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Abstract
Multi-core architecture has become the main trend in high performance computing (HPC) because of its powerful parallel 
computing capability. Due to energy efficiency constraints, energy-efficient multi-core digital signal processors (DSPs) have 
become an alternative architecture in HPC systems. FT-M7032 is a CPU-DSP heterogeneous processor that integrates 16 
CPU cores for running operating systems and four multi-core general purpose DSP (GPDSP) clusters for providing high 
performance. Sorting is a fundamental operation in computer science with numerous applications and has been studied 
extensively, but high-performance parallel sorting algorithms are typically architecture-specific. To our knowledge, little 
attention has been paid to optimizing the sorting on the low-power multicore DSPs. In this paper, we propose thSORT, an 
efficient bitonic sorting algorithm for FT-M7032. Our algorithm consists of two parts: single-core DSP sorting and multi-core 
DSP sorting, both aiming to tap the features of FT-M7032. We implement a vector micro-kernel for bitonic sort and propose 
a multi-level algorithm to merge the results of the micro-kernel. When compared to the CPU baseline, our implementation 
is 1.43× faster than the parallel sorting of the Boost C++ Libraries, and is 2.15× faster than std::sort.

Keywords Bitonic sorting network · Multi-core DSPs · Parallel sorting

1 Introduction

Sorting algorithms play a fundamental role in numerous 
computer applications. In the era of big data, organiza-
tions deal with massive datasets that require efficient sort-
ing techniques. Parallel sorting algorithms allow data ana-
lytics platforms to process and sort large volumes of data 
faster (Graefe 2006). Search engines deal with indexing 
and retrieving vast amounts of information from the web. 

Parallel sorting enhances the efficiency of indexing and 
searching operations. Parallel sorting in data mining accel-
erates tasks like clustering, association rule mining, and out-
lier detection by efficiently organizing and processing large 
datasets, enhancing the speed and scalability of data-driven 
insights. The efficiency of sorting algorithms directly affects 
the overall performance of applications. This has pushed 
academia to spend efforts to provide efficient sorting algo-
rithms on new architectures.

Due to the prevalence of multi-core computers, paral-
lel algorithms have experienced substantial improvements 
in terms of performance and scalability. Parallel sorting 
algorithms can effectively utilize the computing power of 
multiple cores or nodes to perform sorting operations in par-
allel. There are numerous high-performance parallel sorting 
methods that leverage a variety of hardware, including multi-
core CPUs (Chhugani et al. 2008; Hou et al. 2018), GPUs 
(Stehle and Jacobsen 2017; Satish et al. 2009), and FPGAs 
(Jun et al. 2017). There are significant challenges in devel-
oping parallel algorithms to fully utilize the performance of 
the hardware.

Due to energy efficiency constraints, energy-efficient 
multi-core digital signal processors (DSPs) have become 
an alternative option in HPC systems. Unlike CPUs or 
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GPUs, DSPs typically feature Very Long Instruction Word 
(VLIW) or vector cores without out-of-order execution. 
Moreover, DSPs work on on-chip memory and integrate 
Direct Memory Access (DMA) engines for data transmis-
sion between on-chip memory and off-chip main memory. 
Therefore, many optimizations used for CPU and GPU may 
be inapplicable.

Traditional DSP processors, constrained by their small 
word lengths and low computational precision, are also 
incapable of effectively supporting scientific computations 
involving large datasets. To solve this problem, FT-M7032, 
one of the prototype CPU-DSPs heterogeneous processors 
explored by the National University of Defense Technol-
ogy, is proposed to accomplish scientific computations by 
means of DSPs. FT-M7032 integrates 16 ARM CPU cores 
for running operating systems and four multi-core general 
purpose DSP (GPDSP) clusters for high computing perfor-
mance (Yin et al. 2022), and it has a hierarchical software 
stack, including compilers, high-performance math libraries, 
hthreads (a heterogeneous threading model), and stand-
ard parallel programming interface as detailed in Sect. 3.

As far as we know, there is no study on how to best opti-
mize sort on these emerging multi-core DSP processors.

To bridge this gap, we present thSORT, a first efficient 
parallel bitonic sorting algorithm for FT-M7032. Our algo-
rithm consists of two parts: single-core DSP sorting and 
multi-core DSP sorting, both aiming to take advantage of 
the features of FT-M7032. The main contributions of this 
paper are as follows:

• We implement a vectorized bitonic sort micro-kernel to 
sort small arrays.

• We divide our algorithm into two parts: single-core DSP 
sorting and multi-core DSP sorting, which facilitates its 
portability and scalability.

• We propose a multi-level merge algorithm consisting of 
vectorized merge and merge and Merge Path (Green et al. 
2012).

• We model the proposed algorithm’s performance and use 
the performance model to guide the optimization.

• We achieve a 1.43× speedup against the parallel sort of 
Boost C++ Libraries, both of which use 8 cores (CPU 
or DSP), and a 2.15× speedup against std::sort.

The rest of the paper is organized as follow: Section 2 intro-
duces bitonic sort and related work. Section 3 explains the 
architecture of the FT-M7032 platform. Section 4 details our 
thSORT algorithm. Section 5 presents the performance 
model. Section 6 gives the experimental results. Section 7 
concludes the paper.

2  Background

2.1  Bitonic sort and sorting network

Parallel sorting algorithms are an important research area in 
sorting algorithms due to the ubiquity of multi-core proces-
sors. Bitonic sort is a widely used parallel sorting algorithm 
based on sorting networks and was first proposed by Batcher 
(1968). Since then, various modifications and extensions 
have been proposed by researchers to improve the efficiency 
and scalability (Guo et al. 2018; Nassimi 1979).

In computer science, a sorting network is an abstract 
description of how to sort a fixed-length array. The network 
can be represented graphically as a timeline in which the 
values of the elements are passed from left to right while 
being swapped vertically at the corresponding positions. 
Figure 1 shows a bitonic sorting network when 16 elements 
are sorted. The algorithm complexity of the sorting network 

Fig. 1  Bitonic sorting network 
examples. Arrows represent test 
& exchange operation
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is O(nlog2n) . There are two strategies commonly used to 
implement sorting network. One is the hard-code, which is 
achieved by directly mapping the operations of the sorting 
network. Another one is using flexible algorithms to per-
form the same operations in the sorting network. We choose 
the first strategy, as the second is not convenient to achieve 
vectorization.

Algorithm 1  Original bitonic sort algorithm

In Algorithm 1, we show a bitonic sorting algorithm 
implementation, and the function BitonicCore is used to 
complete the sorting of a bitonic sequence. The bitonic 
sequence is a sequence with x0 ≤ ⋯ ≤ xk ≥ ⋯ ≥ xn−1 for 
some k, 0 ≤ k < n , or a circular shift of such a sequence.

The procedure of sorting n elements is divided into 
log2n stages, and stage ith(i = 1, 2, ..., log2n) needs to per-
form n∕2i BitonicCore to sort bitonic sequences, and each 
includes 2i elements. Two sorted bitonic sequences make 
up a new bitonic sequence, which belong a part of the input 
for next stage. The stage ith includes i sub-stages which 
performs test&exchange operation between two elements 

with 2(i−1) strides. In Fig. 1, there are four stages, 10 sub-
stages, and 15 BitonicCore. For a fixed-size bitonic sort-
ing network, the task of the BitonicCore is determined. 
We will hard-code several sub-stages to complete these 
tasks in Sect. 4.1.1.

2.2  Related work

In this section, we focus on the bitonic sorting algorithm that 
utilizes SIMD and multicore processors, including CPUs, 
GPUs, and other parallel devices.

Chhugani et al. (2008) proposed a bitonic sorting optimi-
zation using Intel’s SSE instructions. They implement the 
sorting micro-kernel with 128-bit SIMD. In addition, their 
algorithm performs an efficient multiway merge, and is not 
constrained by memory bandwidth. Yin et al. (2019) pro-
posed a hybrid sorting method that takes advantage of wide 
vector registers and the high bandwidth memory of modern 
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AVX-512-based multi-core and many-core processors. There 
are numerous other studies on bitonic sorting on SIMD pro-
cessors (Hou et al. 2018; Gueron and Krasnov 2016).

The high computational density and bandwidth of GPUs 
are exploited to accelerate the sorting algorithm. Guo et al. 
(2018) proposed a memory access reduced bitonic sort 
on multi-core GPUs to relieve pressure on memory band-
width. They implement a multiway bitonic sorting network 
in which the warp-shuffle instructions are taken advantage 
of Peters et al. (2011) proposed a high-performance in-place 
implementation of bitonic sorting networks for CUDA-
enabled GPUs. In their implementation, compare/exchange 
operations are assigned to threads in a way that decreases 
low-performance global-memory access and makes efficient 
use of high-performance shared memory.

There are also a number of sorting algorithms designed 
for specific architectures. Chen and Prasanna (2017) pro-
posed a systematic methodology for mapping large-scale 
bitonic sorting networks onto FPGAs. By utilizing the pro-
posed design for data permutation, they developed a hard-
ware generator to automatically build bitonic sorting archi-
tectures on FPGAs.

The FT-M7032 is notably different from previous pro-
cessors like the CPU and GPU in that it includes 16 CPU 
cores and four multi-core GPDSP clusters. Therefore, the 
FT-M7032 platform cannot use existing algorithms, and we 
present thSORT, a first efficient parallel bitonic sorting algo-
rithm for FT-M7032.

3  FT‑M7032 architecture

FT-M7032 is a high performance CPU-DSPs heterogene-
ous processor entirely designed and implemented by the 
National University of Defense Technology. The processor 
integrates 16 ARMv8 CPU cores for running operating sys-
tems and four multi-core general computing DSP (GPDSP) 
clusters for high computing performance (Yin et al. 2022). 
Its architecture is shown in Fig. 2. The multi-core CPU is 
responsible for process-level management and communica-
tion and has a peak single-precision floating point perfor-
mance of 281.6 GFlops.

Each GPDSP cluster includes eight DSP cores. All eight 
DSP cores and GSM in each cluster can communicate via 
an on-chip crossbar network. For data coherency among 
them, it needs to be maintained by software developers. 
The DSP core in the GPDSP cluster is based on the VLIW 
architecture, including an instruction dispatch unit (IFU), 
a scalar processing unit (SPU), a vector processing unit 
(VPU), and a DMA engine, as shown in Fig. 3. IFU can 
emit up to 11 instructions per cycle, including five scalar 
instructions and six vector instructions. SPU is responsible 
for instruction flow control and scalar computation, and 

consists of Scalar Processing Element (SPE) and 64KB 
Scalar Memory (SM). VPU provides the main computing 
performance for each DSP core, including 768 KB Array 
Memory (AM) and 16 vector processing elements (VPE) 
working in an SIMD manner.

For better bandwidth performance, the FT-M7032 has 
a hybrid memory hierarchy. The multi-core CPU and four 
GPDSP clusters share the same main memory space. The 
multi-core CPU can access the whole main space, but each 
GPDSP cluster can only access its own corresponding part. 
The eight DSP cores in a GPDSP cluster share 6 MB on-
chip Global Shared Memory (GSM). All DSP cores have 
their own SM of 64 KB and AM of 768 KB. Between SM 
in SPU and AM in VPU, data can be transferred through 
broadcast instructions and shared registers. The DMA 
engine is utilized to transfer data between different memory 
hierarchies, including DDR, GSM, and SM/AM.

On the software part, hthreads is provided to improve 
the programmability of multi-core DSPs (Fang et al. 2023). 
The hthreads runtime manages the interaction between 
CPU and GPDSP regions, with the CPU side serving as the 
host and each acceleration cluster as a computing device. 

Fig. 2  Architecture of FT-M7032

Fig. 3  Micro-architecture of DSP Core in FT-M7032
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We use hthreads to implement and optimize our sort 
algorithm.

4  thSORT

4.1  Single‑core DSP sorting

Based on the architecture of FT-M7032, our algorithm is 
divided into two parts: single-core DSP sorting and multi-
core DSP sorting. An overview of our sorting algorithm is 

shown in Fig. 4. The single-core DSP sorting which consists 
of micro-kernel and vectorized merge, and the multi-core 
DSP sorting consists of Merge Path. In this section, we pro-
pose the single-core DSP sorting, which takes advantage of 
the vector instructions supported by FT-M7032.

4.1.1  Hard‑code sorting network

In this section, we hard-code a bitonic sorting network of 
24 vectors called the micro-kernel. The bitonic sorting net-
work consists of stages and each stage includes sub-stages, 

Fig. 4  An overview of our sorting algorithm. The reason why the number of vectors in hard-coding does not exceed 24 is explained in 
Sect. 4.1.1. Due to the capacity limitations of AM, the result of vectorized merge is no more than 24,576 elements, as detailed in Sect. 4.1.2

Fig. 5  The procedure of a sub-
stage
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as shown in Fig. 1. We hard-code several sub-stages and 
eventually formed sorting networks. The function of the sub-
stage is to perform n/2 comparisons and decide whether to 
exchange elements based on the results of the comparisons. 

As the comparing operations followed are based on vectors, 
we need to load the data from DDR to AM before sorting. 
The vectors instructions vec_min and vec_max given by the 
FT-M7032 instruction set are used to implement compari-
sons in the sub-stage. However, the two instructions can 
only compare the corresponding positions of two vectors. 
To complete the comparison of elements in any position, 
permutation operation of the vector is necessary. After 
permutations and comparisons, the two result vectors are 
blended into a single vector. The procedure of a sub-stage 
in Fig. 1 is shown in Fig. 5. 

Since there is no permutation instruction in the 
FT-M7032 instruction set, we implement the operation by 

Table 1  The FT-M7032 instructions related to SVR

Instruction Cycle Function

VMVCGC 3 Configure SVR with a vector
SMVCCG 2 Configure a scalar register with SVRx
SMVCGC 3 Configure SVRx with a scalar
VMVCCG 2 Configure a vector register with SVR

Fig. 6  The procedure of permu-
tation using the instructions of 
FT-M7032

Fig. 7  The cycle of permuta-
tions is reduced from 85 to 39 
by taking advantage of the pipe-
line to optimize instructions

(a) The design of permutation instruction pipeline

(b) The dependencies between instructions
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using the scalar vector register, which is a special register. 
This special register comes in two forms. SVR is regarded as 
a vector register and SVRx (x = 0, 1,… , 14, 15) is regarded 
as a scalar register in assembly code. The permutation 
needs four instructions: VMVCGC, SMVCCG, SMVCGC, 
and VMVCCG (for details, see Table 1). They have dif-
ferent execution cycles. The execution of VMVCGC and 
SMVCGC instructions needs three cycles, and of VMVCCG 
and SMVCCG instructions needs two cycles.

Figure 6 illustrates the procedure of a permutation. In 
step 1, moving a vector, which includes 16 elements, to 
SVR uses a VMVCGC instruction. In step 2, moving SVRx 
(x = 1, 2, ..., 15, 16) to 16 scalar registers uses 16 SMVCCG 
instructions. In step 3, moving the scalar registers to SVRx 
(x = 1, 2, ..., 15, 16) uses 16 SMVCGC instructions. In step 
4, moving SVR to a vector uses a VMVCCG instruction. 
This procedure executes 1 VMVCGC, 16 SMVCCG, 16 
SMVCGC, and 1 VMVCCG instructions. According to 
Table 1, NOP instructions are needed. After adding NOP 
instructions, the whole procedure takes 85 cycles as shown 
in Fig. 7a. Thanks to the pipeline design, we can optimize 
the instruction sequence by removing some NOP instruc-
tions. In step 2, 16 SMVCCG needs 16 NOP instructions. 
There is no dependency between the 16 instructions, so all 
16 NOP instructions can be removed. In step 3, 16 SMVCGC 
need 32 NOP instructions. However, the VMVCCG in step 4 
depends on the last SMVCGC in step 3. So there are only 30 
NOP instructions that can be removed. The procedure needs 
39 cycles after optimization. The design of the pipeline is 
shown in Fig. 7a, and the dependency between the instruc-
tions is shown in Fig. 7b.

The result of comparisons is gain after permutation and 
vector comparison ( vec_min and vec_max ). We blend the two 
result vectors into a vector by using the conditional instruc-
tion of FT-M7032 instruction set. The form of a conditional 
instruction is as follows:

Three vector registers are used in the instruction. In vr2, 
there are 16 elements that depend on the Blend method, 
a 16-bit integer, mentioned in Algorithm 2, and each ele-
ment is used as a condition to determine whether the cor-
responding MOV instruction is executed. If the ith element 
of vr2 is zero, move the ith element of vr1 to the ith posi-
tion of the result vector; otherwise, move the element of 
vr0 to that position. By taking advantage of this feature of 
the FT-M7032 instruction set, the blend operation can be 
performed efficiently. Suppose the results of vec_min and 
vec_max in Fig. 5 are vectors vr0 and vr1, respectively. With 
two conditional instructions, values from vr0 and vr1 can be 
blended to compose the result vector as shown in Fig. 8. For 
a given sub-stage, the two instructions costs 2 cycles if the 
condition vector vr2 is prepared in advance.

Through permutation and blend, we can implement hard-
coding of sub-stages. In Algorithm 2, we hard-code 10 sub-
stages to form a sorting network of 16 elements. The input of 
function Substage in Algorithm 2 includes a vector and two 
control parameters, and the meaning of the control param-
eters is as follows: Swap method provides guidance on how 
to perform permutation, and Blend method represents the 
conditional vector to perform blend.

[vr2]MOV vr0, vr1

Fig. 8  The procedure of blend 
using the conditional instruc-
tions of FT-M7032
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Algorithm 2  Bitonic sort for one vector(16 elements)

Based on the sorting of one vector, we can hard-code 
the sorting network of multiple vectors. Taking two vectors 
as an example, first, sort the two vectors by Algorithm 2, 
respectively. Two sorted vectors form a bitonic sequence, 
and BitonicCore in Algorithm 1 can be used to sort the 

vectors. Second, similar to Algorithm 2, we hard-code every 
sub-stage in the BitonicCore of the sorting network. The 
hard-coding of sorting network of two vectors is shown in 
Algorithm 3.
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Algorithm 3  Bitonic sort for two vector(32 elements)

To use vector instructions and improve parallelism, we 
hard-code the sorting network. However, there is an issue of 
efficiency in this procedure. In a sub-stage, we use the vec_min 
and vec_max instructions. vec_min instruction makes 16 com-
parisons, but only eight are valid, same for vec_max , as shown 
in Fig. 5. In other words, only 50% of comparisons are valid. 
Meanwhile, the single-core DSP sorting consists of micro-ker-
nel and vectorized merge, and the vectorized merge presented 
in Sect. 4.1.2 has all comparisons valid. Therefore, the perfor-
mance does not keep growing as the size of the hard-coded 
sorting network increases. We eventually hard-code a sorting 
network of 24 vectors in our implement and use it as the micro-
kernel of our algorithm, as shown in Fig. 4.

4.1.2  Merge in DSP core

In this paper, we develop a multi-level merge algorithm, as 
shown in Fig. 4. The vectorized merge and Merge Path, a par-
allel merging algorithm proposed by Green et al. (Green et al. 
2012), correspond to single-core DSP sorting and multi-core 
DSP sorting. In this section, We present the vectorized merge.

After implementing the micro-kernel (sorting network of 24 
vectors), we need an efficient algorithm to merge each of the 24 
vectors. Two vectors can be compared using the vec_min and 
vec_max instructions. The merge operation can be accelerated 
by using the two instructions. In Algorithm 4, we presents a 
vectorized merge algorithm that is based on the article (Chhu-
gani et al. 2008). Suppose the two sub-arrays to be merged are 
[left, middle] and [middle+1,right] of the whole array, which 
called left-array and right-array, respectively, and suppose that 
the elements of two arrays is both a multiple of the size of 
16 (vector size). The procedure of the vectorized merge is as 
follows:

• Load V1 and V2 vectors from the left-array and right-
array, respectively. Use merge_2V_sorted which is 
defined in Algorithm 3 to merge V1 and V2, and store 
V1 in the result array.

• Load a vector to V1 from the array whose first unloaded 
element is smaller. Use merge_2V_sorted to merge V1 and 
V2, and store V1 in the result array. Repeat until all the 
elements of an array have been loaded.
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• If the elements in the left-array or right-array are not 
loaded, load 16 elements into V1. Use merge_2V_sorted to 
merge V1 and V2, and store V1 in the result array. Repeat 
until all the elements of the array have been loaded.

• Store V2 in the result array.

Due to the space limitations of AM, there is a limit to the 
number of elements that vectorized merge can handle. When 
the size of the sorted array exceeds the capacity of the AM, we 
can chunk the array. Assume that the chunk size is C, which is 
limited by many factors as follows: (1) due to the implementa-
tion of the algorithm, the following equation needs to be met: 
C = 384 × 2k(k = 0, 1, 2, 3...) . (2) Since we use an auxiliary 
array to store the merged subarray, the following equation 
needs to be met: 2 × C ≤ 760 KB. Therefore, the chunk size 
is 24,576, which means the algorithm can merge two arrays of 
12,288 into one array of 24576.

Algorithm 4  Vectorized merge algorithm

Fig. 9  Merge Path matrix showing intersection lines and points
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4.2  Multi‑core DSP sorting

In this section, we propose multi-core DSP sorting, which 
is carried out on the basis of single-core DSP sorting. The 
sorted arrays obtained from single-core DSP sorting are 
merged by the Merge Path algorithm, which is the second 
level of multi-level merge, as shown in Fig. 4. There are two 
reasons for proposing multi-core DSP sorting:

Space limitation. The data must be stored in the private 
memory of the DSP core in order to implement vectoriza-
tion. Each DSP core has its own AM with a size of 760 KB. 
The amount of elements a single DSP core can sort is limited 
by the size of the AM.

Parallelism. We expect all DSP cores to work in parallel, 
and each DSP core is responsible for a part of the work. 
When n elements are sorted using p DSP cores, the ele-
ments are divided into p arrays of size n/p. However, utiliz-
ing all the DSP cores to merge these arrays is a challenge. 
For example, when using the normal merge algorithm, p/2 
DSP cores deal with p arrays to get p/2 sorted arrays, and p/4 

DSP cores deal with p/2 arrays to get p/4 sorted arrays, and 
so on. Normal merge algorithm cannot utilize the all DSP 
cores. To further sort these arrays, an efficient parallel merge 
algorithm is needed. We present the Merge Path algorithm 
as an alternative solution to address this issue.

4.2.1  Merge Path

Merge Path is an efficient parallel merge algorithm with many 
advantages. One of the key advantages of the algorithm is that it 
is in general load-balanced, which means that all DSP cores can 
be assigned the same amount of work. This is achieved by divid-
ing the input sequences into chunks of equal size and assigning 
each chunk to a different DSP core. Additionally, Merge Path is 
a lock-free algorithm, which means that it does not use atomic 
instructions or locks to synchronize access to shared resources 
(Green et al. 2012). The time complexity of the algorithm for 
n elements and p processors is given by O(n∕p + log(n)) . For 
p < N∕log(n) , this algorithm is considered to be optimal. The 
procedure of Merge Path is shown in Algorithm 5.

Algorithm 5  Merge Path
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Suppose there are two sorted arrays A and B, and place 
them in a grid as shown in Fig. 9. A and B are placed on 
the left and top, respectively. For the convenience of the 
description, A and B are set to the same length, and the 
algorithm can be used in practice with different lengths 
of A and B.

The merging procedure begins at the top-left corner, 
where individual elements of two arrays undergo pairwise 
comparison. If the element from array B is smaller than 
that from array A, the paths move to the right by one posi-
tion. Otherwise, the paths move down by one position. 
Until the path reaches the bottom-right corner, the pro-
cedure ends. The path formed in this procedure is called 

the merge path. The cross diagonals in Fig. 9 are used to 
assign the same amount of work to the DSP cores. The 
top-left and bottom-right corners are considered two cross 
diagonals of length zero. The cross diagonals divide the 
merge path into segments of equal length. In the Merge 
Path algorithm, each DSP core is responsible for one of 
the segments. Now notice the intersection of each cross 
diagonal with the merge path, which determines the start 
and end of the array where each DSP core needs to merge.

For better time complexity, a binary search can be used 
to figure out the intersection between the cross diagonal and 
merge path. The diagonal will pass through several blocks, 
and each block corresponds to Ai and Bi from A and B, 

(a) Bandwidth as variable (b) Frequency as variable

(c) Elements of sort as variable (d) The relationship between V and F

Fig. 10  The effect of the variation of each parameter in the performance model on the results (Default B = 42.62 GB/s, F = 1.8 GHz, N = 
589,824)

Fig. 11  The theoretical perfor-
mance and the composition of 
time consumption of perfor-
mance model. As the time com-
plexity of our sort algorithm is 
O(n × log2(n)) , the performance 
degrades as the number of input 
elements increases
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respectively. For blocks to the left of the intersection, they 
satisfy Ai not less than Bi . For blocks to the right, they satisfy 
Ai less than Bi . Therefore, binary search can be used to find 
the intersection, and the time complexity is O(log(N)).

5  Performance model

In this section, we propose a performance model of our 
sorting algorithm that provides insight into performance 
optimization. Based on the theoretical memory accesses 
and computations, we can obtain the performance model of 
our sorting algorithm. Assume that each DSP core sorts B 
elements, which means n = B × p . In single-core DSP sort-
ing, one element requires one load and one store operations. 
In multi-core DSP sorting, the merge algorithm requires 
n × log(p) load and store operations. The total number of 
memory accesses is as follows:

For the scalability of the performance model, vectori-
zation is not considered when calculating the theoreti-
cal computations. T(n) denotes the number of compari-
sons for the bitonic sorting network of n elements, and 
T(n) = T(n∕2) × 2 + log(n) × n∕2 . In single-core DSP sort-
ing, each DSP core sorts B elements, which requires T(B) 
comparisons. In multi-core DSP sorting, merge algorithms 
require n × log(p) comparisons. The total computations is 
as follows:

Memory Accesses = 2 × B × p + 2 × N × log(p)

Assuming a processor with a frequency of F Hz and a DDR 
bandwidth of 8 × V bytes per second. The theoretical execution 
time for sorting n numbers using p DSP cores is as follows:

After determining F and V of a multi-core processor and n 
of the array sorted, the theoretical fastest execution time of 
our sorting algorithm can be obtained by the performance 
model. By controlling two of the parameters F, V, and n to 
be constant, we can obtain the trend of time consumption 
when changing the third parameter, which is shown in 
Fig. 10a–c respectively, and Fig. 10d shows the relationship 
between V and F when the memory access time is equal to 
the computation time. Figure 11 further refines the details of 
Fig. 10c. Similarly, the frequency is set to 1.8 GHz and the 
bandwidth is set to 46.62 GB/s. By changing the number of 
sorted elements, the time proportion of two parts (Compu-
tations & Memory Access) and the theoretical performance 
are shown in Fig. 11. 

The performance model can reveal the fact that thSORT is 
compute-bound. In Fig. 10, the bandwidth corresponding to the 
frequency of 1.8 GHz is about 10 GB/s, which is less than the 
actual bandwidth of 46.62 GB/s. In Fig. 11, computations take 
up the majority of the running time. Besides, the model can also 
guide the architectural design of a processor. In order to design 
an architecture for sorting, the allocation of hardware resources, 
including computing hardware and memory hardware, can be 
changed by analyzing the relationship between V and F.

6  Experimental results

6.1  Experimental setup

We assess our method on FT-M7032 with 16 ARMv8 CPU 
cores and one cluster. A comprehensive overview of the 
experimental setup and configuration employed in this study 
is shown in Table 2.

Computations = T(B) × p + log(p) × n

Total time =
2 × B + 2 × n × log(p)

V
+

T(B) + n × log(p)

F

Table 2  Experimental setup for performance testing

Name Version

Operating system Ubuntu 19.04
Host compiler GCC 8.3.0
Device compiler M3CC 1.0
Programming framework Hthreads 9.8
CPU 16 ARMv8 Cores
DSP 8 GPDSP cores × 4
DDR 32 GB × 4

Fig. 12  The performance of one 
DSP with memory hierarchy 
optimization
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For single-core DSP sorting, we optimize the memory 
access of thSORT and compare the performance before and 
after optimization. For multi-core DSP sorting, we compare 
it against the block_indirect_sort of Boost C++ Libraries 
1.67.0 and the std::sort of GUN libc++.so.6. Boost::block_
indirect_sort is highly regarded for its robust performance 
and exceptional handling of large-scale datasets. Std::sort, 
being an integral part of the C++ standard library, is consid-
ered a well-vetted and reliable sorting algorithm. By com-
paring these two sorting algorithms to thSORT, we aim to 
comprehensively evaluate the performance of our algorithm 
implementation. In all performance tests, the arrays to sort 
are populated with randomly generated values.

6.2  Single‑core DSP sorting

The single-core DSP sorting consists of micro-kernel and 
vectorized merge. Micro-kernel is designed to sort 24× 

VEC_SIZE elements (384 elements). When sorting more 
than 384 elements, vectorized merge continues to conduct 
the sorting on the results of the micro-kernel.

Analyzing our algorithm implementation, we find that 
most time data is stored in DDR, which means that the mem-
ory hierarchy of FT-M7032 is not fully utilized. Therefore, 
we conduct a series of optimizations for this by utilizing AM 
and GSM. We optimized the memory access of the thSORT 
and obtained three versions. thSORT v1 is the base version, 
thSORT v2 is optimized on the basis of thSORT v1 using 
AM, and thSORT v3 is optimized on the basis of thSORT 
v2 using GSM. In addition, DMA is used to optimize data 
transfer in v2 and v3. The performance improvement of 
single-core DSP sorting resulting from the optimization of 
the memory access is shown in Fig. 12.

The micro-kernel of single-core DSP sorting sorts 384 
elements. Based on the size of 384, the size of our test is 
multiplied by 2 per step. The optimized version showed an 

Fig. 13  Sorting between DSPs. 
Execution time divided by sort 
number, and the speedup of the 
2, 4, and 8 DSPs sorting against 
the 1 DSPs sorting is shown 
above the lines

Fig. 14  The composition of 
time consumption of thSORT 
(bitonic sort micro-kernel, vec-
torized merge and Merge Path)

Fig. 15  Comparison of CPUs 
and DSPs. The speedup of 
the thSORT against the Boost 
sort of eight CPUs is shown 
above the line for Boost sort, 
against the std::sort of one 
CPU is shown above the line for 
std::sort 
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advantage at the beginning, and this advantage continued 
to increase as the scale increased. Through the memory 
optimization, the performance of thSORT has been signifi-
cantly improved. This also shows that high bandwidth is 
very important for the performance improvement of sorting, 
especially when sorting large-scale arrays. Unless otherwise 
specified, the subsequent experiments are conducted using 
the thSORT v3 version.

6.3  Multi‑core DSP sorting

6.3.1  Optimization results

Figure 13 shows the performance to sort arrays up to a 
size of 1.2 × 107 ( 24 × 219 ) elements using 1, 2, 4, and 8 
DSPs. As the number of DSP grows, the speedup grows as 
well, which demonstrates the good scalability of thSORT. 
In addition, we observe that when sorting elements 
exceeds 24 × 212 , the performance starts to drop while 
the speedup increases. This number holds significance as 
it equals the maximum number of elements that AM can 
accommodate. Hence, we conjecture that the performance 
degradation is associated with memory access, and we 
combine the performance model to further analyze the 
reasons for this phenomenon from the perspective of time 
consumption.

Figure 14 shows the composition of time consumption of 
the vectorized merge, micro-kernel, and Merge Path across 
the entire sort. After the sorting elements exceed 24 × 212 , 
the proportion of Merge Path increases as performance 
decreases. Therefore, the phenomenon of performance deg-
radation is related to Merge Path. FT-M7032 consists of two 
parts: single-core DSP sorting and multi-core DSP sorting. 
The former part, including the micro-kernel and vectorized 
merge, occurs inside the DSP core, which means almost no 
data exchange between the DSP core and DDR. On the con-
trary, there is frequently memory access to DDR when con-
ducting Merge Path. In Sect. 6.2, we optimized the memory 
access of the thSORT by utilizing AM and GSM. However, 
their space is limited, while AM has 768KB and GSM has 
6MB. When the scale rises, this will inevitably result in 
an increase in the amount of data exchanged between AM, 
GSM, and DDR. Therefore, Merge Path is the reason for the 
performance degradation.

We can roughly regard micro-kernel and vectorized 
merge as the calculation part of the algorithm, and Merge 
Path as the memory access part of the algorithm. Compar-
ing Figs. 11 and  14, we find that memory access occupies 
the majority of time in our implementation, which means 
our implementation is bandwidth-bound. This is inconsist-
ent with the compute-bound conclusion in the performance 
model, which means that our implementation requires more 

memory access optimization as guided by the performance 
model. Therefore, the performance of our implementation 
is much poorer than the theoretical performance shown in 
Fig. 11. We achieve only 13.97% of the theoretical perfor-
mance at a scale suitable for thSORT. 

6.3.2  Comparison with other sorting 

Figure 15 shows the performance for different numbers of 
cores of a parallel CPU sort implementation from the Boost 
C++ Libraries (block_indirect_sort), and the performance 
of std::sort against thSORT using eight DSPs. thSORT is 
faster when sorting 24 × 212 elements. At a scale suitable, 
thSORT of eight DSPs is 1.43× faster than block_indirect_
sort of eight CPUs, and is 2.15× faster than std::sort. The 
block_indirect_sort exhibits lower performance at small 
scales, but as the sorting scale exceeds 24 × 213 elements, 
its performance experiences a rapid improvement, eventually 
stabilizing due to the associated overhead in block creation, 
merging, and limited cache utilization. From a hardware 
perspective, the single-core performance of the DSP core 
is inferior to that of the CPU. This is primarily attributed 
to architectural differences, such as the CPU’s proficiency 
in utilizing advanced features like out-of-order execution 
and a sophisticated cache hierarchy. When analyzing perfor-
mance outcomes, it is imperative to take these differences 
into account. Analyze the performance at different scales: 
When the scale is small, the features of FT-M7032, such as 
high-bandwidth on-chip memory, cannot be fully utilized. 
Furthermore, the overhead of startup and synchronization 
costs becomes more pronounced at smaller scales. When the 
scale is large, there are memory access problems mentioned 
in Sect. 6.2.

7  Conclusion

The FT-M7032 is a CPU-DSPs heterogeneous processor 
designed for HPC. This paper describes thSORT, an efficient 
parallel bitonic sorting algorithm on FT-M7032. thSORT 
consists of two parts: single-core DSP sorting and multi-core 
DSP sorting, both aiming to tap the features of FT-M7032. 
The single-core DSP sorting leverages the VPU in DSP for 
vectorization and optimizes memory access through AM. 
The multi-core DSP sorting reduces access latency by using 
GSM and improves the parallelism of sorting by implement-
ing the Merge Path algorithm. Besides, we propose a per-
formance model for performance improvement and archi-
tecture design. Through the performance model, we analyze 
the theoretical performance of thSORT and compare it with 
our implementation to guide our optimization efforts.
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The experimental results show an enhancement in perfor-
mance. By utilizing memory hierarchy, we have optimized 
memory access and greatly improved the performance of 
thSORT. We compare the sort implementations from the 
Boost C++ Libraries and std::sort with thSORT, our imple-
mentation is 1.43× faster than Boost sort, and is 2.15× faster 
than std::sort.
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