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Abstract—Direct current (DC) analysis lies at the heart of in-
tegrated circuit design in seeking DC operating points. Although
pseudo-transient analysis (PTA) methods have been widely used
in DC analysis in both industry and academia, their initial
parameters and stepping strategy require expert knowledge and
labor tuning to deliver efficient performance, which hinders their
further applications. In this paper, we leverage the latest advance-
ments in machine learning to deploy PTA with more efficient
setups for different problems. More specifically, active learning,
which automatically draws knowledge from other circuits, is used
to provide suitable initial parameters for PTA solver, and then
calibrate on-the-fly to further accelerate the simulation process
using TD3-based reinforcement learning (RL). To expedite model
convergence, we introduce dual agents and a public sampling
buffer in our RL method to enhance sample utilization. To
further improve the learning efficiency of the RL agent, we
incorporate imitation learning to improve reward function and
introduce supervised learning to provide a better dual-agent
rotation strategy. We make the proposed algorithm a general
out-of-the-box SPICE-like solver and assess it on a variety of
circuits, demonstrating up to 3.10 X reduction in NR iterations
for the initial stage and 285.71x for the RL stage.

Index Terms—Circuit simulation, DC analysis, pseudo tran-
sient analysis, reinforcement learning, Gaussian process, active
learning.
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1. INTRODUCTION

IRECT current (DC) analysis, which finds DC operat-
Ding points, is a crucial step in the integrated circuits
design and verification. It is carried out before any other anal-
ysis in SPICE-like transistor-level circuit simulators [1], [2],
providing an initial solution for transient analysis and deter-
mining small signal model parameters for nonlinear devices
in AC analysis. Throughout the procedure, the primary chal-
lenge involves solving a set of nonlinear algebraic equations
derived from the modified nodal analysis. In DC analysis, nu-
merous numerical iterative algorithms have been researched
to solve nonlinear algebraic equations, such as the Newton-
Raphson (NR) method and continuation methods like Gmin
stepping, source stepping, homotopy methods and others. These
methods face challenges in achieving widespread adoption due
to a series of reasons, including excessive dependence on a
given initial point, poor convergence when solving highly non-
linear systems, or convergence relying too much on device
models.

As an alternative, PTA [3] and its variants, such as pure PTA
[4], Damped PTA (DPTA) [5], Ramping PTA (RPTA) [6], and
Compound Element PTA (CEPTA) [7], have been proven to
be the most practical solvers in the industry because they are
easy to implement and strong ability to deal with discontinuity
issues [8]. By introducing pseudo-components into the circuit,
PTA methods transform the problem into solving the steady-
state problem of ordinary differential equations (ODE) [9]. The
difficulty of solving the resulting ODE system depends strongly
on the pseudo-elements employed. Unfortunately, there is no
universally applicable guideline for selecting the appropriate
pseudo-elements for a given circuit, PTA solvers continue to
suffer from low efficiency. Once the PTA solver generates an
ODE system, it is subsequently solved iteratively using numer-
ical integration techniques to approach the steady state. The
stepping strategy in PTA determines the number of nonlinear
equations being solved at discrete time points, which involves
time-consuming NR iterations and resource-intensive compu-
tations. [10] presents a novel approach that uses supervised
learning to select the time step by transforming the time step
selection problem into a regression prediction problem. How-
ever, supervised learning methods cannot self-optimize in a
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dynamically changing environment and fail to adapt well to
the PTA process. Therefore, selecting the appropriate time step
remains a challenging problem. Despite rapid advancements in
PTA methods for DC analysis, these two challenges persist as
the primary obstacles to their widespread application.

In this paper, we employ cutting-edge machine learning
techniques to address both challenges simultaneously with a
two stage-framework. In the first stage, we employ an offline
active learning approach combined with online prediction to
furnish the solver with refined initial parameters, thereby cre-
ating an optimal environment for our reinforcement learning
(RL) [11], [12] setup. In the second stage, we present a RL
scheme utilizing twin delayed deep deterministic (TD3) policy
gradient, actor-critic agent [13], to expedite the PTA iterative
process. We train the TD3 agent through interactions with the
simulation process. Furthermore, we introduce Generative Ad-
versarial Imitation Learning [14] (GAIL) to utilize historical
stepping data for optimizing the agent’s update strategy, avoid-
ing the shortcomings associated with manually designed reward
functions. Additionally, to minimize rejected PTA steps, we
incorporate supervised learning to infer which agents should
be activated at each subsequent time-step. This enables us
to dynamically adjust the forward and backward time-step
size, facilitating accelerated convergence to the final steady
state.

The novelties of this work are as follows.

(1) To the best of our knowledge, our work represents the first
application of active learning, reinforcement learning, imitation
learning and supervised learning techniques together to enhance
the PTA solver, resulting in improved time-stepping efficiency
during numerical iterations and achieving a significant improve-
ment in simulation performance compared to the state-of-the-art
(SOTA) PTA solvers.

(2) We provide an effective initial parameters prediction
model for any unseen circuit based on a limited number of train-
ing circuits. This is done efficiently through a novel self-training
active learning procedure by extending the classic Bayesian
optimization.

(3) Along with the TD3-based RL framework and a reward
function optimized with imitation learning, our method pro-
vides a better time-step size to improve simulation performance.
Imitation learning utilizes past converged samples to correct
the real-time weight update direction of neural networks in RL,
thereby avoiding the bias introduced by manually setting reward
functions.

(4) Supervised learning is introduced to adaptively select
between the forward TD3 RL agent with increasing time-step
size and the rollback agent with reduced time-step size at each
simulation time-point. This strategy can reduce the occurrence
of time point rollbacks, thereby further enhancing simulation
efficiency.

(5) The proposed two-stage framework has been imple-
mented in an out-of-the-box SPICE-like simulator and is veri-
fied by extensive circuit simulations. Significant acceleration is
achieved, with an average reduction of 2.19x in NR iterations
for the initial stage and 36.09x for the second stage demon-
strated on practical CMOS and BJT circuits.
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II. BACKGROUND
A. Gaussian Process

The gaussian process (GP) [15] is a common choice as
a surrogate model for building the input-output mapping for
complex computer codes (e.g. the surrogate model of Bayesian
optimization (BO)) due to its model flexibility and uncertainty
quantification. For the sake of clarity, let us consider a case
where the circuit is fixed and its index £ is thus omitted. Assume
that we have observation y; = 1(x;) + € and design points x;,
1=1,...,N, where y is the (determined) iteration numbers
needed for convergence. In a GP model we place a prior distri-
bution over 7(x) indexed by x:

1(x)|0 ~ GP(m(x), k(x,x'|0)). (1)

The covariance function can take many forms, the most com-
mon is the automatic relevance determinant (ARD) kernel. For
any fixed x, 7(x) is a random variable. A collection of values
7(x;),i=1,..., N, onthe other hand, is a partial realization of
the GP. Realizations of the GP are deterministic functions of x.
The main property of GPs is that the joint distribution of 7(x;),
t=1,..., N, is multivariate Gaussian. Assuming the model
inadequacy ¢ ~ N(0,0?) is also a Gaussian, with the prior
and available datay = (y1,...,yn)?, we can derive the model
likelihood

(yI(K+o’T) "'y —In K + %I — log(27))/2, (2)

where the covariance matrix K = [Kj;], in which K;; =
k(x;,%x;),%,j =1,..., N.The hyperparameters 6 are normally
obtained from point estimates [16] by maximum likelihood
estimate (MLE) of w.r.t. 8. The joint distribution of y and
7(x) also form a joint Gaussian distribution. Conditioning on
y provides the conditional Gaussian distribution at x [16] with
mean and variance.

N(x)[y,0 ~N (u(x[0),v(x,x'0)) ,
p(x) =k(x)" (K+0%1) 'y
v(x) = 02 + k(x,%x) — kT (x) (K+0°T) " k(x). (3)

Based on the posterior in (3), we can optimize x by sequentially
quarrying points such that each point shows an improvement
I(x) = max(A(x) — y',0), where y' is the current optimal and
7j(x) is the predictive posterior in (3). Integrating out the pos-
terior achieve the expected improvement (EI):

EI(x) = Ej(x) [max(i(x) — y', 0)], )

which has a closed form solution (u(x) — y!)e (u(x)) +
v(x)¢@ (u(x)), in which ¢ (-) and ¢(-) are the probabilistic den-
sity function (PDF) and cumulative density function (CDF) of
a standard normal distribution, respectively. The candidate for
next iteration is selected by argmax, . , £1(x) with on-convex
optimizations, e.g., L-BFGS-B. This is the basic procedure of
a Bayesian optimization.

Authorized licensed use limited to: China University of Petroleum. Downloaded on September 25,2025 at 08:19:50 UTC from IEEE Xplore. Restrictions apply.



JIN et al.: ML-PTA: A TWO-STAGE ML-ENHANCED FRAMEWORK

B. PTA and Time-Step Control Method

PTA stands out as the most potent and promising continuation
approach for addressing the non-convergence issues encoun-
tered in DC analysis due to discontinuity and strong nonlin-
earity. It inserts specific pseudo elements, e.g. capacitors and
inductors, into the circuit, so that the original hard-to-solve
nonlinear algebraic equations:

F(z)=0, 5)

where F(-): R™ - R™, = (v,4)T € R™, m= N + M, the
variable vector v € RY denotes node voltage, and vector % €
RM represents internal branch current, are transferred to an
initial value problem for ODE:

P(x(t),dz(t)/dt,t) = F(z) + D x&(t) =0,  (6)

where @(t) = (9(t),4(t)), and D represents for the incidence
matrix of inserted pseudo elements. With these modifications,
implicit numerical integration algorithms, e.g. (7), are used to
discretize in the time domain and finally obtain the steady state
through iterative difference approximation of the differential
term:

(wnJrl - wn)/hn+1~ (7)

Conventional PTA methods employ a straightforward it-
eration counting method [17] for determining the time-step
size. This approach compares the number of NR iterations at
each time point to determine the next time-step size. Another
adaptive time-step control method, based on Switched Evo-
lution/Relaxation (SER), was proposed in [18]. SER employs
a heuristic approach leveraging domain experiences and has
demonstrated significant potential in achieving speedup through
adaptive time-step control. However, striking a balance between
large step size for high efficiency and small step size for high
solution convergence remains a challenge.

x (t) ‘t:tn+l =

C. Reinforcement Learning

Reinforcement learning is an approach to learn where an
agent interacts with the environment to maximize rewards or
accomplish predefined goals. Many RL models are based on
Markov Decision Processes (MDPs) [19], which serves as a
fundamental framework for decision-making in uncertain envi-
ronments. A MDP can be expressed as a tuple containing 5 main
components, s (state), a (action), p (policy), r (reward) and ~y
(gamma). The Q-value function is commonly used to evaluate
the expected sum of rewards obtain by taking a particular action
a chosen by a Markov decision 7 in a given state s:

Q" (s,a) =E[r' +vQ™ (s',d')| St =s, Ay =a], (8)

where s’,a’,r’ are the state, action and reward at the next
moment. The ultimate goal of RL is to find the largest value
function in the interaction between agent and environment as
shown in (9).

Q*(s,a) =maxQ"(s,a), Vse€S, VacA )
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Fig. 1. Overall framework of proposed machine learning enhanced PTA.

III. OVERALL FRAMEWORK

Simulation efficiency of PTA algorithms highly depends
on two aspects: (i) a good initial formula; and (ii) an effi-
cient time-integration scheme while solving the formula. In
the first stage, inserted pseudo-elements determine the ODE
equations formulation and the matrix property. We need to
fine-tune the initial parameters to avoid discontinuity caused
by some strong nonlinearity designs. In the second stage,
the core process of PTA is iteratively stepping towards the
steady state through numerical integration. We need to de-
sign excellent stepping strategies to reduce the number of
nonlinear equations that need to be solved at discrete time
points.

In this paper, we propose a two-stage acceleration frame-
work, depicted in Fig. 1, consists of two stages. This framework
uses machine learning to speed up DC analysis. At the first
stage, an offline trained model is evolved for initial parameter
prediction (IPP), which provides appropriate insertion pseudo-
elements prediction for better ODE equation formulation. At the
second stage, we use Reinforcement Learning Stepping (RL-S)
during the simulation process to learn and train the RL-S agent
from simulated states. We will elaborate on the details of this
part in Section V. Then in Section VI, we further leverage im-
itation learning to optimize RL-S, abbreviated as I-RL-S. This
method uses imitation learning to eliminate errors introduced by
manually designed reward functions and enabling the agent to
adjust neural network weights more quickly and accurately. Fi-
nally in Section VII, we propose supervised learning optimized
I-RL-S, abbreviated as S-RL-S. It employs supervised learning
to activate the appropriate agent to provide the optimal stepping
strategy at each discrete time point to help track the steady state
fast enough.
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IV. INITIAL PARAMETERS PREDICTION

A straight-forward way to predict the PTA solver parameters
is to collect enough data and build a supervised learning model
with deep learning to directly predict the best PTA solver pa-
rameter based on given circuit type and features. We introduce
an off-line active learning to train the solver parameters predic-
tor model. More specifically, the general BO is implemented
to find the best solver parameters for the reference/training
circuits. To emphasis the need for active learning, we adopt an
adaptive acquisition to dynamically explore the parameter space
and also to build a good reference database for online prediction
of unseen circuits.

A. Problem Formulation

Consider a PTA solver g with initial parameters x (indicating
the value of inserted pseudo-capacitor, pseudo-inductor and
time-constant Tau) that operates on a netlist file denoted as &
and generates the steady state u = g(x, £). We are interested in
reducing the number of iterations, denoted as 7n(x, &) + &, for
g(x, &). Here € captures the model inadequacy and randomness
that are not fully captured by x and £. We aim to seek a function.

x*(&€) = argminn(x, £), (10)

xeX
where x* (&) is the optimal PTA solver parameters for any given
netlist &£, and X is the feasible domain for x. Note that this is
not an optimization problem because we are not allowed to run
n(x, &) for an unseen circuit. Instead, our goal is to find the
mapping x* (&), which is a straightforward supervised learning
problem given that we have sufficient data.

We can simply run a classic MC method to locate the best
solver parameters to provide the training dataset. However,
there are critical issues with this approach: (1) This approach
is in general computationally expensive as we need to search
the solver parameters space X for all available circuits &; (2)
Only the best parameters are included, whereas the majority
of the training data are wasted, leading to an inferior model;
(3) Most critically, the best solver parameters are potentially
multi-model, i.e., there is more than one best solver parameter
that produces the best performance. To resolve these challenges
simultaneously, we resolve x* (&) approximately based on

x"(§) = argmin7j(x, £ | D),
XEX

an

where 1) is a surrogate model approximating 7 based on data D.
Our solution is a two-stage approach including (1) the online
stage of solving Equation (11) and the offline stage which builds
the training dataset D for the online stage.

B. Dual Parameter Feature Learning

Our model needs to handle two types of parameters: circuit
characters and solver parameters, which have different corre-
lations, scales, and ranges. To resolve this issue, we assume
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a separable kernel function and follow the work of [20] to
introduce different transformations for them.

k([x, €], [, €1]) = ko ((x), T(x)) - ke(R(E), D(E)),
(12)
where U(x) and ®(£) are functional transformation for x
and &, respectively. In this work, ®(&) utilizes a deep feed
forward fully connected network as an automatic feature
extraction for £ as in [20], whereas ¥(x) denotes a repa-
rameterization for x such that the range and scale is handled
properly. Specifically, we force log(zq) = (7 - sigmoid(wg)),
where sigmoid(wg) = 1/(1 4 exp(wg)) is the sigmoid func-
tion. Here, z4 is an intermediate variable introduced by the
log-sigmoid transformation for optimizing the CEPTA solver,
where x4 = (7 - sigmoid(z4))'°. With this transformation, x is
naturally constrained in the range of [10~7, 107]. Also, the new
parameters wgy focuses on the scale of x rather than its particular
value. This is particularly handy when we later optimize the
number of iterations w.r.t. w instead of x.

For the original circuit characters, we follow [21] and use
seven key factors (the number of nodes, MNA equations, inde-
pendent current sources, resistors, voltage sources, bipolar junc-
tion transistor, and MOS field-effect transistor) to characterize
anetlist and a flag {0, 1} denoting whether this circuit is a BJT
or MOS type circuit. We know that BJT and MOS type circuits
have completely different a-priory. Thus, the transformation
should reflect this knowledge. To this end, we further modify
the kernel structure as

k([x, €] [x', &) = (ke (P(x), U(x')) - ke (R(€), @(€)))

x (k20 (x), W) - K2 (B(E), 2(€)) 7,
(13)

T

where 7 = {0, 1} indicates the BJT and MOS type circuit.

C. Offline Training and Online Predictions

With the circuit characters and solver parameters being han-
dled properly, we now discuss the offline stage of building the
model and training data 7;(x, £|D) and the online stage as shown
in Fig. 2, in which a new circuit is given, and a set of predictive
best solver parameters is suggested.

Let& T denotes a validating data circuits unseen to our system
and xg+ the optimal solver parameters for it. Without loss
of generality, assuming that D is constructed in a sequential
manner, i.e., addin% a point at a time. At t-th iteration, the
regret for &f is RS =n(x,¢") — n(ng,ST), where X is the
proposition, X, is the (unknown) best solver parameters. The
proposed solver parameters are normally obtained based on
Bayesian optimization. For instance, based on the EI approach,
we can optimize,

X = arg max By 5 [max (yT —n(x, ST), 0)} , (14)

XeX
where 3 indicates the minimum number of iterations so far
or simply the number of iterations for the default PTA solver
parameters. For our problem, we need to modify the Bayesian
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Fig. 2. Intelligent initialization for better equation formulation.

optimization formulation because we neither know £T in ad-
vance nor are allowed to run simulation to approach the best
solver parameter with a few iterations. Notice that any can-
didate among our training circuits & = [£;,- - ,&5]T can be
used as ET, if any data associated with it is excluded. For our
training, we thus define a total regretas Ry = "1, SN rén.
For each iteration when circuit §,, is selected, its associated
data is excluded from the GP surrogate. More specifically, the

optimization of (14) is augmented as
X = arg max [ ) {max (yT -7 (X,ST | D<51> ,0)} , (15)
xeX

where min 7 (x7 ¢t |D< ET) is the optimal solver iteration based

on the solver parameters for the current D< et

that any data corresponding to £T circuit is excluded. We can
now achieve the minimum total regret by iteratively solving
Equation (15) with enumerations of all candidate circuits.

At the online stage, with the model after offline training and
given a new circuit £, we can simply optimize 77(x, £*|D) w.r.t.
X, i.e., solving Equation (11) to propose the best predictive
solver parameters.

which indicates

V. REINFORCEMENT LEARNING ENHANCED STEPPING

For the ODE solving part in PTA, the time-integral stepping
strategy significantly affects simulation efficiency. Therefore,
in this section, we propose a method called RL-S to accelerate
the PTA stepping process using reinforcement learning. RL-
S treats the iterative tracking process of PTA solutions as a
Markov Decision Process (MDP) problem and interacts with
the circuit simulation environment through two agents: one
for forward and one for backward steps. RL-S also addresses
sample imbalance issues by equipping public sample buffers.
The key elements of RL-S will be comprehensively discussed
in this section. In addition, the training algorithm in RL-S
belongs to the online learning category. Based on this, we
combine offline pre-training with online learning to enhance
adaptability to any new circuit during the actual simulation
process.
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A. TD3-Based Reinforcement Learning Stepping

State, action, and reward can be considered as the three
key components in RL, where the essence lies in taking actions
in different states to maximize rewards. By treating the iterative
solution trace processes of PTA as MDP, that is to predict an
propriate time-step size according to simulation state at each
PTA iteration, we can map it to a classic RL problem:

1) State: We define the simulation state at each time point
t, in the PTA process as the RL state S,,, which includes
Iters: the number of NR iterations at current time point, Res:
residual of the ODE equation, I': relative change in solution
compared to the previous step, N R ,4: absolute change in so-
lution compared to the previous step, and PT'A ¢144: limit of the
Res. These simulation states evaluate whether the simulation is
gradually converging, representing a measure of “convergence
distance”.

2) Action: We normalize the action a obtained from the agent
using the tanh function to the interval (-1, 1). Then, we multiply
it by the relevant coefficient and constrain its range using the
exponential function. Finally, the transformed action a is multi-
plied by the time-step h,,_; of the previous time-step to obtain
the next time-step h,. The equation is h,, = elatp)k o
where p and k are parameters to ensure reasonable ratio for
time-step.

3) Reward: We prioritize PTA convergence as the primary
objective and consider other states such as NR convergence as
secondary objectives. We assign different coefficients to each
simulation state and design the following reward function:

R=ciI'+ colters + caRes + caN Ryiag + cs PT Afiqy.
(16)

Through these steps, we map the prediction of time-steps in the
PTA simulation process to a classic RL problem.

TD3 [22] is a SOTA reinforcement learning algorithm that
belongs to the deterministic strategy RL family and is based
on the actor-critic agent. Compared to traditional reinforcement
learning methods like DQN and Q-learning, which are typically
used for discrete action spaces, TD3 can directly handle con-
tinuous action spaces. This means that the TD3 algorithm is
better suited for calculating the time step, which belongs to
a continuous action space, in the PTA solving process. Ad-
ditionally, compared to other actor-critic methods like DDPG
[23], TD3 mitigates the impact of high variance estimates
and overfitting through techniques such as dual target net-
works and delayed policy updates, significantly improving sta-
bility. Therefore, we choose to build the RL-S algorithm based
on it.

Dual-agent approach and public sample buffer have also
been proposed and integrated into the RL-S algorithm. During
simulation, most of the training data are large time-step samples
collected during the convergence phase. However, in certain
cases, smaller steps are needed to ensure convergence. This
results in a single agent being unable to effectively handle both
scenarios simultaneously during training. To address this, we
introduce two agents, each responsible for controlling time-
steps in different scenarios. The “forward” agent is responsible
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Fig. 4. Updating strategy of reinforcement learning for predicting step size.
@ expansion of the public sample buffer. @ cherry-pick of the samples are
used for training.

to produce an increased time-step (that is h,1 > hy). If the
time-step size leads to non-convergence, the simulation needs
to rollback to the previous converged time-point and call the
“backward” agent to predict a decreased time-step. This concept
is illustrated in Fig. 3.

However, the dual-agent approach leads to the original sam-
ple buffer being divided into two. This results in the backward
agent’s sample pool being less abundant, affecting its conver-
gence speed. Fortunately, in actual simulations, we find that
some experiences of the forward agent are often beneficial to
the backward agent as well. Therefore, as shown in Fig. 4, we
introduce a public sample buffer to enhance sample utilization
and accelerate the convergence speed of the agents. The algo-
rithm pseudo code for the RL-S based on the TD3 algorithm is
comprehensively explained in Algorithm 1.

VI. IMITATION LEARNING OPTIMIZED RL-S

Although RL-S proposed in Section V demonstrates signifi-
cant efficiency improvements compared to traditional time-step
control algorithms, the reward function in (16) is a simple linear
one and often cannot fit the distribution of actual reward values
well, leading to certain biases in the calculated reward values.
This may not only cause the agent to learn incorrect strategies
but also affect the speed of convergence, thereby becoming a
key limitation to further improve simulation efficiency.

In RL-S, the actor network of the TD3 agent updates its
network parameters through gradient ascent, with the gradient
defined as shown in Equation (19):

Vo, J(0r) = Esps anm, [V, l0g(mo, (a]s))VaQ(s, a)],
(19

Solve the equation|
for each time pDintI
to get the
corresponding
states

Give the time-

step for next
time point
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Reinforcement learning workflow based on TD3 in simulation iterations. @ @ predicted through the forward agent, ® predicted through the backward

Algorithm 1 TD3-based Reinforcement Learning Stepping

1: Initialize critic networks Qg,, Qo,, and actor network 7y

2: Initialize target networks 0] < 01,05 < 02, ¢’ < ¢

3: Initialize private sample buffer 3., 33 and public buffer B
Input: Netlist 7
Output: The optimal time stepping strategy 7™

4: Get initial state s < sg

5: while PTA iteration does not converge do

6:  Select agent from dual-agents according to NR flag

7. Determine action with exploration noise a ~ 7(s) +¢€ , € €

N(0,0)
8:  Observe reward r and new state s’ by selected agent
9:  Store transition tuple (s, a,r, s’) using collaborative learning

10:  Sample mini-batch size of N transitions (s,a,r,s’) from
buffer B and B, or B and Bs

1 a<+ 7y (s')+e e~clipN(0,5), —c,c)

120 y<r+ymini—12 Qy (s',a)

13:  Update critics 0; < argmin,, N7 (y — Qo, (5,a))?

14:  if step mod d then

15: Update ¢ by the deterministic policy gradient

16: Ve d(¢) = N_IZVGQ91 (Sva)|a:ﬂ¢(s) Vs (s)
17: Update target networks

18: 0«70, +(1—7)0; ; ¢ 70+ (1 —7)¢

19:  end if

20: end while

where J(6.) represents the objective function of the actor
network, p” represents the state distribution, 7g_(a|s) denotes
the action output of the actor network, and Q(s,a) repre-
sents the estimated action-value function of the critic network.
And the parameter update gradient for the critic network is
given by Equation (20) (where the loss function is exemplified
by Mean Squared Error, MSE):

1Y 1
Vo, J(0q) = N Z Voo {2 (Q(si,a4,0q) — y)’|, (0)
i=1

where J(fg) represents the objective function of the critic
network, and y; represents the TD target:

yi =i +ymin (@ (sj, 7' (57)), Qo (s, 7' (7)) - (1)

Since r; in y; is not accurate enough, it implies that inaccurate
reward values will affect the update of critic network parame-
ters, further influencing the update of actor network parameters.
We combine the actor network of TD3 as a generator network
and pair it with a discriminator network to form a GAIL agent.
The generator is primarily responsible for generating original

Authorized licensed use limited to: China University of Petroleum. Downloaded on September 25,2025 at 08:19:50 UTC from IEEE Xplore. Restrictions apply.



JIN et al.: ML-PTA: A TWO-STAGE ML-ENHANCED FRAMEWORK

3325

Fig. 5. Update strategies for RL-S and I-RL-S.

stepping samples, while the discriminator evaluates the likeli-
hood that the input samples are from the standard distribution.
We input the stepping samples A generated by the generator
and the standard simulation samples S (collected from previous
RL-S simulations) into the discriminator simultaneously. The
discriminator provides the probabilities P4 and Pg that A and
S are standard samples, respectively. We calculate the binary
cross-entropy between these probabilities as the discriminator’s
loss function and update its weights using gradient descent, as
shown in Equation (22):

LD = _ESNP(S)[IOg(D(S))] - EANP(A)[IOg(l - D<A))]a
(22)

where D(-) represents the discriminator’s probability ofjudging
the input sample as a standard sample, and p(x) is the sample
distribution. Finally, we take the negative logarithm of Py,
which represents the similarity between the generated sample
and the standard sample. We replace the inaccurate reward with
it, effectively avoiding the bias introduced by manually design-
ing the reward function. The process is illustrated in Fig. 5.

We refer to the RL-S improved by GAIL as the I-RL-S
algorithm. This algorithm effectively utilizes the characteristics
of generative adversarial networks to enable self-improvement
of the TD3 agent through adversarial learning with past sam-
ple data, greatly reducing the involvement of human expert
experience. The basic algorithm idea of GAIL is shown in
Algorithm 2.

VII. SUPERVISED LEARNING OPTIMIZED I-RL-S

Although the dual agents proposed in Section V effectively
handles two different simulation scenarios, the backward agent
is only active when the given time-step size leads to a NR non-
convergence and it needs to roll-back to the previous time-point.
The backward agent will give a smaller time-step size to ensure
NR convergence. This results in additional rollback overhead,
significantly impacting simulation efficiency.

To address this issue, we further propose the S-RL-S algo-
rithm, which incorporates supervised learning on top of I-RL-
S to minimize the occurrence of rollbacks. S-RL-S labels the
information collected from past PTA steps and uses it as training
data. Then, it employs the random forest algorithm to train a
model. The trained model determines whether the “forward”

Px:Probability that data from dataset X is expert data
:current state :next state
Agent “ Standard :More accurate reward value
Sample |E| :the action taken in current state Sample
I :insufficiently accurate reward li ( \
@ sarpiing %} | y A 6 sanping GAIL Agent date D3 Agert
‘calculate loss scor update
seof [ 5] ] |~1®n\‘ o
EQ.EE] > Discriminator |— Ps
i Y N Net
| update ——a@) > — P, V
N, N ! /
——0—> Qs.a) e ! &
L 6> Goa 3] I T )
= IS i
Actor Net | « ) I &- generate S | update )
( a) Update strategy for RL-S ( b) Update strategy for I-RL-S

Algorithm 2 Generative adversarial imitation learning

Input: Expert trajectories 7 ~ g, initial policy and discriminator
parameters 6, wo
1: for:=0,1,2,... do

2:  Sample trajectories 7; ~ T,
3:  Update the discriminator parameters from w; to w;1 with the
gradient
Er, [V log(Du(s, )] + Ery [Vu log(1 = Du(s, a))]

a7

4:  Take a policy step from 6; to 6;41, using the TRPO rule
with cost function log(D., ., (s, a)). Specifically, take a KL-
constrained natural gradient step with

E., [Vologmo(als)Q(s, a)] — AV H (),
where Q(5,a) = K., [log(Duw,,(s,a)) | so =5,a0 =a

5: end for

N
St & ‘ Forward Agent ‘
Reward H
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‘ Background Agent ‘;

i

. ]
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PTA [ Labeled Samples ]—v[ Feature Fusion h

Solver -
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Fig. 6.  Flow of S-RL-S.

or “backward” agent should be used in the current simulation
state to reduce the incidence of rollbacks and further enhance
simulation efficiency. The framework of the S-RL-S algorithm,
as shown in Fig. 6, includes steps such as data labeling, feature
fusion, agent selection, training, and model evaluation. Fig. 7
illustrates the details of data labeling and feature fusion.

For data labeling, we default to using the forward agent and
set the label to Label =0 when it converges. If the forward
agent fails to converge, we set the label to Label =1 and
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I;:l::jssi Labeled “0" Forward agent works ii Labeled “1" Backward agent works i Algorithm 3 Inference Agent Based on Random Forest
1: Offline training stage
1 e ) . .
\V 4 g o ! @ \R converge ! 2: Input tralnll’lg data D
1 @R non-converge | 3. fori=1to Bdo
4: 1) Draw a bootstrap sample Z* of size N from D
5. 2) Grow arandom forest tree 7, to the bootstrapped data,
by recursively repeating the following steps for each
PLICH N - - terminal node of the tree, until the minimum node size
the  tha th  tha _ thaa T Nmin 18 reached.
Feature Fusion , 6: a) Select m variables at random from the p vari-
| State(t,) | Iters | Res | r | I{I,ZI | Step Informationl hn | hn/ bt |E ables.
7: b) Pick the best variable/split-point among the m.
Fig. 7. Demo of labeled samples and feature fusion for dual-agents with 8: ¢) Split the node into daughter nodes.
supervised learning. 9: end for

switch to the backward agent. Besides data labeling, selecting
appropriate features is crucial. Beyond the initial features we
choose—NR iterations (Iters), residual (Res), and relative
change in the solution (I")—we also add two new features based
on the characteristics of the time-step calculation process: the
current time-step (h,,) and the ratio between the current and pre-
vious time-step (h,, /h,—_1). The detailed process is illustrated
in Fig. 7.

The S-RL-S algorithm employs the widely used supervised
learning method, Random Forest (RF), to perform prediction
tasks for the agent selection. After combining labeled samples
and features, the stepping information generated by the I-RL-S
algorithm is selected as training set samples D. The data col-
lected are then processed and used to train the constructed RF
model, with the training process completed during the offline
pre-training phase, which does not incur additional computa-
tional overhead during simulation. In practical applications, the
pre-trained RF model is used to predict which agent should
be used at each time point of the PTA simulation, and then
the corresponding RL agent is called to produce a time-step.
This process is illustrated in Algorithm 3. Additionally, the
extra inference overhead introduced by the prediction will be
explained in Section VIIIL.

VIII. NUMERICAL EXAMPLE
A. Experimental Setup

The proposed two-stage acceleration framework has been
implemented in the SPICE-like simulator WSPICE and tested
on a server with a 2.6GHz Intel Core i5-11400H CPU and
32GB main memory. In our experiments, we collect benchmark
circuits [24] and some practical circuits commonly used in
nonlinear DC analysis from previous works [25], [26], [27].
We randomly select 70% circuits for the training set and 30%
for the test set. By including various types of nonlinear circuits
(e.g., BJT, MOS) into both training and test sets, we ensure the
model’s generalization ability in practical applications.

B. Initial Parameters Prediction

We demonstrate the reduction in NR iterations over default
CEPTA setting based on our IPP in Table I. In this evaluation,

10: Get ensemble of trees {Tb}i3 as trained predictor P

11: Online inference stage

12: Load forward agent and backward agent

13: Get initial state s < so and time-step information h;y, f,
14: while PTA is not convergence do

15:  Fuse state s and time-step information h;, s, as feature

x
16:  if P(x) =0 and preNRyqy = 0 then
17: Forward agent works

18:  else

19: Backward agent works

20:  end if

21:  Update state s and time-step information hsy, fo
22: end while

TABLE I
SIMULATION EFFICIENCY OF INITIAL PARAMETERS PREDICTION (#OF NR)

Circuits Type #Nodes #Elem CEPTA IPP Reduction
Adding MOS 15 18 272 95 2.86x
MOSBandgap MOS 34 16 153 93 1.65x
6stageLimAmp  BIT 80 35 72 34 2.12x
TRCKTorig BJT 15 20 53 34 1.56x
UA709 BJT 42 39 407 223 1.83x
UA733 BIJT 22 31 121 39 3.10x

D22 BIT 6 8 N/A 111 -

we utilize a training set consisting of 43 canonical benchmark
circuits, while testing is conducted on 7 practical circuits (in-
cluding two MOS circuits and five bipolar junction transistor
circuits) using WSPICE. The results demonstrate a consistent
2x ~ 3x reduction in the number of NR iterations. Importantly,
the IPP technique enables the convergence of previously non-
converging cases, which is highly desirable in our applications.
This is achieved by providing a feasible working space for the
subsequent reinforcement learning (RL) procedure.

C. Simulation Efficiency Comparison

To evaluate the effectiveness of our proposed S-RL-S al-
gorithm, we first compare our S-RL-S with two conventional
stepping strategies ( SOTA adaptive stepping method [18] and
widely used simple stepping method [17]) for CEPTA, pure
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Fig. 9. Speed-up of S-RL-S over two conventional methods for pure PTA.

PTA, and RPTA. For DPTA, we not only compare our S-RL-
S with the adaptive stepping method, but also further compare
it with two SOTA methods: the RL-e method proposed in [25]
and the OSSP method proposed in [26].

For CEPTA, we illustrate the performance comparison of
our S-RL-S method against adaptive stepping [18] and simple
stepping [17] in Fig. 8. The left y-axis represents the reduc-
tion in the number of NR iterations, corresponding to solid
lines. The right y-axis represents the reduction in the number
of PTA iterations, corresponding to dashed lines. The figure
demonstrates that, compared to the simple stepping strategy,
S-RL-S achieves an average reduction of 1.81x (maximum
3.57x%) in the number of NR iterations and 2.17 x (maximum
6.69x) in the number of PTA iterations. In comparison to the
adaptive stepping strategy, S-RL-S attains an average reduction
of 1.61x (maximum 4.23 %) in the number of NR iterations
and 1.66x (maximum 4.59x) in the number of PTA iterations.
Similar results can also be observed with other PTA methods,
such as pure PTA as shown in Fig. 9, and RPTA as depicted
in Fig. 10.

For DPTA, we present the performance comparison of our S-
RL-S method with adaptive stepping method [18], a supervised
learning-enhanced stepping method [10], and two other SOTA
methods RL-e [25] and OSSP [26] in Table II:

1) S-RL-S achieves an average reduction of 36.09x (maxi-
mum 285.71x) compared to the adaptive stepping method in
terms of the number of NR iterations. Compared to supervised
learning-enhanced stepping method [10], S-RL-S achieves an
average reduction of 2.57x (maximum 8.28 ), demonstrating
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Fig. 10.  Speed-up of S-RL-S over two conventional methods for RPTA.

that RL exhibits superior effectiveness over simplistic super-
vised approaches in dynamic decision-making tasks requiring
adaptive multi-step optimization. When compared to RL-e,
S-RL-S achieves an average reduction of 1.42x (maximum
2.92x). Similarly, compared to OSSP, S-RL-S exhibits an av-
erage reduction of 1.32x (maximum 1.87x).

2) S-RL-S achieves an average reduction of 76.92x (maxi-
mum 589.86x) compared to the adaptive stepping method in
terms of the number of PTA steps. Compared to [10], S-RL-
S achieves an average reduction of 2.53 x (maximum 5.68x).
When compared to OSSP, S-RL-S achieves an average re-
duction of 1.56x (maximum 2.29Xx). Since RL-e does not
present experimental results on the number of PTA iterations
in the paper, we are temporarily unable to compare it with our
method.

The three figures and one table showcase that the S-RL-S
algorithm is not only applicable across various PTA contexts but
also demonstrates superior simulation efficiency performance
compared with SOTA PTA stepping methods. They under-
score the immense potential and practical value of the S-RL-S
algorithm.

D. Ablation Experiments

In this subsection, we will delve into the simulation efficiency
performance improvements brought about by pre-training, re-
inforcement learning in RL-S, imitation learning in I-RL-S, and
supervised learning in S-RL-S, respectively.

Firstly, we discuss the performance improvement brought by
pre-training the agents before applying the RL-S algorithm to
practical simulations. We select 6 canonical benchmark circuits
as the training set for offline pre-training of the RL-S algorithm.
Completing one round of pre-training for the agent on the entire
training set using the RL-S algorithm is referred to as one
epoch. Then, we use 7 unseen circuits as the test set. Fig. 11
illustrates the performance of the agents on these 7 circuits after
experiencing different numbers of epochs. After approximately
20 epochs, the number of NR iterations stabilizes, indicating
convergence of the agents. It can be observed that pre-training
enables the agents to achieve PTA convergence faster when
facing unseen circuits. Hence, in the practical application of
RL-S, we typically utilize a model that has undergone pre-
training for 20 epochs.
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TABLE II
SIMULATION EFFICIENCY COMPARISON AMONG FOUR STEPPING METHODS FOR DPTA
. Reduction Reduction Reduction Reduction
Circuits | Adaptive [18] | LSTM [10] | REL-e [25] OSSP [26] S-RL-S | (s _RL-S vs. Adapitve) | (S-RL-S vs. LSTM) | (S-RL-S vs. RL-¢) | (S-RL-S vs. OSSP)
| #Iters | #Steps | #Iters | #Steps | #lters | #Steps | #Iters | #Steps | #Iters | #Steps | #Iters | #Steps | #lters | #Steps | #Iters | #Steps | #Iters | #Steps
ab_integ | 4406 2167 | 402 85 177 - 158 35 155 40 | 28.43x S4.18x | 259x  2.13x 1.14x 1.02x 0.88x
fadd32 1859 917 | 284 73 141 129 39 75 17 | 24.79x 5394x | 3.79x  4.29x 1.88x 1.72x 2.29x
todd3 9341 4645 | 1259 167 | 444 199 49 | 152 30 | 6145x  154.83x | 8.28x 5.57x 2.92x 1.31x 1.63x
mosamp 239 97 | 263 65 129 140 30 | 108 23 | 22Ix 422x 2.44x 2.83x 1.19x 1.30x 1.30x
THMS 5324 2660 | 127 44 | 124 116 36 | 116 35 | 4590x 76.00x 1.09x 1.26x 1.07x 1.00x 1.03x
UAT733 152 37 133 34 69 71 21 66 14 | 230x 2.64x 2.02x 2.43x 1.05x 1.08x 1.50x
mux8 118 46 | 154 58 84 101 35 54 18 | 2.19x 2.56x 2.85x 3.22x 1.56x 1.87x 1.94x
rea 119 28 64 13 60 62 19 49 9 2.43x 3.11x 1.31x 1.44x 1.22x 1.27x 2.11x
eml 47 21 69 34 40 41 20 29 13 1.62x 1.62x 2.38x 2.62x 1.38x 141x 1.54x
1480 5514 2741 | 369 50 | 179 207 42 | 155 39 | 3557x 7028x | 2.38x 1.28x 1.15x 1.34x 1.08x
mosrect 826 407 84 18 103 83 27 48 13 17.21x 31.31x 1.75x 1.38x 2.15x 1.73x 2.08x
RCA3040 | 119 28 64 13 60 62 19 49 9 243x 3.11x 1.31x 1.44x 1.22x 1.27x 2.11x
UA709 339 50 | 711 142 | 297 137 24 | 137 25 | 247x 2.00x 519x  5.68x 2.17x 1.00x 0.96x
cram 87 36 | 110 45 55 62 23 51 17 | 171x 2.12x 216x  2.65x 1.08x 1.22x 1.35x
schmitfast | 5691 2820 | 176 50 | 129 - - - 105 22 | 5420x  128.18x | 1.68x  2.27x 1.23x - -
slowlatch | 9353 4649 | 264 60 | 186 - - - 145 25 | 6450x  185.96x | 1.82x  2.40x 1.28x - - -
MOSMEM | 26000 12977 | 95 18 101 - - - 91 22 |28571x  589.86x | 1.04x  0.82x 1.11x - - -
ab_ac 3947 1959 | 265 66 123 - - - 106 30 | 37.24x 6530x | 250x  2.20x 1.16x - - -
ab_opamp | 2536 1210 | 430 87 | 208 - - - 191 40 | 13.28x 3025x | 225x 218 1.09x - -
Average | - - - - - - - - - -] 36.09x 76.92x | 2.57x 2.53x | 1.42x | 1.32x 1.56x
#Iters:number of NR iterations. #Steps:accepted and rejected steps of PTA.
_lg B Oepoch =3 20 epochs of 74.38% and an average reduction of 34.38% in total PTA
g 1201 [ 10 epochs [ 30 epochs StepS.
] 8 .
£ 100 3) S-RL-S demonstrates further performance improvement
© 1 . . .
¥ compared to [I-RL-S. It achieves a maximum reduction of 1.49 x
S 801 and an average reduction of 1.10x in terms of the number of
c . . . . . .
g NR iterations. Moreover, it achieves a maximum reduction of
60 . .
S 100.00% and an average reduction of 25.84% in rollback PTA
=
©
§ o weps N
b Fig. 12 presents the detailed simulation process of the three
4 . . .
= stepping methods on the circuit REGULATOR. The three bar
o charts above display the rate of change between adjacent step
0 ‘ e — ‘ ‘ e . . . . .
B E RS \(,0,0"“«»\( o o0 AV el sizes in logarithmic form, making the forward (green bars) and
w backward (red and yellow bars) steps symmetric about the zero
Fig. 11.  Performance of pre-trained agent on total NR iterations. axis. Additionally, we also mark the average rate of change of

Next, we will analyze the performance improvements
brought about by introducing imitation learning and supervised
learning. Additionally, we also compare the performance of
RL-S based on DQN and RL-S based on TD3. Table III il-
lustrates the performance of RL-S, I-RL-S, and S-RL-S on 12
test circuits. It is worth noting that the performance in the table
is with pre-training process. From the table, it can be clearly
seen that:

1) Compared to DQN, TD3 achieves a maximum reduction
of 2.17x and an average reduction of 1.16X in terms of the
number of NR iterations. In terms of PTA steps, it exhibits a
maximum reduction of 64.41% and an average reduction of
13.62%. The results demonstrate that TD3 achieves superior
time-step over DQN in PTA’s continuous action space, leading
to enhanced simulation efficiency.

2) I-RL-S achieves a maximum reduction of 5.24x and an
average reduction of 1.76x in terms of the number of NR itera-
tions compared to RL-S. It also exhibits a maximum reduction

forward steps with gray dashed lines in the three upper charts.
The three lower charts show the voltage variation curve of node
V(1) in the REGULATOR circuit, where red “X” indicates non-
convergent PTA steps, and green “O” indicates convergent PTA
steps. Combining these six charts, we can observe that introduc-
ing imitation learning makes the step size change rate of I-RL-S
(average 2'%0 x) more aggressive than that of RL-S (average
20-87 ), avoiding excessive unnecessary calculations caused
by overly small time-steps and achieving PTA convergence with
fewer PTA steps. Moreover, from the voltage curve, we can see
that the larger step size adopted by I-RL-S also makes it easier
to skip local non-convergent points.

However, I-RL-S does not effectively address the problem
of time point rollbacks caused by non-convergence, which
remains one of the limiting factors affecting performance.
To address this issue, we introduce supervised learning into
I-RL-S, thereby forming S-RL-S. The introduction of super-
vised learning enables S-RL-S to maintain the aggressive step
size change rate of I-RL-S while proactively predicting the
adoption of backward agent in regions where convergence is
challenging. By stepping through these regions with a series
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TABLE III
SIMULATION EFFICIENCY COMPARISON AMONG PROPOSED RL-S(DQN), RL-S, I-RL-S, AND S-RL-S FOR DPTA

. . . Reduction Reduction Reduction
Cireuits RL-S(DQN) RL-S IRL-S S-RL-S (TD3 vs. DQN) | (I.RL-S vs. RL-S) | (S-RL-S vs. I-RL-S)
| #lters | #Asteps | #Rsteps | #Iters | #Asteps | #Rsteps | #Iters | #Asteps | #Rsteps | #ters | #Asteps | #Rsteps | #lters | #Steps | #Iters | #Steps | #lters | #RSteps
fadd32 187 60 0 152 42 8 75 17 0 75 17 0 1.23x  16.67% | 2.03x  66.00% 1.00x 0%
todd3 1818 280 60 838 92 29 160 28 3 152 28 2 2.17x  64.41% | 5.24x  74.38% 1.05x 33.33%
mosamp 148 30 1 144 27 0 108 23 0 108 23 0 1.03x  1290% | 1.33x  14.81% 1.00x 0%
UA733 93 22 0 95 19 2 66 13 1 66 13 1 098x 4.55% | 1.44x  33.33% 1.00x 0%
rca 81 20 0 69 18 0 49 9 0 49 9 0 1.17x  10.00% | 1.41x  50.00% 1.00x 0%
mosrect 88 28 0 85 25 1 48 13 0 48 13 0 1.04x  7.14% | 1.77x  50.00% 1.00x 0%
REGULATOR 485 95 9 474 86 15 371 64 13 295 79 0 1.02x  2.88% | 1.28x  23.76% 1.26x 100.00%
UA741 501 69 8 485 38 23 449 29 23 362 44 10 1.03x  20.78% | 1.08x  14.75% 1.24x 56.52%
UA741PFBVINNEG | 323 71 5 311 64 7 268 54 6 249 41 5 1.04x  6.58% | 1.16x  15.49% 1.08x 16.67%
Multiplier 289 37 9 275 28 14 198 31 7 187 37 5 1.05x  8.70% | 1.39x 9.52% 1.06x 28.57%
add32 155 33 1 134 30 1 110 24 1 110 24 1 1.16x  8.82% | 1.22x  19.35% 1.00x 0.00%
Suntraction 190 29 5 201 25 9 113 16 4 76 19 1 0.95x  0.00% | 1.78x  41.18% 1.49x 75.00%
Average | - - -] - - -] - - -] - - -] L16x 13.62% | 1.76x  34.38% | 1.10x 25.84%
#lters:number of NR iterations. #Asteps:accepted steps of PTA. #Rsteps:rejected steps of PTA. #Steps:accepted and rejected steps of PTA.
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Fig. 12.

of smaller time-steps, S-RL-S fundamentally prevents the oc-
currence of time point rollbacks. From the upper bar charts, it
can be observed that S-RL-S actively invokes backward agents
near the non-convergent time points where I-RL-S failed to
converge. From the curve graphs, it can be seen that S-RL-S
steps with smaller time-steps near these non-convergent time
points, resulting in denser time points and thereby avoiding the
occurrence of rollbacks caused by excessively large time-steps.

E. Model Performance Analysis

Furthermore, within this subsection, we present the ultimate
training outcomes of the RF model in S-RL-S. We train an
RF model using 6900 samples collected during PTA simulation
as the training set, and use an additional 9664 samples as the
test set. The test results are depicted in the heatmap shown in
Fig. 13(a). This heatmap illustrates the comparison between the
model’s predictions and the actual results, where “0” represents
the forward model and “1” represents the backward model.
From this heatmap, we can calculate that our RF model achieves
an accuracy of 98.73% and a precision of 99.10% on this test

Detailed simulation process of circuit REGULATOR with three stepping methods.

set. Additionally, Fig. 13(b) displays the ROC curve of the
test circuit UA741, with the False Positive Rate (FPR) on the
horizontal axis and the True Positive Rate (TPR) on the vertical
axis. The area below the ROC curve is called AUC [28] (AUC €
[0,1]), where a value closer to 1 indicates better classification
accuracy. This plot demonstrates that our RF model achieves
an AUC of 0.93 on the UA741 circuit. The data displayed in
both figures indicate that our model possesses strong predictive
capabilities.

F. Overhead Analysis

Since the S-RL-S algorithm calls both a RL model and a
RF model at each numerical integration step, it introduces ad-
ditional time overhead Ty and Trr. Consequently, the total
simulation time becomes: Tiota; = Tsoiver + Trr + Trr. In
contrast, conventional adaptive time-stepping methods perform
only simple numerical checks to determine the step size. Their
overhead is negligible compared to the O(N?3) cost of the
matrix solves and is thus omitted in Fig. 14. Meanwhile, other
SOTA RL-based solutions typically have model complexities
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Fig. 13.  Heatmap of test dataset and ROC curve of test circuit.
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Fig. 14.  Overhead analysis for S-RL-S with total NR iteration time.

comparable to our RL network, resulting in a similar overhead
to our Ty, yet they do not incur Trr because they lack the
RF component. Fig. 14 illustrates how the combined RL and
RF inferences compare with the solver’s runtime, showing that
although these inferences add to the total simulation time, the
solver itself remains the dominant cost. In Fig. 14, the propor-
tion of Try, and TrF in the total simulation time progressively
diminishes to 3.5% as the circuit scale and component count
increase. The increase in circuit components and nodes reflects
a single larger interconnected circuit, leading to an O(N?) in-
crease in matrix solution time while the inference overhead un-
changed. This implies that time T,y escalates dramatically
with the growing size and complexity of the system matrices,
while T'r, and Trr remain constant. Consequently, the S-RL-S
framework demonstrates exceptional efficiency for ultra-large-
scale circuit simulation, as its overhead becomes negligible in
large-scale scenarios.

IX. CONCLUSION

In this paper, we propose a fast DC analysis method using
cutting-edge techniques such as active learning, reinforcement
learning, imitation learning and supervised learning. Our ap-
proach aims to accelerate the powerful and promising continu-
ation approach, PTA, in a two-stage acceleration framework.

In the first stage, we employ an offline-trained model for IPP
to provide accurate predictions of insertion pseudo-elements,
which in turn improves the formulation of the ODE equations.
Subsequently, we obtain effective stepping strategies to track

IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 10, OCTOBER 2025

steady states by utilizing reinforcement learning stepping (RL-
S) during the simulation process. Furthermore, we introduce
imitation learning on top of RL-S (I-RL-S) to avoid biases
introduced by manually setting reward functions. And we in-
corporate supervised learning on top of I-RL-S (S-RL-S) to in-
telligently select the best-performing agent for each PTA stage,
thereby avoiding unnecessary computations caused by rollback.
Combing these techniques together, the simulation performance
is effectively enhanced. Experiment results demonstrate that
our framework achieves a maximum reduction of 3.10x in NR
iterations at the first stage and 285.71x compared to the SOTA
adaptive stepping approach.
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