
Mille-feuille: A Tile-Grained Mixed Precision
Single-Kernel Conjugate Gradient Solver on GPUs

Dechuang Yang∗, Yuxuan Zhao∗, Yiduo Niu∗, Weile Jia†‡, En Shao†‡, Weifeng Liu∗, Guangming Tan†‡, Zhou Jin∗
∗Super Scientific Software Laboratory, Dept. of CST, China University of Petroleum-Beijing, China

† State Key Lab of Processors, Institute of Computing Technology, CAS, China
‡ University of Chinese Academy of Sciences, China

Email: ∗{dechuang.yang, yuxuan.zhao, yiduo.niu}@student.cup.edu.cn, †‡{jiaweile, shaoen}@ict.ac.cn
∗weifeng.liu@cup.edu.cn, †‡tgm@ict.ac.cn, ∗jinzhou@cup.edu.cn

Abstract—Conjugate gradient (CG) and biconjugate gradient
stabilized (BiCGSTAB) are effective methods used for solving
sparse linear systems. We in this paper propose Mille-feuille, a
new solver for accelerating CG and BiCGSTAB on GPUs. We
first analyze the two methods and list three findings related to the
use of mixed precision, the reduction of kernel synchronization
costs, and the awareness of partial convergence during the
iteration steps. Then, (1) to enable tile-grained mixed precision,
we develop a tiled sparse format; (2) to reduce synchronization
costs, we leverage atomic operations that make the whole solving
procedure work within a single GPU kernel; (3) to support a
partial convergence-aware mixed precision strategy, we enable
tile-wise on-chip dynamic precision conversion within the single
kernel at runtime. The experimental results on an NVIDIA
A100 and an AMD MI210 show that the Mille-feuille solver
outperforms baseline implementations using the vendor-support
cuSPARSE/hipSPARSE as well as two state-of-the-art libraries
PETSc and Ginkgo by a factor of on average 3.03x/2.68x, 5.37x,
4.36x (up to 8.77x/7.14x, 16.54x, 15.69x) in CG, on average
2.65x/2.32x, 3.57x, 3.78x (up to 7.51x/6.63x, 16.64x, 11.73x)
in BiCGSTAB, on average 3.82x/3.47x (up to 40.38x/47.75x)
in preconditioned CG (PCG), on average 1.79x/1.63x (up to
45.63x/44.34x) in preconditioned BiCGSTAB (PBiCGSTAB), re-
spectively.

Index Terms—CG, BiCGSTAB, mixed precision, GPU

I. INTRODUCTION

Iterative solvers [1], particularly a series of Krylov subspace
methods [2]–[5], are pivotal in solving large systems of sparse
linear equations. Among these methods, conjugate gradient
(CG) [6] and biconjugate gradient stabilized (BiCGSTAB) [7]
algorithms stand out for their effectiveness in tackling sym-
metric positive-definite and nonsymmetric or indefinite linear
systems, respectively. Consequently, significant efforts have
been directed towards accelerating CG and BiCGSTAB meth-
ods on various modern parallel computing platforms, such as
GPUs [8]–[10] and distributed systems [11]–[13].

In these solvers, a substantial portion of floating-point
operations is performed, including sparse matrix-vector mul-
tiplication (SpMV), dot product computation, and operation
y = αx + y (AXPY). The computational costs of these
operations vary with the data types utilized, such as 64-bit
double, 32-bit single, 16-bit half and 8-bit minifloat [14],
[15]. Different precision levels exhibit distinct trade-offs in
terms of space/time complexities and convergence speed [16].

Therefore, the adoption of mixed precision techniques in
iterative solvers has received significant attention in recent
research efforts [17]–[21].

However, existing mixed precision iterative solvers are typ-
ically employed either as a high precision iterative refinement
stage after a direct solver [20]–[26], or in precondition-
ing [27]–[29], or at different levels within algebraic multi-
grid [30], [31]. Despite their utility, a number of performance-
critical factors, such as the distribution of numerical precision,
inter-kernel synchronization, and partial convergence of the
solution x, are often overlooked in current methods.

We in this work first perform a multiperspective analysis
on CG and BiCGSTAB algorithms on GPUs, and then focus
on three factors highly related to their execution efficiency:
(1) precision-aware space distribution of the values of the
nonzeros (Section II-A), (2) high synchronization cost between
CUDA kernel calls (Section II-B), and (3) partial convergence
of the elements in the solution vector x (Section II-C). On top
of the analysis, we also provide three findings to motivate the
algorithm design of our Mille-feuille solver.

According to the three findings, we propose Mille-feuille, an
effective high performance CG and BiCGSTAB solver that (1)
stores a sparse matrix in tiles with different initial precisions,
(2) uses just one kernel call to complete SpMV, dot product,
and AXPY in an entire procedure, instead of calling a number
of individual CUDA kernels, and (3) changes the precision of
a column of tiles in on-chip memory when the corresponding
elements in the solution vector x are partially convergenced.

In our experiments, we use two GPUs, an NVIDIA A100
and an AMD MI210, and benchmark all suitable matrices,
i.e., 230 symmetric positive-definite matrices for CG and 686
nonsymmetric or indefinite matrices for BiCGSTAB, from
the entire SuiteSparse Matrix Collection [32]. We compare
our algorithm with the baseline implementations of CG and
BiCGSTAB using cuSPARSE v12.0/hipSPARSE v2.3.8, as
well as with two state-of-the-art libraries PETSc v3.20 [33]
and Ginkgo v1.7.0 [34]. The experimental results demonstrate
that our Mille-feuille outperforms cuSPARSE/hipSPARSE,
PETSc, and Ginkgo by a factor of 3.03x/2.68x, 5.37x, 4.36x in
CG; 2.65x/2.32x, 3.57x, 3.78x in BiCGSTAB; 3.82x/3.47x in
preconditioned CG (PCG); and 1.79x/1.63x in preconditioned

SC24, November 17-22, 2024, Atlanta, Georgia, USA
979-8-3503-5291-7/24/$31.00 ©2024 IEEE

BiCGSTAB (PBiCGSTAB), respectively.
In this work, we make the following contributions:
• We analyze the CG and BiCGSTAB methods and give

three findings related to the use of mixed precision for
high performance.

• We develop a tiled format that prepares tile-grained mixed
precision and dynamic precision switch according to
partial convergence at runtime.

• We design a single-kernel method to avoid synchroniza-
tion costs between GPU kernel calls and to better use
on-chip memories for inner-kernel precision conversion.

• We propose a new solver called Mille-feuille that exploits
the above optimizations, and significantly outperforms
existing work on NVIDIA and AMD GPUs.

II. BACKGROUND, ANALYSIS AND FINDINGS

A. Distribution of Numerical Precision

To take advantage of mixed precision, it is important to first
set the appropriate floating point data type to store the input
matrix A. There can be a variety of storage strategies depend-
ing on the target granularity. A straightforward way is to store
multiple complete instances of A with different precisions, and
use them in the best stages in a linear solver [19], [30], [35]. It
is also possible to divide A into multiple matrices (ones with
higher precision and the others with lower precision), and to
call a kernel multiple times for different precisions to complete
a procedure [18], [36].

However, it is also possible to move forward for a finer-
grained observation. Specifically, we investigate the proper
initial precision on the nonzero-level and visualize the ‘enough
good’ precision of each nonzero element of three example
matrices in Figure 1. As can be seen, four colors are used to
present the ‘enough good’ precision for each nonzero (blue,
green, purple and red for FP64, FP32, FP16 and FP8, respec-
tively), and the matrices thus demonstrate diverse distributions
of numerical precision.

garon2 nmos3 ASIC_320k

Fig. 1: Three sparse matrices containing nonzeros stored in
their ‘enough good’ precisions.

Our judging criterion of whether a nonzero can be ade-
quately represented in a low precision is shown as follows.
We first store each nonzero in four data types, and compute
the loss between three lower precisions (i.e., FP32, FP16 and
FP8) and the FP64. If the losses of FP32, FP16 and FP8 are
less than 10−15 (i.e., the decimal digits of precision of FP64),
it indicates that the precision FP32, FP16 or FP8 is ‘good
enough’ to store the nonzero. In particular, if three losses of

FP32, FP16 and FP8 are all below 10−15, the nonzero will be
stored in the lowest possible precision.

Back to Figure 1, calculated by using the criterion men-
tioned above, the three matrices have very different distribu-
tions of numerical precision. That is, most nonzeros of the
matrix ‘garon2’ can be presented with a precision FP16 or
FP8, instead of FP64. The matrix ‘nmos3’ has obvious large
block patterns, but half of the blocks should use FP64, and
the other half could basically be in FP8. As for the circuit
matrix ‘ASIC 320k’, the small blocks are often in FP8, and
the row/column rectangular connections between them should
be mostly in FP64.

We thus have the Finding 1: There exists a potential to
leverage the finer-grained precision distribution to better save
the nonzeros of a matrix.

B. Synchronization Costs in CG and BiCGSTAB

We further analyze the algorithm procedure of the CG and
BiCGSTAB methods. As shown in Algorithms 1 and 2, SpMV,
dot product, and AXPY functions are called in a certain order.

Algorithm 1 A pseudocode of CG.
1: Initialize x0

2: r0 = b−Ax0

3: p0 = r0, ε = 10−10

4: for j = 0 to maxiter until ∥rj∥2 < ε do
5: µ = Apj //SpMV
6: aj = (rj , rj)/(µ, pj) //Dot product
7: xj+1 = xj + ajpj //AXPY
8: rj+1 = rj − ajµ //AXPY
9: βj = (rj+1, rj+1)/(rj , rj) //Dot product

10: pj+1 = rj+1 + βjpj //AXPY
11: end for

Algorithm 2 A pseudocode of BiCGSTAB.
1: Initialize x0

2: r0 = b−Ax0, r∗0=r0
3: p0 = r0, ε = 10−10

4: for j = 0 to maxiter until ∥rj∥2 < ε do
5: µ = Apj //SpMV
6: aj = (rj , r

∗
0)/(µ, r

∗
0) //Dot product

7: sj = rj + αjµ //AXPY
8: θ = Asj //SpMV
9: ωj = (θ, sj)/(θ, θ) //Dot product

10: xj+1 = xj + αjpj + ωjsj //AXPY
11: rj+1 = sj − ωjθ //AXPY

12: βj =
(rj+1,r

∗
0)

(rj ,r
∗
0)

∗ αj

ωj
//Dot product

13: pj+1 = rj+1 + βj(pj − ωjµ) //AXPY
14: end for

Typically, there exist synchronization overheads between
the three kernels. We test all suitable matrices, i.e., 230 for
CG and 686 for BiCGSTAB, from the SuiteSparse Matrix
Collection [32], and list the costs of the three kernels and the
synchronization between them in Figure 2. As can be seen,
synchronization often accounts for over 30% of the runtime.

We then give the Finding 2: Reducing the synchronization
overhead between kernels will likely further optimize the
solver performance.

230 symmetric positive-definite matrices0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Ti
m

e
Br

ea
kd

ow
n

SpMV Dot product AXPY Synchronization

(a) CG algorithm

686 non-symmetric or indefinite matrices0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Ti
m

e
Br

ea
kd

ow
n

(b) BiCGSTAB algorithm

Fig. 2: Runtime breakdown of CG and BiCGSTAB methods.

C. Partial Convergence of the Solution Vector

Here, we discuss the partial convergence of the solution
vector x. Taking the CG method in Algorithm 1 as an example,
when ∥rj∥2 is less than a convergence threshold ε (line 4), the
iteration stops. The rj is calculated based on µ (line 8), which
is the output of SpMV µ = Apj (line 5 and Figure 3). In
this operation, the matrix A is unchanged, and only the input
vector pj affects the result. Typically, when the values of pj
are numrically small enough, the change of the values of µ
will also be small, leading to gradual convergence.

Figure 3 plots the SpMV operation related to possible
partial convergence. For particularly small elements (normally
smaller than the convergence threshold) in pj , the nonzeros in
the corresponding columns in A no longer need high precision,
and could even bypass the multiplications with the elements
in pj .

Negligible imp-
act on

Low precision,
even bypass

μ A p j

Close to zeroμ

Fig. 3: The small enough elements in pj need only low
precision nonzeros in A or even bypass SpMV on the columns.

As the values of pj largely determine the convergence of
the CG method, we further visualize the changing process
of pj of three representative matrices in Figure 4. As can
be seen, from left to right, the values in pj become pro-
gressively smaller (in five ranges, purple, blue, green, orange
and red, representing ∞ to 0), until the iterations converge.
The three matrices have diverse convergence processes: the
matrix ‘bcsstm37’ works pretty normal, ‘Muu’ demonstrates
an early convergence (i.e., many elements become orange long
before the end), and ‘m3plates’ has a large portion of elements
remaining unchanged (orange) from the very beginning. The
example means that the recognition of partial convergence
has an opportunity to save some calculations in the SpMV
operation.

bcsstm37 m3platesMuu

Fig. 4: An example of the diverse processes of convergence
of running CG on three matrices. The x-axis shows iteration
steps, while the y-axis presents the complete elements in pj .

We finally obtain the Finding 3: For the very small elements
in pj , the nonzeros on the corresponding columns in A may
just need lower precision, even bypass the calculations.

III. MILLE-FEUILLE

A. Overview

According to the three findings, we propose the Mille-feuille
solver for high performance CG and BiCGSTAB with tiled-
grained mixed precision (corresponding to the Finding 1) and
a single-kernel implementation (corresponding to the Finding
2) considering the partial convergence (corresponding to the
Finding 3) on GPUs.

We first partition the entire input matrix into a number
of sparse tiles of the same size and leverage a two-level
sparse format to store both inter-tile and intra-tile information.
For each tile, we store the nonzeros with different precision
depending on their initial values. Section III-B will introduce
the sparse tile data structure in detail.

Then, we merge the separate CUDA kernels in the naive
version into a single kernel, and all nonzeros are loaded into
on-chip memory only once and reused in the iterations. Thus,
the off-chip load will be minimized, and the synchronization
costs will be removed. Section III-C will detail the integration
of various computations into a single kernel.

In addition, we consider the use of the elements in the
solution vector x partially converged (that is, pj gets small
enough) during the iteration. In this situation, when performing
SpMV, the corresponding nonzeros in A could work in a lower
precision, or even be bypassed. This is done in tile-grained, by
using our data structure. Section III-D presents our strategy.

B. Tile-Grained Storage Structure

Here, we introduce a fine-grained 2D mixed precision stor-
age strategy, which extends the tiled storage formats proposed
in [37]–[40]. Specifically, we first partition a sparse matrix
into tiles of the same size (16-by-16 is used in this work) and
store them using a two-level sparse format. An example is
shown in Figure 5.

The high-level storage captures the inter-tile information
in a COO style, which includes five arrays: TileRowidx,
TileColidx and TilePrec of size tilenumA (where
tilenumA is the number of tiles) store the row and column
indices, as well as the precision (FP64, FP32, FP16 or FP8,

see Section II-A for the selection criterion) of the tiles, respec-
tively; also, TileNnz and Nonrow of size tilenumA + 1
store the offsets of the number of nonzeros and non-empty
rows in the tiles, respectively. The COO style is used to ensure
load balancing, as each CUDA warp will compute a tile in our
single-kernel implementation.

Matrix from A

TileColidx:

TileNnz:

Nonrow:

0 1 1 6 6 7 2 2 3 4 5 0 1 5 7 6 0 0 1 6

0 2 3 0 1 3 0 1 3CsrRowptr:

CsrColidx:

0 2 4 6 8 10 11 13 15

0 3 1 2 0 2 3 0 3

3 0 1 32 0 1 32 0 1 0 1 32 0 1 33 0 1

RowIndex: 0 0 1 0 1 1 2 3 3 2 3 4 5 5 4 5 6 7 7 6

Inter-Tile

Intra-Tile

16

TileRowidx: 0 0 1 1 2 2 2 3 3

Val(FP64):

0 3 3 6 2 5 1 4 4 6

Val(FP32): Val(FP16): Val(FP8):

TilePrec: 4 3 4 2 3 1 2 1 3

FP64 FP32

FP16 FP8

Fig. 5: An example sparse matrix A of size 8-by-8 is stored
in nine sparse tiles of size 2-by-2. The high-level structure
(inter-tile) consists of five arrays and the precision can be
FP64, FP32, FP16 or FP8, and the low-level structure (intra-
tile) comprises four arrays.

For the low-level storage, we use the CSR style to record
the intra-tile information, which includes three standard arrays
CsrRowptr, CsrColidx and Val, as well as an additional
array RowIndex of size rownumA (the sum of the number
of non-empty rows within the tiles) saving the row index
of each non-empty row in the tile. The RowIndex array,
working together with the Nonrow array, is designed to
avoid traversing empty rows within a tile during the SpMV
operation.

C. CG and BiCGSTAB within a Single Kernel

To remove the synchronization costs between different
CUDA kernels, we propose a single kernel scheme using
atomic operations to resolve dependencies between data and
operations. In this way, we consolidate all computations within
a single kernel, thereby avoiding costs for kernel barrier
synchronization. For brevity, we take CG as the scenario to
explain the single-kernel strategy.

We first need to distribute the computational tasks (i.e.,
operations on sparse tiles) to the CUDA warps. For operations
on matrix (SpMV) and vector (dot product and AXPY), we
specify two different strategies to assign to warps, respectively.
For SpMV, mainly to ensure load balancing, we consider both
the number of nonzeros and the number of tiles, and assign
the workload to each warp. Specifically, we iterate through the
tiles of the matrix, keeping track of the number of nonzeros
and tiles allocated to the current warp. If they do not exceed
the maximum number of nonzeros and tiles per warp, we

assign the sparse tile to the current CUDA warp; otherwise,
we assign it to a new warp. For the dot product and AXPY, we
dynamically determine the workload for each warp based on
the number of vector segments. When the number of segments
in a vector does not exceed the maximum number of warps,
we assign one warp to deal with each segment. Otherwise,
we distribute multiple vector segments to a warp based on the
length of the vector and the number of warps available.

Once the workload for each warp has been allocated, we
load the matrix into shared memory before the kernel starts,
and then reuse it in the subsequent iterations. When the
number of nonzeros in the matrix is less than the resources
available in shared memory, all nonzeros within each warp
will be loaded into shared memory. Otherwise, we will load
the nonzeros that do not exceed the maximum shared memory
resources within warp into shared memory and put the rest
into global memory. In this scenario, we utilize an array to
track the number of tiles loaded into shared memory within
each warp, enabling distinguish the memory locations of tiles
in each warp. When the matrix contains a large number of
nonzeros, most of which must be stored in global memory,
and the overhead of the global memory accesses outweighs
the performance benefits of a single kernel, we revert back to
a multi-kernel execution approach (See Figures 8 and 9, on
the left of the threshold at 106 nonzeros on the x-axis, we run
the single-kernel scheme, on the right, the multi-kernel classic
method is called).

To realize barrier synchronization without calling multiple
kernels, the critical step involves constructing several arrays
in global memory to define dependencies that can be resolved
within a single kernel, and enabling atomic operations to
schedule warps to execute tasks of different operations. We
categorize the CG algorithm into four parts based on the
dependencies between data and operations, as shown in Figure
6 (Steps A, B, C and D). The dependencies that arise between
each step are defined by three arrays in the global memory.

Specifically, we construct an array d s to resolve the
dependencies between SpMV (in Step A) and dot product
operation (in Step B). The array d s retains the remaining
workload count of tiles that require the execution of SpMV
within the same row tile, respectively, to indicate the beginning
of the following dot product. Step B uses the result vector of
SpMV to perform the dot-product operation. Therefore, only
if all non-empty tiles within the same row tile of the matrix A
have completed the SpMV operation, warps can start to work
in Step B. The array d d is used to solve the dependencies
between the dot product (in Steps B and C) and the scaling
operation (in Steps C and D). Since the scaling operation can
only be performed after the dot product is completed, this
array tracks the number of warps that have completed the dot
product operation for the vector segments. We also use array
d a to resolve the dependencies between the end of the current
iteration (in Step D) and the beginning of the next iteration
(in Step A). It tracks how many warps have completed the
AXPY operation for the vector segment. Only when the AXPY
operation on all warps is completed at Step D, the algorithm

p j

(r j , r j)

r j

x j

y j z j

A

d_s 1 22 d_d 3 d_a3
Arrays to define dependencies:

atomSub(&d_s[0],1)

atomSub(&d_s[1],1)

atomSub(&d_s[1],1)

atomSub(&d_s[2],1) atomSub(&d_s[2],1)

atomSub(&d_d[1],2)

atomSub(&d_d[1],-1)

atomSub(&d_d[1],1)

atomAdd(&d_d[1],1) atomSub(&d_a[1],1)

NO

YES

ε

Kernel begin

Kernel end and return

Step (A) Compute

Step (C) Compute , , and Step (D) Compute and

If converge :

atomAdd(&d_d[1],1)

atomAdd(&d_d[1],1)

atomSub(&d_a[1],1)

atomSub(&d_a[1],1)

!=0

Input :

Input :d_d0 Output : d_d 3 Input : d_a3

 Busy Wait
Part

==0

!=0
==0

!=0
==0

d_s 1 22 Output : d_s 000 Input : d_d3 Output : d_d0

GMEM

 Busy Wait
Part

!=0

==0

y j

!=3

==3

GMEM
z j

 Busy Wait
Part Output : d_a0

!=0

==0

 Busy Wait
Part

to check

to wait

to do

nnz
=4

nnz
=4

nnz
=4

Step (B) Compute

Fig. 6: An example of our proposed single kernel CG method. The tiles for matrix A are first loaded into share memory and
distributed to each warp with a similar number of nonzeros and tiles. The computation is divided into four steps (i.e., A, B,
C and D). We construct three arrays d s[], d d[] and d a[] in global memory to resolve the data dependencies between each
step. Initialize the dependency arrays d s[] = [1, 2, 2] (represents how many tiles need to perform SpMV for each row block at
Step A), d d[] = [3] (represents how many dot product tasks need to perform in steps B and C, respectively), and d a[] = [3]
(represents how many AXPY operations need to perform in Step D). Each time a task is completed, its corresponding position
in dependency array will be decreased atomically by 1. After the warp launches, each warp performs all its tasks in the current
step. If all tasks for current Step have been finished at each warp, the warp will check the dependency arrays in global memory
to determine whether to wait in the current step or proceed to the next step, as depicted in the Busy Wait Part.

can move to the next iteration.
Next, we show the scheduing details. As plotted in Figure 6,

for a 6x6 matrix with five tiles, the matrix has three row tiles.
So the d s array has a length of 3 with initial values 1, 2, 2
according to the number of tiles in each row tile.

Step A. The non-empty tiles of matrix A are firstly dis-
tributed to each warp in a load balanced manner to perform
tiled-level SpMV (tiles in the same row tile are distributed
to different warps). When the SpMV operation of a tile is
completed, the value of the corresponding position of d s is
atomically subtracted by 1. After the SpMV tasks in a warp
have all been done, this warp checks if its corresponding value
in the d s array is 0. If so, it means that the result vector of
SpMV in this row tile has been obtained and this warp can use
it to perform the dot product operation for Step B; otherwise, it
must busy wait for other tiles in the same row tile to complete
their SpMV operations (lines 3-11 in Algorithm 3).

Step B. Each warp performs dot product operations of µ
and pj for the allocated segmented vector. To further improve
efficiency, we accumulate their resultant values in shared
memory and then accumulate the results into yj through block-

level reduction operations. When a warp completes its dot
product tasks, the value in d d is atomically subtracted by 1
(initial value is 3 in this example). Then each warp checks
whether the value of d d is 0. If so, it indicates that all
dot product operations are complete and the final yj has
been obtained, then algorithm moves to Step C, where yj is
divided by (rj , rj) to obtain the argument αj . Otherwise, it
will continue to wait for other vector segments to perform the
dot product operation (lines 12-18 in Algorithm 3).

Step C. Similar to Step B, when a warp completes the
dot product tasks, the value in d d is atomically added to 1
(initialized from 0) and the results are then reduced to zj . Each
warp checks whether the value of d d is equal to the number
of warps. If so, the dot product operation is completed and zj
can be divided by (rj , rj) in Step D to get the parameter βj ;
otherwise, it will continue to wait for other warps to perform
the dot product (lines 19-26 in Algorithm 3).

Step D. Each warp executes the AXPY operation on allo-
cated vector segments and decreases the value of d a (initial
value is 3) by 1 atomically when the tasks are completed.
Each warp verifies if the value of d a is 0. If so, the ongoing

Algorithm 3 A pseudocode of CG within a single kernel
1: for j from 0 to maxiter until convergence do
2: lane id = (warp size - 1) & threadIdx.x
3: for i from 0 to tilenum in parallel do
4: row tile = TileRowidx[i]
5: for ri from Nonrow[i] to Nonrow[i+1] in parallel do
6: accumulate inner-product of ith non-empty row to sum
7: atomicAdd(u[row tile × tilesize + RowIndex[ri]], sum)
8: end for
9: if lane id == 0 then atomicSub(d s[TileRowidx[i]], 1) end if

10: end for
11: while d s[warp id] ̸= 0 do threadfence() end while
12: for k from 0 to tilesize in parallel do
13: index = warp id × tilesize + k
14: s y[warp id] += u[index] * p[index]
15: end for
16: perform block-level reduction for s y and store the result in y j
17: if lane id == 0 then atomicSub(d d[0], 1) end if
18: while d d[0] ̸= 0 do threadfence() end while
19: update aj x and r
20: for k from 0 to tilesize in parallel do
21: index = warp id × tilesize + k
22: s z[warp id] += r[index] * r[index]
23: end for
24: perform block-level reduction for s z and store the result in z j
25: if lane id == 0 then atomicAdd(d d[0], 1) end if
26: while d d[0] ̸= warp num do threadfence() end while
27: update p
28: if lane id == 0 then atomicAdd(d a[0], 1) end if
29: while d a[0] ̸= warp num do threadfence() end while
30: end for

iteration concludes; otherwise, it awaits the calculation of
AXPY for other vector segments. Afterwards, all warps must
verify whether the residuals satisfy the convergence criterion.
If not, initialize the values of the three dependency arrays
and proceed to the next iteration; otherwise, terminate the
execution (lines 27-29 in Algorithm 3).

Furthermore, we extend our approach to CG and
BiCGSTAB solvers preconditioned with incomplete LU fac-
torization. With the addition of preconditioning steps, such
as solving Mz = r, it is necessary to incorporate sparse
triangular solve (SpTRSV) kernel during the iterative process.

We apply the recursive block SpTRSV algorithm [41] to
our multi-kernel method. To be specific, we recursively divide
a triangular matrix into two smaller triangular blocks and
one square block. The SpTRSV operation is utilized for the
triangular blocks, and SpMV is applied to the square blocks.
This approach enhances data locality and boosts parallelism
through the SpMV operations.
D. Partial Convergence-Aware Mixed Precision Strategy

We further introduce a partial convergence-aware strategy
that dynamically switches precisions of the nonzeros of A in
a tile-gained way during iterations. Specifically, by assessing
the convergence indicated by the elements (16 elements as a
basic working unit, aligned to the 16-by-16 tiles) in the vector
pj (i.e., the input vector in SpMV, see Section II-C) at each
iteration step, we can convert the current precision of the tiles
on the corresponding column to a lower one within the shared
memory, or bypass those tiles if needed.

According to the previous analysis (Section II-C), it is
evident that multiple elements of x may have converged during

the iteration process. When partial elements of the solution
vector tend to converge (i.e., residual is less than a tolerance),
their corresponding values in the vector pj typically tend to
be less than the convergence threshold. Therefore, in SpMV,
the multiplication of these elements with the corresponding
tiles in matrix A does not have a significant impact on the
subsequent iteration process. We utilize this property to design
a faster tile-grained mixed precision SpMV.

We assume that the convergence threshold is ε. If elements
in pj are less than ε ∗ 10−3, we bypass their computation
directly. If elements fall within the intervals [ε∗10−3, ε∗10−2),
[ε∗10−2, ε∗10−1) or [ε∗10−1, ε), we reduce the computational
precision of the corresponding tiles to FP8, FP16 or FP32,
respectively. An example is plotted in Figure 7.

Algorithm 4 A pseudocode of convergent elements retrieval
1: thresholds = [ε ∗ 10−3, ε ∗ 10−2, ε ∗ 10−1, ε]
2: flag = [0,0,0,0]
3: vis flag[warp id]=0
4: for k =0 to tilesize in parallel do
5: index=warp id × tilesize + k
6: for u = 0 to 3 do
7: if pj [index] < thresholds[u] then
8: atomicAdd(flag[u], 1)
9: end if

10: end for
11: end for
12: for u = 0 to 3 do
13: if flag[u] == tilesize then
14: vis flag[warp id]=u+ 1
15: break
16: end if
17: end for

1) Convergent elements retrieval scheme: To correspond
with the tiled structure of A, we divide the vector pj into
several segments, with tilesize denoting the segment length.
Specifically, we utilize the array flag of length 4 to keep track
of the number of convergent elements located in four different
threshold intervals within each segment, respectively. If the
element in pj is less than a certain threshold, we add one to
the value of the corresponding position in the array flag. Next,
we traverse the array flag in turn (lines 4-11 in Algorithm 4).
If the value in flag is equal to tilesize, it indicates that this
segment can be computed with a specific lower precision or
bypass (lines 12-17 in Algorithm 4).

2) Dynamic precision adjustment with on-chip conversion:
After convergent elements in pj are retrieved (the precision
type of each segment is stored in the array vis flag), we
execute a dynamic precision SpMV. As shown in Algorithm
5 and Figure 7, for each iteration, we first obtain the column
index and initial precision type for each tile. Next, we obtain
the tile’s corresponding value in the vis flag array (we use 0
- 4 to represent FP64, bypass, FP32, FP16, FP8, respectively)
based on the column index and determine whether the tile is
bypassed or not (lines 2-3 in Algorithm 5). If the tile needs to
be computed, we further determine the computation precision
based on both the precision of the segment in the vector pj
(vis flag) and the initial tile precision type (TilePrec) (lines
4-14 in Algorithm 5).

p j∈[ε∗10−3 , ε∗10−2) p j∈[ε∗10−2 , ε∗10−1)
p j∈[ε∗10−1 , ε) p j∈[ε ,∞)

ε=10−10

Precison down Precison invariability Bypass

p j∈[ε∗10−1 , ε)
FP64 to FP32

FP64 unchanged

p j∈[ε∗10−2 , ε∗10−1)
FP32 to FP16

p j∈[ε∗10−2 , ε∗10−1)
FP16 unchanged

p j∈[ε∗10−3 , ε∗10−2)
FP16 to FP8

p j∈[ε∗10−2 , ε∗10−1)

FP8 unchanged

p j∈[ε∗10−3 , ε∗10−2)

Column Bypass
p j∈[0 , ε∗10−3)

Column
Bypass

Column
Bypass

Columns 1~4 of A

Column 5 of A

Columns 1~4 of A

Column 5 of A

Column 5 of A

Columns 1,3 of A

Column 4 of A

Columns 1,3,4 of A

Column 2 of A

p j∈[ε ,∞)

p j∈[ε ,∞)

Original

FP16 unchanged

iteration

FP64 unchanged

FP64
FP16

FP32
FP8

matrix
 A

 n

iteration
 n+1

iteration
 n+2

iteration
 n+3

p j∈[0 , ε∗10−3)

iteration
 n-1

Fig. 7: An example of SpMV in our Mille-feuille multiplying
a 10-by-10 sparse matrix, stored as sparse tiles of size 2-
by-2, with a vector of length 10. The four different colored
tiles indicate the precision of FP64, FP32, FP16 and FP8,
respectively, and a cross on red block means bypassed. The
three different colored arrows indicate decreasing precision,
unchanged precision, and bypass, respectively. The precision
of a tile is determined on the basis of five different ranges
of values of elements in the vector pj at each iteration. (Note
that we name our work Mille-feuille mainly because the multi-
sheet form of the tile-grained mixed precision looks like Mille-
feuille the cake.)

Algorithm 5 A pseudocode of mixed precision SpMV
1: for i = 0 to tilenumA in parallel do
2: v f = vis flag[TileColidx[i]], b p= TilePrec[i]
3: if v f != 1 then
4: Use different precision based on the value of v f and b p.
5: nnz offset = TileNnz[i] , row tile = TileRowidx[i]
6: u offset=row tile × tilesize
7: for ri =Nonrow[i] to Nonrow[i+1] in parallel do
8: sum = 0
9: for rj = CsrRowPtr[ri] to CsrRowPtr[ri+ 1] do

10: index = nnz offset+ rj
11: sum +=pj [CsrColidx[index]] × s data[index]
12: end for
13: atomicAdd(u[u offset + RowIndex[ri]], sum)
14: end for
15: end if
16: end for

If the precision in vis flag is lower than the initial preci-
sion TilePrec, we convert the tile precision in shared memory
to a lower one (e.g., the second tile in the second column
decreases from its initial precision of FP64 to FP32 and then
FP16 for the first two iterations in Figure 7). Otherwise, we
maintain its initial precision unchanged (e.g., the first tile
in the second column in Figure 7). Note that our precision
conversion occurs only once in on-chip memory; thereafter,
the low-precision values stored in shared memory can be
reused. This approach helps us avoid the costs associated with
accessing global memory or running precision conversion at
each iteration.

Figure 7 illustrates the dynamic evolution of the precision of
individual tiles within A, as well as pj , across four iterations.
The original matrix A has seven tiles with precision FP64,
three tiles with precision FP32, two tiles with precision FP16
and one tile with precision FP8. For the nth iteration, the
values of pj for columns 1 to 4 are within the range [ε ×
10−1,∞). Therefore, six tiles in FP64 are converted to FP32.
For the n+ 1th iteration, the vector values pj for columns 1
to 4 decrease to the interval [ε ∗ 10−2, ε ∗ 10−1) and therefore
eight tiles in FP32 are converted to FP16. For the n+ 2th
iteration, the values in pj for columns 1, 3 and 4 decrease to
the interval [ε∗10−3, ε∗10−2) and therefore nine tiles in FP16
are converted to FP8. For the n+ 3th iteration, the values in
pj for columns 1 and 3 decrease to the interval [0, ε ∗ 10−3)
and therefore six tiles are bypassed.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

Our experimental platform includes two GPUs: an NVIDIA
A100 (driver version 525.85.12, CUDA version 12.0) and an
AMD MI210 (driver version 6.2.4, RoCM version 5.7.3). We
first compare our algorithm with the baseline implementations
of CG and BiCGSTAB using the routine cusparseSpMV(),
cusparseSpSV_solve() in cuSPARSE v12.0 and
hipsparseSpMV(), hipsparseSpSV_solve() in
hipSPARSE v2.3.8 (both using the CSR format) and
cublasDdot() in cuBLAS v12.0 and hipblasDdot()
in hipBLAS v2.3.8 on the A100 and MI210 cards,
respectively. Also, we compare our algorithm with two

−3

−2

−1

0

1

2
Gf

lop
s

(lo
g1

0
sc

ale
)

CG on A100

cuSPARSE
Mille-feuille
(this work)

BiCGSTAB on A100

cuSPARSE
Mille-feuille
(this work)

CG on MI210

hipSPARSE
Mille-feuille
(this work)

BiCGSTAB on MI210

hipSPARSE
Mille-feuille
(this work)

2 4 6 8

0

1

Sp
ee

du
p

(lo
g1

0
sc

ale
)

vs. cuSPARSE

2 4 6 8
 #nonzeros (log10 scale)

vs. cuSPARSE

2 4 6 8

vs. hipSPARSE

2 4 6 8

vs. hipSPARSE

Fig. 8: Performance comparisons between Mille-feuille and the baseline implemented by calling cuSPARSE and hipSPARSE
of CG and BiCGSTAB on the NVIDIA A100 and AMD MI210 GPUs with 100 iterations, respectively.

state-of-the-art libraries running on the NVIDIA GPU,
with the routine KSPSolve() in PETSc v3.20 [33] and
gko::solver::Cg and gko::solver::Bicgstab
in Ginkgo v1.7.0 [34] on A100. Our Mille-feuille solver
supports both CUDA and HIP and is evaluated on GPUs of
the two vendors. The specifications of the two GPUs and the
five algorithms tested are listed in Table I.

NVIDIA and AMD GPUs Five methods tested
(1) A100 (Ampere) PCIe, (1) cuSPARSE and cuBLAS v12.0 on NVIDIA

6912 CUDA cores @ 1410 MHz, (2) hipSPARSE and hipBLAS v2.3.8 on AMD
40 GB, B/W 1555 GB/s (3) PETSc v3.20 on NVIDIA

(2) MI210 (CDNA2) PCIe, (4) Ginkgo v1.7.0 on NVIDIA
6656 stream processors @ 1700 MHz, (5) Mille-feuille (this work)

64 GB, B/W 1638 GB/s on both NVIDIA and AMD

TABLE I: Information of the test platforms and algorithms.

In our experiment, the stopping criterion for convergence
is that the relative residual must be less than 10−10 and the
maximum number of iterations allowed is 1,000. The right-
hand side vector is set to be the product of the input matrix
and an all 1.0 vector, and the initial value of the solution vector
is set to zero (i.e., no preconditioner is used). The precision
of other works is set to FP64.

Our experimental dataset includes all 230 symmetric
positive-definite matrices for CG and 686 nonsymmetric or
indefinite matrices for BiCGSTAB, from the entire SuiteSparse
Matrix Collection [32].

B. Comparison over Baseline, PETSc and Ginkgo

We first compare the time taken for 100 iterations between
Mille-feuille and the baseline on CG and BiCGSTAB methods
calling SpMV in cuSPARSE/hipSPARSE and vector opera-
tions in cuBLAS/hipBLAS. Figure 8 illustrates the perfor-
mance and speedups of our work compared to the baselines

−3

−2

−1

0

1

2
G

flo
ps

 (l
og

10
 s

ca
le

)
CG on A100

PETSc
Ginkgo
Mille-feuille
(this work)

BiCGSTAB on A100

PETSc
Ginkgo
Mille-feuille
(this work)

0

1

2
vs. PETSc

2 4 6 8

0

1

2

S
pe

ed
up

 (l
og

10
 s

ca
le

)

vs. Ginkgo

vs. PETSc

2 4 6 8
#nonzeros (log10 scale)

vs. Ginkgo

Fig. 9: Performance comparison of Mille-feuille over PETSc
and Ginkgo on the A100 GPU with 100 iterations.

on A100 and MI210 GPUs, demonstrating that our method
always shows the best performance for all tested matrices.

For the CG solver, our algorithm achieves an average
geometric mean speedup of 3.03x and 2.68x (up to 8.77x
and 7.14x) compared with cuSPARSE and hipSPARSE, re-
spectively. Regarding the BiCGSTAB solver, our algorithm
achieves an average geometric mean speedup of 2.65x and
2.32x (up to 7.51x and 6.63x) compared with the baseline.

The best speedups are observed in the matrices ‘bcsstm22’,
‘Trec4’, ‘mhdb416’ and ‘b1 ss’. For these four matrices,

−3

−2

−1

0

1

2
G

flo
ps

 (l
og

10
 s

ca
le

)

PCG on A100

cuSPARSE
Mille-feuille
(this work)

PBiCGSTAB on A100

cuSPARSE
Mille-feuille
(this work)

PCG on MI210

hipSPARSE
Mille-feuille
(this work)

PBiCGSTAB on MI210

hipSPARSE
Mille-feuille
(this work)

2 4 6 8

0

1

2

S
pe

ed
up

(lo
g1

0
sc

al
e) vs. cuSPARSE

2 4 6
 #nonzeros (log10 scale)

vs. cuSPARSE

2 4 6 8

vs. hipSPARSE

2 4 6

vs. hipSPARSE

Fig. 10: Performance comparisons between Mille-feuille and the baseline implemented by calling cuSPARSE and hipSPARSE
of preconditioned CG and BiCGSTAB on the NVIDIA A100 and AMD MI210 GPUs with 100 iterations, respectively.

synchronization constitutes over 50% of the total time in the
baseline implementation using cuSPARSE and hipSPARSE.
Our approach significantly reduces synchronization overhead
between kernels by merging different kernels into one, thereby
enhancing performance.

We then compare our Mille-feuille solver with two state-
of-the-art linear solver libraries, PETSc and Ginkgo with 100
iterations on A100 GPU. As shown in Figure 9, our method
also achieves the best performance for all tested matrices.
Specifically, for the CG method, our algorithm achieves an
average geometric mean speedup of 5.37x and 4.36x (up
to 16.54x and 15.69x) compared with PETSc and Ginkgo.
For the BiCGSTAB method, our algorithm achieves an av-
erage geometric mean speedup of 3.57x and 3.78x (up to
16.64x and 11.73x) compared with PETSc and Ginkgo. The
best performance are observed in the matrices ‘bcsstm22’,
‘mhdb416’, ‘jgl011’, and ‘rgg010’, respectively. Similar to the
previous observations, these matrices also exhibit significant
synchronization overhead. Our algorithm circumvents these
overheads to achieve high performance.

It is also observed that as the number of nonzeros in the
matrix increases, the performance of our method exhibits a
gradual decline (particularly when the number of nonzeros
exceeds 106). This is primarily attributed to the trade-off be-
tween reducing synchronization costs through a single kernel
and incurring additional overhead from atomic operations in
scheduling. Consequently, in such scenarios, our solver opts
to execute across multiple kernels.

C. Comparsion over Preconditioned Baseline

We compare the time taken for 100 iterations be-
tween Mille-feuille with the preconditioner and the base-
line on CG and BiCGSTAB methods calling SpMV, Sp-
TRSV in cuSPARSE/hipSPARSE and vector operations in

cuBLAS/hipBLAS. Figure 10 illustrates the performance and
speedups of our work compared to the baselines on A100 and
MI210 GPUs, demonstrating that our method always shows
the best performance for all tested matrices.

For the preconditioned CG solver, our algorithm achieves
an average geometric mean speedup of 3.82x and 3.47x
(up to 40.38x and 47.75x) compared with cuSPARSE
and hipSPARSE, respectively. Regarding the preconditioned
BiCGSTAB solver, our algorithm achieves an average geo-
metric mean speedup of 1.79x and 1.63x (up to 45.63x and
44.34x) compared with the baseline.

The best speedups are observed in the matrices ‘LFAT5000’,
‘ship 001’, ‘cz40948’ and ‘Chebyshev4’. For these matrices
with high parallelism blocks, our recursive block SpTRSV
algorithm divides them into more sub-matrices and computes
square part using SpMV, which improves cache locality and
parallelism, thereby enhancing performance.

D. Effectiveness of Mixed Precision
To further demonstrate the performance gains that mixed

precision brings to our algorithm, we analyze the speedups
of different precisions over only FP64 on 24 representative
matrices with diverse precisions in CG and BiCGSTAB. As
shown in Figure 11, we can find that our algorithm achieves
different performances as the ratio of different precision varies.

Specifically, for most matrices, lower precision computa-
tions result in better performance, and different combinations
of precision result in distinct performance behaviors. As can be
seen, better performance is achieved while using more lower
precisions (e.g., ‘torso2’) as opposed to a combination of low
and high precisions (e.g., ‘t2dal bci’).

Furthermore, for matrices with high bypass rates, such
as ‘shallow water1’ and ‘rajat24’, Mille-feuille achieves the
highest speedups because we remove the overhead of loading
and computing the corresponding nonzeros. However, for the

0%

20%

40%

60%

80%

100%
Pr

ec
isi

on
 d

ist
rib

ut
ion

FP64 FP32 FP16 FP8 Bypass

M
uu

qa8f...
ther...
ther...
tm

t_...
t3dh...
bp_6...
fv1 cz25...
shall...
t2em
raja...

Matrices in CG

1.0

1.5

1.8

Sp
ee

du
p

1.
14 1.
18 1.
27

1.
03

1.
29

1.
21

1.
11 1.
15

1.
15

1.
65

1.
35
1.
54

swan...
chip...
nem

e...
swan...
Zhao...
wang...
t2da...
m

esh...
tors...
nem

e...
Pd cz30...

Matrices in BiCGSTAB

1.
11

1.
35

1.
18

1.
08

1.
04

1.
02

1.
37

1.
30

1.
26

1.
64

1.
33

1.
15

Fig. 11: The precision distribution across various tiles, and the
performance gains of mixed precision in Mille-feuille.

matrix ‘thermal’ and ‘wang1’, although their low-precision
ratios are high, they do not achieve higher speedups due to
their small sizes (for such matrices, most speedups are already
achieved from the single-kernel scheme).

E. Convergence Analysis

We further analyze 14 matrices (six from CG and eight
from BiCGSTAB) that converge within 200 iterations. We first
compare the number of iterations between our mixed precision
version and the baseline implemented with FP64. As shown
in Table II, for all matrices that converge, our mixed precision
scheme often reasonably brings more iterations. It has an
average of 1.06x (up to 1.47x) higher number of iterations
compared to the baseline with cuSPARSE.

In addition, we analyze the variation of relative error
between our mixed precision method and the benchmark
algorithm with FP64 precision over the iterations of three
matrices. As shown in Figure 12, for the matrix ‘minsurfo’, the
trends of the relative errors of the two methods are comparable.
For ‘m3paltes’, the relative error reduction rate of the mixed
precision method is comparatively slower than that of the
baseline. For ‘poisson3Da’, the relative error reduction rates
of the two methods alternately increase and finally converge.

F. Correlation of the Number of Iterations and Runtime

For the 14 convergence matrices, we conduct a comparison
between the solution time of Mille-feuille and the baseline
time of the cuSPARSE implementation. As presented in Table
II, across all matrices, our method consistently achieves shorter
solution times, despite the higher or equal number of iterations
required. For example, for the matrix ‘mesh3e1’, our method
takes 1.47x more iterations (53 vs. 36), but it is 2.89x faster
(1.19 ms vs. 3.44 ms) than the baseline. For ‘pores 1’ taking

0 50 100150200250300
Iteration

poisson3Da

FP64
Mixed Precision

0 5 10152025303540
Iteration

m3plates

FP64
Mixed Precision

20 40 60 80 100
Iteration

101

10−1

10−3

10−5

10−7

10−9

10−11

Re
lat

ive
 e

rro
r

minsurfo

FP64
Mixed Precision

Fig. 12: The convergence comparison of relative error variation
with iterations between mixed precision Mille-feuille and
FP64 precision.

the same number of iterations (43), our method is 5.83x faster
(1.25 ms vs. 7.29 ms). This can be attributed to the benefits
derived both from single-kernel execution and from mixed
precision.

Matrix With cuSPARSE Mille-feuille
#iter time (ms) #iter time (ms)

CG
mesh3e1 36 3.44 53 1.19

Muu 63 7.02 67 4.91
minsurfo 109 15.67 109 15.34

qa8fm 69 15.67 72 4.91
thermomech TC 86 18.92 88 15.03

m3plates 38 4.54 40 1.52
BiCGSTAB

CAG mat72 80 14.87 87 2.57
arc130 10 1.71 11 0.36

fs 541 1 7 1.60 10 0.43
poli 24 4.92 31 4.92

Hamrle1 112 19.50 165 4.79
pores 1 43 7.29 43 1.25
cz308 100 17.44 147 7.31

majorbasis 123 52.91 140 51.52

TABLE II: The number of iterations and the solution time for
matrices can converge in CG and BiCGSTAB with cuSPARSE
and in Mille-feuille. The best numbers are highlighted.

G. Memory Cost Comparison
We compare the memory cost of our Mille-feuille with

the standard three-array CSR in the cuSPARSE. As shown in
Figure 13, our 2D tiled sparse data structure on average takes
1.04x more space than cuSPARSE. The main reason is that
our two-level tiled structure typically needs to store more row
indices, precision information, tile column indices, the number
of nonzeros and non-empty rows in the tiles. Although the
tiled format incurs additional arrays, incorporating different
precisions for the initial values helps reduce the memory
overhead of storing floating-point values in A. Nevertheless,
according to the results, it is worth using the extra memory
space because it makes our single-kernel and mixed precision
strategy more convenient for faster execution.

H. Preprocessing Overhead Analysis
We further demonstrate the preprocessing overhead, includ-

ing matrix format conversion, computational task distribution,

Matrices
−3

−2

−1

0

1

2

3

M
em

or
y

C
os

t (
M

B
)

(lo
g1

0
sc

al
e)

Tile format in Mille-feuille CSR

Fig. 13: Memory cost comparison of the tile format developed
in Mille-feuille and the standard CSR format.

and initial precision assignment, of all matrices tested in
the CG and BiCGSTAB methods. Figure 14 shows the cost
breakdown of the preprocessing and 100 iterations of CG and
BiCGSTAB. As can be seen, the preprocessing cost often
does not exceed a single CG iteration, and takes a negligible
proportion of the procedure of 100 iterations.

Matrices0%

20%

40%

60%

80%

100%

Pr
ep

ro
ce

ss
ing

 R
at

io

Preprocessing 100 iterations of CG and BiCGSTAB

Fig. 14: Comparison of the proportion of preprocessing to the
total runtime of CG and BiCGSTAB with 100 iterations of all
tested matrices on A100.

V. RELATED WORK

As probably the most widely used high performance iter-
ative methods, parallel Krylov subspace algorithms have
attracted much attention. Various optimization techniques,
such as IDR algorithm [42], preconditioning methods [43]–
[51], recycling technique [52], residual replacement strat-
egy [53], block schemes [54]–[56], tensor method [57],
recompute work [58], low energy approach [59], adap-
tive scheme [60], batched method [10], domain decompo-
sition [61], robustness [62], [63], randomization [64]–[66],
stability analysis [67], resistive random-access memory [68],
[69], data transfer problems [4], [11], [70]–[72] and large-
scale scalability [12], [73], [74], have been proposed for
faster implementation of the Krylov subspace. A number
of studies also considered the synchronization problem, and
developed restarting [75], fine-grained policies [76]–[78], bulk
method [79], loop optimization [80], kernel fusion [81], [82],
synchronization-free [83]–[86] as well as several tradeoffs
with data movement [87] techniques. Compared to those

studies, our Mille-feuille is a new iterative solver considering
both the use of mixed precision and the minimization of
synchronization costs on modern GPUs.

With the strong demand from artificial intelligence com-
puting, modern processors provide a large number of low
precision compute units. This trend presents opportunities for
mixed precision assisted scientific computing. Van Den
Eshof et al. [88] and Clark et al. [89] demonstrated that
Krylov subspace methods can benefit from multiple precision
computations. Iterative refinement is one of the main scenarios
for mixed precision [17], [21], [90], [91], and a sparse matrix
can be stored with multiple precision [18]. The extended
and mixed precision BLAS library [92], Ginkgo [34] and
AmgT [31] provide various mixed precision kernels. Several
studies [93]–[95] surveyed the use of mixed precision in
numerical linear algebra methods. In contrast, the Mille-feuille
proposed in this work supports tile-grained mixed precision,
and works in the single kernel for dynamic precision conver-
sion within the on-chip memory at runtime of the kernel.

Much research has focused on speeding up SpMV, typ-
ically the most time consuming kernel in iterative methods.
Various techniques have been developed, such as locality
aware [96]–[101], load balancing [9], [102]–[105], vector
friendly [106]–[108], tensor core friendly [109], blocking [37],
[110], [111], and reordering [112]. In particular, SpMV [18],
[36], [113] can also be accelerated with mixed precision. In
comparison, the SpMV in Mille-feuille obtains benefits from
the tile-wise mixed precision data layout, and works with other
components in a single kernel for higher performance.

VI. CONCLUSION

We have proposed the Mille-feuille solver with the charac-
teristics of tile-grained mixed precision, a single kernel scheme
with minimized synchronization costs, and dynamic precision
conversion at runtime for partial convergence of the solution
vector x. A comprehensive performance benchmark shows that
the Mille-feuille solver obtained significant speedups on CG,
BiCGSTAB, PCG and PBiCGSTAB over existing work on
NVIDIA and AMD platforms.

ACKNOWLEDGMENTS

We greatly appreciate the invaluable comments of all
the reviewers. Zhou Jin is the corresponding author of
this paper. This work was supported by the National Key
R&D Program of China (Grant No. 2023YFB3001605), the
National Natural Science Foundation of China (Grant No.
62204265, No. 62234010, No. 62372467, No. U23A20301,
No. T2125013, No. 62032023 and No. 62102396), the State
Key Laboratory of Computer Architecture (ICT, CAS) (Grant
No. CARCHA202115) , the Beijing Nova Program (Grant
No. Z211100002121143, No. 20220484217) and the Youth
Innovation Promotion Association of Chinese Academy of
Sciences (Grant No. 2021099). We are also very grateful to
the State Key Laboratory of Processors for their support in the
experimental hardware, and to Hemeng Wang for the helpful
discussion.

REFERENCES

[1] Y. Saad, Iterative methods for sparse linear systems. SIAM, 2003.
[2] H. A. Van der Vorst, Iterative Krylov methods for large linear systems.

Cambridge University Press, 2003.
[3] M. Hoemmen, “Communication-avoiding krylov subspace methods,”

Ph.D. dissertation, University of California, Berkeley, USA, 2010.
[4] E. C. Carson, “Communication-avoiding krylov subspace methods

in theory and practice,” Ph.D. dissertation, University of California,
Berkeley, USA, 2015.

[5] M. H. Gutknecht, “A brief introduction to krylov space methods for
solving linear systems,” in Proceedings of the International Symposium
on Frontiers of Computational Science, 2007.

[6] M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for
solving linear systems,” Journal of research of the National Bureau of
Standards, vol. 49, 1952.

[7] H. A. van der Vorst, “Bi-cgstab: A fast and smoothly converging variant
of bi-cg for the solution of nonsymmetric linear systems,” SIAM J. Sci.
Stat. Comput., vol. 13, no. 2, 1992.

[8] I. Yamazaki, E. C. Carson, and B. Kelley, “Mixed precision s-step
conjugate gradient with residual replacement on gpus,” in IPDPS, 2022.

[9] J. I. Aliaga, H. Anzt, T. Grützmacher, E. S. Quintana-Ortı́, and A. E.
Tomás, “Compression and load balancing for efficient sparse matrix-
vector product on multicore processors and graphics processing units,”
Concurr. Comput. Pract. Exp., vol. 34, no. 14, 2022.

[10] A. Kashi, P. Nayak, D. Kulkarni, A. Scheinberg, P. Lin, and H. Anzt,
“Integrating batched sparse iterative solvers for the collision operator
in fusion plasma simulations on gpus,” J. Parallel Distributed Comput.,
vol. 178, 2023.

[11] L. Grigori, S. Moufawad, and F. Nataf, “Enlarged krylov subspace
conjugate gradient methods for reducing communication,” SIAM J.
Matrix Anal. Appl., vol. 37, no. 2, 2016.

[12] L. Grigori and O. Tissot, “Scalable linear solvers based on enlarged
krylov subspaces with dynamic reduction of search directions,” SIAM
J. Sci. Comput., vol. 41, no. 5, 2019.

[13] M. Baboulin, S. Donfack, J. J. Dongarra, L. Grigori, A. Rémy, and
S. Tomov, “A class of communication-avoiding algorithms for solving
general dense linear systems on CPU/GPU parallel machines,” in ICCS,
2012.

[14] C. Severance, “Ieee 754: An interview with william kahan,” Computer,
vol. 31, no. 3, 1998.

[15] D. G. Hough, “The ieee standard 754: One for the history books,”
Computer, vol. 52, no. 12, 2019.

[16] D. Goldberg, “What every computer scientist should know about
floating-point arithmetic,” ACM Comput. Surv., vol. 23, no. 1, 1991.

[17] P. Benner, P. Ezzatti, D. Kressner, E. S. Quintana-Ortı́, and A. Remón,
“A mixed-precision algorithm for the solution of lyapunov equations on
hybrid CPU-GPU platforms,” Parallel Comput., vol. 37, no. 8, 2011.

[18] K. Ahmad, H. Sundar, and M. Hall, “Data-driven mixed precision
sparse matrix vector multiplication for gpus,” ACM Trans. Archit. Code
Optim., vol. 16, no. 4, 2019.

[19] E. C. Carson, N. J. Higham, and S. Pranesh, “Three-precision gmres-
based iterative refinement for least squares problems,” SIAM J. Sci.
Comput., vol. 42, no. 6, 2020.

[20] A. Abdelfattah, H. Anzt, E. G. Boman, E. C. Carson, T. Cojean, J. J.
Dongarra, A. Fox, M. Gates, N. J. Higham, X. S. Li, J. A. Loe,
P. Luszczek, S. Pranesh, S. Rajamanickam, T. Ribizel, B. F. Smith,
K. Swirydowicz, S. J. Thomas, S. Tomov, Y. M. Tsai, and U. M.
Yang, “A survey of numerical linear algebra methods utilizing mixed-
precision arithmetic,” Int. J. High Perform. Comput. Appl., vol. 35,
no. 4, 2021.

[21] E. Oktay and E. C. Carson, “Multistage mixed precision iterative
refinement,” Numer. Linear Algebra Appl., vol. 29, no. 4, 2022.

[22] H. Anzt, P. Luszczek, J. J. Dongarra, and V. Heuveline, “Gpu-
accelerated asynchronous error correction for mixed precision iterative
refinement,” in Euro-Par, 2012.

[23] X. Fu, B. Zhang, T. Wang, W. Li, Y. Lu, E. Yi, J. Zhao, X. Geng,
F. Li, J. Zhang, Z. Jin, and W. Liu, “Pangulu: A scalable regular two-
dimensional block-cyclic sparse direct solver on distributed heteroge-
neous systems,” in SC, 2023.

[24] T. Wang, W. Li, H. Pei, Y. Sun, Z. Jin, and W. Liu, “Accelerating sparse
lu factorization with density-aware adaptive matrix multiplication for
circuit simulation,” in DAC, 2023.

[25] J. Zhao, Y. Wen, Y. Luo, Z. Jin, W. Liu, and Z. Zhou, “Sflu:
Synchronization-free sparse lu factorization for fast circuit simulation
on gpus,” in DAC, 2021.

[26] Y. Lu, Y. Luo, H. Lian, Z. Jin, and W. Liu, “Implementing lu and
cholesky factorizations on artificial intelligence accelerators,” CCF
Trans. High Perform. Comput., vol. 3, no. 3, 2021.

[27] H. Anzt, J. J. Dongarra, G. Flegar, N. J. Higham, and E. S. Quintana-
Ortı́, “Adaptive precision in block-jacobi preconditioning for iterative
sparse linear system solvers,” Concurr. Comput. Pract. Exp., vol. 31,
no. 6, 2019.

[28] G. Flegar, H. Anzt, T. Cojean, and E. S. Quintana-Ortı́, “Adaptive
precision block-jacobi for high performance preconditioning in the
ginkgo linear algebra software,” ACM Trans. Math. Softw., vol. 47,
no. 2, 2021.

[29] E. C. Carson and N. Khan, “Mixed precision iterative refinement with
sparse approximate inverse preconditioning,” SIAM J. Sci. Comput.,
vol. 45, no. 3, 2023.

[30] Y. M. Tsai, N. Beams, and H. Anzt, “Three-precision algebraic
multigrid on gpus,” Future Gener. Comput. Syst., vol. 149, 2023.

[31] Y. Lu, L. Zeng, T. Wang, X. Fu, W. Li, H. Cheng, D. Yang, Z. Jin,
M. Casas, and W. Liu, “Amgt: Algebraic multigrid solver on tensor
cores,” in SC, 2024.

[32] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, 2011.

[33] R. T. Mills, M. F. Adams, S. Balay, J. Brown, A. Dener, M. Knepley,
S. E. Kruger, H. Morgan, T. Munson, K. Rupp, B. F. Smith, S. Zampini,
H. Zhang, and J. Zhang, “Toward performance-portable PETSc for
GPU-based exascale systems,” Parallel Comput., vol. 108, 2021.

[34] H. Anzt, T. Cojean, G. Flegar, F. Göbel, T. Grützmacher, P. Nayak,
T. Ribizel, Y. M. Tsai, and E. S. Quintana-Ortı́, “Ginkgo: A modern
linear operator algebra framework for high performance computing,”
ACM Trans. Math. Softw., vol. 48, no. 1, 2022.

[35] E. C. Carson, T. Gergelits, and I. Yamazaki, “Mixed precision s-step
lanczos and conjugate gradient algorithms,” Numer. Linear Algebra
Appl., vol. 29, no. 3, 2022.

[36] E. Tezcan, T. Torun, F. Koşar, K. Kaya, and D. Unat, “Mixed and
multi-precision spmv for gpus with row-wise precision selection,” in
SBAC-PAD, 2022.

[37] Y. Niu, Z. Lu, M. Dong, Z. Jin, W. Liu, and G. Tan, “Tilespmv: A tiled
algorithm for sparse matrix-vector multiplication on gpus,” in IPDPS,
2021.

[38] H. Ji, H. Song, S. Lu, Z. Jin, G. Tan, and W. Liu, “Tilespmspv: A tiled
algorithm for sparse matrix-sparse vector multiplication on gpus,” in
ICPP, 2022.

[39] Y. Niu, Z. Lu, H. Ji, S. Song, Z. Jin, and W. Liu, “Tilespgemm: A
tiled algorithm for parallel sparse general matrix-matrix multiplication
on gpus,” in PPoPP, 2022.

[40] Z. Lu and W. Liu, “Tilesptrsv: a tiled algorithm for parallel sparse
triangular solve on gpus,” CCF Trans. High Perform. Comput., vol. 5,
no. 2, 2023.

[41] Z. Lu, Y. Niu, and W. Liu, “Efficient block algorithms for parallel
sparse triangular solve,” in ICPP, 2020.

[42] H. Anzt, M. Kreutzer, E. Ponce, G. D. Peterson, G. Wellein, and
J. J. Dongarra, “Optimization and performance evaluation of the IDR
iterative krylov solver on gpus,” Int. J. High Perform. Comput. Appl.,
vol. 32, no. 2, 2018.

[43] M. Manguoglu, M. Koyutürk, A. H. Sameh, and A. Grama, “Weighted
matrix ordering and parallel banded preconditioners for iterative linear
system solvers,” SIAM J. Sci. Comput., vol. 32, no. 3, 2010.

[44] D. Kressner, M. Plesinger, and C. Tobler, “A preconditioned low-
rank CG method for parameter-dependent lyapunov matrix equations,”
Numer. Linear Algebra Appl., vol. 21, no. 5, 2014.

[45] A. Mang and G. Biros, “A semi-lagrangian two-level preconditioned
newton-krylov solver for constrained diffeomorphic image registra-
tion,” SIAM J. Sci. Comput., vol. 39, no. 6, 2017.

[46] H. Al Daas and L. Grigori, “A class of efficient locally constructed
preconditioners based on coarse spaces,” SIAM J. Matrix Anal. Appl.,
vol. 40, no. 1, 2019.

[47] H. Al Daas, T. Rees, and J. Scott, “Two-level nyström–schur precon-
ditioner for sparse symmetric positive definite matrices,” SIAM J. Sci.
Comput., vol. 43, no. 6, 2021.

[48] V. Nguyen and L. Grigori, “Interpretation of parareal as a two-level
additive schwarz in time preconditioner and its acceleration with
GMRES,” Numer. Algorithms, vol. 94, no. 1, 2023.

[49] H. Al Daas, P. Jolivet, and T. Rees, “Efficient algebraic two-level
schwarz preconditioner for sparse matrices,” SIAM J. Sci. Comput.,
vol. 45, no. 3, 2023.

[50] L. Grigori, F. Nataf, and L. Qu, “Overlapping for preconditioners based
on incomplete factorizations and nested arrow form,” Numer. Linear
Algebra Appl., vol. 22, no. 1, 2015.

[51] Y. Zhao, X. Yang, Y. Bai, L. Zeng, D. Niu, W. Liu, and Z. Jin,
“Csp: Comprehensively-sparsified preconditioner for efficient nonlinear
circuit simulation,” in ICCAD, 2024.

[52] H. A. Daas, L. Grigori, P. Hénon, and P. Ricoux, “Recycling krylov
subspaces and truncating deflation subspaces for solving sequence of
linear systems,” ACM Trans. Math. Softw., vol. 47, no. 2, 2021.

[53] E. C. Carson and J. Demmel, “A residual replacement strategy for
improving the maximum attainable accuracy of s-step krylov subspace
methods,” SIAM J. Matrix Anal. Appl., vol. 35, no. 1, 2014.

[54] D. Kressner, K. Lund, S. Massei, and D. Palitta, “Compress-and-restart
block krylov subspace methods for sylvester matrix equations,” Numer.
Linear Algebra Appl., vol. 28, no. 1, 2021.

[55] A. Frommer, K. Lund, and D. B. Szyld, “Block krylov subspace
methods for functions of matrices ii: Modified block fom,” SIAM J.
Matrix Anal. Appl., vol. 41, no. 2, 2020.

[56] D. Kressner, Y. Ma, and M. Shao, “A mixed precision lobpcg algo-
rithm,” Numer. Algorithms, vol. 94, no. 4, 2023.

[57] D. Kressner and C. Tobler, “Krylov subspace methods for linear
systems with tensor product structure,” SIAM J. Matrix Anal. Appl.,
vol. 31, no. 4, 2010.

[58] T. Chen and E. C. Carson, “Predict-and-recompute conjugate gradient
variants,” SIAM J. Sci. Comput., vol. 42, no. 5, 2020.

[59] J. I. Aliaga, J. Pérez, E. S. Quintana-Ortı́, and H. Anzt, “Reformulated
conjugate gradient for the energy-aware solution of linear systems on
gpus,” in ICPP, 2013.

[60] E. C. Carson, “The adaptive s-step conjugate gradient method,” SIAM
J. Matrix Anal. Appl., vol. 39, no. 3, 2018.

[61] M. Manguoglu, “A domain-decomposing parallel sparse linear system
solver,” J. Comput. Appl. Math., vol. 236, no. 3, 2011.

[62] M. Manguoglu and V. Mehrmann, “A robust iterative scheme for
symmetric indefinite systems,” SIAM J. Sci. Comput., vol. 41, no. 3,
2019.

[63] H. Al Daas and P. Jolivet, “A robust algebraic multilevel domain
decomposition preconditioner for sparse symmetric positive definite
matrices,” SIAM J. Sci. Comput., vol. 44, no. 4, 2022.

[64] H. Al Daas, G. Ballard, P. Cazeaux, E. Hallman, A. Miedlar, M. Pasha,
T. W. Reid, and A. K. Saibaba, “Randomized algorithms for rounding
in the tensor-train format,” SIAM J. Sci. Comput., vol. 45, no. 1, 2023.

[65] O. Balabanov and L. Grigori, “Randomized gram-schmidt process with
application to GMRES,” SIAM J. Sci. Comput., vol. 44, no. 3, 2022.

[66] A. Cortinovis, D. Kressner, and Y. Nakatsukasa, “Speeding up krylov
subspace methods for computing f(A)b via randomization,” SIAM J.
Matrix Anal. Appl., vol. 45, no. 1, 2024.

[67] E. C. Carson, M. Rozloznı́k, Z. Strakos, P. Tichý, and M. Tuma, “The
numerical stability analysis of pipelined conjugate gradient methods:
Historical context and methodology,” SIAM J. Sci. Comput., vol. 40,
no. 5, 2018.

[68] M. Fan, X. Chen, D. Yang, Z. Jin, and W. Liu, “Recg: Reram-
accelerated sparse conjugate gradient,” in DAC, 2024.

[69] M. Fan, X. Tian, Y. He, J. Li, Y. Duan, X. Hu, Y. Wang, Z. Jin, and
W. Liu, “Amgr: Algebraic multigrid accelerated on reram,” in DAC,
2023.

[70] I. Yamazaki, H. Anzt, S. Tomov, M. Hoemmen, and J. J. Dongarra,
“Improving the performance of CA-GMRES on multicores with mul-
tiple gpus,” in IPDPS, 2014.

[71] H. Anzt, S. Tomov, P. Luszczek, W. B. Sawyer, and J. J. Dongarra,
“Acceleration of gpu-based krylov solvers via data transfer reduction,”
Int. J. High Perform. Comput. Appl., vol. 29, no. 3, 2015.

[72] I. Ismayilov, J. Baydamirli, D. Sağbili, M. Wahib, and D. Unat, “Multi-
gpu communication schemes for iterative solvers: When cpus are not
in charge,” in ICS, 2023.

[73] G. Biros and O. Ghattas, “Parallel lagrange-newton-krylov-schur meth-
ods for pde-constrained optimization. part I: the krylov-schur solver,”
SIAM J. Sci. Comput., vol. 27, no. 2, 2005.

[74] M. Manguoglu, A. H. Sameh, and O. Schenk, “PSPIKE: A parallel
hybrid sparse linear system solver,” in Euro-Par, 2009.

[75] K. Lund, “Adaptively restarted block krylov subspace methods with
low-synchronization skeletons,” Numer. Algorithms, vol. 93, no. 2,
2023.

[76] M. S. Mohammadi, T. Yuki, K. Cheshmi, E. C. Davis, M. Hall,
M. M. Dehnavi, P. Nandy, C. Olschanowsky, A. Venkat, and M. M.
Strout, “Sparse computation data dependence simplification for effi-
cient compiler-generated inspectors,” in PLDI, 2019.

[77] K. Cheshmi, S. Kamil, M. M. Strout, and M. M. Dehnavi, “Parsy:
inspection and transformation of sparse matrix computations for par-
allelism,” in SC, 2018.

[78] A. Jangda, S. Maleki, M. M. Dehnavi, M. Musuvathi, and O. Saarikivi,
“A framework for fine-grained synchronization of dependent GPU
kernels,” in CGO, 2024.

[79] A. N. Yzelman and R. H. Bisseling, “An object-oriented bulk syn-
chronous parallel library for multicore programming,” Concurr. Com-
put. Pract. Exp., vol. 24, no. 5, 2012.

[80] B. Zarebavani, K. Cheshmi, B. Liu, M. M. Strout, and M. M. Dehnavi,
“Hdagg: Hybrid aggregation of loop-carried dependence iterations in
sparse matrix computations,” in IPDPS, 2022.

[81] K. Rupp, J. Weinbub, A. Jüngel, and T. Grasser, “Pipelined iterative
solvers with kernel fusion for graphics processing units,” ACM Trans.
Math. Softw., vol. 43, no. 2, 2016.

[82] J. I. Aliaga, J. Pérez, and E. S. Quintana-Ortı́, “Systematic fusion of
cuda kernels for iterative sparse linear system solvers,” in Euro-Par,
2015.

[83] W. Liu, A. Li, J. Hogg, I. S. Duff, and B. Vinter, “A synchronization-
free algorithm for parallel sparse triangular solves,” in Euro-Par, 2016.

[84] W. Liu, A. Li, J. D. Hogg, I. S. Duff, and B. Vinter, “Fast
synchronization-free algorithms for parallel sparse triangular solves
with multiple right-hand sides,” Concurr. Comput. Pract. Exp., vol. 29,
no. 21, 2017.

[85] J. Su, F. Zhang, W. Liu, B. He, R. Wu, X. Du, and R. Wang,
“Capellinisptrsv: a thread-level synchronization-free sparse triangular
solve on gpus,” in ICPP, 2020.

[86] F. Zhang, J. Su, W. Liu, B. He, R. Wu, X. Du, and R. Wang, “Yuenye-
ungsptrsv: a thread-level and warp-level fusion synchronization-free
sparse triangular solve,” IEEE Trans. Parallel Distributed Syst., vol. 32,
no. 9, 2021.

[87] E. Solomonik, E. C. Carson, N. Knight, and J. Demmel, “Tradeoffs
between synchronization, communication, and computation in parallel
linear algebra computations,” in SPAA, 2014.

[88] J. Van Den Eshof and G. L. Sleijpen, “Inexact krylov subspace methods
for linear systems,” SIAM J. Matrix Anal. Appl., vol. 26, no. 1, 2004.

[89] M. A. Clark, R. Babich, K. Barros, R. C. Brower, and C. Rebbi,
“Solving lattice qcd systems of equations using mixed precision solvers
on gpus,” Comput. Phys. Commun., vol. 181, no. 9, 2010.

[90] J. Demmel, Y. Hida, W. Kahan, X. S. Li, S. Mukherjee, and E. J.
Riedy, “Error bounds from extra-precise iterative refinement,” ACM
Trans. Math. Softw., vol. 32, no. 2, 2006.

[91] J. Demmel, Y. Hida, E. J. Riedy, and X. S. Li, “Extra-precise iterative
refinement for overdetermined least squares problems,” ACM Trans.
Math. Softw., vol. 35, no. 4, 2009.

[92] X. S. Li, J. W. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskandar,
W. Kahan, S. Y. Kang, A. Kapur, M. C. Martin, B. J. Thompson,
T. Tung, and D. J. Yoo, “Design, implementation and testing of
extended and mixed precision blas,” ACM Trans. Math. Softw., vol. 28,
no. 2, 2002.

[93] A. Abdelfattah, H. Anzt, E. G. Boman, E. Carson, T. Cojean, J. Don-
garra, A. Fox, M. Gates, N. J. Higham, X. S. Li, J. Loe, P. Luszczek,
S. Pranesh, S. Rajamanickam, T. Ribizel, B. F. Smith, K. Swirydowicz,
S. Thomas, S. Tomov, Y. M. Tsai, and U. M. Yang, “A survey of
numerical linear algebra methods utilizing mixed-precision arithmetic,”
Int. J. High Perform. Comput. Appl., vol. 35, no. 4, 2021.

[94] N. J. Higham and T. Mary, “Mixed precision algorithms in numerical
linear algebra,” Acta Numer., vol. 31, 2022.

[95] X. Lei, T. Gu, S. Graillat, X. Xu, and J. Meng, “Comparison of
reproducible parallel preconditioned bicgstab algorithm based on exblas
and reproblas,” in HPC Asia, 2023.

[96] A. N. Yzelman and D. Roose, “High-level strategies for parallel shared-
memory sparse matrix-vector multiplication,” IEEE Trans. Parallel
Distributed Syst., vol. 25, no. 1, 2014.

[97] A. N. Yzelman and R. H. Bisseling, “Two-dimensional cache-oblivious
sparse matrix-vector multiplication,” Parallel Comput., vol. 37, no. 12,
2011.

[98] A. Buluç, S. Williams, L. Oliker, and J. Demmel, “Reduced-bandwidth
multithreaded algorithms for sparse matrix-vector multiplication,” in
IPDPS, 2011.

[99] K. Cheshmi, Z. Cetinic, and M. M. Dehnavi, “Vectorizing sparse matrix
computations with partially-strided codelets,” in SC, 2022.

[100] W. Li, H. Cheng, Z. Lu, Y. Lu, and W. Liu, “Haspmv: Heterogeneity-
aware sparse matrix-vector multiplication on modern asymmetric mul-
ticore processors,” in CLUSTER, 2023.

[101] X. Yu, H. Ma, Z. Qu, J. Fang, and W. Liu, “Numa-aware optimiza-
tion of sparse matrix-vector multiplication on armv8-based many-core
architectures,” in NPC, 2020.

[102] H. Anzt, T. Cojean, C. Yen-Chen, J. Dongarra, G. Flegar, P. Nayak,
S. Tomov, Y. M. Tsai, and W. Wang, “Load-balancing sparse matrix
vector product kernels on gpus,” ACM Trans. Parallel Comput., vol. 7,
no. 1, 2020.

[103] D. Merrill and M. Garland, “Merge-based parallel sparse matrix-vector
multiplication,” in SC, 2016.

[104] H. Mi, X. Yu, X. Yu, S. Wu, and W. Liu, “Balancing computation and
communication in distributed sparse matrix-vector multiplication,” in
CCGrid, 2023.

[105] W. Liu and B. Vinter, “Speculative segmented sum for sparse matrix-
vector multiplication on heterogeneous processors,” Parallel Comput.,
vol. 49, 2015.

[106] R. Li and Y. Saad, “Gpu-accelerated preconditioned iterative linear
solvers,” J. Supercomput., vol. 63, no. 2, 2013.

[107] X. Liu, M. Smelyanskiy, E. Chow, and P. Dubey, “Efficient sparse
matrix-vector multiplication on x86-based many-core processors,” in
ICS, 2013.

[108] W. Liu and B. Vinter, “Csr5: An efficient storage format for cross-
platform sparse matrix-vector multiplication,” in ICS, 2015.

[109] Y. Lu and W. Liu, “DASP: specific dense matrix multiply-accumulate
units accelerated general sparse matrix-vector multiplication,” in SC,
2023.

[110] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E. Leiserson,
“Parallel sparse matrix-vector and matrix-transpose-vector multiplica-
tion using compressed sparse blocks,” in SPAA, 2009.

[111] E. Yi, Y. Duan, Y. Bai, K. Zhao, Z. Jin, and W. Liu, “Cuper:
Customized dataflow and perceptual decoding for sparse matrix-vector
multiplication on hbm-equipped fpgas,” in DATE, 2024.

[112] J. D. Trotter, S. Ekmekçibaşı, J. Langguth, T. Torun, E. Düzakın,
A. Ilic, and D. Unat, “Bringing order to sparsity: A sparse matrix
reordering study on multicore cpus,” in SC, 2023.

[113] K. Isupov, “Multiple-precision sparse matrix–vector multiplication on
gpus,” J. Comput. Sci., vol. 61, 2022.

Appendix: Artifact Description/Artifact Evaluation
Artifact Description (AD)

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS

A. Paper’s Main Contributions

C1 We develop a tiled sparse format to store a sparse
matrix in tiles with different initial precisions.

C2 We leverage atomic operations that make the whole
solving procedure work within a single GPU kernel.

C3 We enable tile-wise on-chip dynamic precision con-
version within the single kernel at runtime.

B. Computational Artifacts

https://doi.org/10.5281/zenodo.12589363

II. ARTIFACT IDENTIFICATION

A. Computational Artifact A1

Relation To Contributions

This artifact names Mille-feuille, an effective high perfor-
mance CG and BiCGSTAB solver that (1) stores a sparse ma-
trix in tiles with different initial precisions (C1), (2) uses just
one kernel call to complete SpMV, dot product, and AXPY in
an entire procedure, instead of calling a number of individual
CUDA kernels (C2), and (3) changes the precision of a column
of tiles in on-chip memory when the corresponding elements
in the solution vector x are partially convergenced. (C3)
The experimental numbers demonstrate that our Mille-feuille
outperforms cuSPARSE/hipSPARSE, PETSc, and Ginkgo by a
factor of 3.03x/2.68x, 5.37x, 4.36x in CG, 2.65x/2.32x, 3.57x,
3.78x in BiCGSTAB, respectively.

Expected Results

This artifact contains Mille-feuille, cuSPARSE/hipSPARSE,
PETSc, and Ginkgo. In the test results, the execution time of
Mille-feuille is shorter than that of cuSPARSE/hipSPARSE,
PETSc, and Ginkgo.

Expected Reproduction Time (in Minutes)

The estimated time to download the datasets is 1 hours.
The estimated time to compile this artifact is 1 hours.
The expected computational time of this artifact on NVIDIA

A100 GPU is 6 hours.

Artifact Setup (incl. Inputs)

Hardware: GPU: NVIDIA A100 GPU (PCIe, 80GB,
1.94TB/s).

Disk Space: at least 60 GB (to store the experiment input
dataset).

Software: Mpich v3.4.1 or above;
NVIDIA CUDA Toolkit v12.0;
cuSPARSE v12.0;
cuBLAS v12.0;
GCC v11.3.0 or above;
Python 3.9 or above;
cmake v3.26 or above;
Pandas package v2.2.2.
matplotlib package v3.9.0.
seaborn package v0.13.2
Datasets / Inputs: All 230 symmetric positive-definite ma-

trices for CG and 686 nonsymmetric or indefinite matrices
for BiCGSTAB, from the entire SuiteSparse Matrix Collection
(https://sparse.tamu.edu/).

Installation and Deployment: Compiling on NVIDIA ma-
chine requires drivers for CUDA (nvcc v12.0). Additionally,
gcc v11.3.0, cmake v3.16, and OpenMP are required.

Artifact Execution

Our workflow consists of four tasks: T1, T2, T3, and T4.
Task T1 downloads the CG and BiCGSTAB datasets from
the SuiteSparse Matrix Collection using the dataset names
in matrix set.csv. In task T2, we need to set up the com-
pile environment and run script ‘compile.sh’, generating all
executable files. The generated dataset serves as input for
computational task T3 via a script named test.sh, which runs all
tested algorithms automatically. The output of T3 is processed
by task T4 through the python script, producing the final result
plot, Figure 8, Figure 9, Figure 10, Figure 11, Figure 12
and Figure 13. The tasks are dependent on each other in the
following order: T1 → T2 → T3 → T4.”

For our experiments, the input parameters include ma-
trix names in the matrix market format (e.g., ‘*.mtx’). The
dataset consists of 230 matrices for CG and 686 matrices for
BiCGSTAB. The number of repetitions is 100.

Artifact Analysis (incl. Outputs)

By analyzing the output using the script test.sh, we ob-
tained the average and maximum speedup of our Mille-feuille
compared to other methods, as shown in Figures 8 and 9.
The varying performances and precision ratios are presented
in Figures 10 and 11. The memory cost of our method and
cuSPARSE is illustrated in Figure 12. The cost breakdown of
the preprocessing and 100 iterations of CG and BiCGSTAB
is shown in Figure 13.

Artifact Evaluation (AE)
A. Computational Artifact A1

Artifact Setup (incl. Inputs)

Installation and compilation (30 minutes): Download from
the link (https://doi.org/10.5281/zenodo.12589363). Once
downloaded locally, use the command to unzip it.

$unzip Mille-feuille.zip
$cd Mille-feuille
Mille-feuille requires NVCC version If the default compiler

version of the current environment does not meet the require-
ments, users need to manually change the cuda install path in
the Mille-feuille/Makefile file:

line1: CUDA INSTALL PATH = /Your CUDA path.
After that, in the artifact directory Mille-feuille/, compile

the project.
$make
Preparation for Dataset (1 hours or more): Our exper-

imental dataset includes all 230 symmetric positive-definite
matrices for CG and 686 nonsymmetric or indefinite matrices
for BiCGSTAB in the SuiteSparse Matrix Collection. These
matrices need to be downloaded locally via the script matrix.py
provided in the artifact. This process will take approximately 1
hours (the total size is estimated to be 22GB) or longer. If users
accept the simplified dataset, we have also prepared a small-
scale dataset of 570 matrices via the script matrix simple.py.
The download of the simplified dataset will take approximately
45 minutes.

Dataset download command:
$python3 matrix.py or $python3 matrix simple.py
All matrices will be stored in the directory matrix/.
Preparation for Comparative methods (1 hours or more):

In this paper, we compare our method with cuSPARSE
(v12.0), PETSc (https://petsc.org/release/install/download),
and Ginkgo (https: //github.com/ginkgo-project/ginkgo). The
PETSc and the Ginkgo code have been included in the current
artifact.

To compile the PETSc, you can use the compile command:
$unzip petsc-main.zip
$cd ./petsc-main/
$bash compile PETSc.sh
To compile the Ginkgo, you can use the compile command:
$unzip ginkgo-develop.zip
$cd ./ginkgo-develop/
$bash compile Ginkgo.sh (When installing Ginkgo, sudo

privileges are required, which are already included in the
script, so you just need to enter your password.)

Artifact Execution

After the dataset and the other methods are ready, in the
directory Mille-feuille/, run this command:

$bash test performance.sh (5 hours or more)
This script includes performance tests of Mille-feuille, cuS-

PARSE, PETSc and Ginkgo of the target dataset matrices, and
will generate some result files.

Then run the next command:
$bash test memory.sh (2 hours or more)
This script includes memory tests of Mille-feuille and

cuSPARSE of the target dataset matrices and will generate
a result file.

Finally run the command:
$bash test preprocess.sh (1 hours or more)

This script includes preprocessing overhead tests of Mille-
feuille of the target dataset matrices and will generate a result
file.

We also provide an all figures.sh to plot all the figures in
our paper directly. You can run it with the command:

$bash all figures.sh
and get Figure 8, Figure 9, Figure 10, Figure 11 and

Figure12 in this paper.

Artifact Analysis (incl. Outputs)

The script test performance.sh will generate some perfor-
mance plots similar to Figure 8, Figure 9, Figure 10 and Figure
11 in the paper. These figures are related to C1, C2 and C3

in this paper.
The script test memory.sh will generate a memory cost plot

similar to Figure 12 in the paper, which is related to C1 and
C3 in this paper.

The script test preprocess.sh will generate a preprocessing
overhead plot similar to Figure 13 in the paper, which is related
to C1 and C2 in this paper.

You can also run the script all figures.sh to get all figures
in this paper that are related to C1, C2, and C3.

	Introduction
	Background, Analysis and Findings
	Distribution of Numerical Precision
	Synchronization Costs in CG and BiCGSTAB
	Partial Convergence of the Solution Vector

	Mille-feuille
	Overview
	Tile-Grained Storage Structure
	CG and BiCGSTAB within a Single Kernel
	Partial Convergence-Aware Mixed Precision Strategy
	Convergent elements retrieval scheme
	Dynamic precision adjustment with on-chip conversion

	Experimental Results
	Experimental Setup
	Comparison over Baseline, PETSc and Ginkgo
	Comparsion over Preconditioned Baseline
	Effectiveness of Mixed Precision
	Convergence Analysis
	Correlation of the Number of Iterations and Runtime
	Memory Cost Comparison
	Preprocessing Overhead Analysis

	Related Work
	Conclusion
	References

