and David S Wise. 1997. Auto-blocking matrix-multiplication or
tracking BLAS3 performance from source code. In ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP).

[82] Xu Fu, Bingbin Zhang, Tengcheng Wang, Wenhao Li, Yuechen Lu, Enxin Yi,
Jianqi Zhao, Xiaohan Geng, Fangying Li, Jingwen Zhang, Zhou Jin, and Weifeng
Liu. 2023. PanguLU: A Scalable Regular Two-Dimensional Block-Cyclic Sparse
Direct Solver on Distributed Heterogeneous Systems. In International Conference
for High Performance Computing, Networking, Storage and Analysis (SC).

[83] Daichi Fujiki, Niladrish Chatterjee, Donghyuk Lee, and Mike O’Connor. 2019.
Near-memory data transformation for efficient sparse matrix multi-vector mul-
tiplication. In International Conference for High Performance Computing, Net-
working, Storage and Analysis (SC).

[84] Mark Gates, Jakub Kurzak, Ali Charara, Asim YarKhan, and Jack Dongarra. 2019.
SLATE: Design of a modern distributed and accelerated linear algebra library. In
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC).

[85] Evangelos Georganas, Jorge González-Domínguez, Edgar Solomonik, Yili Zheng,
Juan Tourino, and Katherine Yelick. 2012. Communication avoiding and over-
lapping for numerical linear algebra. In International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis (SC).

[86] Amir Gholami, Ariful Azad, Peter Jin, Kurt Keutzer, and Aydın Buluç. 2018.
Integrated model, batch, and domain parallelism in training neural networks.
In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA).

[87] John R. Gilbert, Cleve Moler, and Robert Schreiber. 1992. Sparse Matrices in
MATLAB: Design and Implementation. SIAM J. Matrix Anal. Appl. 13, 1 (1992),
333–356.

[88] Kazushige Goto and Robert A van de Geijn. 2008. Anatomy of high-performance
matrix multiplication. ACM Trans. Math. Software 34, 3 (2008), 1–25.

[89] Kazushige Goto and Robert Van De Geijn. 2008. High-performance implemen-
tation of the level-3 BLAS. ACM Trans. Math. Software 35, 1 (2008), 1–14.

[90] Laura Grigori, Sebastien Cayrols, and James W Demmel. 2018. Low rank ap-
proximation of a sparse matrix based on LU factorization with column and
row tournament pivoting. SIAM Journal on Scientific Computing 40, 2 (2018),
C181–C209.

SC ’25, November 16–21, 2025, St Louis, MO, USA Wang et al.

[91] Laura Grigori, James Demmel, and Hua Xiang. 2008. Communication avoiding
Gaussian elimination. In The ACM/IEEE Conference on Supercomputing (SC).

[92] Laura Grigori, James Demmel, and Hua Xiang. 2011. CALU: a communication
optimal LU factorization algorithm. SIAM J. Matrix Anal. Appl. 32, 4 (2011),
1317–1350.

[93] Laura Grigori, Mathias Jacquelin, and Amal Khabou. 2014. Performance pre-
dictions of multilevel communication optimal LU and QR factorizations on
hierarchical platforms. In International Conference on High Performance Com-
puting (ISC).

[94] Laura Grigori, Bernard Philippe, Ahmed H. Sameh, Damien Tromeur-Dervout,
and Marián Vajtersic. 2008. Parallel matrix algorithms and applications. Parallel
Comput. 34, 6-8 (2008), 293–295.

[95] Cong Guo, Bo Yang Hsueh, Jingwen Leng, Yuxian Qiu, Yue Guan, ZehuanWang,
Xiaoying Jia, Xipeng Li, Minyi Guo, and Yuhao Zhu. 2020. Accelerating sparse
dnn models without hardware-support via tile-wise sparsity. In International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC).

[96] Azzam Haidar, Stanimire Tomov, Jack Dongarra, and Nicholas J Higham. 2018.
Harnessing GPU tensor cores for fast FP16 arithmetic to speed up mixed-
precision iterative refinement solvers. In International Conference for High Per-
formance Computing, Networking, Storage and Analysis (SC).

[97] J-Fr Hake and Willi Homberg. 1990. The impact of memory organization
on the performance of matrix multiplication. In The ACM/IEEE conference on
Supercomputing (SC).

[98] Alexander Heinecke, Greg Henry, Maxwell Hutchinson, and Hans Pabst. 2016.
LIBXSMM: accelerating small matrixmultiplications by runtime code generation.
In International Conference for High Performance Computing, Networking, Storage
and Analysis (SC).

[99] Yuxi Hong and Aydın Buluç. 2024. A sparsity-aware distributed-memory algo-
rithm for sparse-sparse matrix multiplication. In International Conference for
High Performance Computing, Networking, Storage and Analysis (SC).

[100] Kuan-Chieh Hsu and Hung-Wei Tseng. 2021. Accelerating applications using
edge tensor processing units. In International Conference for High Performance
Computing, Networking, Storage and Analysis (SC).

[101] Guyue Huang, Guohao Dai, Yu Wang, and Huazhong Yang. 2020. Ge-spmm:
General-purpose sparse matrix-matrix multiplication on gpus for graph neural
networks. In International Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC).

[102] Hua Huang and Edmond Chow. 2022. CA3DMM: a new algorithm based on a
unified view of parallel matrix multiplication. In International Conference for
High Performance Computing, Networking, Storage and Analysis (SC).

[103] Md Taufique Hussain, Oguz Selvitopi, Aydın Buluç, and Ariful Azad. 2021.
Communication-avoiding and memory-constrained sparse matrix-matrix multi-
plication at extreme scale. In IEEE International Parallel and Distributed Process-
ing Symposium (IPDPS).

[104] Edward Hutter and Edgar Solomonik. 2019. Communication-avoiding Cholesky-
QR2 for rectangular matrices. In IEEE International Parallel and Distributed
Processing Symposium (IPDPS).

[105] Dror Irony, Sivan Toledo, and Alexander Tiskin. 2004. Communication lower
bounds for distributed-memory matrix multiplication. J. Parallel and Distrib.
Comput. 64, 9 (2004), 1017–1026.

[106] Abhinav Jangda and Mohit Yadav. 2024. Fast kronecker matrix-matrix multipli-
cation on gpus. In ACM SIGPLAN Annual Symposium on Principles and Practice
of Parallel Programming (PPoPP).

[107] Changhao Jiang and Marc Snir. 2005. Automatic tuning matrix multiplica-
tion performance on graphics hardware. In International Conference on Parallel
Architectures and Compilation Techniques (PACT).

[108] Oguz Kaya, Ramakrishnan Kannan, and Grey Ballard. 2018. Partitioning and
communication strategies for sparse non-negative matrix factorization. In Inter-
national Conference on Parallel Processing (ICPP).

[109] Enver Kayaaslan, Cevdet Aykanat, and Bora Uçar. 2018. 1.5 D parallel sparse
matrix-vector multiply. SIAM Journal on Scientific Computing 40, 1 (2018),
C25–C46.

[110] Amal Khabou, James Demmel, Laura Grigori, and Ming Gu. 2013. LU factoriza-
tion with panel rank revealing pivoting and its communication avoiding version.
SIAM J. Matrix Anal. Appl. 34, 3 (2013), 1401–1429.

[111] Kyungjoo Kim, Timothy B Costa, Mehmet Deveci, Andrew M Bradley, Simon D
Hammond, Murat E Guney, Sarah Knepper, Shane Story, and Sivasankaran
Rajamanickam. 2017. Designing vector-friendly compact BLAS and LAPACK
kernels. In International Conference for High Performance Computing, Networking,
Storage and Analysis (SC).

[112] Penporn Koanantakool, Ariful Azad, Aydın Buluç, Dmitriy Morozov, Sang-Yun
Oh, Leonid Oliker, and Katherine Yelick. 2016. Communication-avoiding parallel
sparse-dense matrix-matrix multiplication. In IEEE International Parallel and
Distributed Processing Symposium (IPDPS).

[113] Penporn Koanantakool and Katherine Yelick. 2014. A computation-and
communication-optimal parallel direct 3-body algorithm. In International Con-
ference for High Performance Computing, Networking, Storage and Analysis (SC).

[114] Thomas Koopman and Rob H Bisseling. 2023. Minimizing communication in
the multidimensional FFT. SIAM Journal on Scientific Computing 45, 6 (2023),
C330–C347.

[115] Suraj Kumar, Lionel Eyraud-Dubois, and Sriram Krishnamoorthy. 2019. Per-
formance Models for Data Transfers: A Case Study with Molecular Chemistry
Kernels. In International Conference on Parallel Processing (ICPP).

[116] HT Kung, Vikas Natesh, and Andrew Sabot. 2021. Cake: matrix multiplication us-
ing constant-bandwidth blocks. In International Conference for High Performance
Computing, Networking, Storage and Analysis (SC).

[117] Jakub Kurzak, Hartwig Anzt, Mark Gates, and Jack Dongarra. 2016. Implementa-
tion and Tuning of Batched Cholesky Factorization and Solve for NVIDIA GPUs.
IEEE Transactions on Parallel and Distributed Systems 27, 7 (2016), 2036–2048.

[118] Jakub Kurzak, Stanimire Tomov, and Jack Dongarra. 2012. Autotuning GEMM
Kernels for the Fermi GPU. IEEE Transactions on Parallel and Distributed Systems
23, 11 (2012), 2045–2057.

[119] Grzegorz Kwasniewski, Marko Kabić, Maciej Besta, Joost VandeVondele, Raf-
faele Solcà, and Torsten Hoefler. 2019. Red-blue pebbling revisited: near optimal
parallel matrix-matrix multiplication. In International Conference for High Per-
formance Computing, Networking, Storage and Analysis (SC).

[120] Sohan Lal, Aksel Alpay, Philip Salzmann, Biagio Cosenza, Alexander Hirsch,
Nicolai Stawinoga, Peter Thoman, Thomas Fahringer, and Vincent Heuveline.
2020. SYCL-bench: a versatile cross-platform benchmark suite for heterogeneous
computing. In European Conference on Parallel and Distributed Computing (Euro-
Par).

[121] E Scott Larsen and David McAllister. 2001. Fast matrix multiplies using graphics
hardware. In The ACM/IEEE Conference on Supercomputing (SC).

[122] Ang Li, Weifeng Liu, Mads R.B. Kristensen, Brian Vinter, Hao Wang, Kaixi Hou,
Andres Marquez, and Shuaiwen Leon Song. 2017. Exploring and Analyzing
the Real Impact of Modern On-Package Memory on HPC Scientific Kernels. In
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC).

[123] Jiajia Li, Casey Battaglino, Ioakeim Perros, Jimeng Sun, and Richard Vuduc. 2015.
An input-adaptive and in-place approach to dense tensor-times-matrix multiply.
In International Conference for High Performance Computing, Networking, Storage
and Analysis (SC).

[124] Jiajia Li, Xingjian Li, Guangming Tan, Mingyu Chen, and Ninghui Sun. 2012.
An optimized large-scale hybrid DGEMM design for CPUs and ATI GPUs. In
ACM International Conference on Supercomputing (ICS).

[125] Jiajia Li, Jimeng Sun, and Richard Vuduc. 2018. HiCOO: hierarchical storage
of sparse tensors. In International Conference for High Performance Computing,
Networking, Storage, and Analysis (SC).

[126] Shigang Li, Kazuki Osawa, and Torsten Hoefler. 2022. Efficient quantized sparse
matrix operations on tensor cores. In International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC).

[127] Xiuhong Li, Yun Liang, Shengen Yan, Liancheng Jia, and Yinghan Li. 2019. A
coordinated tiling and batching framework for efficient GEMM on GPUs. In
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP).

[128] Xiaoye S Li, James Demmel, David H Bailey, Greg Henry, Yozo Hida, Jimmy
Iskandar, William Kahan, Suh Y Kang, Anil Kapur, Michael C Martin, et al. 2002.
Design, implementation and testing of extended and mixed precision BLAS.
ACM Trans. Math. Software 28, 2 (2002), 152–205.

[129] Benjamin Lipshitz, Grey Ballard, James Demmel, and Oded Schwartz. 2012.
Communication-avoiding parallel Strassen: Implementation and performance.
In International Conference on High Performance Computing, Networking, Storage
and Analysis (SC).

[130] Junhong Liu, Xin He, Weifeng Liu, and Guangming Tan. 2018. Register-based
implementation of the sparse general matrix-matrix multiplication on gpus. In
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP).

[131] Weifeng Liu and Brian Vinter. 2015. A framework for general sparse matrix–
matrix multiplication on GPUs and heterogeneous processors. J. Parallel and
Distrib. Comput. 85 (2015), 47–61.

[132] Francisco López, Lars Karlsson, and Paolo Bientinesi. 2023. FLOPs as a Dis-
criminant for Dense Linear Algebra Algorithms. In International Conference on
Parallel Processing (ICPP).

[133] Hatem Ltaief, Jesse Cranney, Damien Gratadour, Yuxi Hong, Laurent Gatineau,
and David Keyes. 2021. Meeting the real-time challenges of ground-based
telescopes using low-rank matrix computations. In International Conference for
High Performance Computing, Networking, Storage and Analysis (SC).

[134] Yuechen Lu and Weifeng Liu. 2023. DASP: Specific Dense Matrix Multiply-
Accumulate Units Accelerated General Sparse Matrix-Vector Multiplication. In
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC).

[135] Yuechen Lu, Lijie Zeng, Tengcheng Wang, Xu Fu, Wenxuan Li, Helin Cheng,
Dechuang Yang, Zhou Jin, Marc Casas, and Weifeng Liu. 2024. AmgT: Alge-
braic Multigrid Solver on Tensor Cores. In International Conference for High
Performance Computing, Networking, Storage and Analysis (SC).

KAMI: Communication-Avoiding General Matrix Multiplication within a Single GPU SC ’25, November 16–21, 2025, St Louis, MO, USA

[136] Weile Luo, Ruibo Fan, Zeyu Li, Dayou Du, Qiang Wang, and Xiaowen Chu.
2024. Benchmarking and dissecting the nvidia hopper gpu architecture. In IEEE
International Parallel and Distributed Processing Symposium (IPDPS).

[137] Bryan Marker, Field G Van Zee, Kazushige Goto, Gregorio Quintana-Ortí, and
Robert A Van De Geijn. 2007. Toward scalable matrix multiply on multithreaded
architectures. In European Conference on Parallel and Distributed Computing
(Euro-Par).

[138] Théo Mary, Ichitaro Yamazaki, Jakub Kurzak, Piotr Luszczek, Stanimire Tomov,
and Jack Dongarra. 2015. Performance of random sampling for computing low-
rank approximations of a dense matrix on GPUs. In International Conference for
High Performance Computing, Networking, Storage and Analysis (SC).

[139] John D McCalpin. 2018. HPL and DGEMM performance variability on the
Xeon Platinum 8160 processor. In International Conference for High Performance
Computing, Networking, Storage and Analysis (SC).

[140] Narasinga Rao Miniskar, Mohammad Alaul Haque Monil, Pedro Valero-Lara,
Frank Liu, and Jeffrey S Vetter. 2022. Iris-blas: Towards a performance portable
and heterogeneous blas library. In International Conference on High Performance
Computing, Data, and Analytics (HiPC).

[141] Marghoob Mohiyuddin, Mark Hoemmen, James Demmel, and Katherine Yelick.
2009. Minimizing communication in sparse matrix solvers. In International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC).

[142] YoavMoran and Oded Schwartz. 2023. Multiplying 2× 2 Sub-Blocks Using 4Mul-
tiplications. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA).

[143] Guy MMorton. 1966. A computer oriented geodetic data base and a new technique
in file sequencing. International Business Machines Company.

[144] Ujjaini Mukhopadhyay, Alok Tripathy, Oguz Selvitopi, Katherine Yelick, and
Aydın Buluç. 2024. Sparsity-Aware Communication for Distributed Graph
Neural Network Training. In International Conference on Parallel Processing
(ICPP).

[145] Daichi Mukunoki, Takeshi Ogita, and Katsuhisa Ozaki. 2019. Reproducible BLAS
routines with tunable accuracy using ozaki scheme for many-core architec-
tures. In International Conference on Parallel Processing and Applied Mathematics
(PPAM).

[146] Daichi Mukunoki, Katsuhisa Ozaki, Takeshi Ogita, and Toshiyuki Imamura.
2020. DGEMM using tensor cores, and its accurate and reproducible versions.
In International Conference on High Performance Computing (ISC).

[147] Daichi Mukunoki, Katsuhisa Ozaki, Takeshi Ogita, and Toshiyuki Imamura.
2021. Accurate matrix multiplication on binary128 format accelerated by ozaki
scheme. In International Conference on Parallel Processing (ICPP).

[148] Rajib Nath, Stanimire Tomov, Tingxing "Tim" Dong, and Jack Dongarra. 2011.
Optimizing symmetric dense matrix-vector multiplication on GPUs. In Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis (SC).

[149] Rajib Nath, Stanimire Tomov, and Jack Dongarra. 2010. An Improved Magma
Gemm For Fermi Graphics Processing Units. The International Journal of High
Performance Computing Applications 24, 4 (2010), 511–515.

[150] Roy Nissim and Oded Schwartz. 2019. Revisiting the I/O-complexity of fast
matrix multiplication with recomputations. In IEEE International Parallel and
Distributed Processing Symposium (IPDPS).

[151] Roy Nissim and Oded Schwartz. 2023. Accelerating Distributed Matrix Multipli-
cation with 4-Dimensional Polynomial Codes. In SIAM Conference on Applied
and Computational Discrete Algorithms (ACDA).

[152] Roy Nissim, Oded Schwartz, and Yuval Spiizer. 2024. Fault-tolerant parallel
integer multiplication. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA).

[153] Yuyao Niu and Marc Casas. 2025. BerryBees: Breadth first search by bit-tensor-
cores. In ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP).

[154] Yuyao Niu, Zhengyang Lu, Haonan Ji, Shuhui Song, Zhou Jin, and Weifeng
Liu. 2022. TileSpGEMM: A Tiled Algorithm for Parallel Sparse General Matrix-
Matrix Multiplication on GPUs. In ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP).

[155] NVIDIA. 2025. cuBLAS: Basic Linear Algebra on NVIDIA GPUs. Retrieved
April 7, 2025 from https://developer.nvidia.com/cublas

[156] NVIDIA. 2025. cuBLASDx: The cuBLAS Device Extensions. Retrieved April 7,
2025 from https://docs.nvidia.com/cuda/cublasdx/index.html

[157] NVIDIA. 2025. CUTLASS: CUDA Templates for Linear Algebra Subroutines.
Retrieved April 7, 2025 from https://github.com/NVIDIA/cutlass

[158] Hiryuki Ootomo, Hidetaka Manabe, Kenji Harada, and Rio Yokota. 2023. Quan-
tum circuit simulation by sgemm emulation on tensor cores and automatic
precision selection. In International Conference on High Performance Computing
(ISC).

[159] Hiroyuki Ootomo, Katsuhisa Ozaki, and Rio Yokota. 2024. DGEMM on inte-
ger matrix multiplication unit. The International Journal of High Performance
Computing Applications 38, 4 (2024), 297–313.

[160] Elmar Peise and Paolo Bientinesi. 2019. The ELAPS framework: Experimental
Linear Algebra Performance Studies. The International Journal of High Perfor-
mance Computing Applications 33, 2 (2019), 353–365.

[161] Xinxin Qi, Jianbin Fang, Peng Zhang, Yonggang Che, Ruibo Wang, Kai Lu,
Tao Tang, Chun Huang, and Jie Ren. 2025. Constraint-Driven Auto-Tuning
of GEMM-like Operators for MT-3000 Many-core Processor. In International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC).

[162] Gregorio Quintana-Ortí, Enrique S Quintana-Ortí, Robert A Van De Geijn, Field
G Van Zee, and Ernie Chan. 2009. Programming matrix algorithms-by-blocks
for thread-level parallelism. ACM Trans. Math. Software 36, 3 (2009), 1–26.

[163] Isuru Ranawaka, Md Taufique Hussain, Charles Block, Gerasimos Gerogiannis,
Josep Torrellas, and Ariful Azad. 2024. Distributed-Memory Parallel Algorithms
for Sparse Matrix and Sparse Tall-and-Skinny Matrix Multiplication. In Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis (SC).

[164] Piyush Sao, Ramakrishnan Kannan, Xiaoye Sherry Li, and Richard Vuduc. 2019.
A communication-avoiding 3D sparse triangular solver. In ACM International
Conference on Supercomputing (ICS).

[165] Piyush Sao, Xiaoye Sherry Li, and Richard Vuduc. 2018. A communication-
avoiding 3D LU factorization algorithm for sparse matrices. In IEEE International
Parallel and Distributed Processing Symposium (IPDPS).

[166] Piyush Sao, Xiaoye S Li, and Richard Vuduc. 2019. A communication-avoiding
3D algorithm for sparse LU factorization on heterogeneous systems. J. Parallel
and Distrib. Comput. 131 (2019), 218–234.

[167] Oguz Selvitopi, Benjamin Brock, Israt Nisa, Alok Tripathy, Katherine Yelick, and
Aydın Buluç. 2021. Distributed-memory parallel algorithms for sparse times
tall-skinny-dense matrix multiplication. In ACM International Conference on
Supercomputing (ICS).

[168] Mohsin Shan, Deniz Gurevin, Jared Nye, Caiwen Ding, and Omer Khan. 2023.
Mergepath-spmm: Parallel sparse matrix-matrix algorithm for graph neural
network acceleration. In IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS).

[169] Jaewook Shin, MaryWHall, Jacqueline Chame, Chun Chen, and Paul DHovland.
2010. Autotuning and specialization: Speeding up matrix multiply for small
matrices with compiler technology. In Software Automatic Tuning: From Concepts
to State-of-the-Art Results. Springer New York.

[170] Tyler M Smith, Robert Van De Geijn, Mikhail Smelyanskiy, Jeff R Hammond,
and Field G Van Zee. 2014. Anatomy of high-performance many-threaded
matrix multiplication. In IEEE International Parallel and Distributed Processing
Symposium (IPDPS).

[171] Edgar Solomonik, Grey Ballard, James Demmel, and Torsten Hoefler. 2017.
A communication-avoiding parallel algorithm for the symmetric eigenvalue
problem. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA).

[172] Edgar Solomonik, Maciej Besta, Flavio Vella, and Torsten Hoefler. 2017. Scaling
betweenness centrality using communication-efficient sparse matrix multiplica-
tion. In International Conference for High Performance Computing, Networking,
Storage and Analysis (SC).

[173] Edgar Solomonik, Abhinav Bhatele, and James Demmel. 2011. Improving com-
munication performance in dense linear algebra via topology aware collectives.
In International Conference for High Performance Computing, Networking, Storage
and Analysis (SC).

[174] Edgar Solomonik, Aydın Buluç, and James Demmel. 2013. Minimizing commu-
nication in all-pairs shortest paths. In IEEE International Parallel and Distributed
Processing Symposium (IPDPS).

[175] Edgar Solomonik, Erin Carson, Nicholas Knight, and James Demmel. 2014.
Tradeoffs between synchronization, communication, and computation in parallel
linear algebra computations. In ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA).

[176] Edgar Solomonik and James Demmel. 2011. Communication-optimal paral-
lel 2.5D matrix multiplication and LU factorization algorithms. In European
Conference on Parallel and Distributed Computing (Euro-Par).

[177] Edgar Solomonik, James Demmel, and Torsten Hoefler. 2021. Communication
lower bounds of bilinear algorithms for symmetric tensor contractions. SIAM
Journal on Scientific Computing 43, 5 (2021), A3328–A3356.

[178] Fengguang Song, Hatem Ltaief, Bilel Hadri, and Jack Dongarra. 2010. Scalable
tile communication-avoiding QR factorization on multicore cluster systems. In
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC).

[179] Saeed Soori, Aditya Devarakonda, Zachary Blanco, James Demmel, Mert Gur-
buzbalaban, and Maryam Mehri Dehnavi. 2018. Reducing communication in
proximal Newton methods for sparse least squares problems. In International
Conference on Parallel Processing (ICPP).

[180] Paul Springer and Paolo Bientinesi. 2018. Design of a High-Performance GEMM-
like Tensor–Tensor Multiplication. ACM Trans. Math. Software 44, 3 (2018).

[181] Guangming Tan, Linchuan Li, Sean Triechle, Everett Phillips, Yungang Bao,
and Ninghui Sun. 2011. Fast implementation of DGEMM on Fermi GPU. In

https://developer.nvidia.com/cublas
https://docs.nvidia.com/cuda/cublasdx/index.html
https://github.com/NVIDIA/cutlass

SC ’25, November 16–21, 2025, St Louis, MO, USA Wang et al.

International Conference for High Performance Computing, Networking, Storage
and Analysis (SC).

[182] Stanimire Tomov, Jack Dongarra, and Marc Baboulin. 2010. Towards dense
linear algebra for hybrid GPU accelerated manycore systems. Parallel Comput.
36, 5-6 (2010), 232–240.

[183] Alok Tripathy, Katherine Yelick, and Aydın Buluç. 2020. Reducing communi-
cation in graph neural network training. In International Conference for High
Performance Computing, Networking, Storage and Analysis (SC).

[184] James D. Trotter, Sinan Ekmekçibaşı, Johannes Langguth, Tugba Torun, Emre
Düzakın, Aleksandar Ilic, and Didem Unat. 2023. Bringing Order to Sparsity: A
Sparse Matrix Reordering Study on Multicore CPUs. In International Conference
for High Performance Computing, Networking, Storage and Analysis (SC).

[185] Yuki Uchino, Katsuhisa Ozaki, and Toshiyuki Imamura. 2025. Performance
enhancement of the Ozaki Scheme on integer matrix multiplication unit. The
International Journal of High Performance Computing Applications 39, 3 (2025),
462–476.

[186] Yuichiro Ueno and Rio Yokota. 2019. Exhaustive Study of Hierarchical AllRe-
duce Patterns for Large Messages Between GPUs. In IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID).

[187] Didem Unat, Anshu Dubey, Torsten Hoefler, John Shalf, Mark Abraham, Mauro
Bianco, Bradford L Chamberlain, Romain Cledat, H Carter Edwards, Hal Finkel,
et al. 2017. Trends in data locality abstractions for HPC systems. IEEE Transac-
tions on Parallel and Distributed Systems 28, 10 (2017), 3007–3020.

[188] Field G Van Zee. 2020. Implementing high-performance complex matrix multi-
plication via the 1m method. SIAM Journal on Scientific Computing 42, 5 (2020),
C221–C244.

[189] Field G Van Zee, Devangi N Parikh, and Robert A Van De Geijn. 2021. Sup-
porting mixed-domain mixed-precision matrix multiplication within the BLIS
framework. ACM Trans. Math. Software 47, 2 (2021), 1–26.

[190] Field G Van Zee and Tyler M Smith. 2017. Implementing high-performance
complex matrix multiplication via the 3m and 4m methods. ACM Trans. Math.
Software 44, 1 (2017), 1–36.

[191] Field G Van Zee, Tyler M Smith, Bryan Marker, Tze Meng Low, Robert A Van De
Geijn, Francisco D Igual, Mikhail Smelyanskiy, Xianyi Zhang, Michael Kistler,
Vernon Austel, et al. 2016. The BLIS framework: Experiments in portability.
ACM Trans. Math. Software 42, 2 (2016), 1–19.

[192] Field G Van Zee and Robert A Van De Geijn. 2015. BLIS: A framework for rapidly
instantiating BLAS functionality. ACM Trans. Math. Software 41, 3 (2015), 1–33.

[193] Vasily Volkov and James Demmel. 2008. Benchmarking GPUs to tune dense
linear algebra. In The ACM/IEEE conference on Supercomputing (SC).

[194] Hemeng Wang, Wenqing Lin, Qingxiao Sun, and Weifeng Liu. 2025. 𝜈GNN:
Non-Uniformly partitioned full-graph GNN training on mixed GPUs. CCF
Transactions on High Performance Computing (2025), 1–18.

[195] Pengyu Wang, Weiling Yang, Jianbin Fang, Dezun Dong, Chun Huang, Peng
Zhang, Tao Tang, and Zheng Wang. 2023. Optimizing Direct Convolutions on
ARM Multi-Cores. In International Conference for High Performance Computing,
Networking, Storage and Analysis (SC).

[196] Qian Wang, Xianyi Zhang, Yunquan Zhang, and Qing Yi. 2013. AUGEM: auto-
matically generate high performance dense linear algebra kernels on x86 CPUs.
In International Conference for High Performance Computing, Networking, Storage
and Analysis (SC).

[197] Tengcheng Wang, Wenhao Li, Haojie Pei, Yuying Sun, Zhou Jin, and Weifeng
Liu. 2023. Accelerating Sparse LU Factorization with Density-Aware Adaptive
Matrix Multiplication for Circuit Simulation. In Design Automation Conference
(DAC).

[198] Cunyang Wei, Haipeng Jia, Yunquan Zhang, Kun Li, and Luhan Wang. 2022.
LBBGEMM: A Load-balanced Batch GEMM Framework on ARM CPUs. In
2022 IEEE 24th Int Conf on High Performance Computing & Communications;
8th Int Conf on Data Science & Systems; 20th Int Conf on Smart City; 8th Int
Conf on Dependability in Sensor, Cloud & Big Data Systems & Application
(HPCC/DSS/SmartCity/DependSys).

[199] Cunyang Wei, Haipeng Jia, Yunquan Zhang, Liusha Xu, and Ji Qi. 2022. Iatf:
An input-aware tuning framework for compact blas based on armv8 cpus. In
International Conference on Parallel Processing (ICPP).

[200] CunyangWei, Haipeng Jia, Yunquan Zhang, Jianyu Yao, Chendi Li, andWenxuan
Cao. 2024. IrGEMM: An Input-Aware Tuning Framework for Irregular GEMM
on ARM and X86 CPUs. IEEE Transactions on Parallel and Distributed Systems
35, 9 (2024), 1672–1689.

[201] Tobias Wicky, Edgar Solomonik, and Torsten Hoefler. 2017. Communication-
avoiding parallel algorithms for solving triangular systems of linear equations.
In IEEE International Parallel and Distributed Processing Symposium (IPDPS).

[202] DuWu, Jintao Meng,Wenxi Zhu, Minwen Deng, XiaoWang, Tao Luo, Mohamed
Wahib, and Yanjie Wei. 2024. autoGEMM: Pushing the Limits of Irregular
Matrix Multiplication on Arm Architectures. In International Conference for
High Performance Computing, Networking, Storage and Analysis (SC).

[203] Junmin Xiao, Shigang Li, Baodong Wu, He Zhang, Kun Li, Erlin Yao, Yunquan
Zhang, and Guangming Tan. 2018. Communication-avoiding for dynamical
core of atmospheric general circulation model. In International Conference on

Parallel Processing (ICPP).
[204] Zhen Xie, Guangming Tan, Weifeng Liu, and Ninghui Sun. 2019. IA-SpGEMM:

An input-aware auto-tuning framework for parallel sparse matrix-matrix multi-
plication. In ACM International Conference on Supercomputing (ICS).

[205] Zhen Xie, Guangming Tan,Weifeng Liu, and Ninghui Sun. 2021. A pattern-based
spgemm library for multi-core and many-core architectures. IEEE Transactions
on Parallel and Distributed Systems 33, 1 (2021), 159–175.

[206] RuQing G Xu, Field G Van Zee, and Robert A van de Geijn. 2023. Towards a
Unified Implementation of GEMM in BLIS. In ACM International Conference on
Supercomputing (ICS).

[207] Ichitaro Yamazaki, Sivasankaran Rajamanickam, Erik G Boman,MarkHoemmen,
Michael A Heroux, and Stanimire Tomov. 2014. Domain decomposition precon-
ditioners for communication-avoiding Krylov methods on a hybrid CPU/GPU
cluster. In International Conference for High Performance Computing, Networking,
Storage and Analysis (SC).

[208] Weiling Yang, Jianbin Fang, and Dezun Dong. 2021. Characterizing small-
scale matrix multiplications on ARMv8-based many-core architectures. In IEEE
International Parallel and Distributed Processing Symposium (IPDPS).

[209] Weiling Yang, Jianbin Fang, Dezun Dong, Xing Su, and Zheng Wang. 2021.
LIBSHALOM: Optimizing small and irregular-shaped matrix multiplications on
ARMv8 multi-cores. In International Conference for High Performance Computing,
Networking, Storage and Analysis (SC).

[210] Weiling Yang, Jianbin Fang, Dezun Dong, Xing Su, and Zheng Wang. 2024.
Optimizing Full-Spectrum Matrix Multiplications on ARMv8 Multi-Core CPUs.
IEEE Transactions on Parallel and Distributed Systems 35, 3 (2024), 439–454.

[211] Jianyu Yao, Boqian Shi, Chunyang Xiang, Haipeng Jia, Chendi Li, Hang Cao,
and Yunquan Zhang. 2021. Iaat: a input-aware adaptive tuning framework for
small gemm. In IEEE International Conference on Parallel and Distributed Systems
(ICPADS).

[212] Yang You, Aydın Buluç, and James Demmel. 2017. Scaling deep learning on GPU
and knights landing clusters. In International Conference for High Performance
Computing, Networking, Storage and Analysis (SC).

[213] Yang You and James Demmel. 2017. Runtime data layout scheduling for machine
learning dataset. In International Conference on Parallel Processing (ICPP).

[214] Yang You, James Demmel, Kenneth Czechowski, Le Song, and Richard Vuduc.
2015. CA-SVM: Communication-avoiding support vector machines on dis-
tributed systems. In IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS).

[215] Yang You, James Demmel, Kent Czechowski, Le Song, and Rich Vuduc. 2016. De-
sign and implementation of a communication-optimal classifier for distributed
kernel support vector machines. IEEE Transactions on Parallel and Distributed
Systems 28, 4 (2016), 974–988.

[216] Yang You, Jonathan Hseu, Chris Ying, James Demmel, Kurt Keutzer, and Cho-
Jui Hsieh. 2019. Large-batch training for LSTM and beyond. In International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC).

[217] Kainan Yu, Xinxin Qi, Peng Zhang, Jianbin Fang, Dezun Dong, Ruibo Wang, Tao
Tang, Chun Huang, Yonggang Che, and Zheng Wang. 2024. Optimizing General
Matrix Multiplications onModernMulti-core DSPs. In IEEE International Parallel
and Distributed Processing Symposium (IPDPS).

[218] Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan
Zhang, Zhenda Xie, YXWei, LeanWang, Zhiping Xiao, et al. 2025. Native sparse
attention: Hardware-aligned and natively trainable sparse attention. In Annual
Meeting of the Association for Computational Linguistics (ACL).

[219] Albert-Jan Nicholas Yzelman and Rob H Bisseling. 2009. Cache-oblivious sparse
matrix–vector multiplication by using sparse matrix partitioningmethods. SIAM
Journal on Scientific Computing 31, 4 (2009), 3128–3154.

[220] Albert-Jan Nicholas Yzelman and Rob H Bisseling. 2012. A cache-oblivious
sparse matrix–vector multiplication scheme based on the Hilbert curve. In
European Consortium of Mathematics in Industry (ECMI). Springer.

[221] Albert-Jan Nicholas Yzelman and Dirk Roose. 2013. High-level strategies for
parallel shared-memory sparse matrix-vector multiplication. IEEE Transactions
on Parallel and Distributed Systems 25, 1 (2013), 116–125.

[222] Kaige Zhang, Xiaoyan Liu, Hailong Yang, Tianyu Feng, Xinyu Yang, Yi Liu,
Zhongzhi Luan, and Depei Qian. 2024. Jigsaw: Accelerating SpMM with Vector
Sparsity on Sparse Tensor Core. In International Conference on Parallel Processing
(ICPP).

[223] Xianyi Zhang. 2016. OpenBLAS: An optimized BLAS library. Retrieved April
7, 2025 from http://www.openmathlib.org/OpenBLAS/

[224] Xiuxia Zhang, Guangming Tan, Shuangbai Xue, Jiajia Li, Keren Zhou, and
Mingyu Chen. 2017. Understanding the gpu microarchitecture to achieve bare-
metal performance tuning. In ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP).

[225] Keren Zhou, Karthik Ganapathi Subramanian, Po-Hsun Lin, Matthias Fey, Bin-
qian Yin, and Jiajia Li. 2024. FASTEN: Fast GPU-accelerated Segmented Matrix
Multiplication for Heterogenous Graph Neural Networks. In ACM International
Conference on Supercomputing (ICS).

http://www.openmathlib.org/OpenBLAS/

	Abstract
	1 Introduction
	2 Background
	2.1 Matrix Multiplication
	2.2 CA Methods

	3 Motivation
	3.1 Performance Issue of Small-Scale GEMM
	3.2 Distributed and GPU Memory Hierarchies

	4 KAMI
	4.1 Overview
	4.2 Data Layout
	4.3 1D Algorithm
	4.4 2D Algorithm
	4.5 3D Algorithm
	4.6 Sparse Extension: SpMM and SpGEMM
	4.7 Implementation Details

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Block-Level square GEMM
	5.3 Low-Rank GEMM
	5.4 Batched GEMM
	5.5 SpMM and SpGEMM
	5.6 Theoretical Analysis

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

