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Abstract—TIterative solvers are fundamental in scientific com-
puting, particularly for solving large-scale linear equations, which
are central to a variety of applications such as simulations and
data analysis. Traditional optimization strategies for iterative
solvers, however, are predominantly designed around von Neu-
mann architectures, which suffer from significant data movement
costs and the “memory wall” problem, limiting overall computa-
tional performance. In this context, processing-in-memory (PIM)
architectures, especially those utilizing resistive random-access
memory (ReRAM), offer a promising alternative by enabling in-
situ computing, thereby reducing data movement and overcoming
the storage bottleneck. These architectures have already shown
substantial potential in accelerating tasks like neural network
training and graph computations, and they provide new oppor-
tunities for optimizing iterative solvers. This paper systematically
surveys ReRAM-based iterative solver accelerators, categoriz-
ing key contributions into four main areas: mixed-precision
techniques, feedback circuit theory, floating-point computation
support, and leveraging content-addressable memory (CAM) to
address irregularity and sparsity. We also discuss four future
research directions aimed at further improving iterative solver
performance.

Index Terms—ReRAM, sparse iterative solver, process-in-
memory, accelerator, hardware-software codesign.

I. INTRODUCTION

Solving a series of sparse linear systems is fundamental to
scientific computing, underpinning a wide range of applica-
tions from simulations in quantum mechanics to optimization
in machine learning [1]-[4]. Traditional iterative solvers, while
effective, often face limitations due to their reliance on conven-
tional von Neumann architectures [5]. This dependence leads
to significant data movement overhead between processors
and main memories, which can severely impact computational
performance and power consumption.

In response to these challenges, processing-in-memory
(PIM) architectures have emerged as a transformative ap-
proach, enabling computation to occur closer to where data is
stored [6]-[10]. Among these, resistive random-access mem-
ory (ReRAM) stands out for its potential to facilitate in situ
computing, thereby alleviating data transfer bottlenecks and
improving overall system efficiency. ReRAM, an advanced
non-volatile memory, offers high density and excellent CMOS
integration. ReRAM’s crossbar array can perform matrix mul-
tiplication at O(1) complexity.

The PIM architecture based on ReRAM has achieved signif-
icant success in neural network and graph computation [11]-

[16]. However, its application in scientific computing, partic-
ularly in iterative solvers, remains limited. This is primarily
due to several challenges, e.g., the presence of complex and
irregular operators that are difficult to map onto a crossbar
structure, sparse matrix computations, and the need for high
floating-point precision in iterative solvers, etc.

This paper reviews the existing research on accelerated
iterative solvers using ReRAM, categorizing the efforts into
four main directions: (1) Mixed-precision strategy, (2) Feed-
back circuit, (3) Enabling floating-point computations, (4)
Addressing irregularity and sparsity with content-addressable
memory (CAM). Table I shows the summary Based on our
analysis of current work, we identify four key challenges and
future directions: (1) Implementing complex operators that
cannot be simply mapped to Multiply Accumulate (MAC),
(2) Supporting general and irregular sparse matrix structures,
(3) Ensuring floating point precision, and (4) Overcoming the
inherent non-ideality of ReRAM and other devices. Future
research should focus on hardware-software co-design to en-
able high-performance, energy-efficient, and scalable iterative
solvers on PIM architectures, unlocking their potential for a
broader range of scientific computing applications.

II. BACKGROUND

A. Iterative Solvers

Iterative solvers are algorithms designed to approximate the
solution of a linear system Ax = b by iteratively refining
an initial guess. They are especially efficient for large, sparse
matrices, where direct solvers, such as LU or Cholesky decom-
position, are often impractical due to their high computational
complexity and memory requirements [30]-[35]. The advan-
tages of iterative solvers include their ability to efficiently
handle large-scale problems, their potential for parallelization,
and their suitability for situations where the matrix changes
incrementally or an approximate solution is sufficient.
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Fig. 1: An example of computational flow in iterative solvers.
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TABLE I: Summary of ReRAM based PIM accelerators for iterative solvers.

Category | Citation Solver Baseline Speedup Energy Efficiency Iteration | Sparsity | Year
[17) cG NVIDIA Jesla K10 1500 8.5x v v 2015
. IBM POWERS CPU, 6.3—17.5x (CPU), 3.6—7.8x _
Mixed- (18] GMRES NVIDIA P100 GPU (GPU) 6.8 — 24x v v |08
K rateny. Block-Tacobi 2.3 GHz 8-Core Intel 19
strategy . machine equipped with | FGMRES required 2x to 4x fewer
(] preconditioned 64 GB of syst FLOPS than PGMRES + ILU v x |2023
flexible GMRES system an
memory
[20] — — o(1) — x x  [2019
O(logN) or O(1) (model
(20 covariance), O((1/Amin)) x v 2020
Based on 22] Eigenvector J— o(1) JE— x x 2020
the feedback Jacobi iterative
circuit theory | [23] ethod NVIDIA Tesla P40 GPU 100x 1000x x v [2021
[24] | Least-Squares Fitting | NVIDIA K40m GPU 132 — 3282x 8201 — 96738x x x 2022
[25] — original AMC — 16 — 1.67x x X 2024
. NVIDIA Tesla P100
Enabling [26] CG, BiCG GPU 10.3x 10.9x v v |[2018
floating-point NVIDIA Tesla VIOO | 12.59x (CG GPU), 12.94x (CG
computations | [27] CG, BiCGSTAB | GPU, PIM accelerator | PIM), 13.34x (BiCGSTAB GPU), S v v  [2023
[26] 15.98x (BiCGSTAB PIM)
AMD 2nd EPYC 7702
28] AMG CPU, NVIDIA Tesla 10x (CPU), 100x (GPU) 100 (C 2, 1000 v x |2023
Dealing with A100 GPU ‘ )
“:ieg“‘a“}t-‘f AMD 2nd EPYC 7702
and sparsity CPU, NVIDIA Tesla | 1000x (CPU), 10x (GPU), 10x |100x (CPU), 100x (GPU),
with CAM | [29] JPCG A100 GPU, Xilinx (FPGA) 10x (FPGA) v V|02
Alveo U280 FPGA

B. ReRAM-Based Process-in-Memory Architecture

ReRAM is an emerging non-volatile storage technology
based on a metal-insulator-metal (MIM) structure [28]. Its
resistance-switching mechanism involves adjusting the re-
sistance of a memory cell between a high resistance state
(HRS) and a low resistance state (LRS), with information
retained even after power loss. In terms of applications,
ReRAM enables efficient MAC operations, which are essential
for matrix computations, particularly in deep learning and
scientific computing. Additionally, ReRAM’s analog CAM
design significantly enhances data density, reduces operational
energy consumption [29], and minimizes area by matching
analog inputs to stored values. Furthermore, ReRAM-based
designs can support functionalities similar to Ternary CAM
(TCAM), eliminating the need for analog-to-digital conversion
and further reducing power consumption.
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Fig. 2: The basic of ReRAM.
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III. RERAM-BASED PIM FOR ITERATIVE SOLVERS
A. Mixed-Precision Strategy

Mixed-precision strategies, which combine low-precision
and high-precision computing, have long been explored to ac-
celerate iterative solvers while maintaining solution accuracy.
This approach is particularly well-suited for ReRAM-based
architectures, which excel at providing low-precision initial

solutions. ReRAM’s ability to perform matrix-vector multipli-
cations with low precision allows these initial estimates to
be generated quickly, significantly reducing the number of
iterations needed to solve large-scale problems. These com-
putationally intensive tasks benefit from ReRAM’s fast analog
processing capabilities, while high-precision refinements are
handled by the CPU in digital domain to ensure accuracy.

This hybrid strategy is an effective way to accelerate
iterative solvers while maintaining both performance and
solution quality. Several studies, including those by Richter
et al. [17] and Kalantzis et al. [19], have demonstrated the
effectiveness of this approach using memristor-based arrays
such as ReRAM and PCM [18]. However, the hybrid nature
of this approach necessitates collaboration with conventional
CPU architectures, as critical steps (e.g., residual calculations
and orthogonalization) still rely on digital precision to ensure
algorithmic robustness. This limitation highlights a trade-off
between analog efficiency and digital reliability, suggesting
that full utilization of PIM architectures for end-to-end accel-
eration remains challenging.

B. Based on the Feedback Circuit Theory

Feedback-based circuit architectures have emerged as a
paradigm-shifting methodology for equation solving, offering
an alternative to traditional iterative algorithms by enabling
direct, single-step solutions through physical circuit dynam-
ics. The foundational work by Sun et al. [20] pioneered
this approach, demonstrating that ReRAM crossbar arrays
integrated with feedback circuits could solve linear systems
and compute eigenvectors in situ. By leveraging the intrinsic
interplay of Ohm’s law and Kirchhoff’s circuit laws, this
framework translated iterative mathematical operations into
analog physical processes, achieving solutions in a single
computational step without the need for iterative refinement.
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Fig. 3: The architecture of AmgR [28].

Subsequent studies further expanded the theoretical and
practical scope of this paradigm. Sun et al. [21] quantified
its advantages, revealing ultra-low time complexity: O(1) for
covariance matrices and O(log N) for more general structured
systems. Song et al. [23] demonstrated that classical iterative
solvers (e.g., Jacobi and Gauss-Seidel methods) could be re-
engineered on ReRAM crossbars with iteration-free conver-
gence. Their closed-loop feedback design bypassed traditional
convergence conditions, enabling instant solutions through
hardware-driven equilibrium. These approaches can also be
extended to solve eigenvalue problems [22] and least-squares
fitting problems [24], broadening their application to other
important matrix-related tasks with high efficiency.

Despite these advances, scalability remains a critical chal-
lenge due to the inherent limitations of analog ReRAM
hardware, including manufacturing variability, device non-
idealities (e.g., conductance drift), and prohibitive costs for
large-scale integration. To address these bottlenecks, Pan et
al. [25] proposed BlockAMC, a scalable architecture that
partitions large matrices into sub-blocks distributed across
multiple ReRAM arrays. By localizing analog computations
within smaller, more manageable blocks, BlockAMC mitigates
error propagation while preserving the O(1) time complexity
advantage, thereby bridging the gap between analog efficiency
and practical scalability. While this paradigm shows immense
potential for real-time, energy-efficient computing, significant
challenges remain in scaling to large matrices and achieving
high-precision accuracy, particularly in the presence of analog
hardware imperfections.

C. Enabling Floating-Point Computations

For scientific computing, solving equations often requires
high precision, necessitating the use of floating-point arith-
metic. However, traditional ReRAM arrays perform fixed-
point computations, posing a challenge for efficiently realizing
floating-point operations. Feinberg et al. proposed several
strategies to enable floating-point scientific computing on
memristive accelerators [26], including exploiting exponent
range locality, early termination of fixed-point computation,

and static operation scheduling. The design of this work
aims to reduce the number of bits used for the exponent
by truncating several higher-order bits. While this truncation,
along with mantissa padding, reduces the bit requirements,
it could potentially compromise the convergence of iterative
solvers.

To overcome these limitations, Song et al. introduced Re-
Float [27], a data format and accelerator architecture tai-
lored for floating-point processing in ReRAM. By leveraging
exponent value locality, ReFloat significantly reduced the
number of bits needed to represent floating-point numbers
and optimized the exponent base. This mitigated convergence
issues, lowered hardware costs, minimized crossbars and pro-
cessing cycles. As a result, ReFloat offered a low-cost, high-
performance solution for floating-point processing in ReRAM,
greatly improving upon previous work and meeting the preci-
sion demands of scientific computing.

Scientific computing imposes significantly higher precision
requirements compared to applications like neural networks
and graph processing, which often tolerate lower numerical ac-
curacy. While ReRAM architectures excel in supporting fixed-
point and low-precision floating-point computations, making
them ideal for neural networks and graph-based tasks, they
currently fall short of meeting the stringent precision demands
of scientific computing. Although recent advancements have
made strides in developing cost-effective high-precision solu-
tions, further research is essential to optimize ReRAM-based
accelerators for the extreme accuracy and reliability required
in scientific computing applications.

D. Dealing with Irregularity and Sparsity with CAM

To address the irregular operations and discontinuous data
access patterns inherent in sparse matrix computations, CAM
has emerged as a transformative technology. By leveraging
CAM’s parallel search capabilities, novel methodologies now
efficiently resolve the scattered and non-deterministic memory
access challenges of sparse matrices, significantly improving
computational efficiency, reducing overhead, and enabling
high-performance numerical processing.
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Fig. 4: Implement SpMV on ReRAM, including Compression, Loading, Search, and Computation Phases [29].

The AmgR framework [28] exemplifies this innovation. De-
signed as a ReRAM-based PIM architecture, AmgR acceler-
ated Algebraic Multigrid (AMG) solvers by classifying AMG
kernels into three reusable hardware modules: aggregation
operation (handled by the AGG unit), multiplication of the
inverse matrix by a vector (solving coarse grid equations,
managed by the AC unit), and arithmetic between vectors
and matrices (executed by the ASPR unit), as shown in Fig.
3. A dedicated AGG unit using analog CAM addressed the
irregularity of aggregation operations. Specifically, the weight
of each undirected edge and the index of its corresponding
node were input into the CU in the AGG. By comparing the
weights of the undirected edges, the CU selected the top k
largest edges, and marks the index of the corresponding node
with registers. In each iteration, the nodes corresponding to
the top k largest edges were gathered into a coarse node.
Repeat the above process until the entire coarsening pro-
cess was complete. Furthermore, to mitigate ReRAM’s poor
write endurance, AmgR introduced a new mapping strategy
that reduced data handling and writes, prolonging ReRAM’s
endurance. Experimental results demonstrated AmgR’s effec-
tiveness, achieving significant performance improvements and
energy consumption reductions compared to HYPRE on CPU
and AmgX on GPU.

Building on this, a ReCG architecture [29] was proposed by
Fan et al., which is tailored to accelerate sparse Conjugate Gra-
dient (CG) solvers. ReCG addressed two critical challenges:
mapping sparse irregular operations onto regular ReRAM
crossbars, and optimizing dataflows to alleviate ReRAM write
durability concerns. For SpMV operation, the most time-
consuming phase in CG solver, ReCG introduced a sparse
matrix compressed storage format and a four-phase workflow
(as shown in Fig. 4). During the compression phase, ReCG
stored only the lower triangular portion of the sparse matrix,
significantly reducing data storage and transmission costs. The
loading phase involved writing non-diagonal element indices
to CAM crossbars and their corresponding values to MAC
crossbars. The search phase executed concurrent searches for
row and column indexes using CAM, while the computation
phase leveraged MAC arrays to perform calculations based

on the search outcomes. This approach achieves significant
performance gains and energy savings over CPU, GPU, and
FPGA accelerators.

Unlike neural networks, which primarily rely on structured
or block-sparse matrices, scientific computing must handle
arbitrarily unstructured sparse matrices generated by physical
simulations. These matrices exhibit irregular non-zero distri-
butions, complicating optimization. Furthermore, scientific op-
erators (e.g., multigrid solvers) demand far greater algorithmic
complexity than the matrix-vector multiplications common in
machine learning. The integration of CAM into ReRAM-based
PIM architectures, as realized in AmgR and ReCG, marks a
paradigm shift in sparse matrix computation. By co-designing
hardware and algorithms to address irregular data access and
operational patterns, these frameworks achieve unprecedented
efficiency and energy savings, setting a new benchmark for
high-performance scientific computing.

IV. CONCLUSION

In this paper, we provide a comprehensive discussion on the
latest advancements in iterative solver accelerators leveraging
ReRAM technology. Key aspects covered include mixed-
precision strategies, feedback circuits, enabling floating-point
computations, and dealing with irregularity and sparsity with
CAM. Building upon existing research findings, we identify
four pivotal challenges that necessitate resolution in future
investigations: implementing complex operators that defy
straightforward mapping to MAC operations; accommo-
dating general and irregular sparse matrix structures;
achieving high-precision floating-point arithmetic; and
mitigating the inherent non-idealities of ReRAM devices.
Addressing these challenges will furnish invaluable guidance
for the design and deployment of high-performance iterative
solvers, thereby establishing a robust foundation for the ad-
vancement of scientific computing in the foreseeable future.
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