
Cuper: Customized Dataflow and Perceptual
Decoding for Sparse Matrix-Vector Multiplication on

HBM-Equipped FPGAs
Enxin Yi∗, Yiru Duan∗, Yinuo Bai∗, Kang Zhao†, Zhou Jin∗, Weifeng Liu∗

∗Super Scientific Software Laboratory, China University of Petroleum-Beijing, China
†Department of Integrated Circuits, Beijing University of Posts and Telecommunications, China

Email: ∗{enxin.yi, yiru.duan, bai}@student.cup.edu.cn, †zhaokang@bupt.edu.cn, ∗{jinzhou,weifeng.liu}@cup.edu.cn

Abstract—Sparse matrix-vector multiplication (SpMV) is piv-
otal in many scientific computing and engineering applications.
Considering the memory-intensive nature and irregular data
access patterns inherent in SpMV, its acceleration is typically
bounded by the limited bandwidth. Multiple memory channels of
the emerging high bandwidth memory (HBM) provide exceptional
bandwidth, offering a great opportunity to boost the performance
of SpMV. However, ensuring high bandwidth utilization with
low memory access conflicts is still non-trivial. In this paper,
we present Cuper, a high-performance SpMV accelerator on
HBM-equipped FPGAs. Through customizing the dataflow to be
HBM-compatible with the proposed sparse storage format, the
bandwidth utilization can be sufficiently enhanced. Furthermore,
a two-step reordering algorithm and perceptual decoder-centric
hardware architecture are designed to greatly mitigate read-after-
write (RAW) conflicts, enhance the vector reusability and on-chip
memory utilization. The evaluation of 12 large matrices shows
that Cuper’s geomean throughput outperforms the four latest
SpMV accelerators HiSparse, GraphLily, Sextans, and Serpens,
by 3.28×, 1.99×, 1.75×, and 1.44×, respectively. Furthermore, the
geomean bandwidth efficiency shows 3.28×, 2.20×, 2.82×, and 1.31×
improvements, while the geomean energy efficiency has 3.59×,
2.08×, 2.21×, and 1.44× optimizations, respectively. Cuper also
demonstrates 2.51× throughput and 7.97× energy efficiency of
improvement over the K80 GPU on 2,757 SuiteSparse matrices.

Index Terms—Sparse Matrix-Vector Multiplication, FPGAs,
HBM, Accelerator

I. INTRODUCTION

Sparse matrix-vector multiplication (SpMV) is pivotal in
many scientific computing and engineering applications, and
has a significant performance impact on graph computation,
machine learning, information retrieval, and cloud comput-
ing, etc [1]. FPGAs are considered attractive platforms for
accelerating SpMV. Compared to traditional CPUs and GPUs
platforms, FPGAs can fully leverage the parallelism potential of
SpMV by customizing dataflow and memory structure [2]–[4].
In addition, FPGAs typically have low power consumption.

However, there are several challenges to accelerate SpMV
on FPGAs platforms. Firstly, due to the limited number of
independent memory channels, conventional FPGAs with DDR
memory system are poor at concurrent memory accesses and
lead to a throughput mismatch between the memory structure
and parallel processing engines (PEs). Secondly, randomly
distributed non-zeros in sparse matrices may cause irregular
memory access patterns, which restrict the available memory

bandwidth as the DDR is better suited for continuous memory
accesses [5].

High bandwidth memory (HBM) [6] features more memory
channels and a greater memory bandwidth compared to tradi-
tional DDR memory, bringing great opportunity to accelerate
SpMV. Some pioneering works have proposed sparse acceler-
ators on HBM-equipped FPGAs and demonstrated their effec-
tiveness in accelerating SpMV, i.e., HiSparse [6], GraphLily
[7], Sextans [8], and Serpens [9], etc. HiSparse leverages cus-
tomized sparse format and a scalable on-chip buffer design to
improve bandwidth utilization. GraphLily is an FPGA overlay
to support generalized graph applications. Sextans is an accel-
erator for sparse matrix-dense matrix multiplication (SpMM)
that supports SpMV with redundant HBM channels. Serpens
is a memory-centric general SpMV accelerator and achieves
competitive performance to GPUs. However, fully benefiting
high bandwidth of HBM to accelerate SpMV is still non-trivial.
There are still three key challenges that need to be addressed:
(1) Low utilization bandwidth of HBM with existing sparse
storage formats. (2) The high latency introduced by read-after-
write (RAW) conflicts lead to a limited compute occupancy. (3)
Input vector and on-chip memory are underutilized.

In this paper, we propose a high-performance SpMV ac-
celerator Cuper on HBM-equipped FPGAs to resolve these
challenges. Cuper is equipped with following techniques: (1)
We utilize the proposed sparse storage format to customize
HBM-compatible dataflow to support vectorized and streaming
accesses to memory channels, thereby improving bandwidth
utilization. (2) The two-step reordering algorithm combining
conflict-aware row reordering and reuse-aware column reorder-
ing mitigates RAW conflicts and improves vector reusability.
(3) In addition, we design a perceptual decoder that further
enhances reusability and on-chip memory utilization by a
flexible reuse register design and skipping redundant vector
writes. Our main contributions can be summarized as follows:

• We customize dataflow by employing the proposed sparse
storage format to improve bandwidth utilization of HBM.

• We introduce a two-step reordering algorithm for mitigat-
ing RAW conflicts and reusing vector.

• We design a perceptual decoder in order to further enhance
vector reusability and on-chip memory utilization.

We implement Cuper on a Xilinx Alveo U280 FPGA. The

evaluation shows that Cuper exhibits advantages in terms of
throughput, bandwidth efficiency, and energy efficiency over
HiSparse, GraphLily, Sextans, and Serpens, respectively. We
also compare with an Nvidia Tesla K80 GPU on 2,757 SuiteS-
parse [10] matrices and demonstrate superior performance.

II. BACKGROUND AND RELATED WORK

A. Sparse Matrix-Vector Multiplication

SpMV refers to the multiplication of a sparse matrix A
with a dense vector x to obtain a dense vector y. Equation
(1) is used to represent SpMV, whereby yi is obtained from a
dot product between Ai,∗ and vector x. Conventional storage
methods often waste space due to the numerous zeros present
in sparse matrices [11]. Thus, many works use compressed
formats to store non-zero information. Three common sparse
storage formats include coordinate (COO), compressed sparse
row (CSR), and compressed sparse column (CSC).

yi =

#Cols∑
j=0

Ai,j × xj(Ai,j ̸= 0, 0 ≤ i < #Rows) (1)

B. High Bandwidth Memory

HBM is an advanced memory solution for scientific com-
puting and engineering applications. HBM achieves higher
bandwidth than traditional DDR memory by vertically stacking
multiple DRAM dies [6]. For example, the DDR4 memory in
the Xilinx Alveo U250 provides four channels with a total
bandwidth of 77 GB/s, while HBM based Xilinx Alveo U280
provides 32 channels and a total memory bandwidth of 460
GB/s. The advent of HBM presents a significant prospect for
memory-intensive applications, like SpMV. Nevertheless, the
hardware architecture needs to be carefully customized to fully
exploit the potential of HBM for accelerating SpMV [12].

C. SpMV Accelerators on HBM-Equipped FPGAs

The hardware accelerator design for SpMV has garnered
attention, especially with the introduction of HBM-equipped
FPGAs, which expand the possibilities for optimization. HiS-
parse [6] employs a customized sparse matrix format and
scalable on-chip buffers to improve bandwidth utilization, but
the load-store forwarding inevitably introduces stall logic.
Serpens [9] is a general SpMV accelerator based on HBM
with memory-centric processing engines and index coalescing.
However, due to the lack of consideration for blank structures
in sparse matrices, Serpens writes redundant vector elements
into on-chip memory. Furthermore, there are several works
that leverage HBM FPGAs. Although they are not specifically
customized for SpMV, they can support SpMV operations.
GraphLily [7] designs the FPGA overlay to support a wide
range of graph applications. However, certain general-purpose
hardware allocations are idle during SpMV processing. Sextans
[8] serves as an accelerator for generalized SpMM processing.
For streaming, memory channels have to be allocated for
three matrices. Therefore, utilizing Sextans directly for SpMV
processing results in redundant bandwidth allocation.

(a) troll (b) Ga19As19H42 (c) 3dtube (d) Si10H16

(e) The trend of vector memory utilization with matrix density

Fig. 1: (a), (b), (c), and (d) demonstrate the spatial structure
of four sparse matrices, (e) is input vector on-chip memory
utilization of the matrices in Serpens.

III. MOTIVATION

Designing a high-performance general SpMV accelerator
utilizing the high bandwidth capabilities of HBM-equipped
FPGAs presents several challenges, including:

• Existing sparse storage formats pose challenges in
fully exploiting the high bandwidth potential of HBM.
The pointer array in CSR/CSC prevents fully streaming
accesses to non-zeros, the accelerator has to first access the
pointer array before reading non-zeros. Also, the continu-
ous storage of non-zeros prevents row/column vectorized.

• Inherent RAW conflicts lead to low compute occu-
pancy. The accumulation phase of SpMV unavoidably
causes RAW conflicts. The typical pipeline stall solution
strategy leads to high latency and poor throughput.

• Lack of efficient utilization of the input vector and on-
chip memory. The blank structures in sparse matrices,
arising from irregularly distributed short and empty rows,
lead to low vector reusability and redundant on-chip
writes. As shown in Fig. 1(e), in Serpens [9], matrices
with varying densities and spatial structures can impact
the memory utilization of the input vector.

IV. PREPROCESSING AND DATAFLOW

A. Proposed Sparse Storage Format

HBM’s stacking layers introduce high latency. To benefit
from the high bandwidth of HBM, streaming accesses must
be ensured to amortize latency penalties. Indirect accesses
of traditional sparse storage formats can prevent streaming
accesses, resulting in poor bandwidth utilization. Therefore, we
propose a sparse storage format to support streaming accesses
to HBM channels and vectorized, as shown in Fig. 2(a). To
alleviate the impact of blank structures in sparse matrices on
the utilization of on-chip memory, we utilize sparse slices as
the basic storage unit. The fixed partition size of slice structure

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 1 2 3 4 5 6 7

0 0 0 0 0 0 4 4

1 3 4 101114 3 4

8 9 101112131415

4 4 4 4 8 8 8 8

7 111415 1 4 7 10

1617181920212223

8 8 121212121212

1415 1 3 7 101115

Delivery Cycle 0

RAW RAW RAW RAW

val

col

row

packet1Packet 0 packet1Packet 1

32bit

8

...

packet1Packet 0 Packet 1
HBM Channel 2

...

packet1Packet 0 Packet 1 ...

packet1Packet 0 ...Packet 1

ba
tc

h
0

ba
tc

h
2

ba
tc

h
3

ba
tc

h
1

0

0 2 3 4 6

0 3 1 3 0 3

sliceVal

sliceRowIdx

sliceColPtr

HBM Channel 3

HBM Channel 1

HBM Channel 0
64

64

(a) Proposed Sparse Storage Format (b) Two-Step Reordering (c) Packaging and Dataflow

...
val row col

32bit

Delivery Cycle 1 Delivery Cycle 2

0 6 1218 1 7 1319

0 4 8 12 0 4 8 12

1 3 1 1 3 4 4 3

2 8 1420 3 9 1521

0 4 8 12 0 4 8 12

4 7 7 7 10111010

4 101622 5 111723

0 4 8 12 0 4 8 12

1114141114151515

val

col

1 6 1218 0 7 1319

0 4 8 12 0 4 8 12

1 1 1 4 4 3

2 8 1420 4 9 1521

0 4 8 12 0 4 8 12

4 7 7 7 11111010

3 101622 5 111723

0 4 8 12 0 4 8 12

1014141114151515

val

col

Reusable

row

ReusableReusable

No RAW

Sliding Window

3 3
Reuse Reuse

row

2

1

0

St
ep

 1
 :

C
on

fl
ic

t-
A

w
ar

e
St

ep
 2

 :
R

eu
se

-A
w

ar
e

Reuse

Fig. 2: An example matrix A of size 64-by-64 stored in six sparse slices of size 16-by-16. The slice structure contains three
arrays sliceColPtr, sliceRowIdx, and sliceVal representing slice offsets, slice row indices, and non-zero information
in sparse slice. The non-zeros in COO within a sparse slice are cyclically grouped by rows. A sliding window is set for each
group, which is filled sequentially with non-conflicting non-zeros, based on which non-zeros with the same column index are
aggregated. The reordered non-zeros are then packed into packets, forming dataflow distributed across the four HBM channels.

restricts the load between PEs to maintain a relatively balanced
state. SpMV executed in column-major order is considered to
have higher input vector reusability. Therefore, sparse slices
are stored by CSC. Additionally, in order to reduce extra
control overhead, we utilize COO to store non-zero information
(sliceVal) in each sparse slice. Synchronized parsing of
COO indices and values ensures full streaming accesses to each
HBM channel. At the same time, the compact storage of COO
supports vectorized delivery.

B. Two-Step Reordering Algorithm

To mitigate RAW conflicts in the SpMV accumulation phase
and enhance input vector reusability, we propose a two-step
reordering algorithm.

Step 1. Conflict-Aware Row Reordering: To fully utilize
the 512-bit off-chip memory bandwidth of FPGAs (in the case
of Xilinx FPGAs), we employ an index aggregation strategy.
Due to the fixed size of the sparse slices, we can aggregate the
row and column indices into 32-bit, enabling us to encode a
single non-zero in 64-bit (i.e., 32-bit index and 32-bit value).
With this strategy, eight non-zeros can be delivered to the chip
per cycle. Thus, as illustrated in Fig. 2(b-0), it takes three
cycles to deliver the 24 non-zeros (in blue). However, delivery
in this order introduces a large number of RAW conflicts. We
assume a 4-cycle latency (depending on the specific FPGAs)
for the digital signal processing (DSP) to process a floating-
point accumulation. As shown in cycle 0 of Fig. 2(b-0), the
first four non-zeros all accumulate to the same address ‘0’. Due
to DSP latency, the accumulation of the 2nd, 3rd, and 4th non-
zeros introduces RAW conflicts with the 1st non-zero, leading
to increased latency. To effectively mitigate RAW, we propose
a conflict-aware row reordering algorithm. It involves filling
a sliding window of width four with consecutively selected
conflict-free row addresses from the initial sequence. If there
is no more matching address, the window is temporarily made
idle. In Fig. 2(b-1), following this reordering strategy that any
four consecutive accumulations have no RAW conflicts.

Step 2. Reuse-Aware Column Reordering: We further
analyze the reordered sequence and find that there are reusable
vector elements in it, as shown by the purple in Fig. 2(b-
1). Therefore, we propose a reuse-aware column reordering
algorithm. With the priority of step 1 reordering algorithm, we
gather non-zeros with the same column index greatest possible
to improve data locality, and the sequence after reordering is
shown in Fig. 2(b-2). Continuous reuse of vector elements is
achieved by setting flexible reuse registers in the hardware
architecture (Section V-C).

C. Dataflow Processing

Due to on-chip resource limitations, we employ a batched
approach to perform SpMV. Fig. 2(a) illustrates this with the
sparse matrix divided into four batches, processing one column
(128 columns in this work) of sparse slices per batch. The next
step is packaging, benefiting from the index aggregation strat-
egy, we can pack eight non-zeros into a packet for vectorized
delivery. These packets are then formed into dataflow and stored
in the HBM channels. The last step is dataflow allocation,
contiguous row dataflow allocation leads to channel conflicts
among PEs, resulting in high access latency. Therefore, we
cyclically allocate rows of dataflow to each channel, as shown
in Fig. 2(c).

V. HARDWARE ARCHITECTURE

A. Overall Architecture

The overall architecture of Cuper is illustrated in Fig. 3. The
preprocessed dataflow from the host platform stream to the
FPGAs through HBM channels. The dedicated computational
cores array utilizes a matrix loader and crossbar switch to load
sparse matrix A dataflow. Within each core, the perceptual
decoder parses the index information and loads the input vector
via the controller and vector fetcher. Then, the accumulator
merges the product of the multiplication for the corresponding
row address generated by the PE group. Upon completion of
all batches processing, the partial sums are sorted in parallel

C
ro

ss
ba

r
Sw

itc
h

+FIFO0 Buffer

+ Buffer

+ Buffer

+ Buffer

+ Buffer

...

(h) Accumulator

>

>
>

>

>
>

>

>

>
>

>

>
>

>

>

(i) Multi-way Sorting Tree

...

Core

(f) Decoder

va
l

ro
w

va
l

ro
w

Reuse Register

Vector Fetcher

Controller

row

val

ve
ct

or

(g) PE Group

88

...

HBM Channel 1

HBM Channel 2

HBM Channel 3

HBM Channel 4

HBM Channel 16

...

HBM Channel 0

HBM Channel 17

...

...

...

(c) Vector Writer

FIFO1

FIFO2

FIFO3

FIFO15

M
at

ri
x

L
oa

de
r

(b) Vector Loader

(j
)

R
es

ul
t R

ec
ei

ve
r

Matrix A Dateflow
Vector x Dateflow
Vector y Dateflow

×

...

PE7

PE1

PE0

(d
)

(e
)

(a
)

Pa
rt

ia
l S

um
s

B
uf

fe
r

 Addr Parser

 Addr Parser

M
U

X

D
ed

ic
at

ed
 C

or
es

 A
rr

ay
co

l

Fig. 3: Overall Architecture of Cuper.

by the multi-way sorting tree. After that, the result vector is
delivered to the vector writer through the result receiver. Finally,
the vector writer streams the final result to the host platform
through HBM channels, concluding the SpMV computation.

B. Channel Allocation

Before performing SpMV, the sparse matrix A and the vector
x in off-chip memory are streamed to on-chip memory. It
is worth noting that we do not recommend allocating HBM
channels equally, as the matrix size is typically much larger
than the vector size. Thus, we allocate 16 HBM channels for
reading sparse matrix A, one channel for reading vector x, and
one channel for writing back vector y. This allocation strategy
is designed to optimize bandwidth overhead. Cuper uses 18
HBM channels for a bandwidth of 258 GB/s.

The loader and the writer perform streaming accessing. The
matrix loader (Fig. 3(a)) supports highly concurrent dataflow
reads and is interconnected to an array of dedicated computa-
tional cores via a crossbar switch, this ensures load balancing
of each core. The vector loader (Fig. 3(b)) and the vector writer
(Fig. 3(c)) have a 512-bit width configuration and vectorize 16
FP32 values in each cycle.

C. Dedicated Computational Cores Array

HBM provides massive memory channels. However, the
global accesses between channels introduce high latency.
Therefore, we configure 16 highly parallel cores (Fig. 3(e)) in
dedicated computational cores array to facilitate independent
concurrent access and optimize bandwidth utilization. These
cores handle the SpMV multiplication, each containing a per-
ceptual decoder (Fig. 3(f)) and a PE group (Fig. 3(g)).

1) Perceptual Decoder: The perceptual decoder consists of
a controller and a vector fetcher. Initially, incoming packets
are parsed into eight elements. Then each element is further
separated into three parts: column index, row index, and value.
The vector fetcher reads the input vector elements continuously
based on the column addresses parsed by the controller. To
implement the vector reuse strategy of the reordering algorithm,
we set flexible reuse registers in the vector fetcher to save
the last read vector value and column address. The controller
verifies whether the column address of the vector to be acquired

exists in the reuse register. If the match successes, the controller
schedules the multiplexer (MUX) to directly export the vector
element from the reuse register in order to shorten the read
path. If the match failures, the vector fetcher reads vector from
the vector loader and saves them to the block RAM (BRAM)
for computation, while the contents of the reuse registers are
replaced. After that, the decoder will pack the vector element,
row index, and value and send them to the PE group. Because
the proposed sparse storage format is based on sparse slices,
the perceptual decoder can skip the blank structures to reduce
redundant vector writes for higher on-chip memory utilization.

2) PE Group: The proposed sparse storage format ensures
efficient synchronization parsing of address and value parsing,
enabling the design of a pipelined PE for high processing
throughput. Each packet contains eight groups of non-zeros.
Therefore, eight PEs are configured in a PE group and each
PE performs the multiplication operation of the matrix value
with the vector value. As there is no data dependency during
the multiplication phase of SpMV, all PEs can compute in
parallel. The row index is then parsed as an address and pushed
into the FIFO along with the multiplication result, which is
subsequently streamed to the accumulator by the core.

D. Accumulator

As shown in Fig. 3(h), we design an accumulator for the
fast merging of partial sums. The accumulator obtains the
multiplication results from the dedicated cores array. Due to
the speed mismatch between data delivery and floating-point
accumulations, we set up a FIFO for every adder to stockpile
awaiting inputs and convey new inputs from the FIFO upon
the adder completing the present computation. The accumulated
results are promptly stored in the partial sums buffer, composed
of ultra RAM (URAM), to support quick random accesses.
Moreover, the batched approach of SpMV introduces memory
switching latency between batches, for which we set up ping-
pong buffers to cover this latency overhead. Once the current
batch concludes, the partial sums stored in the ping buffer (in
blue) are ready to be written to the partial sums buffer, and the
pong buffer (in orange) is switched to calculate the partial sums
of the next batch. By adopting the above switching principle,
the latency in memory switching between batches is concealed.

E. Multi-way Sorting Tree

To ensure the ordering of the result vector, we design a
parallel multi-way sorting tree, as shown in Fig. 3(i). The multi-
way sorting tree consists of FIFOs and comparators. The com-
parators direct the vector elements with smaller addresses in the
sub-node buffer to the parent-node buffer. Upon completion of
the sorting process, the result receiver (Fig. 3(j)) delivers the
result vector to the vector writer, which streams the final result
to off-chip memory through an HBM channel.

VI. EVALUATION

A. Experiment Setup

1) FPGAs Baselines: We evaluate Cuper and the four state-
of-the-art SpMV accelerators leveraging HBM FPGAs - HiS-
parse [6], GraphLily [7], Sextans [8], and Serpens [9]. Table I
lists the frequency, number of HBM channels, memory band-
width, and power specification for the evaluated accelerators.

TABLE I: The specification of the evaluated accelerators.

Accelerator Frequency #Channels Bandwidth Power
HiSparse [6] 237 MHz 18 HBM 258 GB/s 45 W

GraphLily [7] 166 MHz 19 HBM 285 GB/s 43 W
Sextans [8] 197 MHz 29 HBM 417 GB/s 52 W
Serpens [9] 223 MHz 19 HBM 273 GB/s 48 W

Nvidia Tesla K80 GPU 562 MHz - 480 GB/s 130 W
Cuper (this work) 205 MHz 18 HBM 258 GB/s 41 W

We develop Cuper using Vivado High-Level Synthesis (HLS)
C++ and implement with Vitis Toolchain 2021.2. The resource
utilization of Cuper is reported in Table II. For Hisparse,
GraphLily, Sextans, and Serpens, we obtain the provided open-
source bitstream (.xclbin). We run Cuper and the four SpMV
accelerators on a Xilinx Alveo U280 FPGA.

TABLE II: Resource utilization of Cuper on a Xilinx Alveo
U280 FPGA.

LUT FF DSP BRAM URAM
307K (26.4%) 314K (13.5%) 920 (10.8%) 1024 (29.2%) 512 (53.3%)

2) GPUs Baselines: We also compare Cuper with an Nvidia
Tesla K80 GPU, and the parameters of K80 GPU are detailed
in Table I. To evaluate SpMV on K80 GPU, we use the official
kernel csrmv in cuSPARSE with CUDA 9.0.

3) Datasets: To compare Cuper with the state-of-the-art
FPGAs accelerators, we select 12 large-size matrices from
the SuiteSparse Matrix Collection [10] for evaluation, which
come from different fields such as 2D/3D problem, structural
problem, and graph problem, etc. Table III shows the detailed
information of the evaluated matrices, where #slices indicates
the number of sparse slices. For the comparison of Cuper with
K80 GPU, we select 2,757 matrices from SuiteSparse. The
number of rows ranges from 1 to 1.5M and the number of
non-zeros can be as high as 113M.

4) Metrics: (1) Throughput, measured as the number of
billion floating-point operations per second (GFlops). (2) Band-
width efficiency, measured by throughput per unit of memory
bandwidth (MFlops/(GB/s)). (3) Energy efficiency, measured

TABLE III: The information of the 12 evaluated matrices.

Matrix Size #non-zeros Density #slices Field
sit100 10K 61K 5.7E-4 1K 2D/3D
olafu 16K 1M 3.8E-3 1K Structural

Si10H16 17K 875K 3.0E-3 9K Theoretical Chemistry
finance256 37K 298K 2.1E-4 3K Optimization

3dtube 45K 3M 1.5E-3 13K CFD
crankseg 2 63K 14M 3.4E-3 61K Structural
Si34H36 97K 5M 5.4E-4 72K Theoretical Chemistry

mycielskian17 98K 100M 1.0E-2 282K Undirected Graph
Ga19As19H42 133K 8M 5.0E-4 118K Theoretical Chemistry

troll 213K 11M 2.6E-4 45K Structural
web-BerkStan 685K 7M 1.6E-5 180K Directed Graph
webbase-1M 1M 3M 3.1E-6 196K Weighted Directed Graph

by throughput per watt (MFlops/W). In this experiment, we
evaluate FP32 SpMV. We use Xilinx Runtime (XRT) to
measure the average execution time for 50 runs of accelerators
on U280 FPGA and xbutil to measure power consumption.
We use cudaEventElapsedTime to measure the average
execution time of SpMV on K80 GPU and nvidia-smi to
measure power consumption.

sit1
00

olafu

Si10H16

finance256
3dtube

crankseg_2

Si34H36

mycielskian17

Ga19As19H42
tro

ll

web-BerkStan

webbase-1M
0
5

10
15
20
25
30
35

Th
ro

ug
hp

ut
 (G

Fl
op

s)

HiSparse
GraphLily
Sextans
Serpens
Cuper

Fig. 4: Throughput comparison of the four SpMV accelerators
with Cuper on the 12 evaluation matrices.

B. Comparison with FPGAs Accelerators

1) Throughput: We use throughput to normalize the per-
formance of different accelerators. Throughput is calculated
with (#non-zeros)/(execution time). GraphLily and Sextans lack
deeper SpMV customization, resulting in longer execution time
and lower throughput. In the case of HiSparse and Serpens,
inevitable stall logic and redundant vectors loaded into on-
chip memory consume part of the execution time. In Fig.
4, our performance evaluation on 12 large matrices reveals
that Cuper’s geomean throughput is 3.28×, 1.99×, 1.75×, and
1.44× higher compared with HiSparse, GraphLily, Sextans, and
Serpens, respectively.

2) Bandwidth Efficiency: Compared with FPGAs acceler-
ators, Cuper utilizes fewer HBM channels, resulting in a
relatively lower peak bandwidth. However, with customized
dataflow and a dedicated computational cores array, Cuper
achieves higher bandwidth efficiency. Table IV shows that
the geomean bandwidth efficiency of Cuper is improved over
HiSparse, GraphLily, Sextans, and Serpens by 3.28×, 2.20×,
2.82×, and 1.31×, respectively. Cuper attains a remarkable
bandwidth efficiency of 144.93 MFlops/(GB/s) on olafu.

TABLE IV: Bandwidth efficiency and energy efficiency of HiSparse [6], GraphLily [7], Sextan [8], Serpens [9], and Cuper on
the 12 evaluated matrices. The improvement is the performance enhancement of Cuper over Serpens.

Matrix Bandwidth efficiency (MFlops/(GB/s)) Energy efficiency (MFlops/W)
HiSparse GraphLily Sextans Serpens Cuper Improvement HiSparse GraphLily Sextans Serpens Cuper Improvement

sit100 1.43 2.63 21.56 45.93 65.79 1.43× 8.21 17.45 172.90 261.22 414.00 1.58×
olafu 15.29 29.06 48.45 117.17 144.93 1.24× 87.69 192.67 388.55 666.43 912.04 1.37×

Si10H16 5.86 23.45 40.42 69.87 106.07 1.52× 33.62 155.43 324.16 397.44 667.52 1.68×
finance256 2.24 8.94 17.53 46.48 63.24 1.36× 12.87 59.27 140.59 264.38 397.99 1.51×

3dtube 40.45 54.16 31.48 40.67 70.45 1.73× 231.94 358.99 252.51 231.34 443.32 1.92×
crankseg 2 83.73 90.46 52.05 112.29 144.20 1.28× 480.10 599.57 417.42 638.65 907.45 1.42×
Si34H36 48.40 60.29 45.09 110.30 130.07 1.18× 277.51 399.59 361.59 627.37 818.54 1.30×

mycielskian17 42.79 83.95 32.96 67.13 98.84 1.47× 245.34 556.45 264.39 381.83 621.98 1.63×
Ga19As19H42 39.92 65.72 45.84 116.10 139.06 1.20× 228.90 435.58 367.66 660.34 875.08 1.33×

troll 45.96 79.44 46.76 105.38 128.89 1.22× 263.55 526.53 375.03 599.39 811.12 1.35×
web-BerkStan 17.95 20.90 20.64 45.91 54.21 1.18× 102.96 138.55 165.57 261.13 341.15 1.31×
webbase-1M 10.90 11.83 10.44 16.69 19.91 1.19× 62.52 78.42 83.78 94.95 125.33 1.32×

3) Energy Efficiency: Our reordering algorithm and percep-
tual decoder improve vector reusability, mitigating redundant
on-chip memory reads and writes, Cuper has lower power
consumption. As shown in Table IV, Cuper demonstrates 3.59×,
2.08×, 2.21×, and 1.44× improvements in geomean energy
efficiency compared with the four accelerators, respectively.
Cuper achieves an improvement over Serpens of up to 1.92×.

100 101 102 103 104 105 106 107 108

#non-zeros of the matrix

0

10

20

30

40

Th
ro

ug
hp

ut
 (G

Fl
op

s) K80 GPU
Cuper

Fig. 5: SpMV throughput comparison between K80 and Cuper
GPU on 2,757 evaluated matrices.

C. Comparison with K80 GPU

We evaluate an Nvidia Tesla K80 GPU and Cuper on 2,757
SuiteSparse matrices with varying dimensions. As shown in
Table I, K80 GPU is more advanced in frequency and memory
bandwidth than Cuper. The SpMV throughputs of K80 GPU
and Cuper is shown in Fig. 5. Cuper demonstrates superior
performance on almost all matrices. The maximum throughputs
of K80 GPU and Cuper are 24.81 GFlops and 46.74 GFlops.
The geomean throughput of Cuper compared with K80 GPU
is 2.51×. Furthermore, the geomean energy efficiency of Cuper
is 7.97× higher than K80 GPU.

VII. CONCLUSION

In this paper, we have proposed Cuper, a high-performance
SpMV accelerator on HBM-equipped FPGAs. We customized
dataflow for full utilization of HBM. To effectively mitigate

RAW conflicts and improve vector reusability, we designed a
two-step reordering algorithm. The perceptual decoder-centric
hardware architecture further improved the reusability and on-
chip memory utilization. The evaluation showed that Cuper
demonstrates significant enhancements in throughput, band-
width efficiency, and energy efficiency compared with the four
state-of-the-art SpMV accelerators and K80 GPU.

VIII. ACKNOWLEDGMENT

Zhou Jin and Weifeng Liu are the corresponding authors
of this paper. This work was supported by the National Nat-
ural Science Foundation of China (Grant No. U23A20301,
62204265) and the State Key Laboratory of Computer Archi-
tecture (ICT, CAS) (Grant No. CARCHA202115). We are also
very grateful to AMD under the Heterogeneous Accelerated
Compute Clusters (HACC) program.

REFERENCES

[1] J. Park, W. Yi, D. Ahn, J. Kung, and J.-J. Kim, “Balancing computation
loads and optimizing input vector loading in lstm accelerators,” TCAD,
2019.

[2] K. Lu, Z. Li, L. Liu, J. Wang, S. Yin, and S. Wei, “Redesk: A reconfig-
urable dataflow engine for sparse kernels on heterogeneous platforms,”
in ICCAD, 2019.

[3] S. Li, D. Liu, and W. Liu, “Optimized data reuse via reordering for sparse
matrix-vector multiplication on fpgas,” in ICCAD, 2021.

[4] B. Liu and D. Liu, “Towards high-bandwidth-utilization spmv on fpgas
via partial vector duplication,” in ASP-DAC, 2023.

[5] C. Su, H. Liang, W. Zhang, K. Zhao, B. Ai, W. Shen, and Z. Wang,
“Graph sampling with fast random walker on hbm-enabled fpga acceler-
ators,” in FPL, 2021.

[6] Y. Du, Y. Hu, Z. Zhou, and Z. Zhang, “High-performance sparse linear
algebra on hbm-equipped fpgas using hls: A case study on spmv,” in
FPGA, 2022.

[7] Y. Hu, Y. Du, E. Ustun, and Z. Zhang, “Graphlily: Accelerating graph
linear algebra on hbm-equipped fpgas,” in ICCAD, 2021.

[8] L. Song, Y. Chi, A. Sohrabizadeh, Y.-k. Choi, J. Lau, and J. Cong,
“Sextans: A streaming accelerator for general-purpose sparse-matrix
dense-matrix multiplication,” in FPGA, 2022.

[9] L. Song, Y. Chi, L. Guo, and J. Cong, “Serpens: A high bandwidth
memory based accelerator for general-purpose sparse matrix-vector mul-
tiplication,” in DAC, 2022.

[10] T. A. Davis and Y. Hu, “The university of florida sparse matrix collection,”
TOMS, 2011.

[11] Y. Niu, Z. Lu, M. Dong, Z. Jin, W. Liu, and G. Tan, “Tilespmv: A tiled
algorithm for sparse matrix-vector multiplication on gpus,” in IPDPS,
2021.

[12] Y.-k. Choi, Y. Chi, W. Qiao, N. Samardzic, and J. Cong, “Hbm connect:
High-performance hls interconnect for fpga hbm,” in FPGA, 2021.

