
ISLU: Indexing-Efficient Sparse LU Factorization for Circuit
Simulation on GPUs (Invited Paper)

Dan Niu
School of Automation, Southeast

University
Nanjing, 210096, China
danniu1@163.com

Yiyang Tao∗
School of Integrated Circuits,

Southeast University
Nanjing, 210096, China
220226351@seu.edu.cn

Zhou Jin∗
SSSLab, Dept. of CST, China

University of Petroleum-Beijing
Beijing, 102249, China
jinzhou@cup.edu.cn

Yichao Dong
School of Automation, Southeast

University
Nanjing, 210096, China
230238503@seu.edu.cn

Chao Wang
School of Automation, Southeast

University
Nanjing, 210096, China
220232025@seu.edu.cn

Changyin Sun
School of Artificial Intelligence,

Anhui University
Hefei, 230601, China
cysun@seu.edu.cn

ABSTRACT
Sparse LU factorization is a vital technique in solving circuit lin-
ear equations, However, irregular data access patterns contribute
to unsatisfactory computational efficiency and excessive memory
usage. Conventional LU factorization methods generally involve
two approaches: either they utilize space-intensive dense matri-
ces for direct index-to-data mapping, or they inefficiently scour
through indices to locate the positions of updated data elements. To
resolve these challenges, we propose the Indexing-Efficient Sparse
LU factorization (ISLU) in this work. A novel indexing-efficient
member union is put forwarded to achieve efficient retrieval of
indices within compressed formats, thereby significantly enhanc-
ing the LU decomposition efficiency. Furthermore, to expedite the
establishment of indexing-efficient member union, we design, for
the first time, parallel creating member union strategy for GPU
platforms, which remarkably reduces the time overhead associated
with constructing the proposed structures. Extensive experimental
comparisons on 49 benchmark matrices and real SPICE transient
simulations demonstrate that the performance enhancements by
our proposed ISLU method are substantial, outperforming various
excellent GPU and CPU solvers including commercial solvers.
ACM Reference Format:
DanNiu, Yiyang Tao, Zhou Jin, YichaoDong, ChaoWang, and Changyin Sun.
2024. ISLU: Indexing-Efficient Sparse LU Factorization for Circuit Simulation
on GPUs (Invited Paper). In IEEE/ACM International Conference on Computer-
Aided Design (ICCAD ’24), October 27–31, 2024, New York, NY, USA. ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/3676536.3695410

This work was supported by National Key R & D Program of China (No.
2021YFB0300600), National Natural Science Foundation of China (No. 62374031,
62204265, 62234010), Natural Science Foundation of Jiangsu Province under Grant
BK20240173, the State Key Laboratory of Computer Architecture (ICT, CAS) (Grant
No. CARCHA202115). (*Corresponding author: Zhou Jin and Yiyang Tao).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICCAD ’24, October 27–31, 2024, New Jersey, NJ, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1077-3/24/10
https://doi.org/10.1145/3676536.3695410

1 INTRODUCTION
Sparse LU factorization has a profound impact on the performance
of circuit simulation. In SPICE simulations (DC, TRAN, AC), the
solutions of numerous sparse linear equations in Newton-Raphson
(NR) iterations [1] have become the primary performance bottle-
neck for large-scale circuit simulations. For instance, in a post-
layout simulations, solving linear equations can consume more
than three-quarters of the total simulation time [2]. These equa-
tions, representing the nonlinear characteristics of circuit devices,
culminate in solving 𝐴𝑥 = 𝑏 [3]. Sparse LU factorization is widely
utilized in SPICE simulators for the solution of linear equations. The
LU factorzation procedure consists of three steps: symbolic analy-
sis, numerical factorization and substitution. Many solvers based
on CPU or GPU platforms have been developed around numerical
factorization [4-9].

Numerous sparse LU factorization methods have been developed
for CPUs, including SuperLU [10], PARDISO [11], KLU [12], and
NICSLU [13]. Despite the advancements made by many existing
sparse LU decompositionmethods, they still fall short of satisfaction
due to the inefficiency of parallelism. For instance, i) In SuperLU,
obtaining large supernodes in very sparse matrices is challenging,
significantly reducing the parallelism in multiplication. ii) KLU
does not achieve parallelization on CPUs. iii) Despite efforts to
utilize CPUmulti-thread, its limited capacity falls short in markedly
increasing time for very large matrix decomposition, indicating the
urgent need for improved parallel strategies.

GPU-enabled algorithms, including GLU and its variants [14-16],
SFLU [17], GPU-enabled NICSLU [18] and etc [19-26], have been
developed. However, there are still some issues: i) Increased re-
sources entail greater storage needs. Effective GPU memory man-
agement is overlooked despite its criticality. ii) Performing factor-
ization within compressed format often encounters difficulties in
accessing the necessary indices, consequently leading to degrada-
tion in efficiency.

Unlike general-purpose solvers, the unique characteristics of
circuit simulations can be exploited to optimize the performance of
the factorization. Sparse matrices keep a consistent pattern of non-
zero elements across iterations, even the numerical values change.

https://doi.org/10.1145/3676536.3695410
https://doi.org/10.1145/3676536.3695410

ICCAD ’24, October 27–31, 2024, New Jersey, NJ, USA Niu et al.

Previous circuit solvers, such as NICSLU and KLU, have taken ad-
vantage of this characteristic to offer two kinds of factorization:
factorization with pivoting and factorization without pivoting. The
former mode utilizes an Elimination Tree (Etree) to depict depen-
dencies among columns and employs it to facilitate parallelization.
However, the Etree evaluates any possible pivot order and tends
to overestimate dependence. Factorization with pivoting exhibits
subpar performance. The latter mode reutilizes the pivot order gen-
erated by the last factorization with pivoting. This reuse conserves
the structure of the LU factors, thereby bypassing the symbolic
operations. By constructing an elimination graph (Egraph) based
on the LU structure analysis, the factorization without pivoting
is guided to realize superior performance compared to factoriza-
tion with pivoting. This insight inspires us to artificially construct
reusable structures for further optimizing the performance of LU
factorization.

To enhance the numerous LU factorization efficiency during iter-
ative processes of various circuit simulations, an indexing-efficient
LU factorization algorithm named ISLU is proposed. The key con-
tributions are as follows:

• A parallel creating member union algorithm is proposed for
the first time. It facilitates the pre-computation of required
indices, achieving a substantial improvement in retrieval
speed.

• A novel indexing-efficient member union is designed to en-
hance the efficiency of index retrieval. The efficiency of ir-
regular access patterns in LU factorization is significantly
enhanced by using our member union.

• Extensive comparison experiments with various excellent
CPU and GPU parallel solvers on the public benchmark cir-
cuits and real SPICE TRAN simulations validate the high-
efficiency of proposed ISLU method.

2 BACKGROUND
2.1 Sparse left-looking factorization on GPUs
The sparse left-looking factorization [27] has been widely adopted
in solvers for circuit simulation. In the context of GPU implemen-
tations, the widely-used algorithm is pivot-free, as illustrated in
Algorithm 1.

The Algorithm 1 reuses the LU structure generated by previ-
ous factorization with pivoting. It progresses colummn-by-column,
transforming matrix data into its lower (𝐿) and upper (𝑈) triangular
components. Here we introduce matrix𝐴 that mirrors the non-zero
structure of LU factors but has been not factorized. 𝐴(𝑖, 𝑗) denotes
the non-zero element located at the 𝑖-th row and 𝑗-th column of
matrix𝐴. Thematrices𝐴, 𝐿, and𝑈 are all stored in a compressed for-
mat. 𝑁 denotes the dimension of the matrix. 𝑥 is a vector of length
𝑁 , and utilized to store the intermediate structural variables for the
current column. 𝐿 and𝑈 signify the upper and lower part of matrix
𝐴. Each column’s factorization is handled by an individual parallel
unit (line 1). In each column, the non-zero elements of the 𝑘-th col-
umn of matrix 𝐴 are initially scattered into the vector 𝑥 (line 2-4).
Employing a dense matrix 𝑥 for storing these values facilitates di-
rect indexing via 𝑗 during subsequent Multiply-Accumulate (MAC)
operations. The algorithm sequentially traverses non-zero elements

Algorithm 1: Sparse left-looking factorization.
1 for k in 1:N in parallel do
2 for i in 1:n where A(i,k) ≠ 0 in parallel do
3 𝑥 (𝑖) = 𝐴(𝑖, 𝑘) ;
4 end
5 Synchronize threads
6 for i in 1:k-1 where U(i,k) ≠ 0 do
7 for j in i+1:N where L(j,i) ≠ 0 in parallel do
8 𝑥 (𝑗) = 𝑥 (𝑗) − 𝑥 (𝑖) ∗ 𝐿(𝑗, 𝑖)
9 // irregular selection of index 𝑗

10 end
11 Synchronize threads
12 end
13 for i in k:n where L(i,k) ≠ 0 in parallel do
14 𝐿(𝑖, 𝑘) = 𝑥 (𝑖)/𝑥 (𝑘)
15 end
16 for i in 1:k where U(i,k) ≠ 0 in parallel do
17 𝑈 (𝑖, 𝑘) = 𝑥 (𝑖)
18 end
19 end

Output: Lower matrix (𝐿) and upper matrix (𝑈).

above the diagonal within the row, leveraging parallel thread exe-
cution within the column to perform a series of MAC operations
(line 6-11). Given the sparsity of circuit matrices, the selection of
index 𝑗 in the sequence of MAC operations is typically irreg-
ular. This non-contiguous indexing significantly impacts the
overall efficiency of LU factorization. The introduction of index
𝑖 and the synchronization of threads serve to ensure computation
safety. The lower triangular elements of the dense matrix 𝑥 , divided
by the diagonal elements, are gathered into the 𝐿 factor (line 12-14).
The upper triangular portion of 𝑥 is gathered into the𝑈 factor (line
15-17).

The algorithm capitalizes on the ample parallel processing capa-
bilities of GPU to reduce the computational expense of LU factoriza-
tion. Nonetheless, it confronts serious challenges. Due to irregular
access pattern, utilizing vector 𝑥 as a compute-intensive interme-
diary diminishes both data storage efficiency and computational
speed. On one hand, the introduction of 𝑥 necessitates additional
"scatter" and "gather" operations and incurs extra data loading
time. On the other hand, the substantial spatial requirement of
𝑥 , exacerbated by a growing number of allocated blocks, follows
a dimensionally-dependent trend in GPU memory consumption.
This may result in either decomposition failure or redundant data
reloading.

2.2 Motivation
During the Newton-Raphson iterations, since the nonzero structure
of circuit matrices remains constant, the symbolic analysis needs
to be executed only once. the performance of circuit simulations is
significantly shaped by the extensive numerical factorization and
substitution. The repetitive nature of these computations presents
an opportunity to exploit reusable matrix structural information.

ISLU: Indexing-Efficient Sparse LU Factorization for Circuit Simulation on GPUs (Invited Paper) ICCAD ’24, October 27–31, 2024, New Jersey, NJ, USA

Leveraging reusable structural information has already yielded
significant improvements in circuit simulation solvers. Reusing the
LU structure provided by pivoted factorization, without pivoting
variant bypasses complex procedures such as partial pivoting and
pruning, thereby achieving higher parallelism. Studies on 66 cir-
cuit matrices reveal that Etree are 77.4 times deeper and 10.5 times
shorter than Egraph [28], suggesting a significantly stricter sequen-
tial requirement for factorization with pivoting. The adoption of
reuse strategies markedly enhances LU factorization performance,
underscoring the benefits of factorization without pivoting enabled
by such optimizations.

To enhance the efficiency of factorization without pivoting, we
introduce for the first time the concept of an index-efficient member
union. Similar to Egraph, it serves as a container constructed by an-
alyzing the non-zero pattern of LU factors to improve factorization
throughput. Given that this container is solely tied to the non-zero
structure of the LU matrix, it enables reuse across hundreds of it-
erations. Through the indexing-efficient member union, the
irregular access patterns are captured in a contiguous man-
ner, permitting efficient execution of LU factorization for
hundreds of iterations..

3 RELATEDWORK
The academic landscape hosts numerous popular solvers, including
SuperLU [10], PARDISO [11], MUMPS [29], UMFPACK [30], which
primarily gear towards general-purpose applications rather than
circuit simulation. Matrices encountered in circuit simulations tend
to exhibit less regular structure, hindering substantial performance
enhancements through conventional methods such as supernodal
or multifrontal approaches. A few solvers, KLU [12], NICSLU [13],
are tailored to leverage matrix sparsity and optimize for circuit
simulation workflows.

Significant strides have been made in developing GPU solvers for
circuit simulations, which particularly focus on parallel algorithms
and optimization strategies for factorization without pivoting. Ren
et al. [31] proposed a levelset approach for parallelization. Refer-
ences [13-15] used Right-looking algorithm in GLU to decompose
circuit matrices. Lee et al. [26] proposed a series of detailed opti-
mizations for factorization on GPUs. Zhao et al. [17] proposed a
synchronization-free approach at SFLU to avoid the overhead of
starting many GPU kernels. Nonetheless, the methodologies have
not significantly mitigated the issue of inefficient factorization.

4 PROPOSED ALGORITHM
Our framework targets the enhancement of storage and computa-
tional performance for LU decomposition executed on GPUs. We
introduce parallel creating member union algorithm, tailored
specifically for GPU. This algorithm harnesses the fine-grained
parallelism inherent in creating member union framework, thereby
dramatically reducing the time expenditure associated with pro-
posed data structures. To address the additional spatial and temporal
overheads induced by irregular access patterns, we introduce the
indexing-efficient member union to assist in LU factorization.
This method enables computations to proceed within a compact for-
mat, thereby enhancing the efficiency of the factorization process.
The core of our framework resides in the indexing-efficient member

union. Parallel creating member union algorithm is strategically
devised to minimize the temporal complexities involved in estab-
lishing proposed structures. This work prioritizes the practicality
and efficiency of LU decomposition over various excellent CPU and
GPU solvers.

4.1 Parallel Creating Member Union Algorithm
4.1.1 Troubles with Irregular Access. Sparse circuit matrices are
typically stored in a compressed format. Storing circuit matrices in
a compressed format, while space-efficient, presents challenges for
computation due to the complexity in accessing nonzero. As illus-
trated in the lower half of Figure 1, the arrays 𝑎𝑝 , 𝑎𝑖 , and 𝑎𝑥 serve
as an example of storing a sparse matrix in compressed column
(CSC) format. Here, 𝑎𝑝 denotes the array holding pointers to the
start of each column’s non-zero elements, 𝑎𝑖 represents the array
containing the row indices of the non-zero elements, and 𝑎𝑥 is the
array storing the actual non-zero values. 𝑎𝑥 [𝑎𝑝 [𝑘] + 𝑗] signifies the
value of the 𝑗-th non-zero element located within the 𝑘-th column
in the compressed format. When decomposing a column of data in
compressed format, it is customary to first scatter the column into a
vector 𝑥 of size 𝑁 . This allows for a direct correspondence between
the data and their coordinates, thereby facilitating irregular access.
This approach leads to increased GPU memory consumption as the
dimension grows. Alternatively, it might employ a search algorithm
to ascertain the requisite indices prior to conducting any MAC op-
erations. This process is shown in Algorithm 2, which describes the
process of performing LU decomposition within a matrix stored in
CSC format. The relative position of index 𝑗 within the compressed
𝐴(:, 𝑗) is searched (line 5) and represented as 𝑖𝑛𝑑𝑒𝑥 . Utilizing the
𝑎𝑝 [𝑘]and 𝑖𝑛𝑑𝑒𝑥 facilitates the identification of the specific positions
of the non-zero entries (line 6) within the compressed format. Due
to the concurrent execution of search operations on index 𝑗 and
MAC operations, the overall efficiency of factorization is reduced.

4.1.2 Parallel Creating Member Union Strategy. The member union
serves as a container optimized for managing irregular access pat-
tern. Contrary to vector 𝑥 that maps data values directly to their
coordinates, it is to construct a mapping between index 𝑗 and the
locations of updated non-zero elements within compressed for-
mat. This process is described in Algorithm 3. The member union
is comprised of three constituent members: 𝑉ℎ𝑒𝑎𝑑𝑒𝑟 , 𝑉𝑙𝑒𝑛, and
𝑉𝑑𝑎𝑡𝑎. The 𝑉ℎ𝑒𝑎𝑑𝑒𝑟 functions as column pointer, giving the in-
dex of the pointer in the 𝑉𝑙𝑒𝑛 that points to the first sequence
of MAC operation in column 𝑘 . 𝑉𝑙𝑒𝑛 serves as an index pointer,
giving the index of the element in the 𝑉𝑑𝑎𝑡𝑎 that points to the
𝑖-th sequence of MAC operation in column 𝑘 . 𝑉𝑑𝑎𝑡𝑎 functions as
the index container that stores each relative position of index 𝑗 in
𝐴(:, 𝑘) in column 𝑘 . Algorithm 3 begins with the initialization of the
𝑉ℎ𝑒𝑎𝑑𝑒𝑟 , 𝑉𝑙𝑒𝑛, 𝑉𝑑𝑎𝑡𝑎 (line 1), and subsequently utilizes a pointer
from the 𝑉ℎ𝑒𝑎𝑑𝑒𝑟 to content within 𝑉𝑙𝑒𝑛 (line 3), which in turn
directs another pointer towards𝑉𝑑𝑎𝑡𝑎 (line 5). The relative position
of index 𝑗 in 𝑗-th column will be searched by navigating through
non-zero elements within the 𝑗-th column (line 7). This enables
𝑉𝑑𝑎𝑡𝑎 to employ pointer to deposit retrieved indices precisely at
their intended destination (line 8). This algorithm has great paral-
lelism on GPU. It can perform up to 32 × (𝑤𝑎𝑟𝑝) × (𝑏𝑙𝑜𝑐𝑘) search
algorithm simultaneously. The reason why so many index searches

ICCAD ’24, October 27–31, 2024, New Jersey, NJ, USA Niu et al.

Figure 1: The diagramof establishingmember union and utilizingmember union for factorization, the eight steps of constructing
member union and the four steps of using member union in MAC operation are respectively plotted.

can be performed at the same time is that, although in the process
of numerical decomposition, the values of non-zero elements are
updated in order but the index of each non-zero element needs
not to be updated in order. In circuit simulations, characterized
by unchanging non-zero entry patterns, member union akin to
Egraph can be repeatedly utilized across iterations. The details can
be shown in step 1 to step 8 in the upper part of Figure 1.

4.1.3 Member Union Construction Details. The top half of Figure
1 demonstrates an example of building a member union. Steps
1 to 4 involve initializing 𝑉ℎ𝑒𝑎𝑑𝑒𝑟 and 𝑉𝑙𝑒𝑛. Steps 5 through 7
match line 2 to 11 in Algorithm 3. By Step 8, we have the member
union loaded with the mapping relations. 𝑛𝑛𝑧𝐿 and 𝑛𝑛𝑧𝑈 reflect
the number of non-zero elements in the lower and upper halves of
each column in the matrix, excluding the diagonal elements. The
arrows represent the pathways by respective parallel computing

Algorithm 2: Traditional CSC MAC.
1 for k in 1:N in parallel do
2 for i in 1:k-1 where U(i,k) ≠ 0 do
3 for j in i+1:N where L(j,i) ≠ 0 in parallel do
4 𝑖𝑛𝑑𝑒𝑥 = the relative position of index 𝑗 in 𝐴(:, 𝑘)
5 // compute the index for MAC operation.

𝑎𝑥 [𝑎𝑝 [𝑘] + 𝑖𝑛𝑑𝑒𝑥]− = 𝐴(𝑖, 𝑘) ∗ 𝐿(𝑗, 𝑖)
6 // 𝑎𝑥 [𝑎𝑝 [𝑘] + 𝑖𝑛𝑑𝑒𝑥] denotes 𝐴(𝑗, 𝑘).
7 end
8 Synchronize all threads
9 end

10 end

units. Different colored circles represent the varying states of non-
zero elements, which are illustrated in the diagram. In the first step,

ISLU: Indexing-Efficient Sparse LU Factorization for Circuit Simulation on GPUs (Invited Paper) ICCAD ’24, October 27–31, 2024, New Jersey, NJ, USA

Algorithm 3: Parallel Creating Member Union.
1 Initialize and allocate memory for𝑉ℎ𝑒𝑎𝑑𝑒𝑟 ,𝑉𝑙𝑒𝑛 and𝑉𝑑𝑎𝑡𝑎.
2 for k in 1:N in parallel do
3 fetch the pointer from 𝑉ℎ𝑒𝑎𝑑𝑒𝑟 .
4 for i in 1:k-1 where U(i,k) ≠ 0 in parallel do
5 fetch the pointer from 𝑉𝑙𝑒𝑛.
6 for j in i+1:N where L(j,i) ≠ 0 in parallel do
7 𝑖𝑛𝑑𝑒𝑥= the relative position of index 𝑗 in 𝐴(:, 𝑘)
8 Use pointer to deposit index into 𝑉𝑑𝑎𝑡𝑎.
9 end

10 end
11 end

𝑉ℎ𝑒𝑎𝑑𝑒𝑟 records the sequence number of the first non-zero element
in each column that appears in the upper triangular matrix (𝑈).
This number represents the total number of non-zero elements in
𝑈 being selected before executing that column, and it is placed in
the corresponding column index in 𝑉ℎ𝑒𝑎𝑑𝑒𝑟 . In the second step,
under the first step, 𝑉𝑙𝑒𝑛 records the number of non-zero elements
in the lower triangular matrix within the sub-column. This number
is then accumulated with the previously recorded values in 𝑉𝑙𝑒𝑛
and pushed into it. These two steps are repeated in subsequent
processes to populate 𝑉ℎ𝑒𝑎𝑑𝑒𝑟 and 𝑉𝑙𝑒𝑛 (steps 3 and 4). In step 5,
each block is assigned to a column, with 𝑉ℎ𝑒𝑎𝑑𝑒𝑟 converting the
column index pointing to 𝑉𝑙𝑒𝑛, which in turn points to indices in
𝑉𝑑𝑎𝑡𝑎. In step 6, each block’s warp is allocated to the non-zero
elements (𝑛𝑛𝑧) of the upper triangle (𝑈) of that column, directing
them to the non-zero elements on the left that update this column.
In step 7, the threads of each warp are assigned to the non-zero
elements of the column that perform the MAC operations. Each
thread searches for the relative position of the row index of the non-
zero elment in column 𝑖 with respect to the row index in current
column 𝑘 . Here, a binary search is employed to locate the target
index. In step 8, we achieve a complete member union.

4.2 Member Union In Refactorization
4.2.1 Indexing-Efficient Refactorization algorithm. Following the
member union, we proceed to outline the indexing-efficient refac-
torization algorithm as shown in Algorithm 4, which illustrates
the incorporation of member union to assist in performing LU de-
composition within compressed matrix. It first extracts the pointer
from the 𝑉ℎ𝑒𝑎𝑑𝑒𝑟 and 𝑉𝑙𝑒𝑛 (line 2-4). Employing the 𝑎𝑝 [𝑘] and
𝑖𝑛𝑑𝑒𝑥 enables a series of MAC operations to be conducted within
compressed format (line 7). Compared to Algorithm 2, the member
union directly offers the indexes for MAC operation, eliminating
the need to compute these indexes separately and enhancing com-
putational efficiency. In comparison to Algorithm 1, this novel
strategy presents three primary benefits: i) It diminishes surplus
data transmission overhead. Since the LU decomposition opera-
tion is performed directly within the compressed format, the data
transfer costs associated with gather and scatter operations are
eliminated. ii) It mitigates the irregularity of data selection by
confining the scope of indexing value. When the data of a col-
umn is processed within compressed format, the range over which

Algorithm 4: Indexing-Efficient Refactorization.
1 for k in 1:N in parallel do
2 fetch the pointer from 𝑉ℎ𝑒𝑎𝑑𝑒𝑟 .
3 for i in 1:k-1 where U(i,k) ≠ 0 do
4 fetch the pointer from 𝑉𝑙𝑒𝑛.
5 for j in i+1:N where L(j,i) ≠ 0 in parallel do
6 Use pointer to fetch index from 𝑉𝑑𝑎𝑡𝑎.

𝑎𝑥 [𝑎𝑝 [𝑘] + 𝑖𝑛𝑑𝑒𝑥]− = 𝐴(𝑖, 𝑘) ∗ 𝐿(𝑗, 𝑖)
7 // 𝑎𝑥 [𝑎𝑝 [𝑘] + 𝑖𝑛𝑑𝑒𝑥] denotes 𝐴(𝑗, 𝑘).
8 end
9 end

10 Compute column 𝑘 for 𝐿.
11 end

data selection spans is reduced, thereby improving the regularity of
data access. iii) It consumes reduced GPU memory. Member union
records the pattern of accessing value rather than storing values,
which results in diminished footprint on GPU memory.

4.2.2 Indexing-Efficient Refactorization Details. Here we introduce
the method of using member union to assist LU decomposition,
which is described in Figure 1. In the first step, each block is directed
to each column. Here, we identify the locations of non-zero elements
in the upper triangular of factorized column. In the second step,
the selection of non-zero elements in the upper triangle of each
column is executed in a top-down order. In the third step, all threads
within a block perform MAC operations for that column. Selected
non-zero elements from the lower triangle of the left sub-columns
are used for the current column’s decomposition. Since the content
of 𝑉𝑑𝑎𝑡𝑎 records the relative positions of non-zero elements in 𝑎𝑖

and 𝑎𝑥 of the column for MAC operations, these operations can be
carried out in the CSC format.

5 EXPERIMENT
5.1 Experiment Setup
We tested 49 circuit matrices from sparse matrices collection [32],
and several netlists with dimensions spanning from 102 to 108
to demonstrate the validity of our method. We implemented our
Indexing-Efficient Sparse LU factorization (ISLU) as follows. ISLU
decomposes data to double precision. ISLU implements the paral-
lelization of LU decomposition by building an Egraph [13]. The
ISLU component operates in a single-threaded manner. The index
search, refactorization, and substitution processes are executed on
the GPU. The tested matrix is decomposed only on a single GPU.
If an instance occupies excessive space or its execution is overly
prolonged, its outcome will not be depicted in the graph (Figure 3).

Our experiments conduct tests on ISLU, NVIDIA CuSolver [33],
Intel MKL PARDISO [11], SFLU [17], and KLU [12], using a set of
49 circuit matrices. Commercial solver PARDISO is also utilized
to test additional five netlists for SPICE simulation comparison,
since it performs best among the popular sparse solvers [34]. The
pivoting thresholds for our solver, as well as for KLU [12], CuSolver
[33], and SFLU [17], are uniformly established at a value of 0.001.

ICCAD ’24, October 27–31, 2024, New Jersey, NJ, USA Niu et al.

A S
I C

_ 3 2
0 k s

A C
T I V

S g 7
0 K

a d d
e r _

d c o
p _ 0

1
a d d

e r _
d c o

p _ 0
5

a d d
e r _

t r a
n s _

0 1
a d d

2 0
m e

m p
l u s

a d d
3 2

h c i
r c u

i t
h v d

c 2
o s c

i l _ d
c o p

_ 0 1
b c i

r c u
i t

s c i
r c u

i t
r a j

a t 0
3

A S
I C

_ 6 8
0 k s

r a j
a t 2

6
A C

T I V
S g 2

0 0 0
r a j

a t 2
0

L e
G r

e s l
e y _

8 7 9
3 6

n x p
1

b i p
s 0 7

_ 1 6
9 3

L e
G r

e s l
e y _

2 5 0
8

A S
I C

_ 1 0
0 k s

r a j
a t 2

1
r a j

a t 2
4

L e
G r

e s l
e y _

4 9 0
8

c o u
p l e

d
A C

T I V
S g 1

0 K
r a j

a t 1
3

A S
I C

_ 3 2
0 k d c 3 R a
j 1

b i p
s 9 8

_ 1 1
4 2

r a j
a t 2

7
r a j

a t 1
2

m i
m o

8 x 8
_ s y

s t e
m

b i p
s 9 8

_ 1 4
5 0

m u
l t _

d c o
p _ 0

1
g e m

a t 1
1

n o p
s s _

1 1 k
m i

m o
4 6 x

4 6 _
s y s

t e m
b i p

s 9 8
_ 6 0

6
m i

m o
2 8 x

2 8 _
s y s

t e m
c i r

c u i
t _ 4

m e
m c

h i p
F r e

e s c
a l e

1
c i r

c u i
t 5 M

c i r
c u i

t 5 M
_ d c

G 3
_ c i

r c u
i t1 E - 1 4

1 E - 1 0
1 E - 6
0 . 0 1
1 0 0

1 0 0 0 0 0 0
1 E 1 0 I S L U

 P A R D I S O
 K L U

L2
-N

orm
 er

ror

Figure 2: Residual of solutions over 49 public sparse circuit matrices with different methods.

The entire project is implemented using C++ and compiled with
g++. It incorporates mixed compilation with CUDA 12.0 and nvcc
to leverage the capabilities of GPU acceleration. And no BLAS
libraries are utilized within our solver. Except for the SPICE TRAN
simulation, all other experiments are conducted on an Intel 24-core
server equipped with NVIDIA GeForce RTX 3090 GPU and Intel
Xeon Gold 6336Y CPU.

5.2 Main Result
Our work entails a comprehensive performance comparison of
ISLU against various GPU and CPU solvers, including commercial
solvers, such as Intel MKL PARDISO [11] and NVIDIA CuSolver
[33], specialized circuit simulation solvers, such as NICSLU (GPU)
[18] and KLU [12], LLA [26], RLA [35], and SFLU [17], GLU 3.0
[16]. The speedups compared to open source PARDISO, KLU, Cu-
Solver, and SFLU are conducted on a set of 49 public circuit matrices.
Factorization time for NISCLU(GPU), GLU 3.0, LLA, and RLA are
obtained from the respective references.

In terms of factorization speed, ISLU outperforms PARDISO
(16 threads) by arithmetic mean 9.38x and geometric mean 4.75x
speedups, outperforms KLU (sequential) by arithmetic mean 82.48x
and geometric mean 5.37x, outperforms CuSolver (GPU) by arith-
metic mean 31.82x and geometric mean 9.50x, outperforms SFLU
(GPU) by arithmetic mean 7.79x and geometric mean 7.43x, outper-
forms LLA by arithmetic mean 2.35x and geometric mean 2.08x,
outperforms RLA by arithmetic mean 7.65x and geometric mean
6.70x, and outperforms NICSLU (GPU) by arithmetic mean 5.15x
and geometric mean 3.78x, and outperforms GLU3.0 by arithmetic
mean 9.59x and geometric mean 8.47x speedups.

In the SPICE TRAN simulation experiments, we contrasted the
total runtime of our solver with that of PARDISO. As shown in
Table 3, aside from the factorization and substitution stages, the
solver incurs minimal time expenditure on other processes (sym-
bolic analysis, the creation of indexing-efficient member union,
parallelism analysis and others). Across five circuit netlists, our
solver exhibits a 4.73x geometric mean speedup over PARDISO (12
threads).

5.3 Accuracy of Solutions
Figure 2 illustrates the solution accuracy of our solver compared
to PARDISO and KLU. Here error is quantified via the L2 norm

(| |Ax-b| |2). Our solver demonstrates comparable performance to
PARDISO and KLU on a multitude of circuit matrices (ASIC_320ks,
add20, bcircuit and others), but with the added advantage of ensur-
ing more consistent and reliable precision. As shown in examples
such as LeGresley_1693, solvers like KLU and PARDISO cannot
ensure that their solutions will have an error approximately equiv-
alent to that of our solver. In the 49 benchmark matrices, PARDISO
fails to solve 2 circuit matrices (ASIC_680ks, circuit5M), and KLU
does not deal with 4 circuit matrices (ACTIVSg70K, nxp1, memchip,
G3_circuit), while our solver passes all the cases. This signifies that
our solver is capable of accurately and reliably solving a larger
range of matrices compared to PARDISO and KLU. The reason
of retaining accuracy is that our pivoting approach selects pivots
within a column and adopts the pivot checking to improve accu-
racy. However, PARDISO opts for pivots within dense diagonal
subblocks, which can confine the pivoting scope and potentially
lead to erroneous pivot selections. KLU fails to adequately manage
very small pivots.

5.4 ISLU vs CPU Solvers
5.4.1 Performance comparisons under different SPRs. Here we eval-
uate the performance of our proposed ISLU against two excellent
CPU solvers, PARDISO (using 16 threads) [11] and KLU (using 1
thread) [12]. The speedup of our solver’s factorization over KLU
(sequential) and PARDISO (using 16 threads) on 49 benchmark cir-
cuit matrices is depicted in Figure 3. We will evaluate these circuit
matrices with their respective sparsity ratio (𝑆𝑃𝑅). 𝑆𝑃𝑅 [36] is given
by

𝑆𝑃𝑅 = 𝐹𝐿𝑂𝑃𝑠
𝑁𝑁𝑍 (𝑈 +𝐿−𝐼) (1)

When matrix exhibits greater sparsity, 𝑆𝑃𝑅 tends to decrease.
In Figure 3, among the 49 benchmark circuitmatrices ranked

from low SPR to high SPR, PARDISO (using 16 threads) fails
to solve 2 matrices, while KLU (sequential) does not complete the
computation for 4 matrices. KLU is a serial solver, and it performs
poorly on both large circuit matrices and slightly dense matrices.
For slightly denser and larger instances such as ASIC_320ks and
ASIC_100ks, KLU runs slower compared to both our solver and
PARDISO (using 16 threads).

PARDISO (using 16 threads) is slower than our solver across
nearly all matrices. Simultaneously, our solver outperforms PAR-
DISO (using 16 threads) even on slightly densematrices (ASIC_320ks

ISLU: Indexing-Efficient Sparse LU Factorization for Circuit Simulation on GPUs (Invited Paper) ICCAD ’24, October 27–31, 2024, New Jersey, NJ, USA

A C
T I

V S
g 7 0

K
a d

d 3
2

r a j
a t 2

1
o s c

i l _
d c o

p _
0 1

a d
d e r

_ d
c o p

_ 0 1
a d

d e r
_ d

c o p
_ 0 5

r a j
a t 1

3
r a j

a t 1
2

h c i
r c u

i t
r a j

a t 2
6

L e
G r

e s l
e y _

4 9 0
8

m i
m o

8 x 8
_ s y

s t e
m

m i
m o

4 6 x
4 6 _

s y s
t e m

m i
m o

2 8 x
2 8 _

s y s
t e m

b i p
s 0 7

_ 1 6
9 3

n o
p s s

_ 1 1
k

b i p
s 9 8

_ 1 4
5 0

b i p
s 9 8

_ 1 1
4 2

b i p
s 9 8

_ 6 0
6

r a j
a t 2

7
g e m

a t 1
1

L e
G r

e s l
e y _

2 5 0
8

a d
d e r

_ t r
a n

s _ 0
1

a d
d 2

0
b c i

r c u
i t

m e
m p

l u s
c i r

c u i
t _ 4

c i r
c u i

t 5 M
A C

T I
V S

g 1 0
K

h v
d c 2

L e
G r

e s l
e y _

8 7 9
3 6

s c i
r c u

i t
A C

T I
V S

g 2 0
0 0 d c 3

G 3
_ c i

r c u
i t

r a j
a t 0

3
c o u

p l e
d

R a
j 1

c i r
c u i

t 5 M
_ d

c
F r

e e s
c a l

e 1
r a j

a t 2
4

A S
I C

_ 3 2
0 k

A S
I C

_ 6 8
0 k

s
n x

p 1
A S

I C
_ 3 2

0 k
s

r a j
a t 2

0
m u

l t _
d c o

p _
0 1

A S
I C

_ 1 0
0 k

s
m e

m c
h i p

0 . 1
1

1 0
1 0 0

1 0 0 0

Sp
eed

up
 O u r s v s P A R D I S O (T = 1 6)
 O u r s v s K L U (T = 1)
 O u r s v s S F L U (G P U)
 O u r s v s C u S o l v e r (G P U)

S P R : 3 0 - 2 6 0S P R : 1 0 - 3 0S P R : 0 - 1 0

Figure 3: Speedups of the proposed ISLU compared with PARDISO (using 16 threads), KLU (using 1 thread) and CuSolver (GPU),
SFLU (GPU) for the runtime of factorization.

1 4 8 1 6
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

2 3 . 3 7
1 6 . 8 7 1 2 . 8 2 9 . 3 8

8 2 . 4 8 8 2 . 4 8 8 2 . 4 8 8 2 . 4 8

Ar
ith

me
tic

 Av
era

ge
Sp

eed
up

N u m b e r o f t h r e a d s

 P A R D I S O
 K L U (S e q u e n t i a l)

Figure 4: Arithmetic speedups over PARDISO (using 1 thread,
4 threads, 8 threads, 16 threads) and KLU (sequential).

1 4 8 1 6

4

6

8

1 0

1 2

1 4
1 2 . 2 7

7 . 3 6
6 . 0 5

4 . 7 55 . 3 7 5 . 3 7 5 . 3 7 5 . 3 7

Ge
om

etr
ic A

ver
age

 Sp
eed

up

N u m b e r o f t h r e a d s

 P A R D I S O
 K L U (S e q u e n t i a l)

Figure 5: Geometric speedups over PARDISO (using 1 thread,
4 threads, 8 threads, 16 threads) and KLU (sequential).

and memchip). This superiority is largely attributed to the proposed
indexing-efficient member union, which mitigates the irregularity
inherent in sparse matrix operations and enhances data locality.
This means that our solver is capable of accommodating a broader
spectrum of matrix densities than PARDISO (using 16 threads).

Table 1: Performace comparisons on popular GPU solvers.
Matrix ISLU (ms) RLA [35] LLA [26] GLU 3.0 [16]
rajat12 0.91 3.00 1.37 2.23
circuit_2 0.88 4.00 1.43 4.14
memplus 0.59 6.00 1.77 6.67
rajat27 1.40 8.00 4.26 10.53
onetone2 6.04 62.00 11.61 60.96
rajat15 8.10 58.00 17.78 71.13
rajat26 3.42 13.00 6.17 32.36
circuit_4 18.29 35.00 13.82 68.94
rajat20 35.04 208.00 46.47 241.82

ASIC_100ks 14.24 187.00 49.83 215.49
hcircuit 2.71 12.00 8.13 46.99
scircuit 4.47 46.00 - -
transient 62.84 390.00 60.01 -
Raj1 90.58 902.00 - 845.18

ASIC_320ks 17.62 216.00 61.18 216.51
ASIC_680ks 13.77 184.00 66.46 210.69

Ari Mean Speedup 7.65 2.35 9.59
Geo Mean Speedup 6.70 2.08 8.47

Table 2: Performace comparisons between our ISLU and NIC-
SLU.

Matrix N (x103) ISLU (ms) NICSLU (ms) [18] Speedup
add32 5.0 0.20 0.40 2.00
hcircuit 105.7 2.71 6.50 2.39
add20 2.4 0.14 0.40 2.85
bcircuit 68.9 1.47 5.70 3.87
circuit_4 80.2 18.29 18.50 1.01
scircuit 171.0 4.47 58.00 12.97
rajat03 7.6 0.68 3.00 4.41
coupled 11.3 5.91 14.00 2.36
rajat15 37.3 8.10 41.70 5.14
rajat18 94.3 30.36 50.60 1.66
raj1 263.7 90.21 227.40 2.52

transient 178.9 62.84 114.40 1.82
rajat24 358.2 115.15 223.10 1.93

ASIC_680k 682.9 352.61 593.60 1.68
onetone2 36.1 6.11 44.70 7.31

ASIC_680ks 682.7 13.98 150.60 10.77
ASIC_320k 321.8 186.95 404.80 2.16
ASIC_100k 99.3 95.81 273.50 2.85
ASIC_320ks 321.7 17.77 168.10 9.45
ASIC_100ks 99.2 14.24 166.70 11.70
onetone1 36.1 10.31 161.00 15.61
twotone 120.8 145.35 983.8 6.76

Arithmetic Mean 5.15
Geometric Mean 3.78

ICCAD ’24, October 27–31, 2024, New Jersey, NJ, USA Niu et al.

Table 3: Performance comparisons between our ISLU and PARDISO (12 threads) on SPICE TRAN simulation.

Benchmark ISLU (s) Overall runtime (s) PARDISO (12T) (s) [11] Overall runtime (s) Overall speedupfact+sub other fact+sub other
OSC 26.79 0.37 27.16 105.48 0.54 106.02 3.90
ACT 120.09 0.25 120.34 857.28 0.36 857.64 7.12
POW 35.21 0.41 35.62 117.62 3.91 121.60 3.41
DLL 55.72 0.44 56.16 444.45 0.97 445.52 7.39
TES 125.21 5.57 130.78 408.49 2.97 411.46 3.14

Arithmetic Mean 5.10
Geometric Mean 4.73

5.4.2 Performance comparisons under different threads. Moreover,
the PARDISO using different threads (1, 4, 8, 16) are also tested
and compared. The arithmetic mean and geometric mean speedups
of our solver over KLU (sequential) and PARDISO with different
threads on 49 circuit matrices are represented in Figure 4 and Figure
5, respectively. Our solver outperforms PARDISO with threat 1, 4,
8, 16 by the arithmetic mean speedups of 23.37x, 16.87x, 12.82x,
and 9.38x, respectively. The high geometric mean speedups are also
presented in Figure 5. It is clear that higher arithmetic mean and
geometric mean speedups can be obtained if the PARDISO with
less thread is selected and compared.

5.5 ISLU vs GPU Solvers
First, we conduct the performance comparisons with two excellent
open-source GPU solvers CuSolver [33] and SFLU [17] on the 49
public circuit matrices. The test results are also presented in Figure
3 to save space. It can be seen that the proposed ISLU surpasses
CuSolver and SFLU for nearly all the circuit cases. ISLU outper-
forms CuSolver by arithmetic mean 31.82x and geometric mean
9.50x speedups, also achieves arithmetic mean 7.79x and geometric
mean 7.43x speedups for SFLU. In addition, to give more compre-
hensive evaluations, some preeminent but closed-source methods
including LLA [26], and RLA [35], NICSLU (GPU) [18] are also
compared. The comparison results are shown in Tables 1 and 2. The
factorization time of those four methods are obtained from their
respective publications and we test the proposed ISLU using the
same matrices (different scales and different SPRs) in those papers.
From the two tables, the performance enhancements offered by our
proposed ISLU method are also substantial. ISLU outperforms the
four excellent methods by up to 9.59x arithmetic mean speedup
and 8.47x geometric mean speedups.

Table 4: SPICE TRAN in test benchmark Netlists.

Netlists Dim.𝑎 SPR #R𝑏 #C𝑏 #B𝑏 #M𝑏 #Ours. Iter.𝑐 #PAR. Iter.𝑐
OSC 1.4E4 1.4E4 7.3E4 3.0E4 22 4.2E3 819 865
ACT 4.3E3 2.0E2 1.3E3 1.7E3 1.2E2 4.9E3 33097 32417
POW 1.3E5 9.2E4 1.8E4 9.1E2 15 4.7E5 99 99
DLL 3.7E4 2.7E4 1.1E5 2.6E5 0 6.4E3 950 982
TES 6.9E4 5.6E4 3.6E4 1.5E5 0 1.9E3 679 686

𝑎Dimension of created matrix.
𝑏R="Resistor", C="Capacitor", B="Bioplar", M="Mosfet".
𝑐Number of iterations under our ISLU and PARDISO solvers.

5.6 Performance Comparisons on SPICE TRAN
To evaluate the performance of our solver in a real SPICE simulator
environment, we integrate the proposed solver into a commercial

SPICE simulator [37] and perform TRAN simulation. Both the pro-
posed ISLU and PARDISO (12 threads) are conducted on the 12-core
server with Intel Xeon Gold 6226 CPU and NVIDIA A800 GPU.
Here we also attempt to incorporate the above-mentioned GPU
solvers into SPICE simulator for comparisons, but either they are
not open-source or lack the assurance of stable solution accuracy.
To more effectively illustrate the disparities between our solver
and PARDISO (12 threads), Table 3 records the factorization, back-
substitution time and the runtime of other procedures (symbolic
analysis, the creation of indexing-efficient member union, paral-
lelism analysis and others) of each matrix generated from netlists.
The netlist information is presented in Table 4. From Table 3, our
solver also achieves faster TRAN simulation in SPICE, which out-
performs PARDISO (12 threads) by 5.10x arithmetic mean speedup
and 4.73x geometric mean speedup.

6 CONCLUSION
In this work, we investigate the potential for accelerating decom-
position of circuit matrices on GPU platform through the proposed
resource management strategies. The indexing-efficient member
union is proposed, which enables the efficient extraction of indices.
To mitigate the temporal overhead in the formation of the member
Union, we design the parallel creating member union algorithm.
The superiority of our proposed ISLU is validated through exten-
sive comparisons with various excellent GPU and CPU solvers on
benchmark circuits and SPICE transient simulation.

REFERENCES
[1] C. Ho, E. Ruehli and A. Brennan. 1975. The modified nodal approach to network

analysis. IEEE Transactions on circuits and systems 22, 6, (1975), 504–509.
[2] R. Daniels, V. Sosen and H. Elhak. 2010. Accelerating analog simulation with

HSPICE precision parallel technology. Technical Report. Synopsys Corporation,
(2010), 1-4.

[3] T. Davis, S. Rajamanickam and W. Sid-Lakhdar. 2016. A survey of direct methods
for sparse linear systems. Acta Numerica 25, (2016), 383-566.

[4] Z. Jin, W. Li, Y. Bai, T. Wang, Y. Lu, W. Liu. 2024. Machine Learning and GPU Accel-
erated Sparse Linear Solvers for Transistor-Level Circuit Simulation: A Perspective
Survey (Invited Paper). 29th ACM/IEEE Asia and South Pacific Design Automation
Conference (ASP-DAC), (2024), 1-6.

[5] X. Fu, B. Zhang, T. Wang, W. Li, Y. Lu, E. Yi, J. Zhao, X. Geng, F. Li, J. Zhang, Z.
Jin, W. Liu. 2023. PanguLU: A Scalable Regular Two-Dimensional Block-Cyclic
Sparse Direct Solver on Distributed Heterogeneous Systems. 36th International
Conference for High Performance Computing, Networking, Storage, and Analysis
(SC), (2023), 1-15.

[6] T. Wang, W. Li, H. Pei, Y. Sun, Z. Jin, W. Liu. 2023. Accelerating Sparse LU Factor-
ization with Density-Aware Adaptive Matrix Multiplication for Circuit Simulation.
60th ACM/IEEE Design Automation Conference (DAC), (2023), 1-6.

[7] Y. Chen, H. Pei, X. Dong, Z. Jin, C. Zhuo. 2022. Application of Deep Learning in
Back-End Simulation: Challenges and Opportunities. 27th ACM/IEEE Asia and
South Pacific Design Automation Conference (ASP-DAC), (2022), 641-646.

[8] Y. Zhao, X. Yang, Y. Bai, L. Zeng, D. Niu, W. Liu, Z. Jin. 2024. CSP: Comprehensively-
Sparsified Preconditioner for Efficient nonlinear Circuit Simulation. 43rd ACM/IEEE
International Conference on Computer-Aided Design (ICCAD), (2024), 1-9.

ISLU: Indexing-Efficient Sparse LU Factorization for Circuit Simulation on GPUs (Invited Paper) ICCAD ’24, October 27–31, 2024, New Jersey, NJ, USA

[9] G. Feng, H. Wang, Z. Guo, M. Li, T. Zhao, Z. Jin, W. Jia, G. Tan. N. Sun. 2024.
Accelerating Large-scale Sparse LU Factorization for RF Circuit Simulation. 30th
International European Conferenee en Parallel and Distributed Computing (Euro-Par),
(2024), 1-9.

[10] S. Li. 2005. An overview of SuperLU: Algorithms, implementation, and user inter-
face. ACM Transactions on Mathematical Software (TOMS) 31, 3, (2005), 302–325.

[11] O. Schenk, K. Gärtner, W. Fichtner and A.D. Stricker. 2001. PARDISO: a high-
performance serial and parallel sparse linear solver in semiconductor device simu-
lation. Future Generation Computer Systems 18, 1, (2001), 69–78.

[12] T. Davis, E. Palamadai Natarajan. 2010. Algorithm 907: KLU, a direct sparse
solver for circuit simulation problems. ACM Transactions on Mathematical Software
(TOMS) 37, 3, (2010), 1–17.

[13] X. Chen, Y. Wang, H. Yang. 2013. NICSLU: An adaptive sparse matrix solver for
parallel circuit simulation. IEEE transactions on computer-aided design of integrated
circuits and systems (TCAD) 32, 2, (2013), 261–274.

[14] K. He, X.-D. Tan, H. Wang and G. Shi. 2015. GPU-accelerated parallel sparse LU
factorization method for fast circuit analysis. IEEE Transactions on Very Large Scale
Integration Systems (VLSI) 24, 3, (2015), 1140–1150.

[15] W. Lee, R. Achar, and S. Nakhla. 2018. Dynamic GPU parallel sparse LU factoriza-
tion for fast circuit simulation. IEEE Transactions on Very Large Scale Integration
Systems (VLSI) 26, 11, (2018), 2518-2529.

[16] S. Peng, and X-D. Tan. 2020. GLU3. 0: Fast GPU-based parallel sparse LU factor-
ization for circuit simulation. IEEE Design & Test 37, 3, (2020), 78-90.

[17] J. Zhao, Y. Wen, Y. Luo, Z. Jin, W. Liu, and Z. Zhou. 2021. SFLU: Synchronization-
Free Sparse LU Factorization for Fast Circuit Simulationon GPUs. In 58th ACM/EEE
Design Automation Conference (DAC), (2021), 37-42.

[18] X. Chen, L. Ren, Y. Wang and H. Yang. 2014. GPU-accelerated sparse LU factor-
ization for circuit simulation with performance modeling. IEEE Transactions on
Parallel and Distributed Systems (TPDS) 26, 3, (2014), 786-795.

[19] S. Olaf, K. Gärtner, and W. Fichtner. 2000. Efficient sparse LU factorization with
left-right looking strategy on shared memory multiprocessors. BIT Numerical
Mathematics 40, (2000), 158-176.

[20] R. Gnanavignesh , and U. Shenoy. Parallel sparse LU factorization of power flow
Jacobian using GPU. In TENCON 2019-2019 IEEE Region 10 Conference (TENCON),
(2019), 1857-1862.

[21] X. Chen, D. Wang and H. Yang. 2013. Nonzero pattern analysis and memory
access optimization in GPU-based sparse LU factorization for circuit simulation.
In Proceedings of the 3rd Workshop on Irregular Applications: Architectures and
Algorithms, (2013), 1-8.

[22] N. Galoppo, N. K. Govindaraju, M. Henson and D. Manocha. 2005. LU-GPU:
Efficient algorithms for solving dense linear systems on graphics hardware. In
Proceedings of the 2005 ACM/IEEE Conference on Supercomputing, (2005), 3-3.

[23] A. Gaihre, X. Li, H. Liu. 2021. Gsofa: Scalable sparse symbolic lu factorization on
gpus. In IEEE Transactions on Parallel and Distributed Systems (TPDS) 33, 4, (2021),
1015–1026.

[24] R. Gnanavignesh, U. Shenoy. 2019. Gpu-accelerated sparse lu factorization for
power system simulation. In IEEE PES Innovative Smart Grid Technologies Europe
(ISGT-Europe), (2019), 1–5.

[25] Y. Xia, P.Jiang, G. Agrawal, R. Ramnath. 2023. End-to-End LU Factorization
of Large Matrices on GPUs. In Proceedings of the 28th ACM SIGPLAN Annual
Symposium on Principles and Practice of Parallel Programming, (2023), 288–300.

[26] W. Lee, R. Achar. 2022. Algorithmic Advancements and a Comparative Investi-
gation of Left and Right Looking Sparse LU Factorization on GPU Platform for
Circuit Simulation. In IEEE Access 10, (2022), 78993-79003.

[27] J. Gilbert, T. Peierls. 1988. Sparse partial pivoting in time proportional to arith-
metic operations. In SIAM Journal on Scientific and Statistical Computing 9, 5,
(1988), 862–874.

[28] X. Chen. Numerically-Stable and Highly-Scalable Parallel LU Factorization for
Circuit Simulation. In In Proceedings of the 41st IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), (2022), 1–9.

[29] P. Amestoy, I. Duff. 2000. MUMPS: a general purpose distributed memory sparse
solver. In International Workshop on Applied Parallel Computing, (2000), 121–130.

[30] T. Davis. 2004. Algorithm 832: UMFPACK V4. 3—an unsymmetric-pattern multi-
frontal method. In ACM Transactions on Mathematical Software (TOMS) 30, 2,
(2004), 196–199.

[31] L. Ren, X. Chen, Y. Wang, C. Zhang and H. Yang. Sparse LU factorization for
parallel circuit simulation on GPU. 2012. Proceedings of the 49th Annual Design
Automation Conference, (2012), 1125–1130.

[32] S. P. Kolodziej, M. Aznaveh, M. Bullock, J. David, T. A. Davis, M. Henderson, Y.
Hu and R. Sandstrom. 2019. The suitesparse matrix collection website interface.
Journal of Open Source Software 4, 35, (2019), 1244.

[33] CuSolver Library Documentation. Accessed: April. 2024. [Online]. Available:
https://docs.nvidia.com/cuda/cusolver/index.html.

[34] I. M. Gould, Jennifer A. Scott and Yifan Hu. 2007. A numerical evaluation of
sparse direct solvers for the solution of large sparse symmetric linear systems of
equations. ACM Transactions on Mathematical Software (TOMS) 33, 2, (2007), 10-es.

[35] W. Lee and R. Achar. 2020. Gpu-accelerated adaptive PCBSO mode-based hy-
brid RLA for sparse LU factorization in circuit simulation. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems (TCAD) 40, 11, (2020),
2320-2330.

[36] X. Chen, L. Xia, Y. Wang and H. Yang. 2016. Sparsity-oriented sparse solver
design for circuit simulation. 2016 Design, Automation & Test in Europe Conference
& Exhibition (DATE), (2016), 1580-1585.

[37] C. Zhao, Z. Zhou and D. Wu. 2020. Empyrean ALPS-GT: GPU-accelerated Analog
Circuit Simulation (Invited Talk). In Proceedings of the 39th International Conference
on Computer-Aided Design (ICCAD), (2020), 1-3.

	Abstract
	1 Introduction
	2 BACKGROUND
	2.1 Sparse left-looking factorization on GPUs
	2.2 Motivation

	3 Related Work
	4 Proposed Algorithm
	4.1 Parallel Creating Member Union Algorithm
	4.2 Member Union In Refactorization

	5 Experiment
	5.1 Experiment Setup
	5.2 Main Result
	5.3 Accuracy of Solutions
	5.4 ISLU vs CPU Solvers
	5.5 ISLU vs GPU Solvers
	5.6 Performance Comparisons on SPICE TRAN

	6 Conclusion

