
Pseudo Adjoint Optimization: Harnessing the Solution Curve for
SPICE Acceleration

Jiatai Sun
SSSLab, Dept. of CST, China

University of Petroleum-Beijing
jiatai.sun@student.cup.edu.cn

Xiaru Zha
SSSLab, Dept. of CST, China

University of Petroleum-Beijing
xiaruzha@student.cup.edu.cn

Chao Wang
School of Automation, Southeast

University
220232025@seu.edu.cn

Xiao Wu
Huada Empyrean Software Co. Ltd
wuxiao@mail.empyrean.com.cn

Dan Niu
School of Automation, Southeast

University
101011786@seu.edu.cn

Wei Xing
SoMaS, The University of Sheffield

w.xing@sheffield.ac.uk

Zhou Jin
SSSLab, Dept. of CST, China

University of Petroleum-Beijing
jinzhou@cup.edu.cn

ABSTRACT
Pseudo transient analysis (PTA) has been a promising solution for
direct current (DC) analysis of transistor-level circuit simulation.
Despite its popularity, PTA requires meticulous hyperparameter
tuning for optimal performance. In this paper, we propose pseudo
adjoint optimization, Soda-PTA, which models the PTA solution
curve (which is used to measure convergence) using a neural or-
dinary differential equation (Neural ODE) and deriving explicit
gradients of the Newton-Raphson (NR) iteration w.r.t. the PTA
hyperparameters through the classic adjoint method, enabling ef-
fective optimization of the PTA hyperparameters. To generalize
Soda-PTA for unseen circuits, we further introduce a graph con-
volution network to transfer optimal PTA hyperparameters from
the other circuits to the target one. Soda-PTA is implemented in an
out-of-the-box SPICE simulator. Through extensive experiments,
Soda-PTA demonstrates superior acceleration performance: an av-
erage speedup of 1.53x over the state-of-the-art BoA-PTA while
ensuring superior convergence and up to 22.12x speedup compared
to the native PTA solver.

KEYWORDS
Circuit simulation, Nonlinear DC analysis, Pseudo transient analy-
sis, Neural ODE, Graph convolution network

1 INTRODUCTION
Direct current (DC) analysis is a crucial step in SPICE simulation to
determine the static operating points, which provides initial solu-
tions for transient analysis and establishes small-signal parameters

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICCAD ’24, October 27–31, 2024, New Jersey, NJ, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1077-3/24/10
https://doi.org/10.1145/3676536.3676789

[1]. The DC analysis process involves solving a set of nonlinear
algebraic equations generated from the circuit netlist using the
Modified Nodal Analysis (MNA) method [2].

However, with the exponential growth in integration and com-
plexity of integrated circuits, the algebraic systems to be solved in
DC analysis have become considerably larger and highly nonlinear.
The basic Newton-Raphson (NR) [3] method is no longer suitable
for these challenges. Consequently, various continuation methods
for DC analysis have been extensively researched, including Gmin
stepping [4], Source stepping [5], Homotopy [6–8], and Pseudo
transient analysis (PTA) [9].

Among various continuation methods, PTA and its variants,
including Pure PTA (PPTA) [10, 11], Damped PTA (DPTA) [12,
13], Ramping PTA (RPTA) [14, 15], and Compound Element PTA
(CEPTA) [16, 17], have proven to be the most promising algorithms
for solving large-scale and strongly nonlinear DC analysis problems,
due to their ease of implementation and the absence of discontinu-
ity issues [18]. The PTA algorithm transforms nonlinear algebraic
systems into ordinary differential equaions (ODEs) by inserting
pseudo-elements into the circuit [9]. Subsequently, numerical in-
tegration methods, i.e. Backward Euler [19], can be employed to
solve this ODE system iteratively. At each discrete time point, a set
of nonlinear equations is solved using the NR method.

The efficiency of solving the ODE systems is influenced by two
aspects: time-step control and initial parameter selection. Regard-
ing time-step control, there has been considerable prior research.
Conventional PTA algorithms, even those employed in commercial
EDA tools [20, 21], utilize a simple iteration counting approach to
determine time-step size [22]. X.Wu et al. [23] proposed an adaptive
time-step control method based on Switched Evolution/Relaxation
(SER), which is a heuristic approach leveraging domain experiences.
Z. Jin et al. [24–28] utilized advanced reinforcement learning and
deep learning techniques to intelligently select the optimal time-
step size for accelerating the solution of ODE systems. However,
research on initial parameter selection is sparse. Unfortunately,
for different circuits, the required pseudo-elements may vary sig-
nificantly. For any given circuit, the problem of selecting optimal

https://doi.org/10.1145/3676536.3676789

ICCAD ’24, October 27–31, 2024, New Jersey, NJ, USA Sun et al.

pseudo-elements i.e. PTA hyperparameters to minimize the total
number of NR iteration (primary metric for evaluating PTA perfor-
mance) does not have a definitive answer.

W. Xing et al. [29] introduced Bayesian Optimization Accelerated
PTA (BoA-PTA), which focuses exclusively on the relationship
between PTA hyperparameters and the total number of NR iteration.
It employs a modified Gaussian process (GP) to characterize this
relationship for updating the next iteration of PTA hyperparameters.
Unfortunately, this approach appears to overlook the information
embedded within the PTA iterative process and does not utilize
reliable information in the evolution of the ODE system toward a
steady state of the inserted pseudo-elements.

To this end, we present a novel solution-curve-based adjoint
optimization to accelerate the PTA solver. Specifically, unlike con-
ventional works where the solver is considered as a black box, we
leverage the convergence information (in the solution curve) from
the PTA during its simulation and model them using a Neural Or-
dinary Differential Equations (Neural ODE) [30]. We then define a
novel loss function to measure the convergence and derive the opti-
mization gradient for the PTA hyperparameters. For unseen circuits,
we introduce a graph convolution network (GCN) to embed the de-
sign topology onto feature space, which allows effective knowledge
transfer between different circuit designs and thus the optimal PTA
hyperparameters for an unseen circuit. The contributions of this
work are as follows:
• To the best of our knowledge, this is the first SPICE acceleration

method by harnessing the convergence information collected while
solving the system ODE, delivering an accurate hyperparameters
optimization gradient explicitly.
• Soda-PTA is equipped with a GCN and allows knowledge

transfer for different circuits and the acceleration can be generalized
to unseen circuits.
• We demonstrate a significant speedup over the SOTA AI-

accelerated SPICE BoA-PTA, with an average speedup of 1.53x and
a maximum of 1.90x, while ensuring superior convergence. More-
over, extending Soda-PTA to PPTA, DPTA, and RPTA, the average
acceleration ratios are 2.26x, 14.77x, and 22.12x respectively.
• Soda-PTA showcases a novel direction of AI implementation

for standard EDA pipelines without introducing instability and
errors because all interventions happen in the SPICE and the error
can be monitored and controlled.

2 BACKGROUND
2.1 PTA for Nonlinear DC Simulation
Consider a nonlinear circuit with 𝑁 nodes excluding the ground
node, among which there are𝑀 independent voltage sources. Thus,
finding theDC operating point is equivalent to solving the nonlinear
system Eq. (1).

F(x) = 0 (1)
where x = (𝑣, 𝑖)𝑇 ∈ 𝑅𝑛 , 𝑛 = 𝑁 +𝑀 , variable vector 𝑣 ∈ 𝑅𝑁 denotes
node voltage, and vector 𝑖 ∈ 𝑅𝑀 represents internal branch cur-
rents of the independent voltage sources. The conventional PTA
algorithm, PPTA, serially connects a virtual inductor to each inde-
pendent voltage source and each nonlinear voltage-related branch,
and in parallel, connects a virtual capacitor to each independent
current source and each nonlinear current-related branch. Eq. (1)

is transformed into a ODE system, denoted as Eq. (2).{
D¤x(𝑡) = −F(x(𝑡), 𝑡)
x(𝑡0) = x0

(2)

where ¤x(𝑡) = (¤𝑣 (𝑡), ¤𝑖 (𝑡)) is the derivative of x with respect to the
time 𝑡 , and D is the incidence matrix that represents the inserted
pseudo-elements. Subsequently, the BE method is employed for
transient analysis of this virtual circuit. Throughout this process,
truncation error magnitude is disregarded, and the selection of
integration time-step size is not bound by precision requirements,
until reaching steady-state.

(a) (b) (c)

j

i

IL(t)

ICB(t)

G(t)

VE

VCB(t)

IE(t)
k

VL(t)
L

GVL branch

IG(t) C

R(t)

j

i

IR

ICB VC

VR(t)

k

VCB(t)
I

RVC branch

C

R(t)

k
C

R(t)

ks

g C

R(t)

d

k

RVC branch

Figure 1: Inserted pseudo-elements and embedding positions.
In contrast to PPTA, CEPTA inserts a GVL branch into the in-

dependent voltage source in series, a RVC branch into the inde-
pendent current source in parallel, and transistors between each
node to ground [16], as shown in Figure 1. The relationships for
time-variant resistor and time-variant conductor respectively are:
𝑅(𝑡) = 𝑅0𝑒𝑡/𝜏 and𝐺 (𝑡) = 𝐺0𝑒𝑡/𝜏 , where 𝑅0 and𝐺0 is a given initial
value and 𝜏 is the time constant. Inserted GVL and RVC branch
are stamped into the circuit matrix following the format outlined
in Table 1, where 𝐺𝐶𝐵𝑒𝑞 , 𝐼𝐶𝐵𝑒𝑞 , 𝑅𝐶𝐵𝑒𝑞 and 𝑉𝐶𝐵𝑒𝑞 defined in Eq.
(3) and Eq. (4). Therefore, we denote the CEPTA hyperparameters
as: 𝜃𝐶𝐸𝑃𝑇𝐴 = [𝐶, 𝐿, 𝑅0,𝐺0], and obviously these inserted pseudo-
elements have a significant impact on simulation convergence.

Table 1: The stampping for Branch RVC and GVL.

Branch 𝑖 𝑗 𝑰𝑬 𝑹𝑯𝑺

RVC 𝑖 𝐺𝐶𝐵𝑒𝑞 −𝐺𝐶𝐵𝑒𝑞 −𝐼𝐶𝐵𝑒𝑞

𝑗 −𝐺𝐶𝐵𝑒𝑞 𝐺𝐶𝐵𝑒𝑞 𝐼𝐶𝐵𝑒𝑞

GVL
𝑖 -1
𝑗 -1
𝐵𝑅 -1 -1 −𝑅𝐶𝐵𝑒𝑞 𝑉𝐶𝐵𝑒𝑞

𝐺−1𝐶𝐵𝑒𝑞 = ℎ𝑛+1/𝐶 + 𝑅(𝑡𝑛+1), 𝐼𝐶𝐵𝑒𝑞 = 𝐺𝐶𝐵𝑒𝑞 (𝐼
𝑛
𝐶𝐵𝑅(𝑡

𝑛) −𝑉𝑛𝐶𝐵) (3)

𝑅−1𝐶𝐵𝑒𝑞 = ℎ𝑛+1/𝐿 +𝐺𝑛+1, 𝑉𝐶𝐵𝑒𝑞 = 𝑅𝐶𝐵𝑒𝑞 (−𝐼
𝑛
𝐶𝐵 +𝐺

𝑛 (𝑉𝑛𝐶𝐵 − 𝐸)) + 𝐸
(4)

DPTA, like PPTA, focuses on inductor 𝐿 and capacitor 𝐶 [12],
𝜃𝐷𝑃𝑇𝐴\𝜃𝑃𝑃𝑇𝐴 = [𝐶, 𝐿]. Meanwhile, RPTA solely concentrates on
capacitor 𝐶 , 𝜃𝑅𝑃𝑇𝐴 = [𝐶]. For the internal of independent voltage
sources, function control is employed to ensure the convergence
of RPTA [14]. In reality, the MNA matrix mappings of these three
PTA algorithms also correspond to Table 1. Only the redefinition
of Eq. (3) and (4) is required.

2.2 Problem Formulation
Consider the PTA with netlist denoted as 𝝃 and solver hyperparam-
eters 𝜽 as a function,(

𝑁𝑅_𝑖𝑡𝑒𝑟𝑠 ;𝑀 ; {x𝑡 }𝑀𝑡=1
)
= 𝑃𝑇𝐴(𝝃 , 𝜽) (5)

Pseudo Adjoint Optimization: Harnessing the Solution Curve for SPICE Acceleration ICCAD ’24, October 27–31, 2024, New Jersey, NJ, USA

where {x𝑡 } is the collection of the states at each instant 𝑡𝑛 for Eq.
(2), 𝑀 and 𝑁𝑅_𝑖𝑡𝑒𝑟𝑠 are the total number of PTA steps and NR
iterations respectively, required to obtain the transient solution
{x𝑡 } and they are critical performance metrics for the PTA.

In a PTA system, while we can achieve sensitivity to circuit per-
formance by applying a joint method to the circuit ODEs [31], it is
challenging to derive the convergence gradient within the standard
framework. This limitation suggests the need for an alternative
approach or an adaptation of the existing framework to effectively
compute the gradient. As a remedy, end-to-end optimization uses
a surrogate to learn the mapping of 𝑁𝑅_𝑖𝑡𝑒𝑟𝑠 = 𝜂 (𝝃 , 𝜽), based on
which optimization algorithms can be applied to find the optimal 𝜽 ∗
[29]. What is neglected is that useful information {x𝑡 } is discarded.
Therefore, we propose to include the information {x𝑡 } into the
surrogate model, which is the key to our method to improve the
optimization performance.

2.3 Neural Ordinary Differential Equations
ANeural ODE [30, 32] is a neural network that learns the derivative
of the hidden states w.r.t. time

¤ℎ(𝑡) = 𝑓w (h(𝑡), 𝑡) (6)

where h(𝑡) ∈ 𝑅𝑛 is the state, ¤ℎ denotes the time derivative of ℎ,
𝑓w : 𝑅𝑛 → 𝑅𝑛 is a neural network model parameterized by w.
Given an initial state ℎ0, the solution of Eq. (6) can be obtained
by any classic numerical solver for ODEs, e.g. Runge-Kutta (RK)
methods and the solution is the dynamics of the states h(𝑡). 𝑓w
can be expressed as: 𝑓w = 𝑓w1,2 ◦ · · · ◦ 𝑓w𝑘,𝑘+1 , 𝑘 is the number of
layers, 𝑓w𝑘,𝑘+1 is the forward process of the 𝑘-th layer, and ℎ𝑘 =

(𝑓w1,2 ◦ · · · ◦ 𝑓w𝑘,𝑘+1) (·) ∈ 𝑅𝑛𝑘 is the intermediate representation at
the 𝑘-th layer, ℎ𝐾 = ¤ℎ is the output. 𝑛𝐾 = 𝑛 denotes the number of
neurons at 𝑘-th layer.

For the training of Neural ODE, the loss function is defined as:

𝐿 =

∫ 𝑡1

𝑡0

𝑙 (h(𝑡), 𝑡)𝑑𝑡 (7)

where 𝑙 (h(𝑡), 𝑡) is the loss function (e.g., L2 loss) at time 𝑡 . The gra-
dient of the loss function w.r.t. the parameters w, can be computed
by the adjoint sensitivity method [30]:

𝜕𝐿

𝜕w
= −

∫ 𝑡0

𝑡1

𝑎(𝑡)𝑇 𝜕𝑓w (h(𝑡), 𝑡)
𝜕w

𝑑𝑡 (8)

where 𝑎(𝑡) = 𝜕𝐿
𝜕h(𝑡) is the adjoint, and h(𝑡) is the intermediate state

of Neural ODE at each instant. Its dynamics are defined by Eq. (8),
where h(𝑡) can simply recomputed backwards in time together
with the adjoint.

3 PSEUDO ADJOINT OPTIMIZATION
3.1 Overall Framework
As discussed, what is missing in the literature is the inclusion of
the process information (in this case, the whole solution curves),
which leads to inferior performance. To this end, we propose to use
the Neural ODE as a surrogate to imitate the PTA process. More
importantly, once the Neural ODE is trained, the internal state of
the Neural ODE can be used to compute the gradient of the loss

function w.r.t. the PTA hyperparameters, which is not available in
the original PTA solver.

The overall workflow of Soda-PTA is shown in Figure 3. Based
on a given netlist and hyperparameters, PTA solves the system
ODEs iteratively until the states {x𝑡 } converge, based on which we
summarize the dynamic of {x𝑡 } using key trajectory {y𝑡 }. A Neural
ODE is then introduced to fit {y𝑡 } by minimizing the fitting loss.
Once the fitting is completed, another loss of measuring the con-
vergence is defined to enable the maximization of the convergence
speed w.r.t. the PTA hyperparameters.

3.2 Solution Curve Modeling Using Neural ODE
We first model the solution curves of the node voltages as a whole
dynamical system, encapsulating essential information about the
PTA hyperparameters, objective optimization metrics, and circuit
topology. Each node within PTA is inherently linked with a unique
solution curve. However, modeling every solution curve is both
unnecessary and impractical. Our primary aim is to minimize
𝑁𝑅_𝑖𝑡𝑒𝑟𝑠 , which can be effectively achieved by focusing on a subset
of the key solution curves that accurately reflect the convergence
of the PTA process.

In this pursuit, we propose using the first n-th moments of these
solution curves as the target fitting trajectory y𝑡 . Our investigations
reveal that the first moment, or the mean of the solution curves,
suffices in modeling the convergence of the PTA process. Utilizing
these solution curves, we apply Neural ODE to simulate the PTA
process, as illustrated in the following equation:

𝑑y
𝑑𝑡

= 𝑓w (y(𝑡), 𝑡, 𝜽) (9)
Here, y represents the discretized solution trajectory,w signifies the
Neural ODE parameters, and 𝜽 denotes the PTA hyperparameters.
The objective of the Neural ODE is to dynamically replicate the
behavior of the PTA process.

...

FNN tt1 t2 t3 tM-1 tMt0 ...

Y
...

La
y
e
r 1

La
y
e
r 2

La
y
e
r O

u
tp

u
t

Ɵ
P

T
A

...

Update
Network

Fitting
Loss

Neural ODE Workflow

...

FNN tt1 t2 t3 tM-1 tMt0 ...

Y
...

La
y
e
r 1

La
y
e
r 2

La
y
e
r O

u
tp

u
t

Ɵ
P

T
A

...

Update
Network

Fitting
Loss

Neural ODE Workflow

Figure 2: Neural ODE fits the target solution curve in the k-th
fitting epoch.

A pivotal aspect of our methodology is the optimization process,
which uses a Smooth L1 loss function, 𝑙𝑓 𝑖𝑡 (·), to compare the pre-
dictive solution curve with the target, as shown in Figure 2. The
gradient of this loss function w.r.t. Neural ODE parametersw yields
the adjoint state 𝑎(𝑡), which in turn is employed to update the PTA
hyperparameters (with details in Section 3.3 and Algorithm 1).

Despite efforts in standardizing the data for the target trajectory,
striking a balance between fitting efficiency and learning rate sched-
uling remains challenging. To mitigate this, we have implemented
an early stopping strategy based on the relative change in the fitting

loss. Specifically, if
𝑎𝑏𝑠 (𝑙𝑘

𝑓 𝑖𝑡
−𝑙𝑘−1

𝑓 𝑖𝑡
)

𝑙𝑘
𝑓 𝑖𝑡

< 0.001 consistently over a fixed

number of iterations, such as 10, we terminate the fitting process.

ICCAD ’24, October 27–31, 2024, New Jersey, NJ, USA Sun et al.

Inserted to
non-linear

branch

x6

x1
x3

x4x2

x0

x5

x7

x8

x6

x1
x3

x4x2

x0

x5

x7

x8

Netlists

Pseudo Elements

PTA Solver

Inter-process
Informations

x5

x1

x2

x4
x6

x3

x0

GCN
Topology

Graph

Input

Netlist2vec Embedding

x5

x1

x2

x4
x6

x3

x0

GCN
Topology

Graph

Input

Netlist2vec Embedding

Update

iter

Zn

R0

C

L

…
…

…
…

...

G0

Z1

Zn

R0

C

L

…
…

…
…

...

G0

Z1

FNN

Topological
Features

Z1 ... Zn

Hyper
parameters

C L R0 G0

Gradient Update

Pseudo Adjoint
Process

tt1 t3 tM-1 tMt0 ...

...

Y L iter

Gradient

Adjoint
Gradient

t2

Neural ODE

Stage1：PTA solver and GCN process netlists Stage2：Neural ODE fits target trajectory Stage3：Construct loss function Stage4：Update hyperparameters

Neural Network Trainning Process

Fitting

Update

tt1 t2 t3 tM-1 tMt0 ...

Y
...

Hyper
parameters

Hyper
parameters

[
]

,,[]

,,[]

g

j

CEPTA
C

R(t)

k
C

R(t)

ks

C

R(t)

d

k

C

R(t)

k
C

R(t)

ks

C

R(t)

d

k

C R(t)

I

i

k

C R(t)

I

i

k

ji G(t)

L

ji G(t)

L

� Voltage source

� Current source � MOS transistor

g

j

CEPTA
C

R(t)

k
C

R(t)

ks

C

R(t)

d

k

C R(t)

I

i

k

ji G(t)

L

� Voltage source

� Current source � MOS transistor

ji L ji LPPTA

DPTA

PPTA

DPTA
� Current source � Voltage source

C
i j

C
i jji LPPTA

DPTA
� Current source � Voltage source

C
i j

RPTA
C

i j
C

i j

t

V

0

Initial voltage

t

V

0

Initial voltage

� Current source � Voltage source

RPTA
C

i j

t

V

0

Initial voltage

� Current source � Voltage source

Iteratively
solve

Inserted to
non-linear

branch

x6

x1
x3

x4x2

x0

x5

x7

x8

Netlists

Pseudo Elements

PTA Solver

Inter-process
Informations

x5

x1

x2

x4
x6

x3

x0

GCN
Topology

Graph

Input

Netlist2vec Embedding

Update

iter

Zn

R0

C

L

…
…

…
…

...

G0

Z1

FNN

Topological
Features

Z1 ... Zn

Hyper
parameters

C L R0 G0

Gradient Update

Pseudo Adjoint
Process

tt1 t3 tM-1 tMt0 ...

...

Y L iter

Gradient

Adjoint
Gradient

t2

Neural ODE

Stage1：PTA solver and GCN process netlists Stage2：Neural ODE fits target trajectory Stage3：Construct loss function Stage4：Update hyperparameters

Neural Network Trainning Process

Fitting

Update

tt1 t2 t3 tM-1 tMt0 ...

Y
...

Hyper
parameters

[
]

,,[]

,,[]

g

j

CEPTA
C

R(t)

k
C

R(t)

ks

C

R(t)

d

k

C R(t)

I

i

k

ji G(t)

L

� Voltage source

� Current source � MOS transistor

ji LPPTA

DPTA
� Current source � Voltage source

C
i j

RPTA
C

i j

t

V

0

Initial voltage

� Current source � Voltage source

Iteratively
solve

Figure 3: Entire flow of proposed Soda-PTA.

This early termination often indicates either suboptimal PTA hyper-
parameter selection or complex convergence challenges in the PTA
process. Notably, terminating the fitting process does not imply an
end to the optimization of PTA parameters. The formulation and
impact of this strategy on PTA hyperparameter optimization are
further elaborated in Section 3.3.

Moreover, appropriately reducing the length of y𝑡 is also a nec-
essary operation. For PTA processes that exhibit oscillatory non-
convergence and prolonged convergence times, the target trajectory
often comprises a significant number of PTA steps (𝑀 in Figure 2),
which imposes a substantial overhead on fitting Neural ODE. Fortu-
nately, we draw inspiration from another non-convergence scenario
in the PTA process, "time-step too small", by selectively utilizing
partial trajectory to accommodate unacceptable trajectory lengths.
To this end, we employ an adaptive approach where, upon exceed-
ing a certain threshold of PTA steps, only the first 500 PTA steps are
retained. In section 4.4, analysis in dealing with non-convergence
scenarios validates the effectiveness of this approach.

3.3 Pseudo Ajoint Optimization
Upon fitting the Neural ODE to the critical target trajectory, our
focus shifts to deriving the convergence as a function of the PTA
hyperparameters, formulated through a specialized loss function.
This function not only reflects the deviation from the target tra-
jectory but also incorporates the dynamics of the circuit analysis,
as evidenced in the empirical correlation between the number of
PTA execution steps (𝑃𝑇𝐴_𝑠𝑡𝑒𝑝𝑠) and NR iterations (𝑁𝑅_𝑖𝑡𝑒𝑟𝑠),
highlighted in Figure 4.

We introduce a novel loss function Eq. (10) that combines the
count of NR iteration (𝑁𝑅_𝑖𝑡𝑒𝑟𝑠), states (∥ŷ𝑡 ∥1) and the cumulative
magnitude (∥(ŷ𝑡 − ŷ𝑡−1)∥1) of the generated trajectory, which is
inspired by Figure 5:

𝑙𝑜𝑠𝑠𝜽 ({ŷ𝑡 }) = 𝑁𝑅_𝑖𝑡𝑒𝑟𝑠 · (∥ŷ𝑡 ∥1 + ∥(ŷ𝑡 − ŷ𝑡−1)∥1) (10)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Circuits
0

500

1000

1500

2000

N
R_

it
er

s

NR_iters

0

50

100

150

200

250

300

350

400

PT
A_

st
ep

s

PTA_steps

Figure 4: The relationship between NR_iters and PTA_steps
for 36 circuits from benchmark [33] under default CEPTA
hyperparameters.

5 10 15 20 25 30 35 40 45 50

80

100

120

140

160

N
R_

it
er

s

NR_iters

5 10 15 20 25 30 35 40 45 50

NR_iters

20

22

24

26

28

30States

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75Magnitude

Sets of Hyperparameters
Figure 5: The relationship between NR_iters and two sub-
components of the loss function Eq. (10) for the "hussamp"
circuit across 50 different sets of CEPTA hyperparameters.

where ŷ𝑡 represents the states on the trajectory generated by the
Neural ODE. This loss function is pivotal in guiding the optimiza-
tion of the PTA hyperparameters 𝜽 . Notably, its design, involving
numerical computations along the trajectory, facilitates the up-
dated 𝜽 to progress towards improved values, even in cases of early
stopping. This approach potentially offsets the costs associated
with early termination by steering the optimization in a beneficial
direction.

Pseudo Adjoint Optimization: Harnessing the Solution Curve for SPICE Acceleration ICCAD ’24, October 27–31, 2024, New Jersey, NJ, USA

Gradient calculations for updating 𝜽 are expressed in Eq. (11)
and Eq. (12), which cumulatively accounts for the contribution of
each state along the trajectory:

∇𝜽 =

𝑀∑︁
𝑡=1

𝜕𝑙𝑜𝑠𝑠𝜽

𝜕ŷ𝑡
𝜕ŷ𝑡
𝜕𝜃

(11)

𝜽 = 𝜽 − 𝑙𝑟 · ∇𝜽 (12)

where 𝜕𝑙𝑜𝑠𝑠𝜽 /𝜕ŷ𝑡 corresponds to the adjoint state within the Neural
ODE framework. Employing this methodology, we aim to minimize
NR iterations by iteratively updating the PTA hyperparameters 𝜽
in the direction indicated by the gradient in Eq. (11). Since these
gradients are not the actual gradients of the SPICE solver but offer
a viable direction for updating 𝜽 , we refer to this method as Pseudo
Adjoint Optimization, with its details summarized in Algorithm 1.

Algorithm 1 Soda-PTA Algorithm Framework

Input: PTA solver, Neural ODE 𝑓w (·) , number of epoch 𝑁𝑒𝑝𝑜𝑐ℎ ,
default PTA hyperparameters 𝜽0

1: 𝜽 = 𝜽0
2: for 𝑖 = 1→ 𝑁𝑒𝑝𝑜𝑐ℎ do

3:
(
𝑁𝑅_𝑖𝑡𝑒𝑟𝑠 ;𝑀 ; {x𝑡 }𝑀𝑡=1

)
= 𝑃𝑇𝐴(𝝃 , 𝜽)

4: Summarize {x𝑡 }𝑀𝑡=1 into {y𝑡 }
𝑀
𝑡=1

5: w← argminw
(
𝑙𝑓 𝑖𝑡 ({ŷ𝑡 }, {y𝑡 })

)
using adjoint method

6: 𝜃𝜃𝜃 ← argmin𝜃𝜃𝜃
(
𝑙𝜃𝜃𝜃 ({ŷ𝑡 })

)
using adjoint method

7: end for
8: return 𝜃𝜃𝜃

3.4 Netlist2vec Embedding Through GCN
From Algorithm 1, we can see that the optimization of 𝜽 for a
given netlist is always conducted from scratch, despite that previ-
ous optimization for a similar circuit (e.g., a two-stage operational
amplifier and a three-stage one). If we can learn the connection
between circuits, we will be able to directly propose near-optimal
hyperparameters given a new circuit, which will be refined through
iterations. The emerging AI technique, GCN, has been extensively
applied in the EDA domain [34–37], notably in areas such as reli-
ability and security in integrated circuit design [38], as well as in
the realm of testability analysis [39].

To this end, we utilize GCN to characterize the netlist, foster-
ing expedited optimization and superior optimization outcomes. In
contrast to conventional methodologies that rely on simple circuit
summary factors [29], our approach capitalizes on more extensive
automatic feature extraction by incorporating circuit topology in-
formation. Drawing inspiration from the MNA matrix formulation,
the netlist is mapped here as a graph structure with circuit nodes
as vertices and devices as edges. The specific process is shown in
Figure 6. We further embed the vector of circuit features 𝝃 for the
subsequent learning of Neural ODE.

𝑑y
𝑑𝑡

= 𝑓w (y(𝑡), 𝑡, 𝜽 , 𝝃) (13)

Substituting circuit feature vector 𝝃 into the Neural ODE, our
model becomes Eq. (13), which is fitted using previously described
fitting loss function 𝑙𝑓 𝑖𝑡 (·) and the optimization is conducted ex-
actly as in Eq. (11) and Eq. (12) with the only difference being that
optimization is conditional on a given 𝝃 . Given an unseen circuit,

j Parse netlist

k Convert netlist to graph

Topology
Graph

Node Feature Vectors

#BJT

#R

#V
...

#BJT

#R

#V
...

x0 x1 x2 x3 x4 x5 x6x0 x1 x2 x3 x4 x5 x6

0

1

2
... ...

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

1
...

0

1

2
... ...

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

1
...

x0 x1 x2 x3 x4 x5 x6

0

1

2
... ...

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

1
...

x0 x1 x2 x3 x4 x5 x6x0 x1 x2 x3 x4 x5 x6

0

1

2
... ...

1

2

0

1

1

0

0

0

0

0

1

0

1

0

1

0

1

1
...

0

1

2
... ...

1

2

0

1

1

0

0

0

0

0

1

0

1

0

1

0

1

1
...

x0 x1 x2 x3 x4 x5 x6

0

1

2
... ...

1

2

0

1

1

0

0

0

0

0

1

0

1

0

1

0

1

1
...

x0 x1 x2 x3 x4 x5 x6x0 x1 x2 x3 x4 x5 x6

0

1

2
... ...

1

2

0

2

1

0

1

0

0

1

1

0

1

0

1

0

1

1
...

0

1

2
... ...

1

2

0

2

1

0

1

0

0

1

1

0

1

0

1

0

1

1
...

x0 x1 x2 x3 x4 x5 x6

0

1

2
... ...

1

2

0

2

1

0

1

0

0

1

1

0

1

0

1

0

1

1
...

x0 x1 x2 x3 x4 x5 x6x0 x1 x2 x3 x4 x5 x6

0

1

2
... ...

1

2

0

2

1

0

1

1

0

1

1

0

1

0

1

0

2

1
...

0

1

2
... ...

1

2

0

2

1

0

1

1

0

1

1

0

1

0

1

0

2

1
...

x0 x1 x2 x3 x4 x5 x6

0

1

2
... ...

1

2

0

2

1

0

1

1

0

1

1

0

1

0

1

0

2

1
...

dim

m

#BJT

#R

#V
...

x0 x1 x2 x3 x4 x5 x6

0

1

2
... ...

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

1
...

x0 x1 x2 x3 x4 x5 x6

0

1

2
... ...

1

2

0

1

1

0

0

0

0

0

1

0

1

0

1

0

1

1
...

x0 x1 x2 x3 x4 x5 x6

0

1

2
... ...

1

2

0

2

1

0

1

0

0

1

1

0

1

0

1

0

1

1
...

x0 x1 x2 x3 x4 x5 x6

0

1

2
... ...

1

2

0

2

1

0

1

1

0

1

1

0

1

0

1

0

2

1
...

dim

m

x6

n Feature

 embedding

Topology
Vector

Node Feature
Matrix

Z1,0 Z1,1 Z1,6

Zm,0 Zm,1 Zni...

...

............

Zm,6

Z1

...

Zn

Z1

...

Zn

GCN Model

m Node feature

 aggregation

Netlist

x1
x3

x4x2

x0

x5

rc1

r3

rc2

vcc

q2q1

revin

Node Device-list & Type

0 re(R) vin(V) vcc(V)

1 q1(BJT) rc1(R) r3(R)

2 re(R) q1(BJT) q2(BJT)

3 rc2(R) q2(BJT)

4 r3(R) q2(BJT)

5 vin(V) q1(BJT)

6 vcc(V) rc1(R) rc2(R)

Connection Information

Node Device-list & Type

0 re(R) vin(V) vcc(V)

1 q1(BJT) rc1(R) r3(R)

2 re(R) q1(BJT) q2(BJT)

3 rc2(R) q2(BJT)

4 r3(R) q2(BJT)

5 vin(V) q1(BJT)

6 vcc(V) rc1(R) rc2(R)

Connection Information

x5

x1

x2

x4
x6

x3

x0

x5

x1

x2

x4
x6

x3

x0

x5

x1

x2

x4
x6

x3

x0

x5

x1

x2

x4
x6

x3

x0

x5

x1

x2

x4

x3

x0

x6x5

x1

x2

x4

x3

x0

x6 x5

x1

x2

x4
x6

x3

x0

x5

x1

x2

x4
x6

x3

x0

x5

x1

x2

x4
x6

x3

x0

x5

x1

x2

x4
x6

x3

x0

x5

x1

x2

x4

x3

x0

x6 x5

x1

x2

x4
x6

x3

x0

l Input

Devices as Edges

Circuit Nodes as Graph Nodes

Traverse connection information by nodes

j Parse netlist

k Convert netlist to graph

Topology
Graph

Node Feature Vectors

#BJT

#R

#V
...

x0 x1 x2 x3 x4 x5 x6

0

1

2
... ...

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

1
...

x0 x1 x2 x3 x4 x5 x6

0

1

2
... ...

1

2

0

1

1

0

0

0

0

0

1

0

1

0

1

0

1

1
...

x0 x1 x2 x3 x4 x5 x6

0

1

2
... ...

1

2

0

2

1

0

1

0

0

1

1

0

1

0

1

0

1

1
...

x0 x1 x2 x3 x4 x5 x6

0

1

2
... ...

1

2

0

2

1

0

1

1

0

1

1

0

1

0

1

0

2

1
...

dim

m

x6

n Feature

 embedding

Topology
Vector

Node Feature
Matrix

Z1,0 Z1,1 Z1,6

Zm,0 Zm,1 Zni...

...

............

Zm,6

Z1

...

Zn

GCN Model

m Node feature

 aggregation

Netlist

x1
x3

x4x2

x0

x5

rc1

r3

rc2

vcc

q2q1

revin

Node Device-list & Type

0 re(R) vin(V) vcc(V)

1 q1(BJT) rc1(R) r3(R)

2 re(R) q1(BJT) q2(BJT)

3 rc2(R) q2(BJT)

4 r3(R) q2(BJT)

5 vin(V) q1(BJT)

6 vcc(V) rc1(R) rc2(R)

Connection Information

x5

x1

x2

x4
x6

x3

x0

x5

x1

x2

x4
x6

x3

x0

x5

x1

x2

x4

x3

x0

x6 x5

x1

x2

x4
x6

x3

x0

l Input

Devices as Edges

Circuit Nodes as Graph Nodes

Traverse connection information by nodes

Figure 6: Netlist2vec embedding process.

our model will construct a feature vector 𝝃 and then guess the
solver trajectory, based on which the optimal PTA hyperparame-
ters 𝜽 are obtained. The specific steps are illustrated in Algorithm 2.
Certainly, this guess might not be accurate, but it is a good starting
point for the optimization process. Also, if this model is trained on
a large number of circuits, it will be able to generalize to unseen
circuits as we will see in the experiments.

Algorithm 2 Soda-PTA for unseen circuit with GCN

Input: Algorithm 1,𝐺𝐶𝑁 (·), test set𝑇𝑒 , train set𝑇𝑟 , test iteration
𝑁 𝑡𝑒
𝑒𝑝𝑜𝑐ℎ

, train iteration 𝑁 𝑡𝑟
𝑒𝑝𝑜𝑐ℎ

1: Initilize Neural ODE 𝑓w (·)
2: for 𝜇 in 𝑇𝑟 do
3: 𝝃 = 𝐺𝐶𝑁 (𝜇)
4: 𝜃𝜃𝜃∗ (𝝃)= 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚1(𝑓w (·),𝜃𝜃𝜃0, 𝝃 , 𝑁 𝑡𝑟𝑒𝑝𝑜𝑐ℎ)
5: end for
6: Update GCN by the total loss of all generated trajectories
7: for 𝜇 in 𝑇𝑒 do
8: 𝝃 = 𝐺𝐶𝑁 (𝜇)
9: 𝜃𝜃𝜃∗= 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚1(𝑓w (·),𝜃𝜃𝜃0, 𝝃 , 𝑁 𝑡𝑒𝑒𝑝𝑜𝑐ℎ)
10: end for

4 EXPERIMENTS AND RESULTS
4.1 Experimental Setup
We implement the proposed Soda-PTA in a SPICE-like circuit sim-
ulator on AMD 4900H CPU, and train neural networks on NVIDIA
GeForce RTX 2060 6GB GPU. The hyperparameters to be optimized
and their default values for various PTA algorithms are shown in
Table 2. For a comprehensive assessment, Soda-PTA is evaluated on
a canonical benchmark [33], collected challenging test cases, and
multiple real-world complex problems.
Table 2: The hyperparameters and their default values of
various PTA algorithms.

PTA algorithms PPTA DPTA RPTA CEPTA

Hyperparameters 𝐶, 𝐿 𝐶, 𝐿 𝐶 𝐶, 𝐿, 𝑅0,𝐺0

Default values [1e-4, 1] [1e-4, 1] [1e-4] [1e-4, 1, 100, 1e-5]

Our primary performance metric of interest is the solution time,
indicated by 𝑁𝑅_𝑖𝑡𝑒𝑟𝑠 . The SOTA work BoA-PTA [29] is conducted
under three acquisition functions: UCB, MES, and EI, to obtain
optimal results. Unless stated otherwise, all PTA uses a simple
iteration counting time-step control [21] for a fair comparison.

ICCAD ’24, October 27–31, 2024, New Jersey, NJ, USA Sun et al.

0 5 10 15 20 25
PTA_step

(a) 1st fitting epoch

-1.0

0.0

1.0

St
at

es

extrapolation
target
generated

0 5 10 15 20 25
PTA_step

(b) 11th fitting epoch

-1.0

0.0

1.0

extrapolation
target
generated

0 5 10 15 20 25
PTA_step

(c) 27th fitting epoch

-1.0

0.0

1.0

extrapolation
target
generated

0 5 10 15 20 25
PTA_step

(d) 56th fitting epoch

-1.0

0.0

1.0

extrapolation
target
generated

Figure 7: Fitting process of Neural ODE for the "hussamp" circuit under CEPTA.

0 5 10 15 20 25 30 35
PTA_step

(a) 1st fitting epoch

-1.5

-1.0

-0.5

0.0

0.5

1.0

St
at

es

extrapolation
target
generated

0 5 10 15 20 25 30 35
PTA_step

(b) 5th fitting epoch

-1.0

0.0

1.0

2.0

extrapolation
target
generated

0 5 10 15 20 25 30 35
PTA_step

(c) 34th fitting epoch

-1.5
-1.0
-0.5
0.0
0.5
1.0

extrapolation
target
generated

0 5 10 15 20 25 30 35
PTA_step

(d) 61st fitting epoch

-1.5
-1.0
-0.5
0.0
0.5
1.0

extrapolation
target
generated

Figure 8: Fitting process of Neural ODE for the "6stageLimAmp" circuit under DPTA.

4.2 Solution Curve Modeling Performance
Figure 7 and Figure 8 represent the Neural ODE fitting process for
two circuits under CEPTA and DPTA, respectively. As mentioned
above, we use the mean of the solution curves as the key target
trajectory.

The red line represents the target key trajectory obtained from
SPICE simulation, while the blue line represents the learned tra-
jectory from the fitting training data, and the orange additional
portion of the blue line corresponds to our subsequent predictive
outputs using a fixed tim-step equal to the last time-step of the gen-
erated trajectory. Notably, as the fitting training process progresses,
Neural ODE gradually approaches the target trajectory, enabling
the model to robustly achieve convergence.

4.3 PTA Acceleration Comparisons
To comprehensively evaluate the optimization performance of the
proposed Soda-PTA, we have tested it under four PTA algorithms
(PPTA [10], DPTA [12], CEPTA [16] and RPTA [14]), and compared
it with the native PTA and BOA-PTA (which is a SOTA enhance of
PTA). Convergence and simulation efficiency will be comparatively
analyzed.

bia
s

bjt
ff

gm
17 jge

hu
ss

am
p

na
gle

to
ro

nt
o

ad
d3

2

UA74
1P

FB

 VIN
NEG

UA74
1P

FB

 VIN
PO

S

MOSM
EM

sra
m

0

2

4

6

Sp
ee

du
p

(v
s.

 C
EP

TA
)

3.
51

1.
97

1.
16 1.

52

1.
06

1.
00

1.
00 1.

68

1.
38

1.
25

1.
05

1.
00

5.
71

2.
49

1.
59 2.

47

1.
47 1.

92

1.
50 2.

37

1.
99

1.
95

1.
35 1.

90

BoA-PTA Soda-PTA

Figure 9: Simulation performance comparison under CEPTA.
Firstly, we compare Soda-PTA and BoA-PTA across 12 test cir-

cuits, as depicted in Figure 9. It can be observed that Soda-PTA
shows an average 1.53x and a maximum 1.90x improvement over
BoA-PTA. Subsequently, we select four different types of circuits
from the benchmark to compare the optimization processes of Soda-
PTA and BoA-PTA, primarily reflecting their utilization of SPICE
resources. Figure 10 depicts the comparison of the first 10 update

epochs of PTA hyperparameter optimization. It can be seen that
Soda-PTA requires fewer update epochs to achieve comparable
optimization performance compared to BoA-PTA, indicating less
utilization of SPICE resources.

We then extend Soda-PTA to other PTA algorithms and ana-
lyze the optimization effects of Soda-PTA across 20 test circuits, as
shown in Table 3. From the table, it is evident that Soda-PTA ex-
hibits significant acceleration, with average speedups of 2.11x and
maximum speedups of 5.71x under CEPTA and maximum speedups
of 4.74x under PPTA. The acceleration is particularly pronounced
for DPTA and RPTA, with average speedups of 14.77x and 22.12x,
respectively. Notably, for the circuits "ab_opamp", "schmitfast",
"MOSMEM" and "UA709", a substantial reduction in the number of
NR iteration is observed. This can be attributed to the core concept
of Soda-PTA, which leverages inter-process trajectory information
to learn surrogate models, effectively guiding the convergence of
PTA process and the formation of PTA hyperparameter gradients.
Consequently, this significantly reduces the number of NR itera-
tions.

Additionally, under PPTA, Soda-PTA cannot ensure convergence
for certain circuits due to early-stage "time-step too small" non-
convergence, leading to trajectory sequences that are too brief for
the Neural ODE to effectively capture critical PTA process infor-
mation. This inadequacy hinders the formation of a valid surrogate
for guiding gradient information for PTA hyperparameters. How-
ever, in the case of the "Multiplier" circuit under CEPTA, despite
experiencing similar non-convergence issues, sufficient trajectory
information is provided, allowing Soda-PTA to manage effectively.
Additionally, for circuits such as "bias," "nand," and "MOSAMP1,"
where non-convergence due to oscillations is observed, Soda-PTA
successfully ensures convergence.

It is essential to conduct testing across other PTA algorithms.
While CEPTA significantly mitigates oscillation issues in the tra-
ditional PTA algorithms, it is not always optimal. The numbers
highlighted in the "Soda-PTA " column in the Table 3 represent the
best results in parameter optimization among these four PTA algo-
rithms. It is noteworthy that these results are consistently better
than the native CEPTA, and it is evident that the optimized effects

Pseudo Adjoint Optimization: Harnessing the Solution Curve for SPICE Acceleration ICCAD ’24, October 27–31, 2024, New Jersey, NJ, USA

0 2 4 6 8 10
update epoch

 e1480

1.0

1.1

1.2

1.3

Sp
ee

du
p

(v
s.

 C
EP

TA
)

0 2 4 6 8 10
update epoch

 gm17

1.0

1.1

1.2

1.3

0 2 4 6 8 10
update epoch

 schmitecl

1.0

1.1

1.2

1.3 BoA-PTA
Soda-PTA

0 2 4 6 8 10
update epoch

 add32

1.00

1.05

1.10

1.15

1.20

1.25

Figure 10: Optimization process comparison between Soda-PTA and BoA-PTA.

Table 3: Simulation performance comparison under CEPTA, PPTA, DPTA and RPTA. "—" denotes non-convergence. The numbers
highlighted represent the best results among these PTA algorithms.

circuits
NR_iters Speedup

CEPTA PPTA DPTA RPTA

native Soda-PTA native Soda-PTA native Soda-PTA native Soda-PTA vs. CEPTA vs. PPTA vs. DPTA vs. RPTA

ab_opamp 150 110 — — 2417 146 2408 127 1.36x — 16.55x 18.96x
astabl 55 45 108 64 81 43 75 41 1.22x 1.69x 1.88x 1.83x
bias 839 147 — 899 755 607 498 110 5.71x — 1.24x 4.53x
bjtinv 186 53 125 77 155 51 101 101 3.51x 1.62x 3.04x 1.00x
cram 91 88 — — 130 100 128 81 1.03x — 1.30x 1.58x
gm6 69 42 — — 110 55 107 38 1.64x — 2.00x 2.82x

hussamp 91 62 — — 209 87 240 71 1.47x — 2.40x 3.38x
mosrect 65 51 251 53 838 63 837 55 1.27x 4.74x 13.30x 15.22x
nand 83 53 — 32 — 142 — 76x 1.57x — — —

schmitfast 82 59 71 30 5681 106 5678 92 1.39x 2.37x 53.59x 61.72x
6stageLimAmp 137 51 69 38 135 73 137 51 2.69x 1.82x 1.85x 2.69x

add32 173 73 — — 1765 234 1970 70 2.37x — 7.54x 28.14x
DCOSC 126 78 108 91 116 98 136 100 1.62x 1.19x 1.18x 1.36x
DIFFPAIR 148 57 101 71 114 109 137 47 2.60x 1.42x 1.05x 2.91x
MOSAMP1 122 82 — 139 158 96 162 69 1.49x — 1.65x 2.35x

MOSBandgap 153 85 — — 342 113 341 104 1.80x — 3.03x 3.28x
MOSMEM 127 94 253 98 26029 171 26037 101 1.35x 2.58x 152.22x 257.79x

TADEGLOW 103 63 151 51 164 66 86 60 1.63x 2.96x 2.48x 1.43x
UA709 407 110 311 143 2985 219 3270 887 3.70x 2.17x 13.63x 3.69x

Multiplier — 105 — — 232 92 225 94 — — 2.52x 2.39x

Average 2.11x 2.26x 14.77x 22.12x

of Soda-PTA correspond to different PTA algorithms. This provides
a crucial insight that, when dealing with unseen circuits and lacking
an optimal decision on which PTA algorithm to execute, applying
Soda-PTA can consistently achieve higher performance.

4.4 PTA Convergence Comparisons
In addition to simulation performance, PTA convergence assurance
is actually more crucial and promising, especially for large-scale cir-
cuits and circuits with convergence challenges. As shown in Table
4, we list some circuits under three commonly used PTA algorithms,
all of which are difficult to converge under default hyperparame-
ters. From the table, it is apparent that BoA-PTA provides weaker
convergence assurance compared to proposed Soda-PTA.

Figure 11 illustrates two non-convergence scenarios under the
PTA algorithms. We elucidate the "time-step too small" issue using
the "opampal" circuit from Table 4 and the non-convergence issue
caused by oscillation using the "Divider" circuit. The vertical axis
of Figure 11 represents the voltage value of a specific node , while
the horizontal axis represents discrete time points during the PTA
process. For Figure 11.(a), it can be observed from the left subplot

Table 4: Conergence analysis. "—" denotes non-convergence.

PTA Algorithms Circuits NR_iters

native BoA-PTA Soda-PTA

CEPTA

opampal — (time-step 635 317
D10 too small) 65 60
loc — (oscillation) — 328

ram2k 188 158

DPTA

gm17

— (oscillation)

N/A 304
gm19 N/A 160

REGULATOR N/A 644
Divider N/A 511

RPTA

Schmitslow

— (oscillation)

N/A 4507
bjtff N/A 1458

toronto N/A 1484
sram N/A 2341

that at the final time-step, the numerical integration time-step size
falls below the lowest limit (1e-9), resulting in non-convergence of
the PTA process. However, the sufficient inter-process information
it provides can be leveraged by Soda-PTA for learning, guiding
the gradient updates of PTA parameters, ultimately leading to the

ICCAD ’24, October 27–31, 2024, New Jersey, NJ, USA Sun et al.

convergence scenario depicted in the right subplot. As for Figure
11.(b), the left subplot clearly exhibits oscillatory behavior, while the
right subplot demonstrates the results after parameter optimization.

Notably, the oscillatory behavior in the left subplot of Figure
11.(b) can cause prolonged non-convergence, generating substantial
inter-process information that significantly increases the learning
cost of Neural ODE. Fortunately, Soda-PTA’s core idea is to emu-
late the PTA process by learning the target trajectory, prompting
adaptive truncation of long sequences to balance learning cost with
optimization effectiveness. As shown in Table 4, our strategy is
effective.

0 2 4 6
t 1e 2

1.5

1.0

0.5

0.0

vo
lt

ag
e(

5)

1e 4

0.0 0.5 1.0 1.5 2.0 2.5
t 1e1

8

6

4

2

0
1e 1

0 1 2
t 1e2

2

0

2

vo
lt

ag
e(

7)

0 2 4 6 8
t 1e1

2

0

2

5 6
1e 10+7.0157413e 2

8

6

4 1e 8 1.788e 4

< 1e-9

(a) circuit "opampal" (Non convergence, time-step too small)

(b) circuit "Divider" (Non convergence, oscillation)

native Soda-PTA

Figure 11: Two Non-convergence scenarios.

4.5 Unseen Circuit Performance with GCN
GCN extracts circuit topological features to minimize extra cal-
culations from multiple solver executions when optimizing PTA
hyperparameters for a given circuit. We tested Soda-PTA with GCN
models on practical circuits outside the training set (benchmark
[33]) under CEPTA and DPTA, as shown in Figure 12.

The first subplot of Figure 12 depicts tests under CEPTA, where
circuits "D20" and "D21" demonstrate that introducing the GCN
model improves optimization results and reduces parameter up-
date iterations. For the "TRACKTorig" circuit, optimization results
remain nearly unchanged while required update iterations signifi-
cantly decrease. Similar patterns are observed under DPTA, with
circuit "D10" showing notable optimization improvements despite
more update iterations.

In summary, it can be affirmed that GCN provides a stable map-
ping relationship from circuit descriptions to vector spaces, thereby
cooperatively participating in the parameter optimization process
and ensuring the quality of the optimization process.

4.6 Comparisons with PTA Algorithm Utilizing
Advanced Time-Step Strategy

To assess Soda-PTA with more advanced time-step control, we ap-
ply RL-S [24], which employs reinforcement learning to select time
steps, to Soda-PTA. The results are illustrated in Figure 13. Com-
pared to the results without initial parameter selection, Soda-PTA
achieves an average improvement of 1.53x in terms of 𝑁𝑅_𝑖𝑡𝑒𝑟𝑠 ,

0 1 2 3 4
0.0

0.5

1.0

1.5

Sp
ee

du
p

(v
s.

 C
EP

TA
)

1.
21

1.
11

1.
02 1.

10 1.
15

1.
45

1.
32

1.
06

1.
08 1.

18

0 1 2 3 4
0

20

40

60

U
pd

at
e

ep
oc

h

30

40 43

61 60

22 22

15 12

45

0 1 2 3 4
0

1

2

3

50

70

Sp
ee

du
p

(v
s.

 D
PT

A)

1.
22 1.

56

56
.7

3.
03

1.
37

1.
24 1.

54

64

3.
32

2.
25

0 1 2 3 4
0

10

20

30

40

50

U
pd

at
e

ep
oc

h

29

17

48 47

2

5

10

46 48

9

0:D20 1:D21 2:SCHMIT 3:TRACKToring 4:TRISTABLE

0:UA733 1:TADEGLOW6TR 2:THM5 3:MOSBandgap 4:D10

Soda-PTA (no GCN) Soda-PTA (with GCN)

Figure 12: Improvement effect of GCN on Soda-PTA under
CEPTA and DPTA.

with a maximum improvement of 7.55x. In terms of 𝑃𝑇𝐴_𝑠𝑡𝑒𝑝𝑠 ,
Soda-PTA achieves an average improvement of 1.46x, with a maxi-
mum improvement of 5.76x.

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233
Circuits

1.0

1.5

2.0

2.5

7.0

7.5

8.0
Soda-PTA vs RL-S
 (NR_iters)

1.0

1.5

2.0

2.5

5.0

5.5

6.0
Soda-PTA vs RL-S
 (PTA_steps)

Sp
ee

du
p

(v
s.

 R
L-

S)
 o

f

 N
R_

it
er

s

Sp
ee

du
p

(v
s.

 R
L-

S)
 o

f

PT

A_
st

ep
s

Figure 13: Speedup of Soda-PTA over RL-S.

5 CONCLUSION
In this paper, we propose a novel pseudo adjoint framework for
online hyperparameter optimization across various PTA algorithms.
This framework is further enhanced by he incorporation of GCN
to improve the quality of the optimization process. Evaluated on
benchmark circuits, Soda-PTA outperforms native CEPTA, PPTA,
DPTA and RPTA by 2.11x, 2.26x, 14.77x and 22.12x respectively.
Moreover, Soda-PTA exhibits superior acceleration performance
and enhanced convergence capabilities compared to BoA-PTA. Ap-
plied to RL-S employing advanced time-step control strategy, the
initial PTA hyperparameters provided by Soda-PTA result in an
average acceleration of 1.53x.

ACKNOWLEDGMENTS
Zhou Jin and Wei Xing are the corresponding authors of this paper.
This work is supported in part by the National Key R&D Program
of China (Grant No. 2022YFB4400400), NSFC (Grant No. 62204265,
62234010, 62374031), Natural Science Foundation of Jiangsu Province
(Grant No. BK20240173) and Beijing Municipal Natural Science
Foundation (Z230004).

Pseudo Adjoint Optimization: Harnessing the Solution Curve for SPICE Acceleration ICCAD ’24, October 27–31, 2024, New Jersey, NJ, USA

REFERENCES
[1] J. Deng, K. Batselier, Y. Zhang, and N. Wong. An efficient two-level dc operating

points finder for transistor circuits. In DAC ’14.
[2] C.-W. Ho, A. Ruehli, and P. Brennan. The modified nodal approach to network

analysis. IEEE Transactions on Circuits and Systems, 22(6), 1975.
[3] Y. Kuo and M. Liou. Computer-aided analysis of electronic circuits: Algorithms

and computational techniques. Proceedings of the IEEE, 65(6), 1977.
[4] K. S. Kundert and P. Gray. The Designer’s Guide to Spice and Spectre. Kluwer

Academic Publishers, 1995.
[5] T. Najibi. Continuation methods as applied to circuit simulation. IEEE Circuits

and Devices Magazine, 1989.
[6] C. E. Lemke. Pathways to solutions, fixed points, and equilibria. SIAM Review,

1984.
[7] Z. Jin, T. Feng, X. Wu, D. Niu, Z. Zhou, and C. Zhuo. Msh: A multi-stage hiz-aware

homotopy framework for nonlinear dc analysis. In DATE ’24.
[8] Z. Jin, T. Feng, Y. Duan, X. Wu, M. Cheng, Z. Zhou, and W. Liu. Palbbd: A parallel

arclength method using bordered block diagonal form for dc analysis. In GLSVLSI
’21.

[9] C. T. Kelley and D. E. Keyes. Convergence analysis of pseudo-transient continua-
tion. Siam Journal on Numerical Analysis, 35(2), 1998.

[10] W. Weeks, A. Jimenez, G. Mahoney, D. Mehta, H. Qassemzadeh, and T. Scott.
Algorithms for astap–a network-analysis program. IEEE Transactions on Circuit
Theory, 20(6), 1973.

[11] L. Goldgeisser, E. Christen, M. Vlach, and J. Langenwalter. Open ended dynamic
ramping simulation of multi-discipline systems. In ISCAS ’01.

[12] X. Wu, Z. Jin, and Y. Inoue. Numerical integration algorithms with artificial
damping for the pta method applied to dc analysis of nonlinear circuits. In
ICCCAS ’13.

[13] X. WU, Z. JIN, D. NIU, and Y. INOUE. A pta method using numerical integration
algorithms with artificial damping for solving nonlinear dc circuits. Nonlinear
Theory and Its Applications IEICE, 2014.

[14] Z. Jin, X. Wu, Y. Inoue, and N. Dan. A ramping method combined with the
damped pta algorithm to find the dc operating points for nonlinear circuits. In
ISIC ’14.

[15] Z. Jin, X. Wu, D. Niu, X. Guan, and Y. Inoue. Effective ramping algorithm and
restart algorithm in the spice3 implementation for dpta method. Nonlinear Theory
and Its Applications IEICE, 6, 2015.

[16] Z. Jin, X.Wu, and Y. Inoue. An effective implementation and embedding algorithm
of pta method for finding dc operating points. In ICCCAS ’13.

[17] Z. Jin, X. Wu, and Y. Inoue. Effective implementation and embedding algorithms
of cepta method for finding dc operating points, 2013.

[18] Z. JIN, M. LIU, and X. WU. An adaptive dynamic-element pta method for solving
nonlinear dc operating point of transistor circuits. In MWSCAS ’18.

[19] B. Merlet and M. Pierre. Convergence to equilibrium for the backward euler
scheme and applications. Communications on Pure and Applied Analysis, 9(3),
2010.

[20] K. S. Kundert and P. C. Gray. The designer’s guide to spice and spectre, 1995.
[21] H. R. Pota. Inside spice, 2010.
[22] F. N. Najm. Circuit simulation. John Wiley Sons, 2010.
[23] X. Wu, Z. Jin, D. Niu, and Y. Inoue. An adaptive time-step control method in

damped pseudo-transient analysis for solving nonlinear dc circuit equations.
IEICE Transactions on Fundamentals of Electronics, Communications and Computer
Sciences, 100, 2015.

[24] Z. Jin, H. Pei, Y. Dong, X. Jin, X. Wu, W. W. Xing, and D. Niu. Accelerating
nonlinear dc circuit simulation with reinforcement learning. In DAC ’22.

[25] D. Niu, Y. Dong, Z. Jin, C. Zhang, Q. Li, and C. Sun. Ossp-pta: An online stochastic
stepping policy for pta on reinforcement learning. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 42(11), 2023.

[26] Y. Dong, D. Niu, Z. Jin, C. Zhang, Q. Li, and C. Sun. Adaptive stepping pta for
dc analysis based on reinforcement learning. IEEE Transactions on Circuits and
Systems II: Express Briefs, 70(1), 2023.

[27] X. Zha, H. Pei, D. Niu, X. Wu, and Z. Jin. Deep learning enhanced time-step
control in pseudo transient analysis for efficient nonlinear dc simulation. In
ISEDA ’23.

[28] Y. Dong, D. Niu, Z. Jin, C. Zhang, C. Sun, and Z. Zhou. Ispt-net: A noval transient
backward-stepping reduction policy by irregular sequential prediction trans-
former. In DATE ’24.

[29] W. W. Xing, X. Jin, T. Feng, D. Niu, W. Zhao, and Z. Jin. Boa-pta: A bayesian
optimization accelerated pta solver for spice simulation. ACM Transactions on
Design Automation of Electronic Systems, 28(2), 2022.

[30] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud. Neural ordinary
differential equations. In NIPS’18.

[31] C. Li, B. Zhang, Y. Duan, Y. Li, Z. Ye, W. Liu, D. Tao, and Z. Jin. Masc: A memory-
efficient adjoint sensitivity analysis through compression using novel spatiotem-
poral prediction. In DAC ’24.

[32] W. Xiao, T.-H. Wang, R. Hasani, M. Lechner, Y. Ban, C. Gan, and D. Rus. On the
forward invariance of neural odes. In ICML’23.

[33] J. Barby and R. Guindi. Circuitsim93: A circuit simulator benchmarking method-
ology case study. In ASIC ’93.

[34] H. Ren, S. Nath, Y. Zhang, H. Chen, and M. Liu. Why are graph neural networks
effective for eda problems? (invited paper). In ICCAD ’22.

[35] D. Sánchez, L. Servadei, G. N. Kiprit, R. Wille, and W. Ecker. A comprehensive
survey on electronic design automation and graph neural networks: Theory and
applications. ACM Transactions on Design Automation of Electronic Systems, 28(2),
2023.

[36] Y. Chen, H. Pei, X. Dong, Z. Jin, and C. Zhuo. Application of deep learning in
back-end simulation: Challenges and opportunities. In ASPDAC ’22.

[37] P. Chen, D. Niu, Z. Jin, C. Sun, Q. Li, and H. Yan. Tsa-ticer: A two-stage ticer
acceleration framework for model order reduction. In DATE ’24.

[38] L. Alrahis, J. Knechtel, and O. Sinanoglu. Graph neural networks: A powerful
and versatile tool for advancing design, reliability, and security of ics. In ASPDAC
’23.

[39] Y. Ma, H. Ren, B. Khailany, H. Sikka, L. Luo, K. Natarajan, and B. Yu. High per-
formance graph convolutional networks with applications in testability analysis.
In DAC ’19.

	Abstract
	1 Introduction
	2 Background
	2.1 PTA for Nonlinear DC Simulation
	2.2 Problem Formulation
	2.3 Neural Ordinary Differential Equations

	3 Pseudo Adjoint Optimization
	3.1 Overall Framework
	3.2 Solution Curve Modeling Using Neural ODE
	3.3 Pseudo Ajoint Optimization
	3.4 Netlist2vec Embedding Through GCN

	4 EXPERIMENTS AND RESULTS
	4.1 Experimental Setup
	4.2 Solution Curve Modeling Performance
	4.3 PTA Acceleration Comparisons
	4.4 PTA Convergence Comparisons
	4.5 Unseen Circuit Performance with GCN
	4.6 Comparisons with PTA Algorithm Utilizing Advanced Time-Step Strategy

	5 Conclusion
	Acknowledgments
	References

