
Vol.:(0123456789)

CCF Transactions on High Performance Computing
https://doi.org/10.1007/s42514-023-00175-7

REGULAR PAPER

thSORT: an efficient parallel sorting algorithm on multi‑core DSPs

Mouzhi Yang1 · Peng Zhang2 · Jianbin Fang2 · Weifeng Liu1 · Chun Huang2

Received: 24 May 2023 / Accepted: 24 November 2023
© China Computer Federation (CCF) 2024

Abstract
Multi-core architecture has become the main trend in high performance computing (HPC) because of its powerful parallel
computing capability. Due to energy efficiency constraints, energy-efficient multi-core digital signal processors (DSPs) have
become an alternative architecture in HPC systems. FT-M7032 is a CPU-DSP heterogeneous processor that integrates 16
CPU cores for running operating systems and four multi-core general purpose DSP (GPDSP) clusters for providing high
performance. Sorting is a fundamental operation in computer science with numerous applications and has been studied
extensively, but high-performance parallel sorting algorithms are typically architecture-specific. To our knowledge, little
attention has been paid to optimizing the sorting on the low-power multicore DSPs. In this paper, we propose thSORT, an
efficient bitonic sorting algorithm for FT-M7032. Our algorithm consists of two parts: single-core DSP sorting and multi-core
DSP sorting, both aiming to tap the features of FT-M7032. We implement a vector micro-kernel for bitonic sort and propose
a multi-level algorithm to merge the results of the micro-kernel. When compared to the CPU baseline, our implementation
is 1.43× faster than the parallel sorting of the Boost C++ Libraries, and is 2.15× faster than std::sort.

Keywords Bitonic sorting network · Multi-core DSPs · Parallel sorting

1 Introduction

Sorting algorithms play a fundamental role in numerous
computer applications. In the era of big data, organiza-
tions deal with massive datasets that require efficient sort-
ing techniques. Parallel sorting algorithms allow data ana-
lytics platforms to process and sort large volumes of data
faster (Graefe 2006). Search engines deal with indexing
and retrieving vast amounts of information from the web.

Parallel sorting enhances the efficiency of indexing and
searching operations. Parallel sorting in data mining accel-
erates tasks like clustering, association rule mining, and out-
lier detection by efficiently organizing and processing large
datasets, enhancing the speed and scalability of data-driven
insights. The efficiency of sorting algorithms directly affects
the overall performance of applications. This has pushed
academia to spend efforts to provide efficient sorting algo-
rithms on new architectures.

Due to the prevalence of multi-core computers, paral-
lel algorithms have experienced substantial improvements
in terms of performance and scalability. Parallel sorting
algorithms can effectively utilize the computing power of
multiple cores or nodes to perform sorting operations in par-
allel. There are numerous high-performance parallel sorting
methods that leverage a variety of hardware, including multi-
core CPUs (Chhugani et al. 2008; Hou et al. 2018), GPUs
(Stehle and Jacobsen 2017; Satish et al. 2009), and FPGAs
(Jun et al. 2017). There are significant challenges in devel-
oping parallel algorithms to fully utilize the performance of
the hardware.

Due to energy efficiency constraints, energy-efficient
multi-core digital signal processors (DSPs) have become
an alternative option in HPC systems. Unlike CPUs or

 * Peng Zhang
 zhangpeng13a@nudt.edu.cn

 * Weifeng Liu
 weifeng.liu@cup.edu.cn

 Mouzhi Yang
 mouzhi.yang@student.cup.edu.cn

 Jianbin Fang
 j.fang@nudt.edu.cn

 Chun Huang
 chunhuang@nudt.edu.cn

1 Super Scientific Software Laboratory, China University
of Petroleum-Bejing, Beijing 102249, China

2 College of Computer Science and Technology, National
University of Defense Technology, Changsha 410073, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-023-00175-7&domain=pdf
http://orcid.org/0000-0001-8364-9793

 M. Yang et al.

GPUs, DSPs typically feature Very Long Instruction Word
(VLIW) or vector cores without out-of-order execution.
Moreover, DSPs work on on-chip memory and integrate
Direct Memory Access (DMA) engines for data transmis-
sion between on-chip memory and off-chip main memory.
Therefore, many optimizations used for CPU and GPU may
be inapplicable.

Traditional DSP processors, constrained by their small
word lengths and low computational precision, are also
incapable of effectively supporting scientific computations
involving large datasets. To solve this problem, FT-M7032,
one of the prototype CPU-DSPs heterogeneous processors
explored by the National University of Defense Technol-
ogy, is proposed to accomplish scientific computations by
means of DSPs. FT-M7032 integrates 16 ARM CPU cores
for running operating systems and four multi-core general
purpose DSP (GPDSP) clusters for high computing perfor-
mance (Yin et al. 2022), and it has a hierarchical software
stack, including compilers, high-performance math libraries,
hthreads (a heterogeneous threading model), and stand-
ard parallel programming interface as detailed in Sect. 3.

As far as we know, there is no study on how to best opti-
mize sort on these emerging multi-core DSP processors.

To bridge this gap, we present thSORT, a first efficient
parallel bitonic sorting algorithm for FT-M7032. Our algo-
rithm consists of two parts: single-core DSP sorting and
multi-core DSP sorting, both aiming to take advantage of
the features of FT-M7032. The main contributions of this
paper are as follows:

• We implement a vectorized bitonic sort micro-kernel to
sort small arrays.

• We divide our algorithm into two parts: single-core DSP
sorting and multi-core DSP sorting, which facilitates its
portability and scalability.

• We propose a multi-level merge algorithm consisting of
vectorized merge and merge and Merge Path (Green et al.
2012).

• We model the proposed algorithm’s performance and use
the performance model to guide the optimization.

• We achieve a 1.43× speedup against the parallel sort of
Boost C++ Libraries, both of which use 8 cores (CPU
or DSP), and a 2.15× speedup against std::sort.

The rest of the paper is organized as follow: Section 2 intro-
duces bitonic sort and related work. Section 3 explains the
architecture of the FT-M7032 platform. Section 4 details our
thSORT algorithm. Section 5 presents the performance
model. Section 6 gives the experimental results. Section 7
concludes the paper.

2 Background

2.1 Bitonic sort and sorting network

Parallel sorting algorithms are an important research area in
sorting algorithms due to the ubiquity of multi-core proces-
sors. Bitonic sort is a widely used parallel sorting algorithm
based on sorting networks and was first proposed by Batcher
(1968). Since then, various modifications and extensions
have been proposed by researchers to improve the efficiency
and scalability (Guo et al. 2018; Nassimi 1979).

In computer science, a sorting network is an abstract
description of how to sort a fixed-length array. The network
can be represented graphically as a timeline in which the
values of the elements are passed from left to right while
being swapped vertically at the corresponding positions.
Figure 1 shows a bitonic sorting network when 16 elements
are sorted. The algorithm complexity of the sorting network

Fig. 1 Bitonic sorting network
examples. Arrows represent test
& exchange operation

thSORT: an efficient parallel sorting algorithm on multi-core DSPs

is O(nlog2n) . There are two strategies commonly used to
implement sorting network. One is the hard-code, which is
achieved by directly mapping the operations of the sorting
network. Another one is using flexible algorithms to per-
form the same operations in the sorting network. We choose
the first strategy, as the second is not convenient to achieve
vectorization.

Algorithm 1 Original bitonic sort algorithm

In Algorithm 1, we show a bitonic sorting algorithm
implementation, and the function BitonicCore is used to
complete the sorting of a bitonic sequence. The bitonic
sequence is a sequence with x0 ≤ ⋯ ≤ xk ≥ ⋯ ≥ xn−1 for
some k, 0 ≤ k < n , or a circular shift of such a sequence.

The procedure of sorting n elements is divided into
log2n stages, and stage ith(i = 1, 2, ..., log2n) needs to per-
form n∕2i BitonicCore to sort bitonic sequences, and each
includes 2i elements. Two sorted bitonic sequences make
up a new bitonic sequence, which belong a part of the input
for next stage. The stage ith includes i sub-stages which
performs test&exchange operation between two elements

with 2(i−1) strides. In Fig. 1, there are four stages, 10 sub-
stages, and 15 BitonicCore. For a fixed-size bitonic sort-
ing network, the task of the BitonicCore is determined.
We will hard-code several sub-stages to complete these
tasks in Sect. 4.1.1.

2.2 Related work

In this section, we focus on the bitonic sorting algorithm that
utilizes SIMD and multicore processors, including CPUs,
GPUs, and other parallel devices.

Chhugani et al. (2008) proposed a bitonic sorting optimi-
zation using Intel’s SSE instructions. They implement the
sorting micro-kernel with 128-bit SIMD. In addition, their
algorithm performs an efficient multiway merge, and is not
constrained by memory bandwidth. Yin et al. (2019) pro-
posed a hybrid sorting method that takes advantage of wide
vector registers and the high bandwidth memory of modern

 M. Yang et al.

AVX-512-based multi-core and many-core processors. There
are numerous other studies on bitonic sorting on SIMD pro-
cessors (Hou et al. 2018; Gueron and Krasnov 2016).

The high computational density and bandwidth of GPUs
are exploited to accelerate the sorting algorithm. Guo et al.
(2018) proposed a memory access reduced bitonic sort
on multi-core GPUs to relieve pressure on memory band-
width. They implement a multiway bitonic sorting network
in which the warp-shuffle instructions are taken advantage
of Peters et al. (2011) proposed a high-performance in-place
implementation of bitonic sorting networks for CUDA-
enabled GPUs. In their implementation, compare/exchange
operations are assigned to threads in a way that decreases
low-performance global-memory access and makes efficient
use of high-performance shared memory.

There are also a number of sorting algorithms designed
for specific architectures. Chen and Prasanna (2017) pro-
posed a systematic methodology for mapping large-scale
bitonic sorting networks onto FPGAs. By utilizing the pro-
posed design for data permutation, they developed a hard-
ware generator to automatically build bitonic sorting archi-
tectures on FPGAs.

The FT-M7032 is notably different from previous pro-
cessors like the CPU and GPU in that it includes 16 CPU
cores and four multi-core GPDSP clusters. Therefore, the
FT-M7032 platform cannot use existing algorithms, and we
present thSORT, a first efficient parallel bitonic sorting algo-
rithm for FT-M7032.

3 FT‑M7032 architecture

FT-M7032 is a high performance CPU-DSPs heterogene-
ous processor entirely designed and implemented by the
National University of Defense Technology. The processor
integrates 16 ARMv8 CPU cores for running operating sys-
tems and four multi-core general computing DSP (GPDSP)
clusters for high computing performance (Yin et al. 2022).
Its architecture is shown in Fig. 2. The multi-core CPU is
responsible for process-level management and communica-
tion and has a peak single-precision floating point perfor-
mance of 281.6 GFlops.

Each GPDSP cluster includes eight DSP cores. All eight
DSP cores and GSM in each cluster can communicate via
an on-chip crossbar network. For data coherency among
them, it needs to be maintained by software developers.
The DSP core in the GPDSP cluster is based on the VLIW
architecture, including an instruction dispatch unit (IFU),
a scalar processing unit (SPU), a vector processing unit
(VPU), and a DMA engine, as shown in Fig. 3. IFU can
emit up to 11 instructions per cycle, including five scalar
instructions and six vector instructions. SPU is responsible
for instruction flow control and scalar computation, and

consists of Scalar Processing Element (SPE) and 64KB
Scalar Memory (SM). VPU provides the main computing
performance for each DSP core, including 768 KB Array
Memory (AM) and 16 vector processing elements (VPE)
working in an SIMD manner.

For better bandwidth performance, the FT-M7032 has
a hybrid memory hierarchy. The multi-core CPU and four
GPDSP clusters share the same main memory space. The
multi-core CPU can access the whole main space, but each
GPDSP cluster can only access its own corresponding part.
The eight DSP cores in a GPDSP cluster share 6 MB on-
chip Global Shared Memory (GSM). All DSP cores have
their own SM of 64 KB and AM of 768 KB. Between SM
in SPU and AM in VPU, data can be transferred through
broadcast instructions and shared registers. The DMA
engine is utilized to transfer data between different memory
hierarchies, including DDR, GSM, and SM/AM.

On the software part, hthreads is provided to improve
the programmability of multi-core DSPs (Fang et al. 2023).
The hthreads runtime manages the interaction between
CPU and GPDSP regions, with the CPU side serving as the
host and each acceleration cluster as a computing device.

Fig. 2 Architecture of FT-M7032

Fig. 3 Micro-architecture of DSP Core in FT-M7032

thSORT: an efficient parallel sorting algorithm on multi-core DSPs

We use hthreads to implement and optimize our sort
algorithm.

4 thSORT

4.1 Single‑core DSP sorting

Based on the architecture of FT-M7032, our algorithm is
divided into two parts: single-core DSP sorting and multi-
core DSP sorting. An overview of our sorting algorithm is

shown in Fig. 4. The single-core DSP sorting which consists
of micro-kernel and vectorized merge, and the multi-core
DSP sorting consists of Merge Path. In this section, we pro-
pose the single-core DSP sorting, which takes advantage of
the vector instructions supported by FT-M7032.

4.1.1 Hard‑code sorting network

In this section, we hard-code a bitonic sorting network of
24 vectors called the micro-kernel. The bitonic sorting net-
work consists of stages and each stage includes sub-stages,

Fig. 4 An overview of our sorting algorithm. The reason why the number of vectors in hard-coding does not exceed 24 is explained in
Sect. 4.1.1. Due to the capacity limitations of AM, the result of vectorized merge is no more than 24,576 elements, as detailed in Sect. 4.1.2

Fig. 5 The procedure of a sub-
stage

 M. Yang et al.

as shown in Fig. 1. We hard-code several sub-stages and
eventually formed sorting networks. The function of the sub-
stage is to perform n/2 comparisons and decide whether to
exchange elements based on the results of the comparisons.

As the comparing operations followed are based on vectors,
we need to load the data from DDR to AM before sorting.
The vectors instructions vec_min and vec_max given by the
FT-M7032 instruction set are used to implement compari-
sons in the sub-stage. However, the two instructions can
only compare the corresponding positions of two vectors.
To complete the comparison of elements in any position,
permutation operation of the vector is necessary. After
permutations and comparisons, the two result vectors are
blended into a single vector. The procedure of a sub-stage
in Fig. 1 is shown in Fig. 5.

Since there is no permutation instruction in the
FT-M7032 instruction set, we implement the operation by

Table 1 The FT-M7032 instructions related to SVR

Instruction Cycle Function

VMVCGC 3 Configure SVR with a vector
SMVCCG 2 Configure a scalar register with SVRx
SMVCGC 3 Configure SVRx with a scalar
VMVCCG 2 Configure a vector register with SVR

Fig. 6 The procedure of permu-
tation using the instructions of
FT-M7032

Fig. 7 The cycle of permuta-
tions is reduced from 85 to 39
by taking advantage of the pipe-
line to optimize instructions

(a) The design of permutation instruction pipeline

(b) The dependencies between instructions

thSORT: an efficient parallel sorting algorithm on multi-core DSPs

using the scalar vector register, which is a special register.
This special register comes in two forms. SVR is regarded as
a vector register and SVRx (x = 0, 1,… , 14, 15) is regarded
as a scalar register in assembly code. The permutation
needs four instructions: VMVCGC, SMVCCG, SMVCGC,
and VMVCCG (for details, see Table 1). They have dif-
ferent execution cycles. The execution of VMVCGC and
SMVCGC instructions needs three cycles, and of VMVCCG
and SMVCCG instructions needs two cycles.

Figure 6 illustrates the procedure of a permutation. In
step 1, moving a vector, which includes 16 elements, to
SVR uses a VMVCGC instruction. In step 2, moving SVRx
(x = 1, 2, ..., 15, 16) to 16 scalar registers uses 16 SMVCCG
instructions. In step 3, moving the scalar registers to SVRx
(x = 1, 2, ..., 15, 16) uses 16 SMVCGC instructions. In step
4, moving SVR to a vector uses a VMVCCG instruction.
This procedure executes 1 VMVCGC, 16 SMVCCG, 16
SMVCGC, and 1 VMVCCG instructions. According to
Table 1, NOP instructions are needed. After adding NOP
instructions, the whole procedure takes 85 cycles as shown
in Fig. 7a. Thanks to the pipeline design, we can optimize
the instruction sequence by removing some NOP instruc-
tions. In step 2, 16 SMVCCG needs 16 NOP instructions.
There is no dependency between the 16 instructions, so all
16 NOP instructions can be removed. In step 3, 16 SMVCGC
need 32 NOP instructions. However, the VMVCCG in step 4
depends on the last SMVCGC in step 3. So there are only 30
NOP instructions that can be removed. The procedure needs
39 cycles after optimization. The design of the pipeline is
shown in Fig. 7a, and the dependency between the instruc-
tions is shown in Fig. 7b.

The result of comparisons is gain after permutation and
vector comparison (vec_min and vec_max). We blend the two
result vectors into a vector by using the conditional instruc-
tion of FT-M7032 instruction set. The form of a conditional
instruction is as follows:

Three vector registers are used in the instruction. In vr2,
there are 16 elements that depend on the Blend method,
a 16-bit integer, mentioned in Algorithm 2, and each ele-
ment is used as a condition to determine whether the cor-
responding MOV instruction is executed. If the ith element
of vr2 is zero, move the ith element of vr1 to the ith posi-
tion of the result vector; otherwise, move the element of
vr0 to that position. By taking advantage of this feature of
the FT-M7032 instruction set, the blend operation can be
performed efficiently. Suppose the results of vec_min and
vec_max in Fig. 5 are vectors vr0 and vr1, respectively. With
two conditional instructions, values from vr0 and vr1 can be
blended to compose the result vector as shown in Fig. 8. For
a given sub-stage, the two instructions costs 2 cycles if the
condition vector vr2 is prepared in advance.

Through permutation and blend, we can implement hard-
coding of sub-stages. In Algorithm 2, we hard-code 10 sub-
stages to form a sorting network of 16 elements. The input of
function Substage in Algorithm 2 includes a vector and two
control parameters, and the meaning of the control param-
eters is as follows: Swap method provides guidance on how
to perform permutation, and Blend method represents the
conditional vector to perform blend.

[vr2]MOV vr0, vr1

Fig. 8 The procedure of blend
using the conditional instruc-
tions of FT-M7032

 M. Yang et al.

Algorithm 2 Bitonic sort for one vector(16 elements)

Based on the sorting of one vector, we can hard-code
the sorting network of multiple vectors. Taking two vectors
as an example, first, sort the two vectors by Algorithm 2,
respectively. Two sorted vectors form a bitonic sequence,
and BitonicCore in Algorithm 1 can be used to sort the

vectors. Second, similar to Algorithm 2, we hard-code every
sub-stage in the BitonicCore of the sorting network. The
hard-coding of sorting network of two vectors is shown in
Algorithm 3.

thSORT: an efficient parallel sorting algorithm on multi-core DSPs

Algorithm 3 Bitonic sort for two vector(32 elements)

To use vector instructions and improve parallelism, we
hard-code the sorting network. However, there is an issue of
efficiency in this procedure. In a sub-stage, we use the vec_min
and vec_max instructions. vec_min instruction makes 16 com-
parisons, but only eight are valid, same for vec_max , as shown
in Fig. 5. In other words, only 50% of comparisons are valid.
Meanwhile, the single-core DSP sorting consists of micro-ker-
nel and vectorized merge, and the vectorized merge presented
in Sect. 4.1.2 has all comparisons valid. Therefore, the perfor-
mance does not keep growing as the size of the hard-coded
sorting network increases. We eventually hard-code a sorting
network of 24 vectors in our implement and use it as the micro-
kernel of our algorithm, as shown in Fig. 4.

4.1.2 Merge in DSP core

In this paper, we develop a multi-level merge algorithm, as
shown in Fig. 4. The vectorized merge and Merge Path, a par-
allel merging algorithm proposed by Green et al. (Green et al.
2012), correspond to single-core DSP sorting and multi-core
DSP sorting. In this section, We present the vectorized merge.

After implementing the micro-kernel (sorting network of 24
vectors), we need an efficient algorithm to merge each of the 24
vectors. Two vectors can be compared using the vec_min and
vec_max instructions. The merge operation can be accelerated
by using the two instructions. In Algorithm 4, we presents a
vectorized merge algorithm that is based on the article (Chhu-
gani et al. 2008). Suppose the two sub-arrays to be merged are
[left, middle] and [middle+1,right] of the whole array, which
called left-array and right-array, respectively, and suppose that
the elements of two arrays is both a multiple of the size of
16 (vector size). The procedure of the vectorized merge is as
follows:

• Load V1 and V2 vectors from the left-array and right-
array, respectively. Use merge_2V_sorted which is
defined in Algorithm 3 to merge V1 and V2, and store
V1 in the result array.

• Load a vector to V1 from the array whose first unloaded
element is smaller. Use merge_2V_sorted to merge V1 and
V2, and store V1 in the result array. Repeat until all the
elements of an array have been loaded.

 M. Yang et al.

• If the elements in the left-array or right-array are not
loaded, load 16 elements into V1. Use merge_2V_sorted to
merge V1 and V2, and store V1 in the result array. Repeat
until all the elements of the array have been loaded.

• Store V2 in the result array.

Due to the space limitations of AM, there is a limit to the
number of elements that vectorized merge can handle. When
the size of the sorted array exceeds the capacity of the AM, we
can chunk the array. Assume that the chunk size is C, which is
limited by many factors as follows: (1) due to the implementa-
tion of the algorithm, the following equation needs to be met:
C = 384 × 2k(k = 0, 1, 2, 3...) . (2) Since we use an auxiliary
array to store the merged subarray, the following equation
needs to be met: 2 × C ≤ 760 KB. Therefore, the chunk size
is 24,576, which means the algorithm can merge two arrays of
12,288 into one array of 24576.

Algorithm 4 Vectorized merge algorithm

Fig. 9 Merge Path matrix showing intersection lines and points

thSORT: an efficient parallel sorting algorithm on multi-core DSPs

4.2 Multi‑core DSP sorting

In this section, we propose multi-core DSP sorting, which
is carried out on the basis of single-core DSP sorting. The
sorted arrays obtained from single-core DSP sorting are
merged by the Merge Path algorithm, which is the second
level of multi-level merge, as shown in Fig. 4. There are two
reasons for proposing multi-core DSP sorting:

Space limitation. The data must be stored in the private
memory of the DSP core in order to implement vectoriza-
tion. Each DSP core has its own AM with a size of 760 KB.
The amount of elements a single DSP core can sort is limited
by the size of the AM.

Parallelism. We expect all DSP cores to work in parallel,
and each DSP core is responsible for a part of the work.
When n elements are sorted using p DSP cores, the ele-
ments are divided into p arrays of size n/p. However, utiliz-
ing all the DSP cores to merge these arrays is a challenge.
For example, when using the normal merge algorithm, p/2
DSP cores deal with p arrays to get p/2 sorted arrays, and p/4

DSP cores deal with p/2 arrays to get p/4 sorted arrays, and
so on. Normal merge algorithm cannot utilize the all DSP
cores. To further sort these arrays, an efficient parallel merge
algorithm is needed. We present the Merge Path algorithm
as an alternative solution to address this issue.

4.2.1 Merge Path

Merge Path is an efficient parallel merge algorithm with many
advantages. One of the key advantages of the algorithm is that it
is in general load-balanced, which means that all DSP cores can
be assigned the same amount of work. This is achieved by divid-
ing the input sequences into chunks of equal size and assigning
each chunk to a different DSP core. Additionally, Merge Path is
a lock-free algorithm, which means that it does not use atomic
instructions or locks to synchronize access to shared resources
(Green et al. 2012). The time complexity of the algorithm for
n elements and p processors is given by O(n∕p + log(n)) . For
p < N∕log(n) , this algorithm is considered to be optimal. The
procedure of Merge Path is shown in Algorithm 5.

Algorithm 5 Merge Path

 M. Yang et al.

Suppose there are two sorted arrays A and B, and place
them in a grid as shown in Fig. 9. A and B are placed on
the left and top, respectively. For the convenience of the
description, A and B are set to the same length, and the
algorithm can be used in practice with different lengths
of A and B.

The merging procedure begins at the top-left corner,
where individual elements of two arrays undergo pairwise
comparison. If the element from array B is smaller than
that from array A, the paths move to the right by one posi-
tion. Otherwise, the paths move down by one position.
Until the path reaches the bottom-right corner, the pro-
cedure ends. The path formed in this procedure is called

the merge path. The cross diagonals in Fig. 9 are used to
assign the same amount of work to the DSP cores. The
top-left and bottom-right corners are considered two cross
diagonals of length zero. The cross diagonals divide the
merge path into segments of equal length. In the Merge
Path algorithm, each DSP core is responsible for one of
the segments. Now notice the intersection of each cross
diagonal with the merge path, which determines the start
and end of the array where each DSP core needs to merge.

For better time complexity, a binary search can be used
to figure out the intersection between the cross diagonal and
merge path. The diagonal will pass through several blocks,
and each block corresponds to Ai and Bi from A and B,

(a) Bandwidth as variable (b) Frequency as variable

(c) Elements of sort as variable (d) The relationship between V and F

Fig. 10 The effect of the variation of each parameter in the performance model on the results (Default B = 42.62 GB/s, F = 1.8 GHz, N =
589,824)

Fig. 11 The theoretical perfor-
mance and the composition of
time consumption of perfor-
mance model. As the time com-
plexity of our sort algorithm is
O(n × log2(n)) , the performance
degrades as the number of input
elements increases

thSORT: an efficient parallel sorting algorithm on multi-core DSPs

respectively. For blocks to the left of the intersection, they
satisfy Ai not less than Bi . For blocks to the right, they satisfy
Ai less than Bi . Therefore, binary search can be used to find
the intersection, and the time complexity is O(log(N)).

5 Performance model

In this section, we propose a performance model of our
sorting algorithm that provides insight into performance
optimization. Based on the theoretical memory accesses
and computations, we can obtain the performance model of
our sorting algorithm. Assume that each DSP core sorts B
elements, which means n = B × p . In single-core DSP sort-
ing, one element requires one load and one store operations.
In multi-core DSP sorting, the merge algorithm requires
n × log(p) load and store operations. The total number of
memory accesses is as follows:

For the scalability of the performance model, vectori-
zation is not considered when calculating the theoreti-
cal computations. T(n) denotes the number of compari-
sons for the bitonic sorting network of n elements, and
T(n) = T(n∕2) × 2 + log(n) × n∕2 . In single-core DSP sort-
ing, each DSP core sorts B elements, which requires T(B)
comparisons. In multi-core DSP sorting, merge algorithms
require n × log(p) comparisons. The total computations is
as follows:

Memory Accesses = 2 × B × p + 2 × N × log(p)

Assuming a processor with a frequency of F Hz and a DDR
bandwidth of 8 × V bytes per second. The theoretical execution
time for sorting n numbers using p DSP cores is as follows:

After determining F and V of a multi-core processor and n
of the array sorted, the theoretical fastest execution time of
our sorting algorithm can be obtained by the performance
model. By controlling two of the parameters F, V, and n to
be constant, we can obtain the trend of time consumption
when changing the third parameter, which is shown in
Fig. 10a–c respectively, and Fig. 10d shows the relationship
between V and F when the memory access time is equal to
the computation time. Figure 11 further refines the details of
Fig. 10c. Similarly, the frequency is set to 1.8 GHz and the
bandwidth is set to 46.62 GB/s. By changing the number of
sorted elements, the time proportion of two parts (Compu-
tations & Memory Access) and the theoretical performance
are shown in Fig. 11.

The performance model can reveal the fact that thSORT is
compute-bound. In Fig. 10, the bandwidth corresponding to the
frequency of 1.8 GHz is about 10 GB/s, which is less than the
actual bandwidth of 46.62 GB/s. In Fig. 11, computations take
up the majority of the running time. Besides, the model can also
guide the architectural design of a processor. In order to design
an architecture for sorting, the allocation of hardware resources,
including computing hardware and memory hardware, can be
changed by analyzing the relationship between V and F.

6 Experimental results

6.1 Experimental setup

We assess our method on FT-M7032 with 16 ARMv8 CPU
cores and one cluster. A comprehensive overview of the
experimental setup and configuration employed in this study
is shown in Table 2.

Computations = T(B) × p + log(p) × n

Total time =
2 × B + 2 × n × log(p)

V
+

T(B) + n × log(p)

F

Table 2 Experimental setup for performance testing

Name Version

Operating system Ubuntu 19.04
Host compiler GCC 8.3.0
Device compiler M3CC 1.0
Programming framework Hthreads 9.8
CPU 16 ARMv8 Cores
DSP 8 GPDSP cores × 4
DDR 32 GB × 4

Fig. 12 The performance of one
DSP with memory hierarchy
optimization

 M. Yang et al.

For single-core DSP sorting, we optimize the memory
access of thSORT and compare the performance before and
after optimization. For multi-core DSP sorting, we compare
it against the block_indirect_sort of Boost C++ Libraries
1.67.0 and the std::sort of GUN libc++.so.6. Boost::block_
indirect_sort is highly regarded for its robust performance
and exceptional handling of large-scale datasets. Std::sort,
being an integral part of the C++ standard library, is consid-
ered a well-vetted and reliable sorting algorithm. By com-
paring these two sorting algorithms to thSORT, we aim to
comprehensively evaluate the performance of our algorithm
implementation. In all performance tests, the arrays to sort
are populated with randomly generated values.

6.2 Single‑core DSP sorting

The single-core DSP sorting consists of micro-kernel and
vectorized merge. Micro-kernel is designed to sort 24×

VEC_SIZE elements (384 elements). When sorting more
than 384 elements, vectorized merge continues to conduct
the sorting on the results of the micro-kernel.

Analyzing our algorithm implementation, we find that
most time data is stored in DDR, which means that the mem-
ory hierarchy of FT-M7032 is not fully utilized. Therefore,
we conduct a series of optimizations for this by utilizing AM
and GSM. We optimized the memory access of the thSORT
and obtained three versions. thSORT v1 is the base version,
thSORT v2 is optimized on the basis of thSORT v1 using
AM, and thSORT v3 is optimized on the basis of thSORT
v2 using GSM. In addition, DMA is used to optimize data
transfer in v2 and v3. The performance improvement of
single-core DSP sorting resulting from the optimization of
the memory access is shown in Fig. 12.

The micro-kernel of single-core DSP sorting sorts 384
elements. Based on the size of 384, the size of our test is
multiplied by 2 per step. The optimized version showed an

Fig. 13 Sorting between DSPs.
Execution time divided by sort
number, and the speedup of the
2, 4, and 8 DSPs sorting against
the 1 DSPs sorting is shown
above the lines

Fig. 14 The composition of
time consumption of thSORT
(bitonic sort micro-kernel, vec-
torized merge and Merge Path)

Fig. 15 Comparison of CPUs
and DSPs. The speedup of
the thSORT against the Boost
sort of eight CPUs is shown
above the line for Boost sort,
against the std::sort of one
CPU is shown above the line for
std::sort

thSORT: an efficient parallel sorting algorithm on multi-core DSPs

advantage at the beginning, and this advantage continued
to increase as the scale increased. Through the memory
optimization, the performance of thSORT has been signifi-
cantly improved. This also shows that high bandwidth is
very important for the performance improvement of sorting,
especially when sorting large-scale arrays. Unless otherwise
specified, the subsequent experiments are conducted using
the thSORT v3 version.

6.3 Multi‑core DSP sorting

6.3.1 Optimization results

Figure 13 shows the performance to sort arrays up to a
size of 1.2 × 107 (24 × 219) elements using 1, 2, 4, and 8
DSPs. As the number of DSP grows, the speedup grows as
well, which demonstrates the good scalability of thSORT.
In addition, we observe that when sorting elements
exceeds 24 × 212 , the performance starts to drop while
the speedup increases. This number holds significance as
it equals the maximum number of elements that AM can
accommodate. Hence, we conjecture that the performance
degradation is associated with memory access, and we
combine the performance model to further analyze the
reasons for this phenomenon from the perspective of time
consumption.

Figure 14 shows the composition of time consumption of
the vectorized merge, micro-kernel, and Merge Path across
the entire sort. After the sorting elements exceed 24 × 212 ,
the proportion of Merge Path increases as performance
decreases. Therefore, the phenomenon of performance deg-
radation is related to Merge Path. FT-M7032 consists of two
parts: single-core DSP sorting and multi-core DSP sorting.
The former part, including the micro-kernel and vectorized
merge, occurs inside the DSP core, which means almost no
data exchange between the DSP core and DDR. On the con-
trary, there is frequently memory access to DDR when con-
ducting Merge Path. In Sect. 6.2, we optimized the memory
access of the thSORT by utilizing AM and GSM. However,
their space is limited, while AM has 768KB and GSM has
6MB. When the scale rises, this will inevitably result in
an increase in the amount of data exchanged between AM,
GSM, and DDR. Therefore, Merge Path is the reason for the
performance degradation.

We can roughly regard micro-kernel and vectorized
merge as the calculation part of the algorithm, and Merge
Path as the memory access part of the algorithm. Compar-
ing Figs. 11 and 14, we find that memory access occupies
the majority of time in our implementation, which means
our implementation is bandwidth-bound. This is inconsist-
ent with the compute-bound conclusion in the performance
model, which means that our implementation requires more

memory access optimization as guided by the performance
model. Therefore, the performance of our implementation
is much poorer than the theoretical performance shown in
Fig. 11. We achieve only 13.97% of the theoretical perfor-
mance at a scale suitable for thSORT.

6.3.2 Comparison with other sorting

Figure 15 shows the performance for different numbers of
cores of a parallel CPU sort implementation from the Boost
C++ Libraries (block_indirect_sort), and the performance
of std::sort against thSORT using eight DSPs. thSORT is
faster when sorting 24 × 212 elements. At a scale suitable,
thSORT of eight DSPs is 1.43× faster than block_indirect_
sort of eight CPUs, and is 2.15× faster than std::sort. The
block_indirect_sort exhibits lower performance at small
scales, but as the sorting scale exceeds 24 × 213 elements,
its performance experiences a rapid improvement, eventually
stabilizing due to the associated overhead in block creation,
merging, and limited cache utilization. From a hardware
perspective, the single-core performance of the DSP core
is inferior to that of the CPU. This is primarily attributed
to architectural differences, such as the CPU’s proficiency
in utilizing advanced features like out-of-order execution
and a sophisticated cache hierarchy. When analyzing perfor-
mance outcomes, it is imperative to take these differences
into account. Analyze the performance at different scales:
When the scale is small, the features of FT-M7032, such as
high-bandwidth on-chip memory, cannot be fully utilized.
Furthermore, the overhead of startup and synchronization
costs becomes more pronounced at smaller scales. When the
scale is large, there are memory access problems mentioned
in Sect. 6.2.

7 Conclusion

The FT-M7032 is a CPU-DSPs heterogeneous processor
designed for HPC. This paper describes thSORT, an efficient
parallel bitonic sorting algorithm on FT-M7032. thSORT
consists of two parts: single-core DSP sorting and multi-core
DSP sorting, both aiming to tap the features of FT-M7032.
The single-core DSP sorting leverages the VPU in DSP for
vectorization and optimizes memory access through AM.
The multi-core DSP sorting reduces access latency by using
GSM and improves the parallelism of sorting by implement-
ing the Merge Path algorithm. Besides, we propose a per-
formance model for performance improvement and archi-
tecture design. Through the performance model, we analyze
the theoretical performance of thSORT and compare it with
our implementation to guide our optimization efforts.

 M. Yang et al.

The experimental results show an enhancement in perfor-
mance. By utilizing memory hierarchy, we have optimized
memory access and greatly improved the performance of
thSORT. We compare the sort implementations from the
Boost C++ Libraries and std::sort with thSORT, our imple-
mentation is 1.43× faster than Boost sort, and is 2.15× faster
than std::sort.

Acknowledgements We deeply appreciate the invaluable comments
from all the reviewers. This research was supported by the National
Natural Science Foundation of China under Grant Nos. 61972415 and
61972408.

Data availability The data that support the findings of this study is
available upon request from the authors.

Declaration

Conflict of interest The authors declare no competing interests.

References

Batcher, K.E.: Sorting networks and their applications. In: Proceedings
of the April 30–May 2, Spring Joint Computer Conference, AFIPS
’68 (Spring), pp. 307–314. Association for Computing Machinery,
New York (1968)

Chen, R., Prasanna, V.K.: Computer generation of high throughput and
memory efficient sorting designs on FPGA. IEEE Trans. Parallel
Distrib. Syst. 28(11), 3100–3113 (2017)

Chhugani, J., Nguyen, A.D., Lee, V.W., Macy, W., Hagog, M., Chen,
Y.-K., Baransi, A., Kumar, S., Dubey, P.: Efficient implementation
of sorting on multi-core simd cpu architecture. Proc. VLDB Endow.
2, 1313–1324 (2008)

Fang, J., Zhang, P., Huang, C., Tang, T., Lu, K., Wang, R., Wang, Z.:
Programming bare-metal accelerators with heterogeneous threading
models: a case study of matrix-3000. Front. Inf. Technol. Electron.
Eng. 24(4), 509–520 (2023)

Graefe, G.: Implementing sorting in database systems. ACM Comput.
Surv. 38(3), 10-es (2006)

Green, O., McColl, R., Bader, D.A.: Gpu merge path: a gpu merging algo-
rithm. In: Proceedings of the 26th ACM International Conference
on Supercomputing (ICS), pp. 331–340. Association for Computing
Machinery, New York (2012)

Gueron, S., Krasnov, V.: Fast quicksort implementation using avx instruc-
tions. Comput. J. 59(1), 83–90 (2016)

Guo, C., Chen, H., Li, C., Wu, T.: A memory access reduced sort on
multi-core gpu. In: 2018 IEEE 20th International Conference on
High Performance Computing and Communications; IEEE 16th
International Conference on Smart City; IEEE 4th International
Conference on Data Science and Systems (HPCC/SmartCity/DSS),
pp. 586–593. Exeter, UK (2018)

Hou, K., Wang, H., Feng, W.-C.: A framework for the automatic vectori-
zation of parallel sort on x86-based processors. IEEE Trans. Parallel
Distrib. Syst. 29(5), 958–972 (2018)

Jun, S.-W., Xu, S., Arvind.: Terabyte sort on fpga-accelerated flash stor-
age. In: 2017 IEEE 25th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pp. 17–24.
Napa, CA (2017)

Nassimi, S.: Bitonic sort on a mesh-connected parallel computer. IEEE
Trans. Comput. 28(1), 2–7 (1979)

Peters, H., Schulz-Hildebrandt, O., Luttenberger, N.: Fast in-place, com-
parison-based sorting with cuda: a study with bitonic sort. Concurr.
Comput. Pract. Exp. 23(7), 681–693 (2011)

Satish, N., Harris, M., Garland, M.: Designing efficient sorting algorithms
for manycore gpus. In: 2009 IEEE International Symposium on Par-
allel & Distributed Processing, pp. 1–10. Rome, Italy (2009)

Stehle, E., Jacobsen, H.-A.: A memory bandwidth-efficient hybrid radix
sort on gpus. In: Proceedings of the 2017 ACM International Con-
ference on Management of Data, SIGMOD ’17, pp. 417–432. Asso-
ciation for Computing Machinery, New York (2017)

Yin, Z., Zhang, T., Müller, A., Liu, H., Wei, Y., Schmidt, B., Liu, W.:
Efficient parallel sort on avx-512-based multi-core and many-core
architectures. In: 2019 IEEE 21st International Conference on High
Performance Computing and Communications; IEEE 17th Interna-
tional Conference on Smart City; IEEE 5th International Confer-
ence on Data Science and Systems (HPCC/SmartCity/DSS), pp.
168–176. Zhangjiajie, China (2019)

Yin, S., Wang, Q., Hao, R., Zhou, T., Mei, S., Liu, J.: Optimizing irregu-
lar-shaped matrix–matrix multiplication on multi-core dsps. In: 2022
IEEE International Conference on Cluster Computing (CLUSTER),
pp. 451–461. Heidelberg, Germany (2022)

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

	thSORT: an efficient parallel sorting algorithm on multi-core DSPs
	Abstract
	1 Introduction
	2 Background
	2.1 Bitonic sort and sorting network
	2.2 Related work

	3 FT-M7032 architecture
	4 thSORT
	4.1 Single-core DSP sorting
	4.1.1 Hard-code sorting network
	4.1.2 Merge in DSP core

	4.2 Multi-core DSP sorting
	4.2.1 Merge Path

	5 Performance model
	6 Experimental results
	6.1 Experimental setup
	6.2 Single-core DSP sorting
	6.3 Multi-core DSP sorting
	6.3.1 Optimization results
	6.3.2 Comparison with other sorting

	7 Conclusion
	Acknowledgements
	References

