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Abstract
With the support of more precision formats in emerging hardware architectures, mixed-precision has become a popular 
approach to accelerate deep learning (DL) training. Applying low-precision formats such as FP16 and BF16 to neural 
operators can save GPU memory while improving bandwidth. However, DL frameworks use black and white lists as default 
mixed-precision selections and cannot flexibly adapt to a variety of neural networks. In addition, existing work on automatic 
precision adjustment does not consider model convergence, and the decision cost of precision selection is high. To address 
the above problems, this paper proposes CoMP, a non-intrusive framework for Convergence-aware operator-wise Mixed-
precision training. CoMP uses two-stage precision adjustment based on epochs and batches to ensure convergence and 
performance respectively. After that, CoMP performs subsequent training according to the searched optimal operator-wise 
mixed-precision plan. The experimental results on A100 GPU show that CoMP achieves a maximum performance speedup 
of 1.15× compared with PyTorch AMP implementation, while also saving up to 29.81% of GPU memory.
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1  Introduction

In recent years, DL has profoundly affected all walks of life 
and opened up new prospects for many fields, from computer 
vision (Li et al. 2019) and natural language processing (Lan 
et al. 2019), to recommendation system (Goodfellow et al. 
2020). DL needs to undergo a certain amount of “learning", 
where trained neural networks can perform “inference" to 
achieve judgment and generation functions. However, neural 
network training has huge demands on computing power and 
memory (Sevilla et al. 2022). An important research issue 
is how to compress the model and accelerate training based 
on hardware characteristics, thereby facilitating promotion.

Decimals are represented by floating-point numbers in 
computers. Different areas have their own standards for the 
distribution range and precision of the values to be repre-
sented. For example, scientific computing pursues high pre-
cision, such as FP64, to perform the calculation process. 
Whereas in some cases (e.g., DL), such precise numerical 
expression is not required. This provides space for the usage 
of lower precision FP32 and FP16. Using lower precision 
means that more data can be transmitted under limited band-
width, and data locality can be improved to reduce cache 
conflicts. Furthermore, the latest GPU architectures are 
equipped with special units, such as tensor cores, for calcu-
lations below FP32 precision.

In the DL field, the weights and other tensors involved in 
the calculation process of typical layers do not require a wide 
range of numerical expression. Therefore, low precision is 
widely adopted, such as low-bit quantization in the inference 
stage (Gholami et al. 2022), and FP32-FP16 mixed-preci-
sion representation in the training stage (Micikevicius et al. 
2017). Mixed-precision can accelerate operator calculations 
and reduce memory footprint, which converts certain tensors 
to FP16 but saves weights as FP32. During training, gradi-
ent scaling can guarantee convergence to a certain extent. 
Mainstream DL frameworks such as Abadi et al. (2016) and 
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Paszke et al. (2019) also open interfaces for mixed-precision 
plans for user convenience.

For mixed-precision training, DL frameworks commonly 
use static lists to give the precision setting for each operator. 
This approach takes into account expert knowledge to ensure 
the efficiency of mixed-precision, but it cannot always adapt 
to model training due to the massive possible operator com-
binations. For example, aggressive low-precision selection 
may cause numerical overflow of the operators, whereas an 
overly conservative high-precision selection has no room 
for acceleration. In addition, the computing capability of 
low-precision cores in GPU hardware architectures varies, 
further introducing format conversion costs. Recent work 
(He et al. 2022) has considered the conversion cost, but it 
requires offline training of performance models to deter-
mine the precision selection for a specified network struc-
ture. When new operators are introduced, the performance 
model needs to be re-trained, which cannot keep up with the 
development of DL frameworks.

According to our observations, the current mixed-preci-
sion methods have the following three limitations: 1) The 
tradeoff between model convergence and training perfor-
mance is not considered. Format decisions under certain 
operators, datasets, and tensor dimensions may lead to pre-
cision explosion. 2) Precision decisions are not flexible 
enough to match various cases. Over-reliance on expert 
knowledge may affect the precision selection of operators 
and lead to sub-optimal decisions. 3) The high offline cost 
makes it unfriendly to both hardware and frameworks. 
Large amounts of offline performance analysis are required 
to perform precision screening, resulting in poor perfor-
mance after the updated network structure.

This paper proposes CoMP, an efficient operator-wise 
mixed-precision neural network training framework that 
ensures convergence. CoMP’s first stage determines the 
operators that tend to have a greater impact on convergence 
based on expert knowledge, and samples low-precision for-
mats epoch by epoch to assign them to the operators with 
wider distribution in the network structure. Taking the loss 
value of a single epoch of FP32 as the basis, CoMP ensures 
that the loss value of key operators after conversion to lower 
precision (e.g., FP16) is within an acceptable range. Next, 
the fastest plan within the acceptable loss range will serve 
as the initial value for the second stage based on batch sam-
pling. Since the precision decisions of key operators in the 
first stage ensure the model convergence, CoMP enumer-
ates the precision settings of other operators according to 
specific rules in this stage. CoMP conducts profiling on a 
single batch at a low cost to determine the accuracy plan 
with the best performance.

The two-stage design of CoMP enables it to work 
with DL frameworks in a non-intrusive manner. CoMP 
comprehensively considers model convergence and 

training performance to determine the most appropriate 
precision plan. Specifically, this paper makes the following 
contributions:

•	 We propose an epoch-based sampling strategy to ensure 
convergence. In Stage 1, only operators that have a 
greater impact on convergence and meet the given loss 
conditions are adjusted to find a relatively good precision 
plan.

•	 We design a batch-based sampling strategy to search for 
better precision plans. In Stage 2, the optimal precision 
plan for training performance is obtained at the low cost 
of running only one epoch. This process has considered 
information such as the dataset and model structure.

•	 We implement the CoMP framework and conduct 
detailed performance analysis. The experimental results 
show that compared with PyTorch AMP, CoMP achieves 
a maximum performance speedup of 1.15× , also saves 
memory by 29.81% without accuracy degradation.

The rest of this paper is organized as follows. Section 2 
presents the background. Section 3 presents the details of 
CoMP’s two-stage methodology. Sections 4 and 5 present 
the evaluation results of CoMP and the related work. Sec-
tion 6 concludes this paper.

2 � Background

2.1 � Floating point precision

In the DL framework, if it is not explicitly specified, the 
data precision is generally single precision (FP32). In addi-
tion to FP32, there are some other floating point expressions 
depending on the range and accuracy of the expression, as 
shown in Fig. 1. In the single precision 32-bit format, 1 bit is 
used as a sign to indicate whether the number is positive or 
negative, 8 bits are reserved for the exponent to express the 

Fig. 1   Five expressions of floating point precision
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numerical range, and the remaining 23 bits are used to indi-
cate the exact precision of the floating-point number, called 
fraction digits. For FP64, the exponent reserves 11 bits, and 
the fraction digits are 52 bits, significantly expanding the 
range and size of the numbers that can be represented. FP16 
has a narrower range, with only 5 bits for the exponent and 
10 bits for the fraction digits. BF16 and TF32 have also been 
developed to deal with different tasks and application sce-
narios. BF16 uses 1/10 precision to obtain a value range of 
1034 times without changing the memory usage of FP16. The 
difference between BF16 and FP32 is mainly in the fraction 
digits, so the conversion between BF16/FP32 is straightfor-
ward. The exponent bits of TF32 are consistent with FP32, 
and the fraction bits are consistent with FP16. Lower floating 
point precision, such as FP8, is not yet supported in stable 
versions of DL frameworks.

Mostly, model training uses FP32 to store weights to take 
advantage of a wider dynamic range. But for model infer-
ence, using lower precision integers, such as INT8/INT4, 
can effectively reduce latency and improve response speed. 
The technique of using a lower bit width than floating point 
precision to perform calculations and store tensors is called 
quantization (Gholami et al. 2022). Quantized models use 
reduced precision tensors instead of floating point values 
when performing some or all operations. Currently, at the 
general framework level, mainstream DL frameworks do not 
support quantized inference on GPUs. Still, for developers, 
some development packages provided by GPU manufactur-
ers, such as TensorRT ,1 support quantization.

2.2 � GPU Hardware architecture

Figure 2 shows the GPU hardware architecture with multiple 
precision processing units and Tensor Core (TC) for tensor 
calculations. Depending on the specific model, it contains 
dozens to hundreds of Streaming Multiprocessors (SM). 

When the kernel is launched on the host side, thousands of 
threads will be created on the device side (GPU) accord-
ing to the task planning settings. For the NVIDIA series of 
GPUs, every 32 threads are organized into a warp, which 
determines the synchronization of this group of threads. At 
the same time, the number of warps in the thread block (TB) 
will be specified in the task planning, and the TB scheduler 
maximizes the occupancy ratio of the GPU multi-core under 
the constraints of hardware resources.

The storage hierarchy on the GPU includes global mem-
ory, texture memory, constant memory, local memory, 
shared memory, and register file. The data in registers is the 
fastest accessible to the kernel; once the kernel function uses 
more registers than the hardware limit, data will be obtained 
from the cache and local memory. Compared with the data 
precision of FP64, lower precision (FP32 or FP16) usually 
means a wider addressing range in registers and caches with 
limited bandwidth, thereby improving the spatial locality 
of data. This is an important reason why mixed-precision 
programs achieve acceleration effects.

An SM contains multiple warp schedulers and dispatch 
units for scheduling threads. Starting from the Volta archi-
tecture, TC has been added to the NVIDIA series of graphics 
cards in addition to the traditional CUDA cores. As shown in 
Fig. 2, taking NVIDIA A100 as an example, its SM contains 
CUDA cores that support INT32, FP32, and FP64, while TC 
supports mixed-precision operation of FP32/FP16 and also 
provides support for DL inference of INT8. If the GPUs do 
not support TC, the DL framework (e.g., Abadi et al. (2016), 
Paszke et al. (2019)) use CUDA cores to perform low-pre-
cision calculations. Although mixed-precision training can 
still reduce memory bandwidth requirements and improve 
computing efficiency, these advantages are relatively small 
compared to GPUs with TC. The DL framework will detect 
whether the GPU supports TC and adjust the execution strat-
egy, but the specific operations call to TC needs to meet 
certain conditions, such as tensor dimensions, the number 
of convolutional channels, and the dimension of the linear 
layer must be a multiple of 8.

2.3 � Mixed‑precision training

Micikevicius et al. (2017) proposed mixed-precision train-
ing. Currently, advanced DL framework such as TensorFlow 
and PyTorch provide corresponding APIs to allow users to 
enable automatic mixed-precision (AMP) on GPUs with few 
engineering efforts. The current primary consideration for 
the mixed-precision plan on the DL framework is the mix-
ture of FP32/FP16. In recent years, the DL framework has 
also supported BF16, and a mixture of FP32/BF16 has been 
added to their mixed-precision plan. However, the hard-
ware support for BF16 is mainly on the latest GPU archi-
tectures, such as Ampere and Hopper, while there is a lack of 

Fig. 2   The basic GPU hardware architecture with different types of 
processing units

1  https://developer.nvidia.com/tensorrt.
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hardware support for earlier architectures like Volta. GPUs 
use software-emulated BF16 without hardware support for 
it, affecting performance improvement and even leading to 
worse performance. To adapt to a wider range of GPUs, 
CoMP focuses on the mixed-precision plan of FP32/FP16.

Figure 3 shows DNN training with single-precision and 
mixed-precision. For single-precision training, the data pre-
cision of calculation and storage is FP32, which ensures the 
convergence of the model. For mixed-precision training, 
FP32 is used to manage weights. To overcome the gradient 
underflow caused by the decrease in learning rate, the loss 
is scaled by the coefficient loss_scale when calculating and 
then unscaled back before updating the weight. At the same 
time, some operators still use FP32 for calculation, which 
is reflected in the specific implementation of the DL frame-
work as a black and white list mechanism.

In the DL framework, mixed-precision training on GPUs 
is usually implemented by combining automatic preci-
sion conversion and gradient scaling. Taking PyTorch as 
an example, AMP for neural network training means using 
autocast() and Gradscaler() at the same time. 
With autocast(), the calculation precision will be 
automatically selected according to its black and white list 
mechanism. Some operators that tend to be numerically safe 
(e.g., Conv2d, Linear) are in the white list and will be 
automatically converted to FP16 during calculation. On the 
contrary, some operators whose calculation results are easy 
to incur numerical overflow (e.g., Layer_norm, Soft-
max) are in the black list, and will be forced to be con-
verted to FP32 during calculation. Some operators outside 
the white list and black list (e.g., Addcmul, Dot) need to 
select the precision in a way that ensures that there is no 

overflow in combination with the context of the operator, 
usually a more conservative FP32.

Similarly, in TensorFlow, users need to explicitly set a 
global variable of mixed-precision. Its black and white list 
mechanism is refined into Allowlist, Denylist, Inferlist, and 
Clearlist. Consequently, the current DL framework’s plan 
for mixed-precision training predominantly focuses on exe-
cution performance and overflow prevention. Nonetheless, 
it overlooks nuanced adjustments for the toll of precision 
transformation and fails to accommodate the pronounced 
discrepancies in numerical distribution across models and 
datasets.

He et al. (2022) proposed a training framework that per-
ceives the input tensor size and the casting cost, choosing 
the mixed-precision plan by considering the cost of casting 
FP16 and FP32 through the offline training model to predict 
the tensor casting cost online. This work with offline opera-
tions was intrusive in modifying the framework, which was 
not flexible enough in the face of the rapidly developing DL 
framework, and new operators were introduced. Jia et al. 
(2018) proposed a distributed mixed-precision plan, using 
FP16 for forward and backward as well as FP32 for gradi-
ents and weights. However, this method did not consider the 
convergence with different operators during training in detail 
and may not converge for some models containing special 
activation functions and reduction operations.

In previous methods, it was challenging to adapt to new 
GPU architectures and constantly updated DL frameworks 
at low cost. On the other hand, model training situations 
with different numerical distributions provide optimization 
space for convergence-aware mixed-precision plan adjust-
ments. CoMP propose a mixed-precision training framework 
that adapts to the DL framework in a non-invasive way and 
can quickly find an efficient mixed-precision training plan 
that ensures convergence on modern GPUs at a relatively 
low cost.

3 � Methodology

3.1 � Design overview

CoMP is a convergence-aware operator-wise mixed-preci-
sion training framework. It mainly collects convergence and 
performance data through two stages of testing and then 
selects a plan that guarantees convergence and has the opti-
mal performance for post-training. CoMP’s performance 
collection does not require modifying the structure of the 
DL framework. The optimal mixed-precision plan on the 
current GPU platform can be collected cheaply based on the 
epoch-based and batch-based sampling process.

Figure 4 shows the design overview of CoMP. For a 
model defined by a DL framework, each operator (layer) 

Fig. 3   Single-precision training and mixed-precision training in DL 
tasks



Convergence‑aware operator‑wise mixed‑precision training﻿	

will tend to use FP16 or FP32 based on the list mechanism in 
the DL framework. CoMP perform sampling based on epoch 
in Stage 1; each mixed-precision plan must traverse the data-
set thoroughly once to obtain the loss value and record the 
processing time. In Stage 2, convergence has been ensured, 
so sampling is performed based on batch. Based on the exist-
ing mixed-precision plan, other combinations of operators 
with little impact on convergence are enumerated to build 
a search space and search for the training mixed-precision 
plan with optimal performance.

According to the list mechanism of the DL framework 
and the usage of TC, CoMP extracts operators with clear 
conversion tendencies and puts them into Stage1_OP_list. 
As shown in Table 1, the DL framework sets the precision 
of operators in the whitelist (e.g., Conv2d) to FP16 by 
default. The reason is that they rarely cause value overflow, 
and CoMP will further check whether the input tensor satis-
fies the requirement to enable TC. For the operators in the 
blacklist such as Softmax, although the DL framework 
conservatively keeps them as FP32, CoMP will try convert-
ing to FP16 and perceive convergence.

Then, in Stage 1, based on epoch sampling, Stage 1 will 
first use the pure FP32 precision plan to run an epoch as a 
basis and then mainly selectively adjust the Stage1_OP_list 
to obtain different sampling policies to complete the percep-
tion of convergence. Based on the loss value of full FP32 
training, on the premise that the fluctuation of the obtained 
loss value is acceptable, the plan with the fastest running 
speed is selected as the initial sampling plan of Stage 2. In 
the second stage, the precision of some operators determined 
in Stage 1 will be fixed according to the Stage1_OP_list, and 
other operators outside the black and white list of the DL 
framework will continue to be adjusted. Performance data 
will be quickly sampled based on batches to find the plan 
with the optimal performance and put it into post-training.

3.2 � Stage 1: Epoch‑based sampling

Stage 1 of CoMP is based on epoch-based convergence-
aware performance sampling. In machine learning train-
ing, it usually takes dozens to hundreds of epochs to fully 
train the model, and each epoch means that the dataset is 
wholly traversed once. Running an epoch means traversing 
the dataset once, which can ensure the fairness of conver-
gence perception during the sampling process and exclude 
the fact that the different division methods and data distri-
bution characteristics of the dataset affect the perception of 
convergence. Although, in this stage, it takes an entire epoch 
to get feedback on a particular precision plan, it is accept-
able in the overall training overhead, which is proved by the 
subsequent Sect. 4.5.

When using the built-in mixed-precision plan, the DL 
framework uses a list mechanism for the operators that 
make up the model. More specifically, it is determined 

Fig. 4   Design overview of CoMP framework

Table 1   Operators contained in Stage1_OP_list

Operator Precision Description

Conv2d  FP16  if the input tensor 
satisfies the 
requirement to 
enable TC

Linear

Matmul

ReLU

Layer_norm FP32 Try converting 
to FP16 and 
perceive conver-
gence

Softmax
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by whether the operator’s calculation is prone to over-
flow or underflow; that is, it is determined by numerical 
safety. For example, for Linear, it is included in the 
autocast-to-FP16 list of PyTorch, which means that this 
operator is generally numerically safe. Still, sometimes 
different context precision brings additional precision 
conversion overhead, or the FP16 operator cannot use TC 
to enjoy the hardware acceleration effect due to specific 
dimensions, which makes the tendency to convert to FP16 
unreasonable. Or for operators such as Exp, it exists in 
the autocast-to-FP32 list of PyTorch, but sometimes due 
to different specific parameters of the model and differ-
ences in the numerical distribution of the dataset, it does 
not cause the overflow expected by conservatives. These 
omissions in the list mechanism provide CoMP with room 
for adjustment.

For operators with clear conversion tendencies in the 
DL framework, Stage 1 will first obtain the information 
of these operators and save them in Stage1_OP_list when 
performing the first (basis) sampling. These operators 
are mainly adjusted in Stage 1, as shown in the triangle 
position in the Fig. 4. However, it does not mean that all 
combinations need to be enumerated. If the operator in the 
model exists in the autocast-to-FP16 list of the DL frame-
work, then its parameters will be further checked to see if 
they meet the requirements of using TC. If they do, then 
its calculation precision will be forced to be set to FP16, 
reflected in the plan expressed in a string as “0", such as 
the dark green Operator-3 and Operator-5 on the left in the 
Fig. 4. If it does not meet the requirements of using TC, 
such as the light green part Operator-0 and Operator-7 on 
the left in the Fig. 4, then this may be adjusted to FP32 and 
needs to be tested as an optional plan in Stage 1. On the 
contrary, if the operator is in the autocast-to-FP32 list of 
the DL framework, such as Operator-4, then there is also a 
possible opportunity to try and generate an optimized plan.

So, for the example of Stage 1 in Fig. 4, three opera-
tors need to try different precision combinations: Opera-
tor-0, Operator-4, and Operator-7. Although Operator-3 
and Operator-5 are in Stage1_OP_list, they are not tried 
because they can use TC. By recording the lossi and run-
ning time ti of these operators at different precisions, and 
comparing them with the loss0 obtained by the first sam-
pling of Stage 1, which is wholly run with FP32, when 
lossi < loss0 × 101% , we think this is a safe range, Algo-
rithm 1 also shows this process. We empirically deter-
mined this range through a large number of tests. The set 
of lossi in this range is lossselected , and the plan ∗ with the 
shortest running time is selected from this setting. For the 
example in Fig. 4, planx is selected.

Algorithm 1   Sampling Process for Stage 1

The epoch-based sampling in the first stage refers to the 
precision conversion tendency in the DL framework, com-
prehensively considers whether TC can be used, and obtains 
the convergence and performance of different mixed-preci-
sion plans through actual tests. Since the sampling of Stage 
1 determines the accuracy of operators with poor numerical 
security in the DL framework, the mixed-precision plans that 
are prone to non-convergence are eliminated through conver-
gence perception. At the end of Stage 1, an initial plan that 
determines the accuracy of operators at the corresponding 
positions of Stage1_OP_list will be given to Stage 2. Stage 
2 will perform batch-based sampling on other operators that 
do not have a clear precision conversion tendency, those 
operators outside the exact black and white list.

3.3 � Stage 2: Batch‑based sampling

In the first stage of CoMP, operators with a certain precision 
conversion tendency in the DL framework are determined 
(i.e., the operators in Stage1_OP_list). Some of these opera-
tors are numerically safe and have the potential to use TC, 
while others are not numerically safe and are set to FP32 
in the preliminary plan. The remaining operators do not 
have such a conversion tendency and need to determine the 
specific plan based on the context precision, such as ReLU 
and Dropout. These operators are interspersed and distrib-
uted in the model, Operator-1, Operator-2, and Operator-6 
shown on the left side of Fig. 4. Through experimental test-
ing, we have learned that if only a single such operator is 
used, the performance can be better than FP32 under FP16. 
However, factors such as the acceleration effect of specific 
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GPU hardware, the size of the input tensor, and the precision 
conversion cost of its context are considered. In that case, 
further sampling through Stage 2 is required to determine 
at what precision this operator can perform better for the 
overall model.

Since the precision of operators in Stage1_OP_list has 
been determined, we can consider the conversion of the con-
text to enumerate the remaining operator precision plans. As 
shown in the algorithm 2, Ps1 is the mixed-precision plan 
with the optimal performance within the acceptable loss 
range selected in the first stage. This plan is indeed deter-
mined to be the operator in Stage1_OP_list. The operator 
to be adjusted in Stage 2 is still the default FP32 precision. 
Using the operator position in Stage1_OP_list as the split 
point to traverse Ps1 , when the precision of two non-adjacent 
operators in Stage1_OP_list is the same. For example, if 
both are FP32, then the operator between the two opera-
tors also maintains FP32 precision, although executing the 
middle operator alone may achieve better performance in 
FP16. When the precision of two non-adjacent operators 
in Stage1_OP_list is inconsistent, enumeration can be per-
formed to adjust the precision of the operators in the mid-
dle. Such enumeration is tested to integrate the computing 
capability of the current GPU hardware, the cost difference 
of FP16/FP32 conversion, and the fixed cost of the conver-
sion itself.

Algorithm 2   Generate Strings for Stage 2

Models are commonly trained by processing data in 
batches, iterating len(dataset) / batch_size times per epoch, 
with parameter updates at each batch. As shown in Fig. 4, 
there are y batches to iterate. The calculation results in each 
batch will be different due to the data distribution character-
istics of the dataset, but the amount of calculation is deter-
mined by the amount of data in this batch, which is also 

the part that we are concerned about affecting performance. 
Therefore, sampling according to the batch not only ensures 
the fairness of different plans but also has a reasonably low 
testing cost. In actual operation, assigning a different pre-
cision plan to each y batch means defining y models, and 
each model only runs the first batch in an epoch. The first 
stage ensures convergence according to the sampling of the 
epoch, and the sampling in the second stage directly selects 
the plan with the best performance and maintains it into 
post-training.

3.4 � Implementation details

CoMP is mainly based on the PyTorch framework and fol-
lows the basic requirements for building models in the DL 
framework. For example, the general model is defined as 
class AlexNet(nn.Module). When building the 
model, the sequential programming method is used to flatten 
the model operators to facilitate the forced modification of 
the precision of each operator. In the decision-making pro-
cess of CoMP, the specific precision setting of each operator, 
that is, the mixed-precision plan, is passed in the form of a 
“01..." string. The forward function of the model is modi-
fied to automatically insert the x.to(torch.float16) 
or x.to(torch.float32) function according to the plan 
situation to prevent data type mismatch problems during cal-
culation. The two-stage sampling in CoMP is implemented 
in Python with 1600 LOC.

The operation and deployment of CoMP do not require 
re-modifying the source code of the DL framework, and 
it works with the framework in a non-intrusive manner. 
As shown in Fig. 5, for the AMP with built-in support in 
the DL framework, after loading the dataset and model, its 
mixed-precision plan is judged based on the black and white 
list mechanism, and then directly deployed on the GPU. 
Although there are some transparent compilation optimiza-
tions adapted to the GPU in the middle, there is no feedback 
tuning mechanism. The workflow of CoMP is to search for 
the optimal plan while ensuring convergence through two-
stage sampling and provide an optimized operator-wise 
mixed-precision plan, which is put into post-training and 
finally deployed to the GPU for efficient mixed-precision 
training.

As an important reference for this work, He et al. (2022) 
has no open source code. Its primary function is based on 
TensorFlow, and it realizes graph rewriting by modifying 
some interfaces in the framework. It also tests some opera-
tors with different input and output sizes based on the cur-
rent GPU platform in advance for performance modeling. 
This means that it is an intrusive way, and the DL framework 
is modified and needs to be recompiled instead of directly 
calling the dynamic library, which brings great difficulties 
to the migration of functions and the extension of core ideas. 
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Therefore, we compare CoMP with PyTorch AMP instead, 
which is the mixed-precision training implementation of 
PyTorch. CoMP uses a two-stage sampling strategy to per-
ceive the convergence and performance feedback of the cur-
rent device platform. Based on following certain program-
ming specifications in Fig. 5, the core components of CoMP 
can be deployed to other frameworks and GPU platforms.

4 � Evaluation

4.1 � Experiment setup

The hardware we used for the experiments is shown in 
Table 2. The A100, embodying NVIDIA’s Ampre architec-
ture, is extensively employed in data centers and by research 
entities and corporations for deploying DL training tasks. 
The RTX 4090, embodying NVIDIA’s Ada architecture, fre-
quently represents a more cost-effective option for develop-
ers in non-bandwidth-limited tasks. Regarding software, we 
use NVIDIA driver 535.98, CUDA 12.4, PyTorch 2.3.1 and 

DGL 2.4 Wang et al. (2019) compiled from source for the 
GNN model implementation. All software is installed within 
a docker container running Ubuntu 22.04. All comparative 
experiments are conducted within this docker container to 
ensure effective isolation.

We test a total of six models, as shown in Table 3, namely 
AlexNet Krizhevsky et al. (2012), Vgg16 (Simonyan and 
Zisserman 2014), GAN (Goodfellow et al. 2020) adopted in 
computer vision (CV), GCN (Kipf and Welling 2016) and 
GAT (Veličković et al. 2017) adopted in recommendation 
system (RES), and BERT-base (Lan et al. 2019) adopted 
in natural language processing (NLP). The datasets used 
for the CV models are CIFAR-100 (60,000 32 × 32 images) 
(Krizhevsky et al. 2009), MNIST (60,000 28 × 28 images) 
and ImageNet (14,197,122 224 × 224 images) (Russako-
vsky et al. 2015), the datasets used for the RES models are 
Cora (2,708 nodes, 5,429 edges) and Reddit (232,965 nodes, 
11,606,919 edges) (Huang et al. 2021), and the dataset used 
for the NLP model is SQuADv2.0 (100,000 questions and 
over 50,000 unanswerable questions) (Rajpurkar et al. 2018). 
The batch_size of AlexNet and GAN is set to 156, whereas 
the batch_size s of Vgg16 and BERT-base are 128 and 16, 
respectively. We run each experiment dozens of times to 
reduce machine errors.

4.2 � Training performance

Tables 4 and 5 show the performance of FP32, AMP and 
CoMP applied to six models on different datasets and two 
GPU platforms. It can be observed that in most cases, 
CoMP can bring specific performance improvements. 
Compared with the standard precision FP32 implemen-
tation, CoMP can bring 1.28× and 1.11× speedup ratios 
on A100 and RTX 4090 GPUs, respectively. Compared 
with the most advanced framework mixed-precision 
implementation PyTorch AMP, CoMP can further bring 
an average speedup ratio of 1.04× and 1.02× on the two 
GPU platforms, respectively. CoMP obtains valuable 
performance feedback through a two-stage mechanism 
on the target platform, respectively using epoch-based 
sampling and batch-based sampling, and then selects 

Fig. 5   Comparison of CoMP and AMP workflows

Table 2   Hardware specifications

GPU1 NVIDIA A100 PCIe 40 GB (Ampere)
 CUDA Cores 6912 (108 SMs)
 Tensor Cores 432
 L1 Cache 192KB (per SM)
 L2 Cache 40 MB
 Device memory 40 GB HBM2e

GPU2 NVIDIA GeForce RTX 4090 (Ada)
 CUDA Cores 16384 (128 SMs)
 Tensor Cores 512
 L1 Cache 128 KB (per SM)
 L2 Cache 72 MB
 Device memory 24 GB GDDR6X

Table 3   Models and datasets for evaluation

Application Model Dataset

CV AlexNet CIFAR-100 ImageNet
Vgg16
GAN MNIST/ImageNet

RES GCN  Cora Reddit
GAT​

NLP BERT-base SQuADv2.0
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the mixed-precision plan with optimal performance. Of 
course, this is based on ensuring convergence, as shown 
in Sect. 4.4.

Compared with the FP32 plan, the most significant accel-
eration effect of CoMP appears on the BERT-base model 
trained (fine-tuned) using SQuADv2.0, with a speedup 
ratio of 1.91× on A100 and 1.52× on RTX 4090. We believe 
there are more Linear operations in the BERT-base, and 
its model structure is more complex than other tested mod-
els, giving CoMP a more prominent search space to find a 
suitable mixed-precision plan. For CV models, Vgg16 train-
ing on the CIFAR-100 dataset, CoMP can bring a 1.88× 
speedup on A100 compared to the FP32 implementation, 
and still bring a 1.70× speedup on RTX 4090; compared 
with the AMP implementation, it can bring 1.15× and 1.11× 
speedup on A100 and RTX 4090 respectively. This further 
proves that CoMP’s search and decision-making for mixed-
precision plans requires a certain complexity of the model 
structure to form a corresponding search space. A relatively 
more complex model structure often means more changes in 
the intermediate tensor dimensions and more types of opera-
tors that affect convergence. The conversion cost between 
FP32 and FP16 and whether TC can be used will affect train-
ing performance. The batch-based sampling can perceive 
such impacts from performance data through actual testing, 
thereby obtaining a relatively optimal mixed-precision plan.

When the experimental platform is determined, the 
same model with the same parameter settings, CoMP also 
has different acceleration effects under different datasets. 
For example, the experimental platform is fixed as A100 
GPU, Vgg16 on CIFAR-100 and ImageNet, respectively; 
the acceleration effect of CoMP on large-scale datasets is not 
as strong as that on small-scale datasets. Even for PyTorch 
AMP, some models have no performance improvement, such 
as AlexNet on ImageNet and GCN on Cora. After digging 
deeper into PyTorch’s mixed-precision plan, we find that 
some mixed-precision optimizations are enabled by default 
in FP32 implementation. However, the training performance 
of CoMP will not be worse than that of FP32 implementa-
tion, even in the worst case, returning to the situation where 
all operators are FP32, the performance is consistent with 
the benchmark. In some cases where the search space is 
limited, CoMP achieves a performance degradation of less 
than 10% compared to AMP.

For GPU platforms tested, RTX 4090 generally performs 
better than A100 because the former actually has more 
CUDA Cores and TCs, indicating more SM resources availa-
ble. On small-scale datasets such as CIFAR-100 and MINST, 
RTX 4090 has a more obvious performance advantage; on 
larger-scale datasets such as ImageNet, this advantage is not 
apparent. The A100’s high-bandwidth memory and larger 
L1 Cache, which are conducive to model inference, do not 

Table 4   Training performance 
of CV & NLP models on A100 
and RTX 4090 GPUs

The highest performance is in bold

Model Dataset Time Per Epoch (s)

A100 RTX 4090

FP32 AMP CoMP FP32 AMP CoMP

AlexNet CIFAR-100 4.54 3.84 3.65 2.17 2.15 2.09
Vgg16 CIFAR-100 8.32 5.08 4.42 3.89 2.53 2.29
AlexNet ImageNet 1363.08 1345.41 1340.06 1383.36 1340.39 1329.90
Vgg16 ImageNet 4346.02 2895.72 2792.61 3671.21 2287.73 2281.51
GAN ImageNet 2014.56 1804.22 1825.80 1398.75 1299.09 1303.87
GAN MNIST 11.77 11.71 11.51 3.56 3.52 3.29
BERT-base SQuADv2.0 1.53 0.83 0.80 1.37 0.93 0.90

Table 5   Training performance 
of GNN models on A100 and 
RTX 4090 GPUs

The highest performance is in bold

Model Dataset Time Per Epoch (ms)

A100 RTX 4090

FP32 AMP CoMP FP32 AMP CoMP

GCN Cora 0.68 0.71 0.68 0.30 0.31 0.29
GAT​ Cora 1.03 1.12 1.02 0.55 0.53 0.55
GCN Reddit 8.27 7.82 7.79 5.37 4.38 4.90
GAT​ Reddit 186.16 155.50 155.21 OOM 71.11 70.76
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show advantages here. It is worth noting that GAT consumes 
large GPU memory when running on larger datasets (such as 
Reddit). Specifically, the results mentioned in Sect. 4.3 show 
that GAT consumes 26.62 GB of memory when running on 
Reddit, which leads to out of memory (OOM) problems on 
RTX 4090 with a memory specification of 24 GB. Only on 
A100 with a memory specification of 40 GB can training be 
performed without changing hyper-parameters.

4.3 � GPU memory consumption

Table 6 shows the peak GPU memory usage of six mod-
els under different datasets; the results show that the CoMP 
method can save GPU memory in most cases. Overall, com-
pared with the standard implementation of FP32, CoMP 
saves an average of 29.54%, and compared with the imple-
mentation of PyTorch AMP, it saves an average of 14.03%. 
Among them, AlexNet has the most obvious memory sav-
ings on the CIFAR-100 dataset, saving 29.81% compared 
with AMP, and 57.30% compared with the standard imple-
mentation of FP32. On the same dataset, Vgg16 also saves 
28.93% of memory compared with AMP by applying CoMP. 
The CoMP method is mainly effective in saving GPU mem-
ory for models primarily composed of convolution opera-
tions, such as AlexNet, Vgg16 and GAN. However, for GNN 
models, the space that can be saved by adjusting the mixed-
precision plan is limited because of the DGL customized 
library and the simple model structure.

It is worth noting that for models trained on the ImageNet 
dataset, although the proportion of memory savings brought 
by the CoMP is not the largest, its absolute saving is the 
largest. For example, for Vgg16 trained on ImageNet, the 
batch_size is 128, then CoMP saves 937.84 MB relative to 
AMP, and saves up to 7771.04 MB compared to FP32. In 
absolute terms, it drops from 17201.88 MB to 9430.84 MB. 
This is a critical saving for some GPU processors with lim-
ited memory, which means that training can be performed 
without adjusting batch_size. CoMP uses convergence-aware 
sampling, combined with the use of TC, greedily uses FP16 
for calculations, and achieves the effect of gradient scaling 
by promptly discarding mixed-precision plans that are prone 
to non-convergence, without the need for adaptive gradi-
ent scaling and scaling back. This makes CoMP save cor-
responding storage space compared to AMP, which includes 
automatic conversion and gradient scaling, thereby improv-
ing bandwidth utilization and data locality.

4.4 � Accuracy comparison

Table 7 shows the accuracy or validation score of the model 
after training 100 epochs. FP32 is PyTorch’s default pre-
cision for neural network training, while AMP combines 
precision auto-cast and gradient scaling. It can be observed 
that under the protection of gradient scaling, the accuracy 
of each model is slightly affected, and the accuracy of GAN 
and GNN models can be maintained almost the same. For 
GAN, our primary evaluation is the accuracy performance 

Table 6   Peak memory 
utilization during model 
training

The lowest memory consumption is in bold

Model Dataset 1 Memory Utilization (MB) Dataset 2 Memory Utilization (MB)

FP32 AMP CoMP FP32 AMP CoMP

AlexNet CIFAR-100 797.80 485.31 340.64 ImageNet 1698.54 1463.80 1084.58
Vgg16 CIFAR-100 1227.38 813.91 578.46 ImageNet 17201.88 10368.68 9430.84
GAN MNIST 37.77 37.77 27.65 ImageNet 613.26 613.26 462.14
GCN Cora 54.41 56.83 54.38 Reddit 6709.75 6709.75 6709.75
GAT​ Cora 130.04 108.48 108.48 Reddit 26620.03 16025.70 16001.81
BERT-base SQuADv2.0 4997.26 3910.80 3724.78

Table 7   The Top-1 accuracy or 
F1 validation score after model 
training

The highest accuracy is in bold

Model Dataset 1 Top-1 Accuracy (%) Dataset 2 Top-1 Accuracy (%)

FP32 AMP CoMP FP32 AMP CoMP

AlexNet CIFAR-100 61.97 61.90 62.55 ImageNet 63.37 62.07 62.78
Vgg16 CIFAR-100 70.04 70.88 70.12 ImageNet 72.40 72.37 72.36
GAN MNIST 49.95 49.95 48.79 ImageNet 49.91 49.95 49.95
GCN Cora 79.50 79.50 79.60 Reddit 94.31 94.30 94.27
GAT​ Cora 82.20 81.20 81.90 Reddit 78.34 77.02 77.02
BERT-base SQuADv2.0 88.50 88.20 88.00
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of the discriminator. Since the leading judgment is between 
machine-generated images and real images, the closer the 
accuracy is to 50.00%, the better the effect. The BERT-base 
NLP task is a special one; the validation score F1 is used 
for evaluation, and the stability of the score is also main-
tained under the CoMP method whose verification is within 
an acceptable range.

The premise for CoMP to obtain the optimal mixed-
precision plan is to ensure convergence. When the corre-
sponding CoMP’s Stage 1 samples according to epoch, each 
epoch actually traverses the dataset. Suppose the loss value 
under the current mixed-precision plan is more significant 
than 101% of the baseline value during sampling of a single 
epoch. In this case, CoMP will abandon the current plan and 
gradually return to a more conservative plan, even adjusting 
the precison of all operators to FP32. We set the threshold to 
101% based on experience, which ensures that value over-
flow can be perceived without placing too strict restrictions 
on the value range. By doing so, CoMP can perceive the 
changes in accuracy and minimize the fluctuation caused by 
precision adjustment. CoMP’s second stage is totally based 
on the convergent plan to further sample according to the 
batch and take the plan with the optimal performance. In 
the worst case, CoMP will fall back to the precision plan of 
using FP32 completely, so the convergence and accuracy of 
the model are ensured.

4.5 � Overhead analysis

CoMP obtains the optimal mixed-precision plan to ensure 
convergence on the current platform through a low-cost two-
stage mechanism. Figure 6 shows the breakdown of these 
two stages in the overall training time on the A100 GPU, 
which includes the overhead of the CoMP method Stage 1, 
Stage 2 and the post-training process. For the above six mod-
els, the total overhead of the two stages of CoMP is 6.49% 
on average. For GAN, the overhead of CoMP accounts for 
3.30% of the total. Because of GAN’s simple structure, the 
number of layers of Generator and Discriminator is relatively 

small, resulting in a lack of diverse sampling schemes that 
may provide higher performance and mixed-precision plans. 
On the contrary, for the BERT-base model, whose model 
composition is quite complex, including 12 bidirectional 
encoder layers and the main operations are linear scaled 
dot product attention and LayerNorm, and the sampling 
schemes are relatively diverse, increasing the decision cost 
of CoMP. However, considering the widespread application 
of Transformer-based models represented by BERT-base in 
the industry, many manufacturers require pre-training and 
fine-tuning. The high performance mixed-precision plan 
brought by CoMP that guarantees convergence still has solid 
practical significance.

For the six models we evaluated, when the hardware 
platform is fixed, the trend of sampling breakdown at each 
stage of CoMP operation is mainly based on the structural 
information of the model itself. Although the final mixed-
precision plan will vary depending on the size of the internal 
intermediate tensor and the number of TC on the hardware 
platform, the sampling time of each stage is proportional to 
the datasets. This means that for larger datasets, the deci-
sion cost of CoMP’s convergence-aware sampling will 
also increase. But often, for larger datasets, more epochs 
are required to converge, and the expectation for accuracy 
will be higher; as a result, CoMP still has great potential for 
application on large-scale datasets.

4.6 � Ablation study

Both stages involved in CoMP play key roles. Stage 1 elimi-
nates overly aggressive mixed-precision plans through con-
vergence perception to ensure the convergence of model 
training. Stage 2 continues to look for optimal performance 
plans at a low cost through batch-based sampling. We per-
form ablation studies on each model to compare CoMP with 
only epoch-based sampling, only batch-based sampling, 
and both sampling stages, showing the accuracy and per-
formance differences.

Figure 7 shows the training performance for model train-
ing with only Stage 1, only Stage 2, and both stages. To 
ensure that the values in the vertical axis are distributed 
in similar intervals, the performance data here is run 1000 
times for GCN and GAT. The acceleration effect for Vgg16 
is the most obvious, whose speedup ratio of CoMP with 
two stages is 1.14× because the operator combination such 
as Conv2d and Linear contained in the Vgg16 model is 
more diverse, which provides suitable tuning space for the 
second stage of CoMP. The least obvious acceleration effect 
appears in BERT-base, because most of the operators in this 
model have conversion tendencies in the DL framework; that 
is, there are many operators in the Stage1_OP_list of CoMP, 
and most of them can be accelerated by TC, leaving little 
tuning space for CoMP. Because BERT-base and GAN do Fig. 6   Time breakdown of CoMP training process
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not converge in CoMP with only Stage 2 (the result is NaN), 
the performance is meaningless and not shown in Fig. 7.

Figure 8 shows the verification accuracy of the trained 
model when CoMP has only Stage 1, only Stage 2, and both 
stages. For the GAN network, only Stage 2 leads to non-con-
vergence and underflow, so there is no meaningful accuracy 
output. Non-convergence also occurs for BERT-large, and 
its F1 score is close to 0, significantly lower than that of the 
complete CoMP. For other tested models, the convergence 
awareness part in Stage 1 is skipped, and only batch-based 
performance sampling is performed. Although it achieves 
better training performance, it is a relatively radical plan 
from the perspective of the mixed-precision plan, that is, 
the situation where FP16 operators account for the majority.

5 � Related work

5.1 � Mixed‑precision computation

Recently, some efforts collectively reflect the advancements 
in the field, where mixed-precision computation is being 
increasingly adopted for a wide range of applications, from 

ML to broader GPU-accelerated scientific computing tasks 
(Buttari et al. 2007; Baboulin et al. 2009; Bylina and Bylina 
2013; Lam et al. 2013; Haidar et al. 2017, 2018; Gao et al. 
2024; Xu et al. 2024). (Buttari et al. 2007) used a combina-
tion of FP32 and FP64 to significantly enhance the perfor-
mance of many dense and sparse linear algebra algorithms 
while maintaining the accuracy of the results. Baboulin et al. 
(2009) post-processed the FP32 solution by refining it into 
an FP64 precision plan in the context of solving a system 
of linear equations. Bylina and Bylina (2013) analyzed WZ 
decomposition, they used a mixed-precision iterative refine-
ment algorithm of single precision, double precision, and 
long double precision combined with machine learning. 
Kotipalli et al. (2019) designed a system to automatically 
select mixed-precision data types for GPU applications 
while ensuring adherence to specified accuracy constraints. 
Chitty-Venkata et al. (2022) proposed a neural structure 
framework that used mixed sparsity and precision search 
to find a mixed-precision quantization model, and searched 
for the global optimal sparse precision combination of each 
layer by using joint modeling of architecture, sparsity, and 
precision. Gao et al. (2024) used whether to perform auto-
matic mixed-precision training as a tuning parameter and put 
into time estimator as a component of the overall scheduler. 
Xu et al. (2024) integrated the mixed-precision code gen-
erator and the automatic tuner by defining a parameter to 
achieve automatic tuning with the prediction function. Ho 
et al. (2021) introduced a mixed-precision algorithm frame-
work GRAM that traded off output error and performance, 
with an optional half-precision math library to accelerate 
GPU applications such as matmul. The above work pro-
vides an important reference for CoMP to flexibly adjust 
the precision of different operators, and inspires us to use 
epoch-based and batch-based sampling to optimize the plan 
in mixed-precision neural network training.

5.2 � Performance tuning on GPU

The complex computation of some applications carried out 
on GPUs contains certain key parameters that will signifi-
cantly affect the execution efficiency of the program. For 
this reason, existing work has designed auto-tuning methods 
(Dongarra et al. 2018; Pfaffe et al. 2019; Sun et al. 2021, 
2022, 2024; Randall et al. 2023; Cho et al. 2023; Para-
syris et al. 2023; Zhai et al. 2023). Dongarra et al. (2018) 
performed batched calculation auto-tuning on GPU for a 
series of numerically dense linear algebra operators such 
as Cholesky factorization. Sun et al. (2022) designed the 
graph attention network (GAT) as a performance estimator, 
and designed a multi-head self-attention module to learn 
the complex relationships between features, improving the 
performance of DNN model compilation. Sun et al. (2021) 
reduced the search cost with approximate genetic algorithms 

Fig. 7   The training performance of CoMP with only Stage 1, only 
Stage 2, and both stages

Fig. 8   Top-1 accuracy of CoMP with only Stage 1, only Stage 2 and 
both stages
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and determined the optimal parameter setting for stencil 
computations. On this basis, Sun et al. (2024) treated per-
formance prediction as a regression problem and exploited 
pre-trained machine learning models to guide search space 
sampling to avoid actual execution. Parasyris et al. (2023) 
proposed a mechanism to facilitate the automatic scaling 
of large (OpenMP) offloaded applications by eliminating 
resource requirements and application dependencies. Zhai 
et al. (2023) extracted features from scheduling primitives 
and treated the problem as a tensor language processing task, 
so that the task of predicting tensor program delays through 
the cost model is transformed into a natural language pro-
cessing (NLP) regression task. Tian et al. (2022) developed 
an adaptively mixed-precision (SAMP) toolkit to select the 
appropriate precision (FP16/INT8) to quantize the model 
for inference based on specific task requirements. The GPU 
auto-tuning mechanisms in the above work provide a refer-
ence for the mixed-precision neural network training tuning 
in this work. CoMP obtains the performance of the current 
platform at a low cost through a two-stage sampling and 
utilizes the feedback to search for the mixed-precision plan 
with optimal performance.

5.3 � Mixed‑precision architecture

Some work has designed dedicated architectures for mixed-
precision to handle specific problems, such as in the field 
of scientific computing (Sun et al. 2008; Wang et al. 2019; 
Zhang et al. 2019) and machine learning (Wu et al. 2018; 
Nandakumar et al. 2018; Gong et al. 2019; Cai and Vas-
concelos 2020; Zhou et al. 2020; Wang et al. 2021; Sun 
et al. 2022; Chitty-Venkata et al. 2022; Zhu et al. 2024). 
(Sun et al. 2008) dealt with the direct method linear solver 
problem on FPGAs; they proposed a mixed-precision itera-
tive reinforcement algorithm, conducted error analysis, and 
implemented the designed architecture on a reconfigurable 
platform. Wang et al. (2019) proposed a hardware-aware 
automatic quantization framework that used reinforcement 
learning to automatically determine the quantization strategy 
and adopt the feedback early design loop of the hardware 
accelerator. Gong et al. (2019) proposed a joint optimization 
architecture that performs end-to-end neural network and 
quantization space. Through its designed search method, it 
found the optimal combination of architecture and accuracy 
(bit width), thereby directly optimizing prediction accu-
racy and energy consumption. Cai and Vasconcelos (2020) 
referred to optimal mixed-precision network search, over-
came the difficulties of discrete search space and combi-
natorial optimization, and designed a differentiable search 
structure. For the important hardware acceleration unit TC 
of mixed-precision, Wang et al. (2021) proposed a dual-side 
sparse TC to exploit the sparsity of both weights and activa-
tions. Sun et al. (2022) cast a joint architectural design and 

quantified entropy maximization process to propose a multi-
stage solution for CNNs deployed on IoT devices. Reggiani 
et al. (2023) proposed a collaborative design architecture 
of software and hardware to efficiently calculate quantized 
DNN convolution kernels based on byte and sub-byte data 
size. Zhu et al. (2024) proposed a degree-aware mixed-pre-
cision quantization scheme for GNN inference through the 
co-design of software and hardware, learning the appropriate 
bit width according to the in-degree of the node and assign-
ing it to the node. The design of the precision plan decision 
mechanism of CoMP also has the potential to be applied 
to mixed-precision hardware design, requiring the coordi-
nated support of software and hardware during compilation 
and runtime. This makes CoMP also a reference for mixed-
precision architecture design and optimization.

6 � Conclusion

This paper proposes CoMP, an efficient mixed-precision 
neural network training framework. Under the premise of 
ensuring convergence, CoMP tries different operator-wise 
precision plans through two-stage performance sampling 
based on epoch and batch, and finds the optimal plan for 
neural network training on GPU. In Stage 1, CoMP judges 
the performance of critical operators that affect convergence 
under different precision settings through epoch sampling 
and promptly avoids abnormal loss reduction solutions. In 
Stage 2, it ensures that the performance of other operators 
and key operators under the overall mixed-precision policy 
is enumerated at low cost through batch sampling. CoMP’s 
mixed-precision training mechanism judges the precision 
setting from more dimensions such as the precision conver-
sion cost and whether to use TC, and fully combines the 
hardware characteristics of the current GPU platform. The 
experimental results show that on A100 GPU, compared 
with the PyTorch AMP implementation, CoMP can bring 
a maximum performance improvement of 1.15× with up to 
29.81% memory saved.

In the future, we will further expand the implementation 
of CoMP to other DL frameworks such as TensorFlow and 
PaddlePaddle, and open source them to apply the core ideas 
of CoMP to more scenarios. Moreover, we hope to evalu-
ate CoMP on other GPU platforms, such as AMD and Intel 
GPUs, to fully exploit the acceleration potential of CoMP. 
We also expect to continue to optimize the two-stage sam-
pling stages of CoMP. For example, we can adapt more 
operators to the epoch-based sampling stage and imple-
ment more searching algorithms in the batch-based sam-
pling stage. In addition, we can explore the tradeoff between 
model accuracy and training speed, providing a reference for 
subsequent DL researches.
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