
Vol.:(0123456789)

CCF Transactions on High Performance Computing
https://doi.org/10.1007/s42514-024-00208-9

REGULAR PAPER

Convergence‑aware operator‑wise mixed‑precision training

Wenhao Dai1 · Ziyi Jia1 · Yuesi Bai1 · Qingxiao Sun1 

Received: 29 July 2024 / Accepted: 10 November 2024
© The Author(s) 2024

Abstract
With the support of more precision formats in emerging hardware architectures, mixed-precision has become a popular
approach to accelerate deep learning (DL) training. Applying low-precision formats such as FP16 and BF16 to neural
operators can save GPU memory while improving bandwidth. However, DL frameworks use black and white lists as default
mixed-precision selections and cannot flexibly adapt to a variety of neural networks. In addition, existing work on automatic
precision adjustment does not consider model convergence, and the decision cost of precision selection is high. To address
the above problems, this paper proposes CoMP, a non-intrusive framework for Convergence-aware operator-wise Mixed-
precision training. CoMP uses two-stage precision adjustment based on epochs and batches to ensure convergence and
performance respectively. After that, CoMP performs subsequent training according to the searched optimal operator-wise
mixed-precision plan. The experimental results on A100 GPU show that CoMP achieves a maximum performance speedup
of 1.15× compared with PyTorch AMP implementation, while also saving up to 29.81% of GPU memory.

Keywords  GPU · Mixed-precision · Neural network training · Auto-tuning · Performance optimization

1  Introduction

In recent years, DL has profoundly affected all walks of life
and opened up new prospects for many fields, from computer
vision (Li et al. 2019) and natural language processing (Lan
et al. 2019), to recommendation system (Goodfellow et al.
2020). DL needs to undergo a certain amount of “learning",
where trained neural networks can perform “inference" to
achieve judgment and generation functions. However, neural
network training has huge demands on computing power and
memory (Sevilla et al. 2022). An important research issue
is how to compress the model and accelerate training based
on hardware characteristics, thereby facilitating promotion.

Decimals are represented by floating-point numbers in
computers. Different areas have their own standards for the
distribution range and precision of the values to be repre-
sented. For example, scientific computing pursues high pre-
cision, such as FP64, to perform the calculation process.
Whereas in some cases (e.g., DL), such precise numerical
expression is not required. This provides space for the usage
of lower precision FP32 and FP16. Using lower precision
means that more data can be transmitted under limited band-
width, and data locality can be improved to reduce cache
conflicts. Furthermore, the latest GPU architectures are
equipped with special units, such as tensor cores, for calcu-
lations below FP32 precision.

In the DL field, the weights and other tensors involved in
the calculation process of typical layers do not require a wide
range of numerical expression. Therefore, low precision is
widely adopted, such as low-bit quantization in the inference
stage (Gholami et al. 2022), and FP32-FP16 mixed-preci-
sion representation in the training stage (Micikevicius et al.
2017). Mixed-precision can accelerate operator calculations
and reduce memory footprint, which converts certain tensors
to FP16 but saves weights as FP32. During training, gradi-
ent scaling can guarantee convergence to a certain extent.
Mainstream DL frameworks such as Abadi et al. (2016) and

 *	 Qingxiao Sun
	 qingxiao.sun@cup.edu.cn

	 Wenhao Dai
	 wenhao.dai@student.cup.edu.cn

	 Ziyi Jia
	 Ziyi.Jia@student.cup.edu.cn

	 Yuesi Bai
	 yuesi.bai@student.cup.edu.cn

1	 SSSLab, Department of CST, China University
of Petroleum-Beijing, Beijing, China

http://orcid.org/0000-0003-2927-362X
http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-024-00208-9&domain=pdf

	 W. Dai et al.

Paszke et al. (2019) also open interfaces for mixed-precision
plans for user convenience.

For mixed-precision training, DL frameworks commonly
use static lists to give the precision setting for each operator.
This approach takes into account expert knowledge to ensure
the efficiency of mixed-precision, but it cannot always adapt
to model training due to the massive possible operator com-
binations. For example, aggressive low-precision selection
may cause numerical overflow of the operators, whereas an
overly conservative high-precision selection has no room
for acceleration. In addition, the computing capability of
low-precision cores in GPU hardware architectures varies,
further introducing format conversion costs. Recent work
(He et al. 2022) has considered the conversion cost, but it
requires offline training of performance models to deter-
mine the precision selection for a specified network struc-
ture. When new operators are introduced, the performance
model needs to be re-trained, which cannot keep up with the
development of DL frameworks.

According to our observations, the current mixed-preci-
sion methods have the following three limitations: 1) The
tradeoff between model convergence and training perfor-
mance is not considered. Format decisions under certain
operators, datasets, and tensor dimensions may lead to pre-
cision explosion. 2) Precision decisions are not flexible
enough to match various cases. Over-reliance on expert
knowledge may affect the precision selection of operators
and lead to sub-optimal decisions. 3) The high offline cost
makes it unfriendly to both hardware and frameworks.
Large amounts of offline performance analysis are required
to perform precision screening, resulting in poor perfor-
mance after the updated network structure.

This paper proposes CoMP, an efficient operator-wise
mixed-precision neural network training framework that
ensures convergence. CoMP’s first stage determines the
operators that tend to have a greater impact on convergence
based on expert knowledge, and samples low-precision for-
mats epoch by epoch to assign them to the operators with
wider distribution in the network structure. Taking the loss
value of a single epoch of FP32 as the basis, CoMP ensures
that the loss value of key operators after conversion to lower
precision (e.g., FP16) is within an acceptable range. Next,
the fastest plan within the acceptable loss range will serve
as the initial value for the second stage based on batch sam-
pling. Since the precision decisions of key operators in the
first stage ensure the model convergence, CoMP enumer-
ates the precision settings of other operators according to
specific rules in this stage. CoMP conducts profiling on a
single batch at a low cost to determine the accuracy plan
with the best performance.

The two-stage design of CoMP enables it to work
with DL frameworks in a non-intrusive manner. CoMP
comprehensively considers model convergence and

training performance to determine the most appropriate
precision plan. Specifically, this paper makes the following
contributions:

•	 We propose an epoch-based sampling strategy to ensure
convergence. In Stage 1, only operators that have a
greater impact on convergence and meet the given loss
conditions are adjusted to find a relatively good precision
plan.

•	 We design a batch-based sampling strategy to search for
better precision plans. In Stage 2, the optimal precision
plan for training performance is obtained at the low cost
of running only one epoch. This process has considered
information such as the dataset and model structure.

•	 We implement the CoMP framework and conduct
detailed performance analysis. The experimental results
show that compared with PyTorch AMP, CoMP achieves
a maximum performance speedup of 1.15× , also saves
memory by 29.81% without accuracy degradation.

The rest of this paper is organized as follows. Section 2
presents the background. Section 3 presents the details of
CoMP’s two-stage methodology. Sections 4 and 5 present
the evaluation results of CoMP and the related work. Sec-
tion 6 concludes this paper.

2 � Background

2.1 � Floating point precision

In the DL framework, if it is not explicitly specified, the
data precision is generally single precision (FP32). In addi-
tion to FP32, there are some other floating point expressions
depending on the range and accuracy of the expression, as
shown in Fig. 1. In the single precision 32-bit format, 1 bit is
used as a sign to indicate whether the number is positive or
negative, 8 bits are reserved for the exponent to express the

Fig. 1   Five expressions of floating point precision

Convergence‑aware operator‑wise mixed‑precision training﻿	

numerical range, and the remaining 23 bits are used to indi-
cate the exact precision of the floating-point number, called
fraction digits. For FP64, the exponent reserves 11 bits, and
the fraction digits are 52 bits, significantly expanding the
range and size of the numbers that can be represented. FP16
has a narrower range, with only 5 bits for the exponent and
10 bits for the fraction digits. BF16 and TF32 have also been
developed to deal with different tasks and application sce-
narios. BF16 uses 1/10 precision to obtain a value range of
1034 times without changing the memory usage of FP16. The
difference between BF16 and FP32 is mainly in the fraction
digits, so the conversion between BF16/FP32 is straightfor-
ward. The exponent bits of TF32 are consistent with FP32,
and the fraction bits are consistent with FP16. Lower floating
point precision, such as FP8, is not yet supported in stable
versions of DL frameworks.

Mostly, model training uses FP32 to store weights to take
advantage of a wider dynamic range. But for model infer-
ence, using lower precision integers, such as INT8/INT4,
can effectively reduce latency and improve response speed.
The technique of using a lower bit width than floating point
precision to perform calculations and store tensors is called
quantization (Gholami et al. 2022). Quantized models use
reduced precision tensors instead of floating point values
when performing some or all operations. Currently, at the
general framework level, mainstream DL frameworks do not
support quantized inference on GPUs. Still, for developers,
some development packages provided by GPU manufactur-
ers, such as TensorRT ,1 support quantization.

2.2 � GPU Hardware architecture

Figure 2 shows the GPU hardware architecture with multiple
precision processing units and Tensor Core (TC) for tensor
calculations. Depending on the specific model, it contains
dozens to hundreds of Streaming Multiprocessors (SM).

When the kernel is launched on the host side, thousands of
threads will be created on the device side (GPU) accord-
ing to the task planning settings. For the NVIDIA series of
GPUs, every 32 threads are organized into a warp, which
determines the synchronization of this group of threads. At
the same time, the number of warps in the thread block (TB)
will be specified in the task planning, and the TB scheduler
maximizes the occupancy ratio of the GPU multi-core under
the constraints of hardware resources.

The storage hierarchy on the GPU includes global mem-
ory, texture memory, constant memory, local memory,
shared memory, and register file. The data in registers is the
fastest accessible to the kernel; once the kernel function uses
more registers than the hardware limit, data will be obtained
from the cache and local memory. Compared with the data
precision of FP64, lower precision (FP32 or FP16) usually
means a wider addressing range in registers and caches with
limited bandwidth, thereby improving the spatial locality
of data. This is an important reason why mixed-precision
programs achieve acceleration effects.

An SM contains multiple warp schedulers and dispatch
units for scheduling threads. Starting from the Volta archi-
tecture, TC has been added to the NVIDIA series of graphics
cards in addition to the traditional CUDA cores. As shown in
Fig. 2, taking NVIDIA A100 as an example, its SM contains
CUDA cores that support INT32, FP32, and FP64, while TC
supports mixed-precision operation of FP32/FP16 and also
provides support for DL inference of INT8. If the GPUs do
not support TC, the DL framework (e.g., Abadi et al. (2016),
Paszke et al. (2019)) use CUDA cores to perform low-pre-
cision calculations. Although mixed-precision training can
still reduce memory bandwidth requirements and improve
computing efficiency, these advantages are relatively small
compared to GPUs with TC. The DL framework will detect
whether the GPU supports TC and adjust the execution strat-
egy, but the specific operations call to TC needs to meet
certain conditions, such as tensor dimensions, the number
of convolutional channels, and the dimension of the linear
layer must be a multiple of 8.

2.3 � Mixed‑precision training

Micikevicius et al. (2017) proposed mixed-precision train-
ing. Currently, advanced DL framework such as TensorFlow
and PyTorch provide corresponding APIs to allow users to
enable automatic mixed-precision (AMP) on GPUs with few
engineering efforts. The current primary consideration for
the mixed-precision plan on the DL framework is the mix-
ture of FP32/FP16. In recent years, the DL framework has
also supported BF16, and a mixture of FP32/BF16 has been
added to their mixed-precision plan. However, the hard-
ware support for BF16 is mainly on the latest GPU archi-
tectures, such as Ampere and Hopper, while there is a lack of

Fig. 2   The basic GPU hardware architecture with different types of
processing units

1  https://developer.nvidia.com/tensorrt.

	 W. Dai et al.

hardware support for earlier architectures like Volta. GPUs
use software-emulated BF16 without hardware support for
it, affecting performance improvement and even leading to
worse performance. To adapt to a wider range of GPUs,
CoMP focuses on the mixed-precision plan of FP32/FP16.

Figure 3 shows DNN training with single-precision and
mixed-precision. For single-precision training, the data pre-
cision of calculation and storage is FP32, which ensures the
convergence of the model. For mixed-precision training,
FP32 is used to manage weights. To overcome the gradient
underflow caused by the decrease in learning rate, the loss
is scaled by the coefficient loss_scale when calculating and
then unscaled back before updating the weight. At the same
time, some operators still use FP32 for calculation, which
is reflected in the specific implementation of the DL frame-
work as a black and white list mechanism.

In the DL framework, mixed-precision training on GPUs
is usually implemented by combining automatic preci-
sion conversion and gradient scaling. Taking PyTorch as
an example, AMP for neural network training means using
autocast() and Gradscaler() at the same time.
With autocast(), the calculation precision will be
automatically selected according to its black and white list
mechanism. Some operators that tend to be numerically safe
(e.g., Conv2d, Linear) are in the white list and will be
automatically converted to FP16 during calculation. On the
contrary, some operators whose calculation results are easy
to incur numerical overflow (e.g., Layer_norm, Soft-
max) are in the black list, and will be forced to be con-
verted to FP32 during calculation. Some operators outside
the white list and black list (e.g., Addcmul, Dot) need to
select the precision in a way that ensures that there is no

overflow in combination with the context of the operator,
usually a more conservative FP32.

Similarly, in TensorFlow, users need to explicitly set a
global variable of mixed-precision. Its black and white list
mechanism is refined into Allowlist, Denylist, Inferlist, and
Clearlist. Consequently, the current DL framework’s plan
for mixed-precision training predominantly focuses on exe-
cution performance and overflow prevention. Nonetheless,
it overlooks nuanced adjustments for the toll of precision
transformation and fails to accommodate the pronounced
discrepancies in numerical distribution across models and
datasets.

He et al. (2022) proposed a training framework that per-
ceives the input tensor size and the casting cost, choosing
the mixed-precision plan by considering the cost of casting
FP16 and FP32 through the offline training model to predict
the tensor casting cost online. This work with offline opera-
tions was intrusive in modifying the framework, which was
not flexible enough in the face of the rapidly developing DL
framework, and new operators were introduced. Jia et al.
(2018) proposed a distributed mixed-precision plan, using
FP16 for forward and backward as well as FP32 for gradi-
ents and weights. However, this method did not consider the
convergence with different operators during training in detail
and may not converge for some models containing special
activation functions and reduction operations.

In previous methods, it was challenging to adapt to new
GPU architectures and constantly updated DL frameworks
at low cost. On the other hand, model training situations
with different numerical distributions provide optimization
space for convergence-aware mixed-precision plan adjust-
ments. CoMP propose a mixed-precision training framework
that adapts to the DL framework in a non-invasive way and
can quickly find an efficient mixed-precision training plan
that ensures convergence on modern GPUs at a relatively
low cost.

3 � Methodology

3.1 � Design overview

CoMP is a convergence-aware operator-wise mixed-preci-
sion training framework. It mainly collects convergence and
performance data through two stages of testing and then
selects a plan that guarantees convergence and has the opti-
mal performance for post-training. CoMP’s performance
collection does not require modifying the structure of the
DL framework. The optimal mixed-precision plan on the
current GPU platform can be collected cheaply based on the
epoch-based and batch-based sampling process.

Figure 4 shows the design overview of CoMP. For a
model defined by a DL framework, each operator (layer)

Fig. 3   Single-precision training and mixed-precision training in DL
tasks

Convergence‑aware operator‑wise mixed‑precision training﻿	

will tend to use FP16 or FP32 based on the list mechanism in
the DL framework. CoMP perform sampling based on epoch
in Stage 1; each mixed-precision plan must traverse the data-
set thoroughly once to obtain the loss value and record the
processing time. In Stage 2, convergence has been ensured,
so sampling is performed based on batch. Based on the exist-
ing mixed-precision plan, other combinations of operators
with little impact on convergence are enumerated to build
a search space and search for the training mixed-precision
plan with optimal performance.

According to the list mechanism of the DL framework
and the usage of TC, CoMP extracts operators with clear
conversion tendencies and puts them into Stage1_OP_list.
As shown in Table 1, the DL framework sets the precision
of operators in the whitelist (e.g., Conv2d) to FP16 by
default. The reason is that they rarely cause value overflow,
and CoMP will further check whether the input tensor satis-
fies the requirement to enable TC. For the operators in the
blacklist such as Softmax, although the DL framework
conservatively keeps them as FP32, CoMP will try convert-
ing to FP16 and perceive convergence.

Then, in Stage 1, based on epoch sampling, Stage 1 will
first use the pure FP32 precision plan to run an epoch as a
basis and then mainly selectively adjust the Stage1_OP_list
to obtain different sampling policies to complete the percep-
tion of convergence. Based on the loss value of full FP32
training, on the premise that the fluctuation of the obtained
loss value is acceptable, the plan with the fastest running
speed is selected as the initial sampling plan of Stage 2. In
the second stage, the precision of some operators determined
in Stage 1 will be fixed according to the Stage1_OP_list, and
other operators outside the black and white list of the DL
framework will continue to be adjusted. Performance data
will be quickly sampled based on batches to find the plan
with the optimal performance and put it into post-training.

3.2 � Stage 1: Epoch‑based sampling

Stage 1 of CoMP is based on epoch-based convergence-
aware performance sampling. In machine learning train-
ing, it usually takes dozens to hundreds of epochs to fully
train the model, and each epoch means that the dataset is
wholly traversed once. Running an epoch means traversing
the dataset once, which can ensure the fairness of conver-
gence perception during the sampling process and exclude
the fact that the different division methods and data distri-
bution characteristics of the dataset affect the perception of
convergence. Although, in this stage, it takes an entire epoch
to get feedback on a particular precision plan, it is accept-
able in the overall training overhead, which is proved by the
subsequent Sect. 4.5.

When using the built-in mixed-precision plan, the DL
framework uses a list mechanism for the operators that
make up the model. More specifically, it is determined

Fig. 4   Design overview of CoMP framework

Table 1   Operators contained in Stage1_OP_list

Operator Precision Description

Conv2d FP16 if the input tensor
satisfies the
requirement to
enable TC

Linear

Matmul

ReLU

Layer_norm FP32 Try converting
to FP16 and
perceive conver-
gence

Softmax

	 W. Dai et al.

by whether the operator’s calculation is prone to over-
flow or underflow; that is, it is determined by numerical
safety. For example, for Linear, it is included in the
autocast-to-FP16 list of PyTorch, which means that this
operator is generally numerically safe. Still, sometimes
different context precision brings additional precision
conversion overhead, or the FP16 operator cannot use TC
to enjoy the hardware acceleration effect due to specific
dimensions, which makes the tendency to convert to FP16
unreasonable. Or for operators such as Exp, it exists in
the autocast-to-FP32 list of PyTorch, but sometimes due
to different specific parameters of the model and differ-
ences in the numerical distribution of the dataset, it does
not cause the overflow expected by conservatives. These
omissions in the list mechanism provide CoMP with room
for adjustment.

For operators with clear conversion tendencies in the
DL framework, Stage 1 will first obtain the information
of these operators and save them in Stage1_OP_list when
performing the first (basis) sampling. These operators
are mainly adjusted in Stage 1, as shown in the triangle
position in the Fig. 4. However, it does not mean that all
combinations need to be enumerated. If the operator in the
model exists in the autocast-to-FP16 list of the DL frame-
work, then its parameters will be further checked to see if
they meet the requirements of using TC. If they do, then
its calculation precision will be forced to be set to FP16,
reflected in the plan expressed in a string as “0", such as
the dark green Operator-3 and Operator-5 on the left in the
Fig. 4. If it does not meet the requirements of using TC,
such as the light green part Operator-0 and Operator-7 on
the left in the Fig. 4, then this may be adjusted to FP32 and
needs to be tested as an optional plan in Stage 1. On the
contrary, if the operator is in the autocast-to-FP32 list of
the DL framework, such as Operator-4, then there is also a
possible opportunity to try and generate an optimized plan.

So, for the example of Stage 1 in Fig. 4, three opera-
tors need to try different precision combinations: Opera-
tor-0, Operator-4, and Operator-7. Although Operator-3
and Operator-5 are in Stage1_OP_list, they are not tried
because they can use TC. By recording the lossi and run-
ning time ti of these operators at different precisions, and
comparing them with the loss0 obtained by the first sam-
pling of Stage 1, which is wholly run with FP32, when
lossi < loss0 × 101% , we think this is a safe range, Algo-
rithm 1 also shows this process. We empirically deter-
mined this range through a large number of tests. The set
of lossi in this range is lossselected , and the plan ∗ with the
shortest running time is selected from this setting. For the
example in Fig. 4, planx is selected.

Algorithm 1   Sampling Process for Stage 1

The epoch-based sampling in the first stage refers to the
precision conversion tendency in the DL framework, com-
prehensively considers whether TC can be used, and obtains
the convergence and performance of different mixed-preci-
sion plans through actual tests. Since the sampling of Stage
1 determines the accuracy of operators with poor numerical
security in the DL framework, the mixed-precision plans that
are prone to non-convergence are eliminated through conver-
gence perception. At the end of Stage 1, an initial plan that
determines the accuracy of operators at the corresponding
positions of Stage1_OP_list will be given to Stage 2. Stage
2 will perform batch-based sampling on other operators that
do not have a clear precision conversion tendency, those
operators outside the exact black and white list.

3.3 � Stage 2: Batch‑based sampling

In the first stage of CoMP, operators with a certain precision
conversion tendency in the DL framework are determined
(i.e., the operators in Stage1_OP_list). Some of these opera-
tors are numerically safe and have the potential to use TC,
while others are not numerically safe and are set to FP32
in the preliminary plan. The remaining operators do not
have such a conversion tendency and need to determine the
specific plan based on the context precision, such as ReLU
and Dropout. These operators are interspersed and distrib-
uted in the model, Operator-1, Operator-2, and Operator-6
shown on the left side of Fig. 4. Through experimental test-
ing, we have learned that if only a single such operator is
used, the performance can be better than FP32 under FP16.
However, factors such as the acceleration effect of specific

Convergence‑aware operator‑wise mixed‑precision training﻿	

GPU hardware, the size of the input tensor, and the precision
conversion cost of its context are considered. In that case,
further sampling through Stage 2 is required to determine
at what precision this operator can perform better for the
overall model.

Since the precision of operators in Stage1_OP_list has
been determined, we can consider the conversion of the con-
text to enumerate the remaining operator precision plans. As
shown in the algorithm 2, Ps1 is the mixed-precision plan
with the optimal performance within the acceptable loss
range selected in the first stage. This plan is indeed deter-
mined to be the operator in Stage1_OP_list. The operator
to be adjusted in Stage 2 is still the default FP32 precision.
Using the operator position in Stage1_OP_list as the split
point to traverse Ps1 , when the precision of two non-adjacent
operators in Stage1_OP_list is the same. For example, if
both are FP32, then the operator between the two opera-
tors also maintains FP32 precision, although executing the
middle operator alone may achieve better performance in
FP16. When the precision of two non-adjacent operators
in Stage1_OP_list is inconsistent, enumeration can be per-
formed to adjust the precision of the operators in the mid-
dle. Such enumeration is tested to integrate the computing
capability of the current GPU hardware, the cost difference
of FP16/FP32 conversion, and the fixed cost of the conver-
sion itself.

Algorithm 2   Generate Strings for Stage 2

Models are commonly trained by processing data in
batches, iterating len(dataset) / batch_size times per epoch,
with parameter updates at each batch. As shown in Fig. 4,
there are y batches to iterate. The calculation results in each
batch will be different due to the data distribution character-
istics of the dataset, but the amount of calculation is deter-
mined by the amount of data in this batch, which is also

the part that we are concerned about affecting performance.
Therefore, sampling according to the batch not only ensures
the fairness of different plans but also has a reasonably low
testing cost. In actual operation, assigning a different pre-
cision plan to each y batch means defining y models, and
each model only runs the first batch in an epoch. The first
stage ensures convergence according to the sampling of the
epoch, and the sampling in the second stage directly selects
the plan with the best performance and maintains it into
post-training.

3.4 � Implementation details

CoMP is mainly based on the PyTorch framework and fol-
lows the basic requirements for building models in the DL
framework. For example, the general model is defined as
class AlexNet(nn.Module). When building the
model, the sequential programming method is used to flatten
the model operators to facilitate the forced modification of
the precision of each operator. In the decision-making pro-
cess of CoMP, the specific precision setting of each operator,
that is, the mixed-precision plan, is passed in the form of a
“01..." string. The forward function of the model is modi-
fied to automatically insert the x.to(torch.float16)
or x.to(torch.float32) function according to the plan
situation to prevent data type mismatch problems during cal-
culation. The two-stage sampling in CoMP is implemented
in Python with 1600 LOC.

The operation and deployment of CoMP do not require
re-modifying the source code of the DL framework, and
it works with the framework in a non-intrusive manner.
As shown in Fig. 5, for the AMP with built-in support in
the DL framework, after loading the dataset and model, its
mixed-precision plan is judged based on the black and white
list mechanism, and then directly deployed on the GPU.
Although there are some transparent compilation optimiza-
tions adapted to the GPU in the middle, there is no feedback
tuning mechanism. The workflow of CoMP is to search for
the optimal plan while ensuring convergence through two-
stage sampling and provide an optimized operator-wise
mixed-precision plan, which is put into post-training and
finally deployed to the GPU for efficient mixed-precision
training.

As an important reference for this work, He et al. (2022)
has no open source code. Its primary function is based on
TensorFlow, and it realizes graph rewriting by modifying
some interfaces in the framework. It also tests some opera-
tors with different input and output sizes based on the cur-
rent GPU platform in advance for performance modeling.
This means that it is an intrusive way, and the DL framework
is modified and needs to be recompiled instead of directly
calling the dynamic library, which brings great difficulties
to the migration of functions and the extension of core ideas.

	 W. Dai et al.

Therefore, we compare CoMP with PyTorch AMP instead,
which is the mixed-precision training implementation of
PyTorch. CoMP uses a two-stage sampling strategy to per-
ceive the convergence and performance feedback of the cur-
rent device platform. Based on following certain program-
ming specifications in Fig. 5, the core components of CoMP
can be deployed to other frameworks and GPU platforms.

4 � Evaluation

4.1 � Experiment setup

The hardware we used for the experiments is shown in
Table 2. The A100, embodying NVIDIA’s Ampre architec-
ture, is extensively employed in data centers and by research
entities and corporations for deploying DL training tasks.
The RTX 4090, embodying NVIDIA’s Ada architecture, fre-
quently represents a more cost-effective option for develop-
ers in non-bandwidth-limited tasks. Regarding software, we
use NVIDIA driver 535.98, CUDA 12.4, PyTorch 2.3.1 and

DGL 2.4 Wang et al. (2019) compiled from source for the
GNN model implementation. All software is installed within
a docker container running Ubuntu 22.04. All comparative
experiments are conducted within this docker container to
ensure effective isolation.

We test a total of six models, as shown in Table 3, namely
AlexNet Krizhevsky et al. (2012), Vgg16 (Simonyan and
Zisserman 2014), GAN (Goodfellow et al. 2020) adopted in
computer vision (CV), GCN (Kipf and Welling 2016) and
GAT (Veličković et al. 2017) adopted in recommendation
system (RES), and BERT-base (Lan et al. 2019) adopted
in natural language processing (NLP). The datasets used
for the CV models are CIFAR-100 (60,000 32 × 32 images)
(Krizhevsky et al. 2009), MNIST (60,000 28 × 28 images)
and ImageNet (14,197,122 224 × 224 images) (Russako-
vsky et al. 2015), the datasets used for the RES models are
Cora (2,708 nodes, 5,429 edges) and Reddit (232,965 nodes,
11,606,919 edges) (Huang et al. 2021), and the dataset used
for the NLP model is SQuADv2.0 (100,000 questions and
over 50,000 unanswerable questions) (Rajpurkar et al. 2018).
The batch_size of AlexNet and GAN is set to 156, whereas
the batch_size s of Vgg16 and BERT-base are 128 and 16,
respectively. We run each experiment dozens of times to
reduce machine errors.

4.2 � Training performance

Tables 4 and 5 show the performance of FP32, AMP and
CoMP applied to six models on different datasets and two
GPU platforms. It can be observed that in most cases,
CoMP can bring specific performance improvements.
Compared with the standard precision FP32 implemen-
tation, CoMP can bring 1.28× and 1.11× speedup ratios
on A100 and RTX 4090 GPUs, respectively. Compared
with the most advanced framework mixed-precision
implementation PyTorch AMP, CoMP can further bring
an average speedup ratio of 1.04× and 1.02× on the two
GPU platforms, respectively. CoMP obtains valuable
performance feedback through a two-stage mechanism
on the target platform, respectively using epoch-based
sampling and batch-based sampling, and then selects

Fig. 5   Comparison of CoMP and AMP workflows

Table 2   Hardware specifications

GPU1 NVIDIA A100 PCIe 40 GB (Ampere)
 CUDA Cores 6912 (108 SMs)
 Tensor Cores 432
 L1 Cache 192KB (per SM)
 L2 Cache 40 MB
 Device memory 40 GB HBM2e

GPU2 NVIDIA GeForce RTX 4090 (Ada)
 CUDA Cores 16384 (128 SMs)
 Tensor Cores 512
 L1 Cache 128 KB (per SM)
 L2 Cache 72 MB
 Device memory 24 GB GDDR6X

Table 3   Models and datasets for evaluation

Application Model Dataset

CV AlexNet CIFAR-100 ImageNet
Vgg16
GAN MNIST/ImageNet

RES GCN Cora Reddit
GAT​

NLP BERT-base SQuADv2.0

Convergence‑aware operator‑wise mixed‑precision training﻿	

the mixed-precision plan with optimal performance. Of
course, this is based on ensuring convergence, as shown
in Sect. 4.4.

Compared with the FP32 plan, the most significant accel-
eration effect of CoMP appears on the BERT-base model
trained (fine-tuned) using SQuADv2.0, with a speedup
ratio of 1.91× on A100 and 1.52× on RTX 4090. We believe
there are more Linear operations in the BERT-base, and
its model structure is more complex than other tested mod-
els, giving CoMP a more prominent search space to find a
suitable mixed-precision plan. For CV models, Vgg16 train-
ing on the CIFAR-100 dataset, CoMP can bring a 1.88×
speedup on A100 compared to the FP32 implementation,
and still bring a 1.70× speedup on RTX 4090; compared
with the AMP implementation, it can bring 1.15× and 1.11×
speedup on A100 and RTX 4090 respectively. This further
proves that CoMP’s search and decision-making for mixed-
precision plans requires a certain complexity of the model
structure to form a corresponding search space. A relatively
more complex model structure often means more changes in
the intermediate tensor dimensions and more types of opera-
tors that affect convergence. The conversion cost between
FP32 and FP16 and whether TC can be used will affect train-
ing performance. The batch-based sampling can perceive
such impacts from performance data through actual testing,
thereby obtaining a relatively optimal mixed-precision plan.

When the experimental platform is determined, the
same model with the same parameter settings, CoMP also
has different acceleration effects under different datasets.
For example, the experimental platform is fixed as A100
GPU, Vgg16 on CIFAR-100 and ImageNet, respectively;
the acceleration effect of CoMP on large-scale datasets is not
as strong as that on small-scale datasets. Even for PyTorch
AMP, some models have no performance improvement, such
as AlexNet on ImageNet and GCN on Cora. After digging
deeper into PyTorch’s mixed-precision plan, we find that
some mixed-precision optimizations are enabled by default
in FP32 implementation. However, the training performance
of CoMP will not be worse than that of FP32 implementa-
tion, even in the worst case, returning to the situation where
all operators are FP32, the performance is consistent with
the benchmark. In some cases where the search space is
limited, CoMP achieves a performance degradation of less
than 10% compared to AMP.

For GPU platforms tested, RTX 4090 generally performs
better than A100 because the former actually has more
CUDA Cores and TCs, indicating more SM resources availa-
ble. On small-scale datasets such as CIFAR-100 and MINST,
RTX 4090 has a more obvious performance advantage; on
larger-scale datasets such as ImageNet, this advantage is not
apparent. The A100’s high-bandwidth memory and larger
L1 Cache, which are conducive to model inference, do not

Table 4   Training performance
of CV & NLP models on A100
and RTX 4090 GPUs

The highest performance is in bold

Model Dataset Time Per Epoch (s)

A100 RTX 4090

FP32 AMP CoMP FP32 AMP CoMP

AlexNet CIFAR-100 4.54 3.84 3.65 2.17 2.15 2.09
Vgg16 CIFAR-100 8.32 5.08 4.42 3.89 2.53 2.29
AlexNet ImageNet 1363.08 1345.41 1340.06 1383.36 1340.39 1329.90
Vgg16 ImageNet 4346.02 2895.72 2792.61 3671.21 2287.73 2281.51
GAN ImageNet 2014.56 1804.22 1825.80 1398.75 1299.09 1303.87
GAN MNIST 11.77 11.71 11.51 3.56 3.52 3.29
BERT-base SQuADv2.0 1.53 0.83 0.80 1.37 0.93 0.90

Table 5   Training performance
of GNN models on A100 and
RTX 4090 GPUs

The highest performance is in bold

Model Dataset Time Per Epoch (ms)

A100 RTX 4090

FP32 AMP CoMP FP32 AMP CoMP

GCN Cora 0.68 0.71 0.68 0.30 0.31 0.29
GAT​ Cora 1.03 1.12 1.02 0.55 0.53 0.55
GCN Reddit 8.27 7.82 7.79 5.37 4.38 4.90
GAT​ Reddit 186.16 155.50 155.21 OOM 71.11 70.76

	 W. Dai et al.

show advantages here. It is worth noting that GAT consumes
large GPU memory when running on larger datasets (such as
Reddit). Specifically, the results mentioned in Sect. 4.3 show
that GAT consumes 26.62 GB of memory when running on
Reddit, which leads to out of memory (OOM) problems on
RTX 4090 with a memory specification of 24 GB. Only on
A100 with a memory specification of 40 GB can training be
performed without changing hyper-parameters.

4.3 � GPU memory consumption

Table 6 shows the peak GPU memory usage of six mod-
els under different datasets; the results show that the CoMP
method can save GPU memory in most cases. Overall, com-
pared with the standard implementation of FP32, CoMP
saves an average of 29.54%, and compared with the imple-
mentation of PyTorch AMP, it saves an average of 14.03%.
Among them, AlexNet has the most obvious memory sav-
ings on the CIFAR-100 dataset, saving 29.81% compared
with AMP, and 57.30% compared with the standard imple-
mentation of FP32. On the same dataset, Vgg16 also saves
28.93% of memory compared with AMP by applying CoMP.
The CoMP method is mainly effective in saving GPU mem-
ory for models primarily composed of convolution opera-
tions, such as AlexNet, Vgg16 and GAN. However, for GNN
models, the space that can be saved by adjusting the mixed-
precision plan is limited because of the DGL customized
library and the simple model structure.

It is worth noting that for models trained on the ImageNet
dataset, although the proportion of memory savings brought
by the CoMP is not the largest, its absolute saving is the
largest. For example, for Vgg16 trained on ImageNet, the
batch_size is 128, then CoMP saves 937.84 MB relative to
AMP, and saves up to 7771.04 MB compared to FP32. In
absolute terms, it drops from 17201.88 MB to 9430.84 MB.
This is a critical saving for some GPU processors with lim-
ited memory, which means that training can be performed
without adjusting batch_size. CoMP uses convergence-aware
sampling, combined with the use of TC, greedily uses FP16
for calculations, and achieves the effect of gradient scaling
by promptly discarding mixed-precision plans that are prone
to non-convergence, without the need for adaptive gradi-
ent scaling and scaling back. This makes CoMP save cor-
responding storage space compared to AMP, which includes
automatic conversion and gradient scaling, thereby improv-
ing bandwidth utilization and data locality.

4.4 � Accuracy comparison

Table 7 shows the accuracy or validation score of the model
after training 100 epochs. FP32 is PyTorch’s default pre-
cision for neural network training, while AMP combines
precision auto-cast and gradient scaling. It can be observed
that under the protection of gradient scaling, the accuracy
of each model is slightly affected, and the accuracy of GAN
and GNN models can be maintained almost the same. For
GAN, our primary evaluation is the accuracy performance

Table 6   Peak memory
utilization during model
training

The lowest memory consumption is in bold

Model Dataset 1 Memory Utilization (MB) Dataset 2 Memory Utilization (MB)

FP32 AMP CoMP FP32 AMP CoMP

AlexNet CIFAR-100 797.80 485.31 340.64 ImageNet 1698.54 1463.80 1084.58
Vgg16 CIFAR-100 1227.38 813.91 578.46 ImageNet 17201.88 10368.68 9430.84
GAN MNIST 37.77 37.77 27.65 ImageNet 613.26 613.26 462.14
GCN Cora 54.41 56.83 54.38 Reddit 6709.75 6709.75 6709.75
GAT​ Cora 130.04 108.48 108.48 Reddit 26620.03 16025.70 16001.81
BERT-base SQuADv2.0 4997.26 3910.80 3724.78

Table 7   The Top-1 accuracy or
F1 validation score after model
training

The highest accuracy is in bold

Model Dataset 1 Top-1 Accuracy (%) Dataset 2 Top-1 Accuracy (%)

FP32 AMP CoMP FP32 AMP CoMP

AlexNet CIFAR-100 61.97 61.90 62.55 ImageNet 63.37 62.07 62.78
Vgg16 CIFAR-100 70.04 70.88 70.12 ImageNet 72.40 72.37 72.36
GAN MNIST 49.95 49.95 48.79 ImageNet 49.91 49.95 49.95
GCN Cora 79.50 79.50 79.60 Reddit 94.31 94.30 94.27
GAT​ Cora 82.20 81.20 81.90 Reddit 78.34 77.02 77.02
BERT-base SQuADv2.0 88.50 88.20 88.00

Convergence‑aware operator‑wise mixed‑precision training﻿	

of the discriminator. Since the leading judgment is between
machine-generated images and real images, the closer the
accuracy is to 50.00%, the better the effect. The BERT-base
NLP task is a special one; the validation score F1 is used
for evaluation, and the stability of the score is also main-
tained under the CoMP method whose verification is within
an acceptable range.

The premise for CoMP to obtain the optimal mixed-
precision plan is to ensure convergence. When the corre-
sponding CoMP’s Stage 1 samples according to epoch, each
epoch actually traverses the dataset. Suppose the loss value
under the current mixed-precision plan is more significant
than 101% of the baseline value during sampling of a single
epoch. In this case, CoMP will abandon the current plan and
gradually return to a more conservative plan, even adjusting
the precison of all operators to FP32. We set the threshold to
101% based on experience, which ensures that value over-
flow can be perceived without placing too strict restrictions
on the value range. By doing so, CoMP can perceive the
changes in accuracy and minimize the fluctuation caused by
precision adjustment. CoMP’s second stage is totally based
on the convergent plan to further sample according to the
batch and take the plan with the optimal performance. In
the worst case, CoMP will fall back to the precision plan of
using FP32 completely, so the convergence and accuracy of
the model are ensured.

4.5 � Overhead analysis

CoMP obtains the optimal mixed-precision plan to ensure
convergence on the current platform through a low-cost two-
stage mechanism. Figure 6 shows the breakdown of these
two stages in the overall training time on the A100 GPU,
which includes the overhead of the CoMP method Stage 1,
Stage 2 and the post-training process. For the above six mod-
els, the total overhead of the two stages of CoMP is 6.49%
on average. For GAN, the overhead of CoMP accounts for
3.30% of the total. Because of GAN’s simple structure, the
number of layers of Generator and Discriminator is relatively

small, resulting in a lack of diverse sampling schemes that
may provide higher performance and mixed-precision plans.
On the contrary, for the BERT-base model, whose model
composition is quite complex, including 12 bidirectional
encoder layers and the main operations are linear scaled
dot product attention and LayerNorm, and the sampling
schemes are relatively diverse, increasing the decision cost
of CoMP. However, considering the widespread application
of Transformer-based models represented by BERT-base in
the industry, many manufacturers require pre-training and
fine-tuning. The high performance mixed-precision plan
brought by CoMP that guarantees convergence still has solid
practical significance.

For the six models we evaluated, when the hardware
platform is fixed, the trend of sampling breakdown at each
stage of CoMP operation is mainly based on the structural
information of the model itself. Although the final mixed-
precision plan will vary depending on the size of the internal
intermediate tensor and the number of TC on the hardware
platform, the sampling time of each stage is proportional to
the datasets. This means that for larger datasets, the deci-
sion cost of CoMP’s convergence-aware sampling will
also increase. But often, for larger datasets, more epochs
are required to converge, and the expectation for accuracy
will be higher; as a result, CoMP still has great potential for
application on large-scale datasets.

4.6 � Ablation study

Both stages involved in CoMP play key roles. Stage 1 elimi-
nates overly aggressive mixed-precision plans through con-
vergence perception to ensure the convergence of model
training. Stage 2 continues to look for optimal performance
plans at a low cost through batch-based sampling. We per-
form ablation studies on each model to compare CoMP with
only epoch-based sampling, only batch-based sampling,
and both sampling stages, showing the accuracy and per-
formance differences.

Figure 7 shows the training performance for model train-
ing with only Stage 1, only Stage 2, and both stages. To
ensure that the values in the vertical axis are distributed
in similar intervals, the performance data here is run 1000
times for GCN and GAT. The acceleration effect for Vgg16
is the most obvious, whose speedup ratio of CoMP with
two stages is 1.14× because the operator combination such
as Conv2d and Linear contained in the Vgg16 model is
more diverse, which provides suitable tuning space for the
second stage of CoMP. The least obvious acceleration effect
appears in BERT-base, because most of the operators in this
model have conversion tendencies in the DL framework; that
is, there are many operators in the Stage1_OP_list of CoMP,
and most of them can be accelerated by TC, leaving little
tuning space for CoMP. Because BERT-base and GAN do Fig. 6   Time breakdown of CoMP training process

	 W. Dai et al.

not converge in CoMP with only Stage 2 (the result is NaN),
the performance is meaningless and not shown in Fig. 7.

Figure 8 shows the verification accuracy of the trained
model when CoMP has only Stage 1, only Stage 2, and both
stages. For the GAN network, only Stage 2 leads to non-con-
vergence and underflow, so there is no meaningful accuracy
output. Non-convergence also occurs for BERT-large, and
its F1 score is close to 0, significantly lower than that of the
complete CoMP. For other tested models, the convergence
awareness part in Stage 1 is skipped, and only batch-based
performance sampling is performed. Although it achieves
better training performance, it is a relatively radical plan
from the perspective of the mixed-precision plan, that is,
the situation where FP16 operators account for the majority.

5 � Related work

5.1 � Mixed‑precision computation

Recently, some efforts collectively reflect the advancements
in the field, where mixed-precision computation is being
increasingly adopted for a wide range of applications, from

ML to broader GPU-accelerated scientific computing tasks
(Buttari et al. 2007; Baboulin et al. 2009; Bylina and Bylina
2013; Lam et al. 2013; Haidar et al. 2017, 2018; Gao et al.
2024; Xu et al. 2024). (Buttari et al. 2007) used a combina-
tion of FP32 and FP64 to significantly enhance the perfor-
mance of many dense and sparse linear algebra algorithms
while maintaining the accuracy of the results. Baboulin et al.
(2009) post-processed the FP32 solution by refining it into
an FP64 precision plan in the context of solving a system
of linear equations. Bylina and Bylina (2013) analyzed WZ
decomposition, they used a mixed-precision iterative refine-
ment algorithm of single precision, double precision, and
long double precision combined with machine learning.
Kotipalli et al. (2019) designed a system to automatically
select mixed-precision data types for GPU applications
while ensuring adherence to specified accuracy constraints.
Chitty-Venkata et al. (2022) proposed a neural structure
framework that used mixed sparsity and precision search
to find a mixed-precision quantization model, and searched
for the global optimal sparse precision combination of each
layer by using joint modeling of architecture, sparsity, and
precision. Gao et al. (2024) used whether to perform auto-
matic mixed-precision training as a tuning parameter and put
into time estimator as a component of the overall scheduler.
Xu et al. (2024) integrated the mixed-precision code gen-
erator and the automatic tuner by defining a parameter to
achieve automatic tuning with the prediction function. Ho
et al. (2021) introduced a mixed-precision algorithm frame-
work GRAM that traded off output error and performance,
with an optional half-precision math library to accelerate
GPU applications such as matmul. The above work pro-
vides an important reference for CoMP to flexibly adjust
the precision of different operators, and inspires us to use
epoch-based and batch-based sampling to optimize the plan
in mixed-precision neural network training.

5.2 � Performance tuning on GPU

The complex computation of some applications carried out
on GPUs contains certain key parameters that will signifi-
cantly affect the execution efficiency of the program. For
this reason, existing work has designed auto-tuning methods
(Dongarra et al. 2018; Pfaffe et al. 2019; Sun et al. 2021,
2022, 2024; Randall et al. 2023; Cho et al. 2023; Para-
syris et al. 2023; Zhai et al. 2023). Dongarra et al. (2018)
performed batched calculation auto-tuning on GPU for a
series of numerically dense linear algebra operators such
as Cholesky factorization. Sun et al. (2022) designed the
graph attention network (GAT) as a performance estimator,
and designed a multi-head self-attention module to learn
the complex relationships between features, improving the
performance of DNN model compilation. Sun et al. (2021)
reduced the search cost with approximate genetic algorithms

Fig. 7   The training performance of CoMP with only Stage 1, only
Stage 2, and both stages

Fig. 8   Top-1 accuracy of CoMP with only Stage 1, only Stage 2 and
both stages

Convergence‑aware operator‑wise mixed‑precision training﻿	

and determined the optimal parameter setting for stencil
computations. On this basis, Sun et al. (2024) treated per-
formance prediction as a regression problem and exploited
pre-trained machine learning models to guide search space
sampling to avoid actual execution. Parasyris et al. (2023)
proposed a mechanism to facilitate the automatic scaling
of large (OpenMP) offloaded applications by eliminating
resource requirements and application dependencies. Zhai
et al. (2023) extracted features from scheduling primitives
and treated the problem as a tensor language processing task,
so that the task of predicting tensor program delays through
the cost model is transformed into a natural language pro-
cessing (NLP) regression task. Tian et al. (2022) developed
an adaptively mixed-precision (SAMP) toolkit to select the
appropriate precision (FP16/INT8) to quantize the model
for inference based on specific task requirements. The GPU
auto-tuning mechanisms in the above work provide a refer-
ence for the mixed-precision neural network training tuning
in this work. CoMP obtains the performance of the current
platform at a low cost through a two-stage sampling and
utilizes the feedback to search for the mixed-precision plan
with optimal performance.

5.3 � Mixed‑precision architecture

Some work has designed dedicated architectures for mixed-
precision to handle specific problems, such as in the field
of scientific computing (Sun et al. 2008; Wang et al. 2019;
Zhang et al. 2019) and machine learning (Wu et al. 2018;
Nandakumar et al. 2018; Gong et al. 2019; Cai and Vas-
concelos 2020; Zhou et al. 2020; Wang et al. 2021; Sun
et al. 2022; Chitty-Venkata et al. 2022; Zhu et al. 2024).
(Sun et al. 2008) dealt with the direct method linear solver
problem on FPGAs; they proposed a mixed-precision itera-
tive reinforcement algorithm, conducted error analysis, and
implemented the designed architecture on a reconfigurable
platform. Wang et al. (2019) proposed a hardware-aware
automatic quantization framework that used reinforcement
learning to automatically determine the quantization strategy
and adopt the feedback early design loop of the hardware
accelerator. Gong et al. (2019) proposed a joint optimization
architecture that performs end-to-end neural network and
quantization space. Through its designed search method, it
found the optimal combination of architecture and accuracy
(bit width), thereby directly optimizing prediction accu-
racy and energy consumption. Cai and Vasconcelos (2020)
referred to optimal mixed-precision network search, over-
came the difficulties of discrete search space and combi-
natorial optimization, and designed a differentiable search
structure. For the important hardware acceleration unit TC
of mixed-precision, Wang et al. (2021) proposed a dual-side
sparse TC to exploit the sparsity of both weights and activa-
tions. Sun et al. (2022) cast a joint architectural design and

quantified entropy maximization process to propose a multi-
stage solution for CNNs deployed on IoT devices. Reggiani
et al. (2023) proposed a collaborative design architecture
of software and hardware to efficiently calculate quantized
DNN convolution kernels based on byte and sub-byte data
size. Zhu et al. (2024) proposed a degree-aware mixed-pre-
cision quantization scheme for GNN inference through the
co-design of software and hardware, learning the appropriate
bit width according to the in-degree of the node and assign-
ing it to the node. The design of the precision plan decision
mechanism of CoMP also has the potential to be applied
to mixed-precision hardware design, requiring the coordi-
nated support of software and hardware during compilation
and runtime. This makes CoMP also a reference for mixed-
precision architecture design and optimization.

6 � Conclusion

This paper proposes CoMP, an efficient mixed-precision
neural network training framework. Under the premise of
ensuring convergence, CoMP tries different operator-wise
precision plans through two-stage performance sampling
based on epoch and batch, and finds the optimal plan for
neural network training on GPU. In Stage 1, CoMP judges
the performance of critical operators that affect convergence
under different precision settings through epoch sampling
and promptly avoids abnormal loss reduction solutions. In
Stage 2, it ensures that the performance of other operators
and key operators under the overall mixed-precision policy
is enumerated at low cost through batch sampling. CoMP’s
mixed-precision training mechanism judges the precision
setting from more dimensions such as the precision conver-
sion cost and whether to use TC, and fully combines the
hardware characteristics of the current GPU platform. The
experimental results show that on A100 GPU, compared
with the PyTorch AMP implementation, CoMP can bring
a maximum performance improvement of 1.15× with up to
29.81% memory saved.

In the future, we will further expand the implementation
of CoMP to other DL frameworks such as TensorFlow and
PaddlePaddle, and open source them to apply the core ideas
of CoMP to more scenarios. Moreover, we hope to evalu-
ate CoMP on other GPU platforms, such as AMD and Intel
GPUs, to fully exploit the acceleration potential of CoMP.
We also expect to continue to optimize the two-stage sam-
pling stages of CoMP. For example, we can adapt more
operators to the epoch-based sampling stage and imple-
ment more searching algorithms in the batch-based sam-
pling stage. In addition, we can explore the tradeoff between
model accuracy and training speed, providing a reference for
subsequent DL researches.

	 W. Dai et al.

Acknowledgements  This work is supported by National Natu-
ral Science Foundation of China (Grant No. 62402525), the Fun-
damental Research Funds for the Central Universities (Grant No.
2462023YJRC023). Qingxiao Sun is the corresponding author.

Data availability  The data that support the findings of this study are
available from the first author (Wenhao Dai) upon reasonable request.

Declarations 

 Conflict of interest  On behalf of all authors, the corresponding author
states that there is no Conflict of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin,
M., Ghemawat, S., Irving, G., Isard, M., et al.: Tensorflow: A
system for large-scale machine learning. In: USENIX Symposium
on Operating Systems Design and Implementation (2016)

Baboulin, M., Buttari, A., Dongarra, J., Kurzak, J., Langou, J., Langou,
J., Luszczek, P., Tomov, S.: Accelerating scientific computa-
tions with mixed precision algorithms. Comput. Phys. Commun.
180(12), 2526–2533 (2009)

Buttari, A., Dongarra, J., Langou, J., Langou, J., Luszczek, P., Kurzak,
J.: Mixed precision iterative refinement techniques for the solu-
tion of dense linear systems. Int. J. High Perform. Comput. Appl.
21(4), 457–466 (2007)

Bylina, B., Bylina, J.: Mixed precision iterative refinement techniques
for the wz factorization. In: Federated Conference on Computer
Science and Information Systems, pp. 425–431 (2013)

Cai, Z., Vasconcelos, N.: Rethinking differentiable search for mixed-
precision neural networks. In: IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 2349–2358 (2020)

Chitty-Venkata, K.T., Emani, M., Vishwanath, V., Somani, A.K.: Effi-
cient design space exploration for sparse mixed precision neural
architectures. In: International Symposium on High-Performance
Parallel and Distributed Computing, pp. 265–276 (2022)

Cho, Y., Demmel, J.W., King, J., Li, X.S., Liu, Y., Luo, H.: Harnessing
the crowd for autotuning high-performance computing applica-
tions. In: IEEE International Parallel and Distributed Processing
Symposium, pp. 635–645 (2023)

Dongarra, J., Gates, M., Kurzak, J., Luszczek, P., Tsai, Y.M.: Auto-
tuning numerical dense linear algebra for batched computation
with gpu hardware accelerators. Proc. IEEE 106(11), 2040–2055
(2018)

Gao, W., Zhuang, W., Li, M., Sun, P., Wen, Y., Zhang, T.: Ymir: A
scheduler for foundation model fine-tuning workloads in datacent-
ers. In: ACM International Conference on Supercomputing, pp.
259–271 (2024)

Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M.W., Keutzer,
K.: A survey of quantization methods for efficient neural network
inference. In: Low-Power Computer Vision, pp. 291–326 (2022)

Gong, C., Jiang, Z., Wang, D., Lin, Y., Liu, Q., Pan, D.Z.: Mixed pre-
cision neural architecture search for energy efficient deep learn-
ing. In: IEEE/ACM International Conference on Computer-Aided
Design, pp. 1–7 (2019). IEEE

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley,
D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial
networks. Commun. ACM 63(11), 139–144 (2020)

Haidar, A., Tomov, S., Dongarra, J., Higham, N.J.: Harnessing gpu
tensor cores for fast fp16 arithmetic to speed up mixed-precision
iterative refinement solvers. In: International Conference for
High Performance Computing, Networking, Storage and Analy-
sis, pp. 603–613 (2018)

Haidar, A., Wu, P., Tomov, S., Dongarra, J.: Investigating half pre-
cision arithmetic to accelerate dense linear system solvers.
In: Workshop on Latest Advances in Scalable Algorithms for
Large-scale Systems, pp. 1–8 (2017)

He, X., Sun, J., Chen, H., Li, D.: Campo: Cost-aware performance
optimization for mixed-precision neural network training. In:
USENIX Annual Technical Conference, pp. 505–518 (2022)

Ho, N.-M., Silva, H.D., Wong, W.-F.: Gram: A framework for
dynamically mixing precisions in gpu applications. ACM Trans.
Architect. Code Optim. 18(2), 1–24 (2021)

Huang, K., Zhai, J., Zheng, Z., Yi, Y., Shen, X.: Understanding and
bridging the gaps in current gnn performance optimizations.
In: ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pp. 119–132 (2021)

Jia, X., Song, S., He, W., Wang, Y., Rong, H., Zhou, F., Xie, L.,
Guo, Z., Yang, Y., Yu, L., et al.: Highly scalable deep learning
training system with mixed-precision: Training imagenet in four
minutes. arXiv preprint arXiv:​1807.​11205 (2018)

Kipf, T.N., Welling, M.: Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:​1609.​02907
(2016)

Kotipalli, P.V., Singh, R., Wood, P., Laguna, I., Bagchi, S.: Ampt-ga:
automatic mixed precision floating point tuning for gpu applica-
tions. In: ACM International Conference on Supercomputing, pp.
160–170 (2019)

Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features
from tiny images (2009)

Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification
with deep convolutional neural networks. Adv. Neural Inform.
Process. Syst. (2012). https://​doi.​org/​10.​1145/​30653​86

Lam, M.O., Hollingsworth, J.K., Supinski, B.R., Legendre, M.P.: Auto-
matically adapting programs for mixed-precision floating-point
computation. In: ACM International Conference on Supercomput-
ing, pp. 369–378 (2013)

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.:
Albert: A lite bert for self-supervised learning of language repre-
sentations. arXiv preprint arXiv:​1909.​11942 (2019)

Li, S., Song, W., Fang, L., Chen, Y., Ghamisi, P., Benediktsson, J.A.:
Deep learning for hyperspectral image classification: an overview.
IEEE Trans. Geosci. Remote Sens. 57(9), 6690–6709 (2019)

Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen, E., Garcia,
D., Ginsburg, B., Houston, M., Kuchaiev, O., Venkatesh, G., et al.:
Mixed precision training. arXiv preprint arXiv:​1710.​03740 (2017)

Nandakumar, S., Le Gallo, M., Boybat, I., Rajendran, B., Sebastian,
A., Eleftheriou, E.: Mixed-precision architecture based on com-
putational memory for training deep neural networks. In: IEEE
International Symposium on Circuits and Systems, pp. 1–5 (2018)

Parasyris, K., Georgakoudis, G., Rangel, E., Laguna, I., Doerfert, J.:
Scalable tuning of (openmp) gpu applications via kernel record
and replay. In: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–14 (2023)

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1807.11205
http://arxiv.org/abs/1609.02907
https://doi.org/10.1145/3065386
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1710.03740

Convergence‑aware operator‑wise mixed‑precision training﻿	

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,
Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch:
An imperative style, high-performance deep learning library. Adv.
Neural Inform. Process. Syst. 32 (2019)

Pfaffe, P., Grosser, T., Tillmann, M.: Efficient hierarchical online-auto-
tuning: a case study on polyhedral accelerator mapping. In: ACM
International Conference on Supercomputing, pp. 354–366 (2019)

Rajpurkar, P., Jia, R., Liang, P.: Know what you don’t know: Unanswer-
able questions for squad. arXiv preprint arXiv:​1806.​03822 (2018)

Randall, T., Koo, J., Videau, B., Kruse, M., Wu, X., Hovland, P., Hall,
M., Ge, R., Balaprakash, P.: Transfer-learning-based autotuning
using gaussian copula. In: ACM International Conference on
Supercomputing, pp. 37–49 (2023)

Reggiani, E., Pappalardo, A., Doblas, M., Moreto, M., Olivieri, M.,
Unsal, O.S., Cristal, A.: Mix-gemm: An efficient hw-sw architec-
ture for mixed-precision quantized deep neural networks inference
on edge devices. In: IEEE International Symposium on High-
Performance Computer Architecture, pp. 1085–1098 (2023)

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S.,
Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C.,
Fei-Fei, L.: Imagenet large scale visual recognition challenge. Int.
J. Comput. Vision 115(3), 211–252 (2015)

Sevilla, J., Heim, L., Ho, A., Besiroglu, T., Hobbhahn, M., Villalo-
bos, P.: Compute trends across three eras of machine learning.
In: International Joint Conference on Neural Networks, pp. 1–8
(2022)

Simonyan, K., Zisserman, A.: Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:​1409.​1556
(2014)

Sun, Q., Liu, Y., Yang, H., Jiang, Z., Liu, X., Dun, M., Luan, Z., Qian,
D.: cstuner: Scalable auto-tuning framework for complex stencil
computation on gpus. In: IEEE International Conference on Clus-
ter Computing, pp. 192–203 (2021)

Sun, Q., Zhang, X., Geng, H., Zhao, Y., Bai, Y., Zheng, H., Yu, B.:
Gtuner: Tuning dnn computations on gpu via graph attention
network. In: ACM/IEEE Design Automation Conference, pp.
1045–1050 (2022)

Sun, J., Peterson, G.D., Storaasli, O.O.: High-performance mixed-
precision linear solver for fpgas. IEEE Trans. Comput. 57(12),
1614–1623 (2008)

Sun, Z., Ge, C., Wang, J., Lin, M., Chen, H., Li, H., Sun, X.: Entropy-
driven mixed-precision quantization for deep network design.
Adv. Neural. Inf. Process. Syst. 35, 21508–21520 (2022)

Sun, Q., Liu, Y., Yang, H., Jiang, Z., Luan, Z., Qian, D.: Adaptive auto-
tuning framework for global exploration of stencil optimization
on gpus. IEEE Trans. Parallel Distrib. Syst. 35(1), 20–33 (2024)

Tian, R., Zhao, Z., Liu, W., Liu, H., Mao, W., Zhao, Z., Yan, K.: Samp:
A toolkit for model inference with self-adaptive mixed-precision.
arXiv preprint arXiv:​2209.​09130 (2022)

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio,
Y.: Graph attention networks. arXiv preprint arXiv:​1710.​10903
(2017)

Wang, K., Liu, Z., Lin, Y., Lin, J., Han, S.: Haq: Hardware-aware auto-
mated quantization with mixed precision. In: IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 8612–8620
(2019)

Wang, Y., Zhang, C., Xie, Z., Guo, C., Liu, Y., Leng, J.: Dual-side
sparse tensor core. In: ACM/IEEE Annual International Sympo-
sium on Computer Architecture, pp. 1083–1095 (2021)

Wang, M., Zheng, D., Ye, Z., Gan, Q., Li, M., Song, X., Zhou, J., Ma,
C., Yu, L., Gai, Y., Xiao, T., He, T., Karypis, G., Li, J., Zhang,
Z.: Deep graph library: A graph-centric, highly-performant pack-
age for graph neural networks. arXiv preprint arXiv:​1909.​01315
(2019)

Wu, B., Wang, Y., Zhang, P., Tian, Y., Vajda, P., Keutzer, K.: Mixed
precision quantization of convnets via differentiable neural archi-
tecture search. arXiv preprint arXiv:​1812.​00090 (2018)

Xu, J., Song, G., Zhou, B., Li, F., Hao, J., Zhao, J.: A holistic approach
to automatic mixed-precision code generation and tuning for affine
programs. In: ACM SIGPLAN Annual Symposium on Principles
and Practice of Parallel Programming, pp. 55–67 (2024)

Zhai, Y., Zhang, Y., Liu, S., Chu, X., Peng, J., Ji, J., Zhang, Y.: Tlp:
A deep learning-based cost model for tensor program tuning. In:
ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pp. 833–845 (2023)

Zhang, H., Chen, D., Ko, S.-B.: Efficient multiple-precision floating-
point fused multiply-add with mixed-precision support. IEEE
Trans. Comput. 68(7), 1035–1048 (2019)

Zhou, X., Zhang, L., Guo, C., Yin, X., Zhuo, C.: A convolutional
neural network accelerator architecture with fine-granular mixed
precision configurability. In: IEEE International Symposium on
Circuits and Systems, pp. 1–5 (2020)

Zhu, Z., Li, F., Li, G., Liu, Z., Mo, Z., Hu, Q., Liang, X., Cheng,
J.: Mega: A memory-efficient gnn accelerator exploiting degree-
aware mixed-precision quantization. In: IEEE International
Symposium on High-Performance Computer Architecture, pp.
124–138 (2024)

http://arxiv.org/abs/1806.03822
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/2209.09130
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/1909.01315
http://arxiv.org/abs/1812.00090

	Convergence-aware operator-wise mixed-precision training
	Abstract
	1 Introduction
	2 Background
	2.1 Floating point precision
	2.2 GPU Hardware architecture
	2.3 Mixed-precision training

	3 Methodology
	3.1 Design overview
	3.2 Stage 1: Epoch-based sampling
	3.3 Stage 2: Batch-based sampling
	3.4 Implementation details

	4 Evaluation
	4.1 Experiment setup
	4.2 Training performance
	4.3 GPU memory consumption
	4.4 Accuracy comparison
	4.5 Overhead analysis
	4.6 Ablation study

	5 Related work
	5.1 Mixed-precision computation
	5.2 Performance tuning on GPU
	5.3 Mixed-precision architecture

	6 Conclusion
	Acknowledgements
	References

