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ABSTRACT
Solving sparse linear systems dominates the simulation time for
nonlinear integrated circuits. Developing an effective precondi-
tioner is crucial for accelerating the iterative solver when dealing
with large-scale circuit matrices, yet this remains a challenging
task. In this paper, we introduce an efficient sparsification-based
preconditioner method that significantly reduces the number of
iterations needed in iterative solvers. Our method transforms non-
linear components into symmetric Laplacian matrices, enabling the
inclusion of both nonlinear and linear elements in the sparsifica-
tion process. We then intersect the generated sparsifier with the
original Modified Nodal Analysis (MNA) matrix to further reduce
the sparsity, thereby decreasing preconditioner factorization time.
Furthermore, we enhance the parallelization of the spectral sparsi-
fication strategy by integrating block RMQ and point exclusivity
algorithms, which substantially speeds up preprocessing. Exper-
iment results demonstrate acceleration of 2.50x, 13.46x, 2.18x on
average in serial, 3.72x, 24.23x, 3.86x on average in parallel, and
memory reduction of 21.3%, 21.7%, 88.0% on average when solving
nonlinear circuit matrices compared to the state-of-the-art solver
GPSCP, feGRASS, and direct solver KLU, respectively.

KEYWORDS
Nonlinear circuit simulation, Sparse linear solver, Spectral sparsifi-
cation, Preconditioned iterative solver

1 INTRODUCTION
High-performance sparse linear solvers emerge as pivotal tools to fa-
cilitate rapid and accurate simulation and verification of transistor-
level circuits. Along with the fast development of semiconductors,
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modern integrated circuits have been extremely complex, consist-
ing of hundreds of millions of components, causing linear solvers
to consume more time and memory resources for simulation [2].

Compared with direct solvers, e.g., sparse LU factorization [1, 33–
36], iterative solvers [9, 27, 37] demonstrate superior performance
in handling large-scale linear systems due to their reduced mem-
ory requirements and facilitation of parallel acceleration [4]. Many
studies [5–8, 10] have thoroughly investigated iterative methods
for solving circuit matrices. However, the effectiveness of iterative
solvers is heavily dependent on the choice and design of precondi-
tioners, as they directly impact the convergence rate and efficiency
of the iterative process [11]. Identifying an effective preconditioning
technique becomes particularly paramount.

Despite numerous efforts to explore preconditioning approaches
for circuit matrices (e.g., [12, 15, 32]), efficiently handling circuit
matrices remains a significant challenge. The reason is that the
circuit matrix often exhibits highly heterogeneous properties, such
as variable resistances, capacitances, and inductances, leading to
complex sparsity patterns and spectral characteristics. Additionally,
the presence of nonlinear elements, such as diodes and transistors,
further complicates the preconditioning process by introducing
nonlinearity and potentially causing numerical instability.

Recently, the spectral graph sparsification methods have demon-
strated promising results for accelerating power grid simulation. It
produces an ultra-sparse sub-graph with spectral similarity char-
acteristics, which can be served as an effective preconditioner for
the iterative sparse linear solver, e.g., preconditioned Conjugate
Gradient [14, 16–19]. However, the spectral graph sparsification
algorithm can only be performed for symmetric positive definite
matrices, which hinders its further application to large-scale non-
linear circuit simulation matrices.

To harness the potential of spectral graph sparsification, several
researchers have endeavored to explore sparsification strategies
tailored for general asymmetric matrices in nonlinear circuit simula-
tion. A straightforward idea is to segregate the nonlinear and linear
elements and apply the sparsification of the spectral graph solely
to the linear portion [20]. Subsequently, the resulting sparsifier is
combined with the matrix of nonlinear components to construct
the preconditioner. However, when nonlinear devices dominate in
a design, factorizing the support-circuit preconditioner matrix can
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be expensive. Zhao et al. proposed a GPSCP method in [21], which
distinguishes between the directed and undirected components of
the linearized circuit, focusing its graph sparsification efforts solely
on the latter. It effectively tackles more general circuit simulation
tasks. However, it did not introduce all edges into the computation,
which resulted in destroying the original sparsity.

Therefore, in this paper, we propose a comprehensively-sparsified
operation to producing high-quality preconditioner, thereby ex-
pediting the solver of general asymmetric circuits. To enable all
elements in the circuit involved in the sparsification, that is, both
linear and nonlinear elements, we need to tackle the following
challenges. (1) How to handle nonlinear elements to ensure that all
elements are accessible for spectral sparsification operations. (2)
How can consider the effects of symmetric and asymmetric edges
on relative condition numbers and spectral similarity. (3) How to
achieve significant speed-up in the spectral graph sparsification
process. Our method efficiently addresses these challenges. Specif-
ically, (1) we achieve a sparser preconditioner matrix through a
comprehensive graph sparsification strategy, thereby diminishing
preconditioner decomposition time. (2) We enhance the spectral
similarity of preconditioners by intersecting the sparsification out-
comes with the original Modified Nodal Analysis (MNA) matrix,
thereby effectively reducing solver iteration count. (3) We signifi-
cantly accelerate pre-processing performance by parallelizing the
spectral sparsification operation using the block RMQ algorithm
and the point exclusion algorithm.

This paper primarily presents the following contributions.
•We effectively extend the spectral graph sparsification to the

asymmetric circuit matrix. To the best of our knowledge, this is the
first paper to enable comprehensive sparsification including both
linear and nonlinear elements for circuit simulation.

•We define effective weights for both directed and undirected
edges in our graph sparsification process, leading to a notable re-
duction in the relative condition number of our preconditioners.

• We substantiate the relationship between our produced sparsi-
fier preconditioner and the original asymmetric matrices through
mathematical derivation, highlighting their impact on the number
of iterations required by the GMRES algorithm.

•We leverage parallelization techniques such as block RMQ and
point exclusion algorithms to markedly enhance the efficiency of
spectral sparsification.

• CSP outperforms state-of-the-art spectral methods GPSCP and
feGRASS by an average speedup of 2.50x, 13.46x and memory re-
duction of 21.3%, 21.7% for serving as the preconditioner of GMRES.

2 BACKGROUND
2.1 Nonlinear Circuit Simulation
In electronic circuit simulations involving nonlinear character-
istics, effective modeling can be achieved by employing the fol-
lowing nonlinear differential algebraic equation (DAE): 𝐹 (𝑥) =

𝑓 (𝑥 (𝑡)) + 𝑑𝑞 (𝑥 (𝑡 ) )
𝑑𝑡

+ 𝑢 (𝑡) [21, 22]. To solve this DAE, the typical
approach involves first discretizing it with a numerical integration
algorithm, such as backward Euler, etc. Then we need to solve a
series of nonlinear algebraic equations at each discrete time-point.
The Newton-Raphson iterative method is usually employed at each
time point. For nonlinear circuits, the Jacobian matrix derived from

the conductance matrix 𝐺 and the capacitance matrix 𝐶 usually
exhibits asymmetry, primarily influenced by the MOS transistors,
bipolar transistors, and control sources, e.g., voltage-controlled cur-
rent sources, etc. As the complexity of the circuit increases rapidly,
the size of asymmetric Jacobian matrices grows to millions or even
billions[3]. In tackling such challenges, preconditioner-based itera-
tive solvers prove to be more advantageous than direct methods.

2.2 Preconditioned Iterative Solver for
Asymmetric Circuit Matrix

Numerous established iterative methods have been employed for
solving large-scale asymmetric circuit matrices, such as CG [23],
BICGSTAB [24], and GMRES [25]. With ongoing semiconductor
scaling and increasing device integration, the size of the matrix has
expanded to billions of entries, presenting significant computational
challenges for efficient and accurate circuit analysis. To enhance the
efficiency of iterative solvers used for solving large linear systems,
preconditioners are often employed. The iteration complexity of
preconditioned iterative solvers is typically proportional to the
relative condition number 𝜆 between the original circuit matrix and
the preconditioner, which is defined as follow:

𝜅 =
𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛
, (1)

𝐴𝑢 = 𝜆𝐵𝑢, (2)
where A and B are denoted as the original matrix and the precon-
ditioner respectively, 𝜆 is the generalized eigenvalue and 𝑢 is the
generalized eigenvector.

2.3 Graph Sparsification Preconditioner
The main idea of graph sparsification is to make 𝐺𝑃 sparser while
ensuring that 𝐺𝑃 is similar to 𝐺𝐴 . Graph sparsification usually
involves two key points: 1) Extract a maximum spanning tree from
𝐺𝑇 , 2) Recover a few spectrally critical off-tree edges from 𝐺𝑇 and
add them into the spanning tree to form preconditioned sparse
graph 𝐺𝑃 . For the first part, the simple maximum-spanning tree
can be used in practical problems. For the second part, [29] employs
a sampling technique reliant on effective resistance. [18, 21] use
approximate dominant generalized eigenvectors to identify and
recover the edge critical to the tree, which can enhance spectral
similarity while recovering the same number of edges, thereby
substantially reducing the required iteration steps.

3 OUR PROPOSED CSP FRAMEWORK
3.1 Overview
In this paper, we introduce CSP, a comprehensive graph sparsifica-
tion preconditioning method to better enhance the solver perfor-
mance. It is different from the conventional approach shown in Fig.
1(B), (C) and (D), which involves segregating the undirected and
directed segments of the graph and conducting graph sparsification
solely on the undirected portion and then the sparsified subgraphs
are merged with the original graph to produce preconditioners that
have a large number of extra edges.

CSP begins by converting the entire original graph to an undi-
rected graph, as shown in Fig. 1(E), so that all edges can be involved
in the sprasification. Then, to ensure comprehensive integration of
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Figure 1: Comparison of preconditioner construction algorithms: conventional methods range from A to D, while our proposed
approach spans from E to G. After linearizing the circuit (step A), the circuit can be represented as a graph comprising undirected
and directed edges. Conventional method, GPSCP, separates the undircted edges (step B) and perform spectral sparsification.
After that, the directed edges are added to obtain the final preconditioner (step C). Conversely, in our proposed CSP approach,
directed edges are considered as undirected edges, and the entire graph is subjected to spectral sparsification (step E). Then
preconditioner is produced by executing an "AND" operation (step F) between the sparsifier and the original graph.

Algorithm 1 The CSP Preconditioned Iterative Solver.
Input: Original asymmetric matrix 𝐴
Output: Iterative solution results
1: Set up the collection of 𝐴 edges: 𝑒𝐴
2: Initialize array 𝐼𝑠𝑠𝑦𝑚
3: for 𝑖 = 0 to 𝑛𝑛𝑧𝑅𝐴 do
4: Assign value to 𝐼𝑠𝑠𝑦𝑚[𝑖 ] based on the features of the edge 𝑒𝐴 [𝑖 ].
5: end for
6: for 𝑖 = 0 to 𝑛𝑛𝑧𝑅𝐴 do
7: if 𝑒𝐴 [𝑖 ]! = 1 then Make symmetric 𝑒𝐴 [𝑖 ] by the large value sym-

metry rule
8: end if
9: end for
10: Perform spectral sparsification and obtain sparse submatrix 𝐴𝑠

11: Set up the collection of 𝐴𝑠 edges: 𝑒𝑠
12: for 𝑖 = 0 to 𝑛𝑛𝑧𝑅𝐴𝑠 do
13: if 𝑒𝑠 [𝑖 ] is not in 𝑒𝐴 then Delete 𝑒𝑠 [𝑖 ]
14: end if
15: if 𝑒𝑠 [𝑖 ] is in 𝑒𝐴 then Reuse the elements of the original matrix 𝐴
16: end if
17: end for
18: Obtain preconditioner 𝐴𝑝

19: Run GMRES operation

edge information from the original graph, CSP executes a sparsifi-
cation process on the corresponding undirected graph, employing
a directed graph-oriented sparsification strategy to further enhance
the spectral similarity. Subsequently, the sparsified subgraph is
combined with the original graph using the "AND" operation (that
is, perform intersection between the produced sparsifier and the
original matrix need to be solved) to produce preconditioners, as
shown in Fig. 1(F). Furthermore, we propose an efficient parallel
technique to reduce the pre-processing overhead of performing
sparsification, thereby enhancing its practicality.

3.2 Analysis about Preconditioner for
Asymmetric Circuit Matrix

To better design the sparsification algorithm, we first analyze how
the preconditioner influences the solver’s performance. Assume the
original matrix is 𝐿𝐺 , the laplacianmatrix 𝐿𝐺𝑢

after symmetrization,
the preconditioned matrix 𝐿𝑆𝑢 after sparsification.

An effective preconditioner should significantly reduce the con-
dition number of a matrix. A lower condition number indicates
that the solution is less sensitive to noise and input errors, thereby
enhancing the stability of the equation. For the symmetrized ma-
trix 𝐿𝐺𝑢

and its sparsified preconditioner matrix 𝐿𝑆𝑢 , the theory
of spectral graph sparsification suggests that 𝐿𝑆𝑢 can effectively
reduce 𝜅 (𝐿−1

𝑆𝑢
· 𝐿𝐺𝑢

). According to the definition of the condition

number, for any 𝑛-by-𝑛 matrix 𝐴, we have cos(𝐴, 𝐼 ) = tr(𝐴)√
𝑛 |𝐴 | and√

𝑛

cos2 (𝐴,𝐼 ) ≤ 𝜅 (𝐴). Based on these equations, we can find that

𝜅 (𝐿−1
𝑆𝑢

· 𝐿𝐺𝑢
) ≥

√
𝑛

cos2 (𝐿−1
𝑆𝑢

·𝐿𝐺+𝐿−1
𝑆𝑢

·𝐿𝑇
𝐺
,𝐼 ) . (3)

Further, it can be concluded that,

𝑛−3/4 (𝜅 (𝐿−1
𝑆𝑢

· 𝐿𝐺 + 𝐿−1
𝑆𝑢

· 𝐿𝑇
𝐺
))1/2 ≥

|𝐿−1
𝑆𝑢

·𝐿𝐺 |
2max(tr(𝐿−1

𝑆𝑢
·𝐿𝐺 ),tr(𝐿−1

𝑆𝑢
·𝐿𝑇

𝐺
) ) . (4)

this leads to 𝜅 (𝐿−1
𝑆𝑢

· 𝐿𝐺 ) ≤ 𝛿 · 𝜅 (𝐿−1
𝑆𝑢

· 𝐿𝐺𝑢
), where

𝛿 ≤ 2 · 𝑛−3/4 ·
max(𝜆max (𝐿−1

𝑆𝑢
·𝐿𝐺 ),𝜆max (𝐿−1

𝑆𝑢
·𝐿𝑇

𝐺
) )

𝜆min (𝐿−1
𝑆𝑢

·𝐿𝐺 ) . (5)

As 𝑛 increases, 𝛿 can be considered less than 1. Consequently,
𝜅 (𝐿−1

𝑆𝑢
· 𝐿𝐺 ) < 𝜅 (𝐿−1

𝑆𝑢
· 𝐿𝐺𝑢

). This indicates that the preconditioner
not only reduces the condition number of 𝐿𝐺𝑢

but also that of 𝐿𝐺 .
Therefore, for iterative methods like GMRES, 𝐿𝑆𝑢 can serve as an
effective preconditioner for 𝐿𝐺 .
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Figure 2: Nonlinear components are firstly transformed into an equivalent linear circuits (Part A). The linear circuit simplifies
to a graph, with undirected edges for resistive components and directed edges for active components. Directed edges become
undirected for graph sparsification. Sparsification involves building a maximum-weight spanning tree and sorting off-tree
edges by their impact on effective resistances (Part B). Asymmetric and symmetric elements affect the matrix differently,
resulting in specific sparsification for directed edges. The representative support graph results from an "AND" operation
between the sparsified and original graphs (Part C). It acts as an effective precondition to improve iterative methods.

3.3 Operations about Asymmetric Part
Motivated by the previous derivation in Section 3.2, we employ a
"symmetric with large edges" strategy. This approach retain that
edges with higher weights in the spanning tree and decrease their
average stretch, consequently minimizing the number of iterations
required for GMRES to reach a solution. In our work, CSP employs
a "symmetry with large edges" strategy. As shown in Fig. 2(A),
upon acquiring the circuit matrix corresponding to the original
diagram, we identify and mark its asymmetric elements (lines 3-5
in Algorithms 1). For such asymmetric elements, we symmetrize
them with the value of the larger element and update the values
of the diagonal elements accordingly (lines 6-10 in Algorithms 1).
Through the aforementioned method, we establish a symmetric
matrix as equivalent to one possessing Laplacian properties, thereby
enabling its integration into the spectral sparsification operation.

3.4 Spectral Sparsification for Asymmetric
Matrices

Definition of Effective Weights of Edges. In order to reduce the
number of relative conditions in the spanning tree, we consider
more information about the asymmetric edges in the construction
of the spanning tree𝑇 . Consider the largest mismatch of the volume
of the vertex between the undirected graph 𝐺𝑢 and the spanning
tree 𝑇 :

VolMismax = max
𝑎∈𝑉

Vol𝐺𝑢
(𝑎)

Vol𝑇 (𝑎)
, (6)

where𝑉𝑜𝑙𝐺𝑢
(𝑎) is the volume of vectex 𝑎 in graph, same asVol𝑇 (𝑎).

When the largest mismatch of the vertex volume is smaller, it typ-
ically indicates a reduced relative condition number. When the
largest mismatch of the vertex volume is smaller, it typically indi-
cates a reduced relative condition number. Sowe have 𝜆𝑚𝑎𝑥 (𝐿𝐺𝑢

, 𝐿𝑇 ) ≥
𝑡𝑒𝑥𝑡𝑉𝑜𝑙𝑀𝑖𝑠max. Thus, the largest mismatch can be constrained

from below byVolMismax ≥
∑

𝑖∈𝑉 𝑉𝑜𝑙𝐺𝑢 (𝑎)∑
𝑎∈𝑉 𝑉𝑜𝑙𝑀𝑊𝐸𝑆𝑇 (𝑎) ,where𝑉𝑜𝑙𝑀𝑊𝐸𝑆𝑇 (𝑎)

represents the volume of vertex 𝑎.

Algorithm 2 The Proposed Sparsification Algorithm.
Input: Symmetric positive definite matrix𝐺𝐴𝑙

= (𝑉 , 𝐸, 𝑤 ) .
Output: Completely sparse matrix𝐺𝐴𝑠 .
1: Initialize the arrays and variables.
2: Set the sparsity 𝛼 .
3: for 𝑒 (𝑎,𝑏 ) ∈ 𝐸 do
4: if 𝑒 (𝑎,𝑏 ) is a undirected side then
5: 𝑒 𝑓 𝑓 𝑤𝑡 (𝑎,𝑏 ) = 2 ∗ 𝑤 (𝑎,𝑏 ) 𝑉𝑜𝑙𝑒

𝐿𝑎𝑦𝑒𝑟𝑎+𝐿𝑎𝑦𝑒𝑟𝑏 .
6: end if
7: if 𝑒 (𝑎,𝑏 ) is a directed side then
8: 𝑒 𝑓 𝑓 𝑤𝑡 (𝑎,𝑏 ) = (𝑤𝑎→𝑏 + 𝑤𝑏→𝑎 ) 𝑉𝑜𝑙𝑒

𝐿𝑎𝑦𝑒𝑟𝑎+𝐿𝑎𝑦𝑒𝑟𝑏 .
9: end if
10: end for
11: Obtain the graph𝐺 ′ = (𝑉 , 𝐸, 𝑤𝑒𝑓 𝑓 𝑤𝑡 ) .
12: Execute the Kruskal algorithm on𝐺 ′ to get𝑇 .
13: Compute effective resistances and sort off-tree edges to get an edge list

𝑒𝑂𝑓 𝑓 𝑡𝑟𝑒𝑒 .
14: for 𝑒 (𝑎,𝑏 ) ∈ 𝑒𝑜𝑓 𝑓 𝑡𝑟𝑒𝑒 do
15: if then𝛼 edges have been added into𝐺𝐴𝑠

16: Break
17: end if
18: if 𝑒 (𝑎,𝑏 ) is not marked then
19: Add 𝑒 (𝑎,𝑏 ) into𝐺𝐴𝑠

20: Identify the outer edges of the tree resembling 𝑒 (𝑎,𝑏 )
21: based on 𝑎, 𝑏, and the vertices reached in the BFS.
22: end if
23: end for

Based on the analyses provided above, it is evident that informa-
tion regarding both node degree and distance to a root node should
be taken into account when constructing the tree. The edge weights



CSP: Comprehensively-Sparsified Preconditioner for Efficient Nonlinear Circuit Simulation ICCAD ’24, October 27–31, 2024, New Jersey, NY, USA

generated anew are referred to as effective weights. It is positively
correlated with the degree of the node because we prioritize edges
with higher endpoints. It should be negatively correlated with the
distance to the root node because we prefer edges closer to the root.
The effective weights also consider the directed edge information of
the original graph 𝐺 (𝑉 , 𝐸,𝑤). In this context, undirected edges are
treated as a composite of two directed edges. Thus, the CSP-based
effective weight is defined as

𝐸𝑓 𝑓 𝑒𝑊 (𝑒) = (𝑤𝐺 (𝑎→𝑏 )+𝑤𝐺 (𝑏→𝑎) )𝑙𝑜𝑔 (𝑉𝑜𝑙𝑇 (𝑎)+𝑉𝑜𝑙𝑇 (𝑏 ) )
2(𝐷𝑖𝑠 (𝑟→𝑎)+𝐷𝑖𝑠 (𝑟→𝑏 ) ) , (7)

where𝑤𝐺 (𝑎 → 𝑏) +𝑤𝐺 (𝑏 → 𝑎) represents the sum of the absolute
values of the weights of edges 𝑒 (𝑎 → 𝑏) and 𝑒 (𝑏 → 𝑎) in the
original weighted graph 𝐺 . 𝑉𝑜𝑙𝑇 (𝑎) +𝑉𝑜𝑙𝑇 (𝑏) represents the sum
of the volumes of nodes 𝑎 and 𝑏 in the generated tree. 𝐷𝑖𝑠 (𝑟 →
𝑎) +𝐷𝑖𝑠 (𝑟 → 𝑏) is the sum of the shortest paths from the root node
to nodes 𝑎 and 𝑏, as shown in Fig. 2(B). In a symmetric graph, the
edges are endowed with distinct effective weight values based on
their properties in the original graph, such as whether they are
directed or undirected (lines 3-10 in Algorithms 2). Then, |𝐸 | − 1
edges are retained to construct the maximum spanning tree and
the edges off the tree.

Accession of Off-tree Edges. After creating the spanning tree,
critical off-tree edges are added to produce the sparsified subgraph
𝑆𝑢 , further reducing the number of conditions 𝜅 (𝐺, 𝑆𝑢 ). So, it is cru-
cial to select a small number of spectrally critical off-tree edges. By
deriving the formula for the trace of the extended matrix, assuming
that 𝜆𝑘 is the eigenvalue of𝐺 and 𝑢𝑘 is the eigenvalue of subgraph
𝑆𝑢 , we can see that the variation of the trace satisfies the equation:∑︁

𝑘

𝜆𝑘 −
∑︁
𝑘

𝑢𝑘 ≥
( 12 (𝑤𝐺 (𝑎 → 𝑏) +𝑤𝐺 (𝑏 → 𝑎))𝑅𝑝 (𝑎, 𝑏))2

1 + 1
2 (𝑤𝐺 (𝑎 → 𝑏) +𝑤𝐺 (𝑎 → 𝑏))𝑅𝑝 (𝑎, 𝑏)

. (8)

In this, the sum of the edge weights (𝑎, 𝑏) in the original weighted
graph (𝑤𝐺 (𝑎 → 𝑏) +𝑤𝐺 (𝑏 → 𝑎) contributes to the maximum node
mismatch, as shown in Fig.2(B). The effective resistance value of
edge (𝑎, 𝑏) is denoted as 𝑅𝑝 (𝑎, 𝑏). Adding external edges reduces
the condition number between the matrices𝐺 and 𝑆𝑢 . To maximize
this reduction, effective resistance values 𝑅𝑝 (𝑎, 𝑏) is computed for
all external edges, sorted, and prioritized based on larger reduction.
Directed and undirected edges possess distinct effective weights,
leading to discrepancies in 𝑅𝑝 (𝑎, 𝑏) values. Undirected edges exhibit
larger the effective resistance value, thereby exerting a greater in-
fluence on the reduction of conditions compared to directed edges.
Previous research [30] has shown that non-symmetric elements sig-
nificantly impact the preconditioner, leading to a higher condition
number. Therefore, priority is given to adding undirected edges,
resulting in a subgraph with a smaller relative condition number
(lines 13-23 in Algorithms 2).

3.5 The "AND" Operation
Finally, we reintegrate the asymmetric information from the origi-
nal graph into the preconditioned matrix through the "AND" op-
eration. The core idea of "AND" is that edges are retained when
they exist in both the sparsified subgraph and the original weight
graph. Otherwise, they are ignored. As shown in Fig. 2(C), from
the matrix viewpoint, elements existing in the sparsified matrix
are preserved only if they also exist in the original matrix. The

values of the elements are updated accordingly to match the values
within the original matrix. Otherwise, elements not found in the
original matrix are removed (lines 13-20 in Algorithms 1). Then,
the sparse matrix resulting from the "AND" operation is employed
as a preconditioner in the GMRES algorithm to solve the original
matrix (lines 21-22 in Algorithms 1).

3.6 Parallelization
Though our proposed CSP could produce a better preconditioner,
the sparsification itself usually consumes additional overhead. To
further improve efficiency and enhance its practicality, we use
OpenMP to parallelize the sparsification process.
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Figure 3: The figure (a) is an example of getting the LCA. The
figure (b) is an example of edge grouping and edge exclusion.

Block RMQ algorithm. To calculate the effective resistances,
we need to obtain the lowest common ancestor (LCA). However,
traditional LCA algorithms are difficult to parallelize. As shown in
Fig. 3(a), in this paper, we propose an effective strategy to transform
the LCA problem into the range maximum query (RMQ) problem
on the Euler tour. By dividing the block, we can conduct parallel op-
erations on each block, thereby maintaining the maximum interval
between them.

Point exclusive algorithm. When considering adding the off-
tree edge 𝑒 = (𝑖, 𝑗), we need to mark the other off-tree edges.
However, establishing connections between newly added edges
and other non-tree edges can present challenges. In this paper, to
improve the efficiency, we create a mutually exclusive zone with 𝑖
and 𝑗 as starting points for edge 𝑒 , so that the outside of an off-tree
with mutually exclusive endpoints marked by the same edge can
be skipped, as shown in Fig. 3(b). Finally, to reduce memory and
time overhead, we group the edges with the LCA as a set.

4 EXPERIMENTAL RESULTS
4.1 Experimental Setup
We compare the proposed CSP method with SOTA spectral spar-
sification methods GPSCP and feGRASS as the preconditioner for
GMRES, as well as the most widely used sparse direct solver KLU
(version 2.3.3). GPSCP is designed for nonlinear asyemetric circuits
while feGRASS is not specifically designed for nonlinear asysmet-
ric circuit matrix and can only be performed to syemetric matrix.
Therefore, we leverage half of the asymmetric matrix (that is, the
upper or lower triangular matrix) for symmetrization and serve it
as the input of feGRASS for sparsification. ALL algorithms were
developed using C++. The sparsity 𝛼 is uniformly configured to
2% for all three sparsifiers. The residual bound is set to 10−5 and
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the maximum number of iterations was capped at 500 (exceeded
ones are considered as non-convergent). Our experiments are on a
32-core CPU operating at a frequency of 3.7 GHz, as well as 16 GB
of DDR4 memory.

Table 1: Experimental setup of test cases

MatrixName n(A) nnz(A) asym_ratio
ww_36_pmec_36 66 1194 95.31%
fpga_dcop_43 1220 5892 53.94%
fpga_trans_01 1220 7382 66.30%
adder_dcop_35 1813 11246 83.36%

add20 2395 17319 29.40%
adder_trans_02 1814 14579 84.89%
mult_dcop_02 25187 193276 86.86%

rajat30 643994 6175377 88.90%
circuit_4 80209 307604 47.05%

ASIC_320ks 321671 1827807 40.66%
circuit5M_dc 3523317 19194193 24.41%
Freescale1 3428755 18920347 51.55%

We use 178 circuit matrics from SuiteSparse Matrix Collection
[31] for experimental verification and also present a detailed per-
formance comparison for 12 cases in which all methods have con-
verged. The details of these cases are shown in Table 1. “#𝑛(𝐴)”
denote the dimensions of the matrix. “#𝑛𝑛𝑧 (𝐴)” denotes the num-
ber of non-zero elements in the original matrix of the system.
“#𝑎𝑠𝑦𝑚_𝑟𝑎𝑡𝑖𝑜” denotes the percentage of asymmetric elements in
the matrix.

4.2 Solver Performance Comparison
Wefirst compare the total solution time of the iterative solver, which
uses CSP, feGRASS and GPSCP as the preconditioner, respectively.
Here, for a fair comparison, all algorithms are performed in serial.
The total solver time includes both the pre-processing time and
the iterative solver time in GMRES. Results are shown in Fig. 4. Of
the 178 circuit matrices tested, both CSP and GPSCP successfully
converged in 175 matrices, while feGRASS only achieved successful
convergence in 60 matrices. In the set of matrices where successful
convergence is achieved, CSP outperforms feGRASS and GPSCP
with a 13.46x and 2.50x speedup on geometric mean, respectively.

We further demonstrate the detailed solver time of our proposed
CSP over fe-GRASS, GPSCP and KLU using 12 circuit matrices
of varying sizes and classes. As depicted in Fig. 5 (where KLU is
considered as the baseline), CSP exhibits the highest acceleration
among the three graph sparsification-based preconditioning solvers.
Furthermore, CSP exhibits an average speedup of 2.18x compared
to KLU. It demonstrates significant effectiveness of our proposed
methods compared with not only SOTA iterative solvers but also
the most widely used direct solver.

4.3 Quality of Preconditioners
We further validate the preprocessing quality of our proposed CSP
in the following three aspects and compare them with the feGRASS
and GPSCP methods.

The number of 𝑛𝑛𝑧 in preconditioners. As shown in Table
2 “#𝑛𝑛𝑧 (𝑃)”, our proposed CSP demonstrates better sparsity com-
pared with the other two methods. The primary reason for this is
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each bar represents the speedup ratio.

that our sparsification strategies are applied to the entire graph,
thereby minimizing the addition of extraneous nonlinear elements
and further reducing the preconditioner’s factorization time and
the complexity. Note that a higher sparsity in the preconditioner
brings a significant advantage of reducing the preconditioner’s
factorization time and the complexity.

Relative condition numbers. As shown in Table 2 “#𝜅 (𝐴, 𝑃)”,
the smaller the value of #𝜅 (𝐴, 𝑃), the more similar the spectral char-
acteristics of matrices 𝐴 and 𝑃 are. Among the three graph sparsi-
fication methods, CSP yields a smaller relative condition number,
indicating superior spectral similarity. This is primarily attributed
to our approach of considering all elements globally during the spar-
sification process and reintroducing information from the original
matrix into the preconditioner at the end.

Number of iterations and convergence performance. As
shown in Table 2 “#𝑖𝑡𝑒𝑟 (𝐴, 𝑃)”, improved spectral similarity be-
tween matrices𝐴 and 𝑃 leads to reduced iteration numbers required
by the iterative method. As a result, the CSP-based preconditioned
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Table 2: Sparsity and validity of three different sparsification-based preconditioner (The maximum number of iterations is 500).

MatrixName feGRASS+GMRES[18] GPSCP+GMRES[21] CSP+GMRES IterDown
nnz(P) iter 𝜅 (𝐴, 𝑃 ) nnz(P) iter 𝜅 (𝐴, 𝑃 ) nnz(P) iter 𝜅 (𝐴, 𝑃 ) vs. [18] vs. [21]

ww_36_pmec_36 186 500 309.50 888 30 68.67 140 30 66.72 – 1.00x
fpga_dcop_43 3562 41 632.14 4380 4 12.99 3421 2 9.13 20.50x 2.00x
fpga_trans_01 3616 500 328.01 3616 10 33.70 3616 9 23.75 – 1.11x
adder_dcop_35 5457 338 1248.11 8774 64 64.03 5039 56 43.21 6.04x 1.14x

add20 7229 500 2268.92 7229 500 2266.72 5953 7 12.44 – –
adder_trans_02 5463 11 221.00 5463 9 216.87 5463 9 216.06 1.22x 1.00x
mult_dcop_02 75567 500 2271.40 140424 500 2266.40 71321 10 11.91 – –

rajat30 1932663 500 3875.64 1947406 30 171.29 1919717 28 161.27 – 1.07x
circuit_4 200872 500 1956.00 225206 500 1952.12 186364 11 119.71 – –

ASIC_320ks 970947 30 99.40 970947 4 1.03 465838 3 1.03 10.00x 1.33x
circuit5M_dc 10638293 500 2556.00 10638293 500 2592.12 6062913 11 119.71 – –
Freescale1 10352717 500 7823.20 10352717 20 504.20 7804691 16 419.06 – 1.25x
Average – – – – – – – – – 9.44x 1.23x

iterative method solver can proceed through fewer steps. As shown
in Fig. 6, we further illustrate the convergence details of some tests.
It can be seen that CSP+GMRES reaches the convergence bound
earlier in most cases.
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Figure 6: The convergence of residuals during iteration is
observed for three representitive matrices.
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iterative solver with 16-threads for 178 matrices.

We further show the breakdown time to veify the pre-processing
overhead. As depicted in Table 3, where “#𝑡𝑠𝑒𝑡 (𝑚𝑠)” and “#𝑡𝑖𝑡𝑒𝑟 (𝑚𝑠)”
denote the time to generate the preconditioner (with symmetric

step, sparsification step, "AND" intersection step) and the time
of the GMRES iterative solver, respectively. It can be found that
CSP is slightly more time-consuming compared to the other two
methods. While generation process of preconditioners may be time-
consuming, the exceptional quality of CSP enables iterativemethods
to significantly decrease solution times.
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Figure 8: Parallel performance for sparsification.

Another observation is that the pre-processing time usually takes
a protion of 7.30%-51.39% compared with the iterative solver. This
indicates an obvious pre-processing overhead, which is mainly in-
troduced by the sparsification process. Fig. 7 further demonstrate
the breakdown time comparison when we perform a parallel itera-
tive solver (with 16 threads). The pre-processing phase may even
account for more than 50% of the total time. This emphasis a siginif-
icant importance and necessity of accelerating the pre-precoessing
step. Since the symmetric and the "AND" intersection step is quite
easy to parallize, in this paper, we mainly focus on the parallalism
on the sparsification step.

4.5 Parallelization
As shown in Fig. 8, our parallel sparsification algorithm demon-
strates notable parallel efficiency and scalability. In 178 tested matri-
ces, our parallelization strategy achieves an average speedup 2.99x
compared to traditional serial graph sparsification algorithms. This
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Table 3: The breakdown time for setup stage and the iterative solver stage for three spaesification-based iterative solvers.

MatrixName feGRASS+GMRES[18] GPSCP+GMRES[21] CSP+GMRES
𝑡𝑠𝑒𝑡 (𝑚𝑠 ) 𝑡𝑖𝑡𝑒𝑟 (𝑚𝑠 ) 𝑡𝑠𝑒𝑡 (𝑚𝑠 ) 𝑡𝑖𝑡𝑒𝑟 (𝑚𝑠 ) 𝑡𝑠𝑒𝑡 (𝑚𝑠 ) 𝑡𝑖𝑡𝑒𝑟 (𝑚𝑠 )

ww_36_pmec_36 0.13 5.95 0.03 2.12 0.17 0.15
fpga_dcop_43 0.43 13.73 0.30 1.89 0.49 1.83
fpga_trans_01 0.52 14.41 0.55 2.06 0.56 1.94
adder_dcop_35 0.69 11.32 0.57 5.18 1.05 1.11

add20 1.17 23.15 1.37 2.69 1.14 2.68
adder_trans_02 1.14 6.80 1.28 2.14 1.14 2.08
mult_dcop_02 15.71 207.24 10.73 32.35 25.15 5.50

rajat30 624.21 5402.98 711.45 820.35 969.5 471.54
circuit_4 75.60 538.14 62.85 947.55 102.68 420.09

ASIC_320ks 142.91 1121.58 148.35 117.03 160.61 28.87
circuit5M_dc 1553.48 30806.12 2146.52 1990.06 2274.72 753.55
Freescale1 2496.39 36868.10 2596.70 61167.55 2836.50 35549.32

is primarily attributed to our proposed Block RMQ algorithm and
point-exclusive algorithm, facilitating parallelism in both the LCA
solution process and the edge addition process. This improvement
significantly enables parallel sparsification process and reduces
the pre-processing overhead, enhancing the practicality of spectral
sparsification method.

4.6 Ablation Experiment
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Figure 9: Ablation experiment to demonstrate the effective-
ness of our proposed sparsification approach (in Section 3.4).

For ablation experiment to demonstrate the effectiveness of our
proposed undirected edge-oriented sparsification strategies (ap-
proaches in Section. 3.4), we use converntional feGRASS as the
sparsification strategy at the sparsification step in CSP as the com-
parison baseline. All other steps are the same, e.g., operations about
Asymmetric Part and the "AND" operation. As shown in Fig.9,
CSP with specific undirected edge-oriented sparsification strategy
demonstrates an average 15.13x speedup (with a maximum 52.43x)
compared with the one without.

4.7 Memory Cost Comparison
Finally, we compare the memory consumption of the direct solver
KLU, and three preconditioning methods CSP, feGRASS and GPSCP

with iterative solver. As shown in Fig.10, iterative solvers demon-
strate significantly lower memory consumption costs compared
with direct solvers. Furthermore, CSP+GMRES exhibits the lowest
memory consumption compared to the other two preconditioned
iterative methods. The main reason is that our proposed CSP gen-
erates a sparser preconditioner compared with other methods.
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Figure 10: Memory cost comparison of KLU and three
sparsification-based iteration operation.

5 CONCLUSION
In this paper, we propose CSP, an efficient preconditioning method
for solving nonlinear asymmetric circuit matrices. Our method sig-
nificantly improves the efficiency and robustness of iterative solvers
by using a comprehensively sparse subgraph as a preconditioner.
The proposed method enhances the sparisity of the produced pre-
conditioner to lower the factorization time and complexity, while
maintaing a better spectral similarity to reduce the iterative number
and improve the performance. Moreover, parallelization technique
is also proposed to further reduce the overhead of matrix sparsifi-
cation. CSP boosts the solving efficiency of large circuit matrices,
with its superior speed and reduced memory usage.
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