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Abstract—IR drop analysis plays a key role in chip design.
Unlike conventional time-consuming numerical analysis methods,
which involve solving large-scale linear circuit equations, predict-
ing the IR drop with machine learning shows great potential
to significantly reduce computation time. However, applying
machine learning for accurate prediction is non-trivial since
achieving effective feature extraction poses significant challenges.
Furthermore, as the number of layers in the neural network
model increases, the loss of information in the transmission
process gradually increases, leading to inaccurate prediction
results. In this paper, we propose UnetPro, an innovative ma-
chine learning model to resolve these challenges. We leverage
an attention mechanism that combines both global and local
information and a multi-scale convolution module to make the
model sufficiently perceive the various regions of the feature
map, enhancing the feature extraction ability of the model.
Moreover, we ensure the coherence of information by introducing
skip connection. We also introduce the dropout mechanism to
ensure the stability of model with information transfer. Compared
with conventional Unet model, the error and correlation of our
proposed algorithm are lower than it by 2.5e-4 and higher by
10.34%, respectively.

Index Terms—IR Drop, Machine Learning, Attention Mecha-
nism, Skip Connection, Multi-Scale Convolution

I. INTRODUCTION

Along with the rapid development of integrated circuits, the
process nodes shrink, and the metal interconnects line widths
become narrower, causing an increase in the resistance per
unit length [1]. At the same time, the unit voltage on the chip,
located far from the power supply, experiences a significant
drop. This drop can lead directly to errors or failures in the
unit’s function, which is fatal to the design. Therefore, the
signoff phase is critical for analyzing the IR drop.

There are two main types of IR drop, static IR drop and
dynamic IR drop. Due to its significant impact on power
distribution and overall chip reliability, static IR drop analysis
attracts a lot of researches [2]. The static IR drop primarily
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arises from the division of voltage caused by the inherent
resistance of the metal connecting lines [3]. So the static IR
drop is related to the structure of the power supply network,
mainly considering resistive effects. Generally, the IR drop
problem ends up solving a system of sparse linear equations
using the Modified Nodal Analysis, i.e., Gx=b [4], where G is
the conductance matrix, x is the node voltage vector, and b is
the excitation vector. However, with increasing system on chip
(SoC) integration, the size of the system of linear equations
grows to millions or more, incurring significant memory and
computational overhead.

In order to reduce the computational overhead, multi-grid
method [5] and random walk algorithms [6] are proposed. But
there is still a certain computational overhead, especially when
the power grids are uneven and irregular. On the other hand,
the success of machine learning (ML) in computer vision tasks
generates widespread interest in applying artificial intelligence
(AI) to prediction problems. The application of ML provides
new methods for the IR drop analysis [7] [8]. For example,
some previous works extract localized properties of Power
Delivery Network (PDN) into XGBoost [9] to predict the
IR drop. There are also some works that consider the power
transfer noise map as an image and employ a convolutional
neural network (CNN)-based [10] [11] [12] strategy for IR
drop prediction. Although the above work outperform tradi-
tional linear solver in terms of solution speed, their prediction
accuracy and stability are issues of concern. Specifically, con-
volutional kernel selection is never easy, resulting in significant
challenges in feature extraction. Smaller windows may violate
the principle of locality, and larger windows may require a
large amount of training time. Moreover, as the number of
layers of the model network increases, the loss of information
in the transmission process will gradually increase, which has
an impact on the prediction accuracy.

To overcome the above challenges, we propose UnetPro, a
new effective static voltage drop machine learning prediction



model for SoC power networks. Our main contributions are
as follows:

• We introduce multi-scale convolution and attention mech-
anism, which acquires multi-scale information about the
target in different layers of the network. This enhances
the feature extraction function of the model.

• Our model integrates skip connection and dropout mech-
anism to reduce loss of information transmission and
provide improved prediction performance.

• Our proposed method improves the prediction perfor-
mance with an average absolute error of about 1e-3 and a
correlation coefficient higher than 85%. Compared with
Unet, the error and correlation of our model are lower
than it by 2.5e-4 and higher by 10.34% respectively.

The rest of this paper is organised as follows. Section
II presents the background of IR drop analysis. Section III
presents the details of our model. Section IV shows the
experimental results. Finally, Section V concludes the paper.

II. BACKGROUND

A. IR Drop

IR drop is the voltage reduction in an integrated circuit
caused by current flowing through wires and resistive ele-
ments. This IR drop can cause different parts of the circuit
to operate at different voltage levels, thus affecting the perfor-
mance of the circuit.

For full-chip IR drop analysis, commercial software typi-
cally abstracts the physical design into a mathematical model
and then solves for a large system of linear sparse equations.
However this process often requires a significant amount of
computational time. In recent years, the application of machine
learning in circuit design has gradually emerged to provide
innovative solutions for IR Drop prediction. By learning a
large amount of circuit design data and actual performance
information [13], machine learning models are able to tap
into the underlying complex relationships to achieve accurate
prediction of circuit IR Drop.

An example of this is the conversion of a power network
layout into a meaningful representation of image features, as
shown in Figure 1. With a convolutional neural network, a
static IR drop distribution map can be generated to provide
designers with an intuitive reference.
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Fig. 1. Features are extracted from the circuit layout and IR Drop distribution
maps are generated by convolutional network.

B. Unet Model
The Unet model [14] is proposed by Olaf Ronneberger,

Philipp Fischer, and Thomas Brox in 2015. It is initially
designed to address medical image segmentation problems,
such as segmenting organs like the lungs and liver. The in-
troduction of Unet aims to improve the performance of image
segmentation through a specific encoder-decoder structure and
skip connection.

The Unet model uses an encoding-decoding structure. The
encoder gradually extracts features and reduces the spatial
dimensions of the input image through convolutional and pool-
ing layers. The intermediate layer captures global information
through deep convolutional layers. The decoder consists of
convolutional and upsampling layers that gradually increase
the spatial dimension of the feature map to reconstruct the
image. The key skip connection mechanism connects the
convolutional processing result of a layer in the encoder
directly to the corresponding layer in the decoder, which helps
to retain more detailed information. The model structure of
Unet is shown in Figure 2.
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Fig. 2. The Unet model consists of an encoder and a decoder that passes in-
formation through skip connections. The encoder extracts high-level features,
the decoder restores the image segmentation results, and the skip connections
help to preserve detailed information.

The strength of the Unet model lies in its unique encoding-
decoding structure and skip connection mechanism, which
helps to capture both local and global information efficiently.
Its relatively simple implementation and superior performance
make it one of the classic models in the field of image
segmentation. However, Unet also has some shortcomings,
including relatively low efficiency in processing large-size
images, which may lead to information loss, as well as a
possible overfitting problem for small-size datasets.

C. Attention Mechanism
Attention mechanism is a widely used mechanism in deep

learning, the core idea of which is to enable the model to focus
more on specific spatial regions or channels when processing
input data by learning dynamic weights [15]. It usually in-
cludes channel attention, which strengthens the model’s ability
to perceive important channels by weighting feature channels,
and spatial attention, which enables the model to focus more
on key regions in the image by weighting the spatial location
of the input.

D. Skip Connection
Skip connection is a common technique in neural network

architectures designed to facilitate information flow and gra-
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Fig. 3. (a) Shows the entire program design flowchart. (b) shows the model structure of UnetPro, which is based on the Unet structure and adopts the overall
encoder-decoder architecture, incorporating structures such as the attention mechanism, skip connections and multi-scale convolution.

dient propagation [16]. Bypassing a number of intermediate
layers by using the output of one of the upper layers of
the network as the input to one of the lower layers, this
form of upper and lower layer connectivity allows for better
information communication to be established between the
different layers, thus preserving and utilizing the detailed
information in the original inputs more efficiently.

III. PROPOSED ALGORITHM

A. UnetPro Framework

In this paper, we propose a new machine learning model,
UnetPro, to resolve the feature extraction and prediciton
accuracy challenges in the IR drop prediction. The entire
framework is shown in Figure 3(a). UnetPro is an image
segmentation algorithm based on the Unet structure, which
utilizes the overall encoder-decoder architecture. The Encoder
succeeds in reducing the image dimensionality by stacking
convolutional and maximal pooling layers, while the De-
coder progressively reduces the resolution through the inverse
convolutional layers and skip connection, and introduces an
attention module to achieve accurate capture of global and
local information. The UnetPro model has three input features:
total power (the total power consumption of the instance), vdd-
r (the equivalent resistance value of the instance connected to
the powernet), and gnd-r (the equivalent resistance value of the
instance connected to the ground net). The model structure of
UnetPro is shown in Figure 3(b).

Specifically, to further enhance the model performance, we
introduce an attention mechanism in the decoder part to high-
light the key feature regions. At the same time, a multi-scale
convolution module is introduced in the encoder to capture
image features at different scales more comprehensively. In
the decoder, we introduce a more complex skip connection
mechanism due to the limitations of information transfer that
may result from the simple splicing operation of the skip con-
nection mechanism in Unet. Our skip connection incorporates

an attention mechanism that allows the model to dynamically
adjust the joining weights according to the importance of
features at different levels, thus capturing the key information
in the image more efficiently. This overall design aims to
address the challenges of more fully and comprehensively
utilizing the semantic information of the feature graph, thereby
significantly improving the model performance.

B. Data Pre-processing

Due to the differences in the number of samples of different
categories or eigenvalues in the dataset, it may lead to the
bias of the model towards certain categories or eigenvalues,
which in turn affects the model performance and stability. In
order to solve this problem, we adopt the method of coordinate
mapping and region categorization for data preprocessing.
Specifically, by mapping the component information to the
corresponding regions, we record the maximum VDD drop
and GND bounce in each region in detail, along with compre-
hensive statistics, including the number of components, total
power consumption, and effective resistance data. In this way,
we are able to better deal with the data imbalance problem,
while extracting key features and preserving spatial informa-
tion, thus effectively improving the generalization ability and
performance of the model.

In order to improve the model performance and general-
ization ability, we introduce data augmentation techniques,
which use three main data augmentation operations, i.e., Flip,
Rotation, and Crop, to increase the diversity of the training
data, so that the model can better adapt to different input
conditions and improve its robustness. In the Flip operation, a
decision is made on whether to flip the image horizontally or
vertically based on a set random probability (default is 0.5).
The Rotation operation also determines whether to rotate or
not with a random probability, randomly selecting the rotation
angle, which can be between 0, 90, 180 and 270 degrees.
Finally, the Random Crop operation determines whether to
crop by a set probability (default 0.5), first scaling the image



to a specified size (default 384), and then randomly selecting
a region in the image for cropping to obtain an image of the
target size (default 256).

To address the performance challenges of small sample data
types and to fully utilize all available data, we take an approach
similar to rolling learning. In this approach, the entire dataset
is divided into multiple training rounds, and the test set of
each round is incorporated into the training set of the next
round. The details of how this works are shown in Figure 4.
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Fig. 4. The entire dataset is divided into multiple training rounds, and the test
set from each round is incorporated into the training set for the next round.

Finally, we note that label dimensionality may have a po-
tential impact on model training speed and prediction perfor-
mance. Therefore, we adopt a label dimensionality reduction
strategy to downscale the final prediction to one dimension by
summing the values of VDD and GND, thus improving the
training speed and reducing the computational burden while
maintaining the prediction performance.

C. Attention Mechanism

In order to focus more efficiently on important regions in
an image, we introduce an attention module that combines
global and local information fusion mechanisms. The module
is designed to compute a set of attention weights to weight
the feature maps of the encoder and decoder inputs through a
combination of global and local feature transforms and ReLU
and Sigmoid activation functions. This process allows the
model to focus more on task-relevant information, improving
the perception of critical regions in the image.

In particular, in our model, first, the module receives the
feature map output from the encoder and the feature map
input from the decoder, including global and local feature
information. Next, the input feature maps are transformed by
global and local feature transformations to extract global and
local association information. Subsequently, a set of attentional
weights are generated by the computation of ReLU and
Sigmoid activation functions. These weights are used to weight
the feature maps of the encoder and decoder. Finally, the
computed attention weights are applied to the feature maps
of the encoder and decoder to obtain a feature representation
that pays more attention to the important regions.

D. Skip Connection

The traditional Unet model employs a skip connection
mechanism, the core idea of which is to connect the feature
maps of the encoder with the feature maps of the correspond-
ing layers of the decoder in order to provide more high-level
semantic information. However, this mechanism may lead to
specific problems in practice, such as information bottleneck
and gradient vanishing. To address these issues, we propose
an improved skip connection mechanism.

In our model, an improved skip connection mechanism
is employed to solve the problem of information transfer
limitations that may result from simple splicing operations
in traditional Unet. In the process of skip connection, we
first utilize the attention mechanism to regulate the features
between the encoder and decoder. Specifically, we use the
attention mechanism to dynamically adjust the connection
weights so that the model can pay more attention to important
feature information while suppressing irrelevant information.
This skip connection mechanism combined with the attention
mechanism enables the model to utilize the feature interactions
between the encoder and decoder more flexibly, thus improv-
ing the accuracy and robustness of the model for the image
segmentation task.

E. Multi-scale Convolution Module

In order to further enhance the feature extraction perfor-
mance of the model, we use multi-scale convolution module
with different sizes of convolution kernels on the data for
extraction. It consists of multiple parallel convolutional layers,
each of which captures different scale features of the input
data. After the capture is completed, the output results of these
different scale convolutional layers are fused and output.

The principle of multi-scale convolution module can be
explained by the multi-scale information in the visual scene.
For the feature maps processed by our model, different scales
of the extracted field of view are important for understanding
the size, shape, and texture of the feature map content. So
by using convolution kernels of different sizes, multi-scale
convolution module capture local details while preserving
global contextual information to a large extent. Its structure
is shown in Figure 5.

IV. NUMERICAL EXAMPLES

A. Experimental Setup

We use PyCharm to implement our work in Python. All
experiments are conducted on an Intel Xeon dual-CPU server
with a main frequency of 2.6GHz. The server is equipped with
256GB of RAM, and the graphics card model is NVIDIA
3060.

Our dataset covers five different categories, namely, Nvdla-
small, RISCY, RISCY-FPU, Zero-riscy, and Vortex-small.
Each of these categories contains four key data files. In the Min
Path Res file, the feature information includes the minimum
resistance value, winding name, and cell instance name for
each instance. In the Effective Res file, the feature information
includes the equivalent resistance values connected to the
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Fig. 5. Three different scales of features are captured for the input data and
the results are fused for output.

power net and ground net, the coordinates and names of the
instances on the power net and ground net, and so on. The
power consumption report file contains features such as operat-
ing frequency, flip-flop rate, leakage power consumption, flip-
flop power consumption, etc. of the instance. And the static
IR drop report file contains feature information such as VDD
drop and ground bounce, and so on.

Table 1 illustrates the hyperparameter settings of the
model.In the encoder, the number of filters in each layer starts
at 64 and gradually increases by a factor of 2. In the decoder,
the highest layer starts with 256 filters and the number of filters
is reduced by half in each subsequent layer. Additionally, in
the decoder, the kernel size for each layer is set to 3. If the
number of filters in a layer exceeds 128, dropout is applied
with a dropout rate of 0.2. To ensure effective learning of the
data, the model is trained in batches with a batch size of 10.
The training process consists of 500 epochs, with a learning
rate of 0.005 and a weight decay of 0.

In order to be able to better focus on the prediction accuracy
of our model, we use the correlation coefficient (CC), the mean
absolute error (MAE), and the mean absolute percentage error
(MAPE) as measures of accuracy.

The correlation coefficient is defined as follows, yi is the
predicted value of pressure drop, ŷi is the Golden pressure
drop, and n is the number of data points.

CC =

∑n
i=1 [yi −mean(y)] [ŷi −mean(ŷ)]√∑n

i=1 [yi −mean(y)]
2 ∑n

i=1 [ŷi −mean(ŷ)]
2

(1)

The mean absolute error is a metric used to measure the
prediction error of the model and is calculated as follows.

MAE =
1

n

n∑
1

|ŷi− yi| (2)

The value of MAPE is expressed as a percentage and
represents the magnitude of the mean relative error. The

TABLE I
PARAMETER SETTINGS IN UNETPRO.

Parameters Settings

Model
Parameters

Conv1 filter size 128*128
filters 64

Conv2 filter size 64*64
filters 128

Conv3 filter size 32*32
filters 256

Training
Parameters

Batch-size 10
Max-iters 5000

In-channels 3
Out-channels 1
Learning rate 0.005
Weight-decay 0
Loss function L1+L2

GPU 1

calculation formula is shown below.

MAPE =
1

n

n∑
i=1

∣∣∣∣ ŷi− yi

ŷi

∣∣∣∣× 100 (3)

B. Model Comparison

We conduct sufficient performance tests on our model
and datasets, including testing the same model on different
types of data and testing the same data on different types
of models, using performance metrics such as mean absolute
error (MAE), correlation coefficient (CC), and mean absolute
percentage error (MAPE). Table 2 shows the performance test
results of our final UnetPro model and the ordinary Unet model
on four different datasets, where MAE and CC are used as the
performance metrics, and the comparison clearly shows that
UnetPro has a 10% improvement in CC compared with Unet
and keeps the MAE around 0.0015.

The UnetPro split can be divided into three parts or phases,
which are also the three main breakthrough points in our
overall experiment, representing the new modules being added
to our model. For the performance impact of this series of
changes, we conduct comparative tests on each of the four
datasets using the same amount of data. Figure 6 and Figure
7 show the performance of our model at each of the three
phases and compare it with Unet, it can be seen that our
incremental improvements reduce the model’s prediction error
and improve the prediction accuracy. Each modular addition
to the model makes significant improvements to CC while
ensuring that MAE is at a lower level.

Through the comparison, we can see that the skip connec-
tion is the core optimization point of the model. Furthermore,
the prediction performance of the model is increased by about
10% through the introduction of the attention mechanism and
multi-scale convolution module.

In addition, we also take an additional 10 cases from the
data and make further comparison tests between the Unet



TABLE II
UNET AND UNETPRO TEST RESULTS FOR EACH METRIC UNDER THE FOUR CATEGORY DATASETS.

Model Zero-riscy RISCY RISCY-FPU Nvdla-small
MAE CC MAE CC MAE CC MAE CC

Unet [14] 0.0016 0.7953 0.0013 0.7369 0.0014 0.7459 0.0028 0.7219
UnetPro 0.0017 0.8786 0.0011 0.8830 0.0012 0.8345 0.0021 0.8178

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007
Mean Absolute Error (MAE) 
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Fig. 6. A demonstration of the performance of the four-stage model on the
MAE metric.
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Fig. 7. A demonstration of the performance of the four stages of the model
on the CC metrics.

model and the UnetPro model using the MAPE metric on
them, as shown in Figure 8. The figure shows that the UnetPro
generally decreases in MAPE by about 20% compared to the
Unet, which indicates that the UnetPro is significantly smaller
than the Unet in terms of the prediction error and keeps the
MAPE below 40%.
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Fig. 8. Performance of Unet and UnetPro under the MAPE metric.

V. CONCLUSION

In this paper, we introduce UnetPro as an IR drop prediction
model. The prediction accuracy and stability of the model are
significantly improved by combining structures such as atten-
tion mechanism, skip connection, and multi-scale convolution.

Data enhancement further optimizes the model performance.
Experiments demonstrate that the average absolute error of
UnetPro is lower than 1e-3 and the correlation coefficient
is higher than 85%. Compared with traditional simulation
methods, UnetPro improves the prediction performance with
more efficient speed and provides a reliable advanced solution
for circuit design.
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