
AmgT: Algebraic Multigrid Solver on Tensor Cores
Yuechen Lu∗, Lijie Zeng∗, Tengcheng Wang∗, Xu Fu∗, Wenxuan Li∗, Helin Cheng∗, Dechuang Yang∗,

Zhou Jin∗, Marc Casas†, Weifeng Liu∗
∗Super Scientific Software Laboratory, Dept. of CST, China University of Petroleum-Beijing, China

†Barcelona Supercomputing Center, Spain
{yuechenlu, lijie.zeng, tengcheng.wang, xu.fu, wenxuan.li, helin.cheng, dechuang.yang}@student.cup.edu.cn

jinzhou@cup.edu.cn, marc.casas@bsc.es, weifeng.liu@cup.edu.cn

Abstract—Algebraic multigrid (AMG) methods are particu-
larly efficient to solve a wide range of sparse linear systems, due
to their good flexibility and adaptability. Even though modern
parallel devices, such as GPUs, brought massive parallelism to
AMG, the latest major hardware features, i.e., tensor core units
and their low precision compute power, have not been exploited
to accelerate AMG.

This paper proposes AmgT, a new AMG solver that utilizes
the tensor core and mixed precision ability of the latest GPUs
during multiple phases of the AMG algorithm. Considering that
the sparse general matrix-matrix multiplication (SpGEMM) and
sparse matrix-vector multiplication (SpMV) are extensively used
in the setup and solve phases, respectively, we propose a novel
method based on a new unified sparse storage format that
leverages tensor cores and their variable precision. Our method
improves both the performance of GPU kernels, and also reduces
the cost of format conversion in the whole data flow of AMG.
To better utilize the algorithm components in existing libraries,
the data format and compute kernels of the AmgT solver are
incorporated into the HYPRE library. The experimental results
on NVIDIA A100, H100 and AMD MI210 GPUs show that our
AmgT outperforms the original GPU version of HYPRE by a
factor of on geomean 1.46×, 1.32× and 2.24×(up to 2.10×, 2.06×
and 3.67×), respectively.

Index Terms—AMG, SpGEMM, SpMV, tensor core unit, mixed
precision

I. INTRODUCTION

The MultiGrid (MG) method is one of the most efficient
techniques for solving linear systems of equations. One of
the MG variants, the Algebraic MultiGrid (AMG) method,
constructs grids directly from the coefficient matrix of a
linear system, regardless of whether it has a clear geometric
background [1]–[3]. The algebraic approach of AMG makes
it possible to efficiently solve systems of equations arising
for a wide variety of application domains, such as molecular
dynamics simulation [4], electromagnetic field analysis [5],
and global weather prediction [6].

Because of its importance, optimizing AMG on modern par-
allel processors is receiving much attention [7]–[21], and these
optimizations are being adopted by high performance numeri-
cal libraries such as HYPRE [22], CUSP [23], AmgX [15],
JXPAMG [24] and Ginkgo [25]. Among the different ap-
proaches, GPU-based acceleration of AMG has significant
advantages in terms of graph matching and coloring [15],
fine-grained parallelism [16], heterogeneous execution policies
and interfaces [17], hybrid sparse format [18], multi-GPU
communication [19], as well as mixed precision [20].

However, despite the success of the existing work on GPUs,
two major features of modern GPUs, i.e., tensor core units and
their ability on low precision computations, have not been
exploited for accelerating AMG. Tensor core units compute
small dense general matrix-matrix multiplication (GEMM),
and have been added for the first time to recent generations of
NVIDIA GPUs [26]–[28] and now appear on CPUs and GPUs
from more vendors [29]–[31]. Meanwhile, calling tensor cores
is typically the only way to unleash the rich power of low
precision computations on GPUs. As an example, the tensor
core units of the latest NVIDIA H100 GPU deliver 2× peak
performance for FP64 (51.2 vs. 25.6, in TFlops) and 7× for
FP16 (756 vs. 102.4, in TFlops) over the CUDA cores [28].

We in this work focus on utilizing the tensor cores with
variable precision for optimizing the whole procedure of
AMG. Specifically, the time-consuming sparse general matrix-
matrix multiplication (SpGEMM) in the setup phase, and
sparse matrix-vector multiplication (SpMV) in the solve phase,
are the major kernels to accelerate. Although there has been
much individual research on optimizing SpGEMM [32]–[51]
and SpMV [52]–[68], it is still difficult to optimize both
kernels in the whole AMG scenario on tensor cores, because
of three challenges: (1) storage-wise, how to avoid generating
individual matrix instances with different formats for both
SpGEMM and SpMV; (2) compute-wise, how to design effi-
cient methods for matching general sparse structures with the
strict dense GEMM patterns of tensor cores; (3) precision-
wise, how to integrate SpGEMM and SpMV with variable
precision into the complete data flow of AMG.

To address the three challenges, we first design a unified
sparse format called mBSR, which is a variant of the classic
block sparse row (BSR) format. The mBSR format stores a
sparse matrix in a group of dense tiles of size 4-by-4 and
uses a bitmap to present the positions of nonzeros in each
tile. Then, on top of this data format, we propose AmgT,
a new AMG solver that utilizes the tensor core and mixed
precision ability of the latest GPUs during multiple phases
of the AMG algorithm. AmgT is based on new SpGEMM
and SpMV algorithms capable of accelerating computation
using both tensor cores and CUDA cores, depending on the
sparsity of a tile. Our SpGEMM algorithm analyzes the matrix
data and groups all block rows into eight bins, performs
a two-step hash-style symbolic computation to obtain the
position information of tiles in the resulting matrix, and uses

SC24, November 17-22, 2024, Atlanta, Georgia, USA
979-8-3503-5291-7/24/$31.00 ©2024 IEEE

a combination of tensor cores and CUDA cores for numeric
computation. Our SpMV algorithm uses load-balanced and
adaptive selection of computation cores strategies, and imple-
ments the use of a hybrid of tensor cores and CUDA cores to
improve overall performance. Finally, the new SpGEMM and
SpMV algorithms that use high and low precisions are called
in fine and coarse grids, respectively, to efficiently leverage
the tensor core computing capacity.

We implement tensor core optimized SpGEMM and SpMV
kernels with the unified sparse format, and incorporate them
into the HYPRE library [22] to maximize their use along with
many other components. Two NVIDIA GPUs A100 (Ampere)
and H100 (Hopper) and one AMD GPU MI210 (CDNA2) are
used as our platform, and 16 representative sparse matrices of
various kinds from the SuiteSparse Matrix Collection [69] are
evaluated.

The experimental results show that our double-precision
AmgT is on geomean 1.46×, 1.32× and 2.24× (up to 2.10×,
2.06× and 3.67×) faster than the original GPU version of
HYPRE v2.31.0. On A100 and H100, our mixed-precision
AmgT is further on geomean 1.03× and 1.04× (up to 1.08×
and 1.14×) faster than our double-precision AmgT. For the
performance on multi-GPU (eight A100 cards), our double-
precision AmgT is on geomean 1.35× (up to 1.84×) than
HYPRE, while our mixed-precision AmgT is on geomean
1.06× (up to 1.11×) faster than double-precision AmgT. Also,
the standalone kernel tests show that our SpGEMM is faster
than cuSPARSE and rocSPARSE SpGEMM by a factor of
geomean 3.09×, 2.40× and 4.67× (up to 7.61×, 6.11× and
5.96×), and SpMV outperforms cuSPARSE and rocSPARSE
SpMV by a factor of geomean 1.34×, 1.19× and 2.92× (up
to 2.21×, 2.09× and 6.70×) on the three GPUs, respectively.

This work makes the following contributions:
• We design a unified sparse matrix format that supports

both SpGEMM and SpMV;
• We propose tensor core and mixed precision friendly

SpGEMM and SpMV kernels;
• We develop the AmgT solver and incorporate it into the

HYPRE library;
• We show significant performance gain of AmgT on two

latest NVIDIA GPUs and one AMD GPU.

II. KEY COMPONENTS OF AMG

The AMG method mainly consists of two phases: setup
and solve, shown in Algorithms 1 and 2, respectively. The
setup phase constructs a multi-level hierarchy of grids, while
the solve phase iterates to solve the linear system in the
hierarchical structure.

A. Setup Phase

The setup phase is an iterative process that produces a hier-
archy of grids, represented by sparse matrices. Each iteration
of the setup phase includes three major steps: (1) coarsening
(line 3 in Algorithm 1) partitions nodes of grid Ωk, which is
represented by the sparse matrix Ak, into fine and coarse point
sets Fk and Ck by identifying strong and weak connections

Algorithm 1 An M-level setup phase
Input: Sparse matrix A, Grid Ω (A1 = A,Ω1 = Ω)
Output: Ak ,Rk ,Pk .
1: k← 1
2: while Ωk is not small enough do
3: Coarsening: Grid Ωk is partitioned into sets Ck and Fk , and Ωk+1←Ck .
4: Interpolation: Pk and Rk = (Pk)T through one SpGEMM call [35].
5: Galerkin product: Ak+1 = RkAkPk through two SpGEMM calls.
6: end while
7: M← k

within the grid. Set Ck becomes the next grid, Ωk+1; (2)
interpolation (line 4) requires one instance of the SpGEMM
kernel [35] to generate interpolation and restriction operators
Pk and RK for information transfer between fine and coarse
grids; (3) Galerkin product (line 5) computes the product
RkAkPk via a couple of SpGEMM operations to construct the
coarse grid matrix Ak+1.

sp
m

sr
..

th
er

m
..

Pr
es

_.
.

Ch
ev

r..
ve

nk
a.

.
bc

ss
t..

m
c2

de
..

sto
m

a.
.

pa
ra

b.
.

ca
nt

TS
OP

F.
.

af
_s

h.
.

m
sd

oo
..

Co
up

C.
.

nd
24

k
ldo

or

0

20

40

60

80

100

120

Ti
m

e
(m

s)

Setup phase
SpGEMM in the setup phase

Fig. 1. Execution time breakdown of the setup phase on an H100 GPU.

We consider 16 representative matrices to profile the AMG
setup phase (details of the matrices are provided in Table II).
Figure 1 displays the contribution to the total setup time of
the SpGEMM calls. As can be seen, the three calls (one in
the interpolation step and two in the Galerkin product step)
take on average 59.22% of the execution time of the setup
phase. Therefore, SpGEMM can be the fundamental routine
to optimize for accelerating the setup phase.

Algorithm 2 A solve phase within V-cycle
Input: Ak ,Rk ,Pk ,xk ,bk .
Output: Solution vector xk .

1: for k = 1,2, ...,M−1 do
2: Pre-smoothing: xk

i+1 = xk
i +D−1(bk−Akxk

i) µ1 times through µ1 SpMV calls.
3: Residual: rk = bk−Akxk through one SpMV call.
4: Restriction: bk+1 = Rkrk through one SpMV call.
5: end for
6: Coarsest level solving: AMxM = bM through an iterative or direct method.
7: for k = M−1,M−2, ...,1 do
8: Interpolation: ek = Pkxk+1 through one SpMV call.
9: Correction: xk ← xk + ek .

10: Post-smoothing: xk
i+1 = xk

i +D−1(bk−Akxk
i) µ2 times through µ2 SpMV calls.

11: end for

B. Solve Phase

The solve phase includes four major steps: (1) smoothing
(lines 2 and 10 in Algorithm 2) reduces high-frequency
components in the error through multiple Jacobi iterations,
which requires µ1 SpMV calls in pre-smoothing phase and
µ2 SpMV calls in post-smoothing; (2) residual and restriction

(lines 3 and 4) compute smoothing error to the coarse grids
through two SpMV calls; (3) the coarsest level solving (line 6)
gives a solution of the system at the coarsest level by using an
iterative or direct method like PanguLU [70]; (4) interpolation
and correction (lines 8 and 9) make smoothing error back to
the fine grids through one SpMV call. Finally, the iteration
steps are repeated until the relative residual error satisfies the
convergence criteria.

sp
m

sr
..

th
er

m
..

Pr
es

_.
.

Ch
ev

r..
ve

nk
a.

.
bc

ss
t..

m
c2

de
..

sto
m

a.
.

pa
ra

b.
.

ca
nt

TS
OP

F.
.

af
_s

h.
.

m
sd

oo
..

Co
up

C.
.

nd
24

k
ldo

or
0

20

40

60

80

100

120

140

Ti
m

e
(m

s)

Solve phase
SpMV in the solve phase

Fig. 2. Execution time breakdown of the solve phase on an H100 GPU.

Figure 2 shows a breakdown of the solve execution time
for the 16 matrices we considered. On average, 80.23% of
the total solve time is spent on running the SpMV kernel,
making it the most critical routine to optimize. Moreover,
to accelerate the solve phase, preconditioners such as the
preconditioned conjugate gradient (PCG) can also be used
for faster convergence. The preconditioners often include a
number of SpMV calls, making SpMV more time-consuming
in the solve phase.

III. TENSOR CORE UNITS AND MIXED PRECISION FOR
AMG ACCELERATION

The tensor core units of recent GPUs offer specific hardware
for small GEMM of fixed sizes, and typically deliver a high
operations per second throughput for low precision arithmetic.
Taking a double precision 8-by-8-by-4 tensor core unit as an
example, it in four cycles multiples A of size 8-by-4 and B
of size 4-by-8, and gives C of size 8-by-8. In addition, the
peak performance difference of multiple floating point formats
can be large. For example, on both A100 and H100, the
peak performance for low precision formats delivers larger
advantages over CUDA cores (e.g., 7× in FP16) than high
precision formats (2× in FP64).

Despite the advantages of multiple precision compute power
from the tensor cores, exploiting them for the sparse matrix
computations involved in AMG is not straightforward. Chal-
lenges arise from three distinct aspects:

(1) Unified sparse format: Much research has been done
on individual optimizations for SpGEMM [32]–[51] and
SpMV [52]–[68], and these techniques typically require new
sparse matrix formats. But these formats are not directly
applicable to AMG since this method generates new sparse
matrices in its multi-level grids, and frequent matrix format
conversions can incur significant overhead and lead to low

overall performance. Therefore, designing a unified sparse
format for both SpGEMM and SpMV becomes a key challenge
in our AmgT.

(2) Tensor core friendly sparse kernels: Tensor cores are
designed to accelerate dense GEMM and have strict size
constraints for input and output matrices. The nonzeros of
sparse matrices involved in AMG, however, are distributed
irregularly and entail non-sequential memory access patterns.
This incongruity with the tensor cores complicates their direct
exploitation in the context of AMG. To resolve this disparity,
it is essential to develop new SpGEMM and SpMV algorithms
able to map the nonzeros stored in the unified sparse format
onto the regular patterns required by the tensor cores.

(3) Mixed precision in the AMG data flow: Tensor cores
provide superior performance in low precision, and recent
research [20] has indicated that AMG can be accelerated using
low precision kernels in the coarse layers without affecting
the final convergence. Thus, to take more advantage of the
tensor cores, we need to design multiple precision SpGEMM
and SpMV kernels to be used on the best suitable layers of
AmgT. In addition, integrating AmgT into existing libraries,
e.g., HYPRE [22], makes it possible to take advantage of some
already existing and high-quality software components.

IV. THE AMGT SOLVER

A. Overview

This section introduces the AmgT solver. AmgT is com-
posed of several components: (1) a unified data structure called
mBSR for storing the matrices processed in AMG (Section
IV.B); (2) efficient algorithms for SpGEMM (Section IV.C)
and SpMV (Section IV.D) for utilizing the computational
power of both tensor cores and CUDA cores; (3) a data flow
for format conversion and kernel calls, and for using multiple
precisions in the fine and coarse layers (Section IV.E).

B. Unified Sparse Matrix Format

We develop a unified sparse matrix data structure for both
SpGEMM and SpMV operations, called the mBSR format,
which is a variant of the classic BSR format. Figure 3 shows
an example of a sparse matrix of size 8-by-8, divided into
three blocks. The mBSR format is composed of two levels: the
first level stores the position information of blocks using two
arrays: the blcPtr array of size blc_row+1, where blc_row is
the number of block rows of the matrix, that stores the memory
offsets of the first blocks in block-rows, and the blcIdx array
of size blc_num, where blc_num is the number of blocks in
the matrix, that stores the column index of each block. The
second level contains two arrays: the blcVal array of size
blc_num×4×4, that stores the values of elements within each
block, and the blcMap array of size blc_num that stores bitmap
indicating the existence of nonzeros of each block. The four
arrays are plotted in Figure 3.

Considering that the dimension sizes of both input and
output matrices supported by the tensor core are multiples of
four, we set the block size to 4-by-4, so that the desired sizes
of a tensor core can be pieced together by simple operations.

Fig. 3. An example matrix of 8-by-8 uses a two-level structure to store its
nonzeros: the first level stores the position information of blocks in arrays
blcIdx and blcPtr; the second level stores the values and the positions of
nonzeros in arrays blcVal and blcMap, respectively.

Unlike the classic BSR format, we use the bitmap that stores
the positions of nonzeros within each block, and the 16-bit
message in a bitmap for each block is stored by using exactly
one unsigned short. This bitmap information makes it possible
to efficiently determine the sparsity of each block by binary
manipulations, so that we can choose the proper cores to
compute.

Algorithm 3 A pseudocode of symbolic SpGEMM
Input: matA, matB (BlcPtr, BlcCid, BlcMap)
Output: matC (BlcPtr, BlcCid)

1: __shared__ hash_table[SM_SIZE]
2: for i = BlcPtrA[rowid] to BlcPtrA[rowid +1] do
3: mapA← BlcMapA[i]
4: cidA← BlcCidA[i]
5: for j = BlcPtrB[cidA] to BlcPtrB[cidA+1] do
6: mapB← BlcMapB[j]
7: mapC← BITMAPMULTIPLY(mapA, mapB)
8: if mapC then
9: Use hash method record nnzC_row (in step1)

Use hash method record cidC (in step2)
10: end if
11: end for
12: end for
13: BlcPtrC[rowid]← nnzC_row (in step1)

Compress hash_table (in step2)
14: Sort hash_table and write back BlcCidC (in step2)

C. SpGEMM for the Setup Phase

The SpGEMM operation, which multiplies a sparse matrix
A by another sparse matrix B to yield a sparse matrix C, is
a time-consuming operation within the AMG setup phase. In
order to utilize tensor cores for accelerating SpGEMM, we use
the mBSR format proposed in the last subsection as the unified
basis for computing the block-wise nonzeros. In the SpGEMM
algorithm accelerated by tensor cores, it is necessary to piece
several blocks into a new block with a shape compatible with
the tensor cores, prior to invoking the tensor core instruction
(matrix multiply-accumulate operation, or mma instruction) to
conduct the small GEMM computation. Furthermore, due to
the irregular distribution of the blocks in sparse matrices, it
is difficult to simultaneously satisfy the shapes supported by
the tensor core and the alignment of blocks in the same row
and column in the matrices A and B. Therefore, we only use
half of the results obtained from the tensor cores to ensure the
simplicity of the piecing operation.

Figure 4 represents on the top left-hand side the overall
flow of our SpGEMM. The first step of our algorithm is a
data analysis process to compute the number of intermediate
products per row, which guides a binning operation on the
block-rows of C. Secondly, our algorithm performs a two-
step symbolic computation with hash tables to compute the
number and column indices of blocks in C. Finally, a hybrid
method that uses tensor cores and CUDA cores performs a
small GEMM to get the values in C and their bitmaps.

1) Data analysis and binning: By accumulating the number
of blocks in block-rows of B, which block-rows corresponded
to the column indices of all the blocks in one block-row
of A, we obtain the number of intermediate product blocks
per block-row in C, denoted as Cub_per_row. Based on the
different quantities, all block-rows of C are grouped into eight
different bins. The grouping standard starts from a minimum of
128 and increases by powers of 2 until it reaches 8192. That is,
the first bin contains block-rows with Cub_per_row less than
128, and the last bin contains block-rows with Cub_per_row
greater than or equal to 8192.

2) Two-step symbolic computation: We employ a hash
approach, and use a thread-block to compute a block-row of
C and execute two symbolic computations to determine the
positions of each block within the matrix C. For block-rows
in different bins, hash tables of variable lengths are allocated
in shared memory. In step 1, we utilize the hash method to
account for the number of blocks in each block-row of matrix
C. Upon completion of this counting, a prefix sum operation is
performed to determine the array BlcPtrC. By accessing the
last value of BlcPtrC, the number of blocks can be determined
in the entire matrix C, allowing the allocation of memory
on the device for arrays BlcIdxC, BlcMapC and BlcValC.
Subsequently, the same hash method is executed once again,
followed by compression and sorting of the hash table, thereby
acquiring the column indices for each block in C. This phase
is mainly used for numeric computation using tensor cores and
CUDA cores.

3) Numeric Computation: Numeric SpGEMM similarly
employs row-wise parallelism, wherein a warp (comprising 32
threads) computes a block-row of C, circumventing conflicts
that may arise from multiple threads concurrently accumu-
lating results within one block. Algorithm 4 presents the
pseudocode for the numeric SpGEMM. Initially, the row index
is determined by the warp index, followed by iterating through
each block of A in the specified row, acquiring the bitmap
mapA for blockA. By using mapA, the number of nonzeros
within blockA is obtained, which subsequently informs the
differentiation of the computation modes for the next action.

When the number of nonzeros in blockA is no less than 10,
a warp-level tensor core computation mode is employed. Since
the smallest size supported by the tensor core is 8-by-8-by-4,
we piece together 8-by-4 blocks as the input f ragA, 4-by-
8 blocks as the input f ragB, and allocate 8-by-8 space for
the output blocks f ragC in advance. The entire computation
process using tensor cores is represented in the middle plot of
Figure 4. The process is divided into the following steps:

c1

Actual result of matrix C

c1 c2

r1

mapC??mapB12

0

0

1

0

1

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0= ×

Matrix Data Analysis

Binning

Symbolic Computation Step1

Symbolic Computation Step2

Numeric Computation

#Nz ≥ 10

mapA11

mapB20

mapB23

Find C11: Binary search the column index 1 in cidC1*mapC??

Find C13: Binary search the column index 3 in cidC1*

Find C12: Binary search the column index 2 in cidC1*

...r1

r2

mapC??

mapC??

mapC??

mapC??

1

1

1

1

1

1

1

1

1

1

1

1

0

1

1

1

mapB22

mapB11

mapB13

#Nz < 10

mapA12

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

1

1

0

0

0

1

0

0

1

0

1

0

1

0

0

1

1

1

0

1

0

0

0

0

0

1

0

0

1

1

0

0

×

×

×

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

1=

=

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

1

0

1

0

0

1

0

0

0

0

1

1

1

0

1

0

0

1

1

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

×

×

×

1

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

=

=

=

B32

c1 c2

A11

B11 B12

...

B13

...

...

...

...

Find C13: Binary search the column index 3 in cidC1*

r1

r1

T
e

n
s

o
r

C
o

re
C

o
m

p
u

ta
ti

o
n

OR =

OR =

OR =

OR =

1

1

1

1

1

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

1

1

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

1

1

1

1

1

1

1

1

1

1

1

1

0

1

1

1

1

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

c3

c2

c3

T
h

re
a
d

2

T
h

re
a
d

1

T
h

re
a
d

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

B22

×1 a

×2 a

×3 b

d

c

A12

1

2

3

a

b

B20

1

1

Tensor Core Unit

1

1

1

1

1

1

1

1

1

1

1

×

3
2
 t

h
re

a
d

s

1

1

1

1

1

1

1

1

1

1

1

1

1

1

A11

B11 B13

FragCFragA

F
ra

g
B

Shuffle

Shuffle

discarded elementzero element nonzero element

zero element nonzero element

C
U

D
A

 C
o

re
C

o
m

p
u

ta
ti

o
n

Matrix A Matrix B

×
...

...

...

1

1

1

1

1

1

1

1

1

c3 Matrix C

×1 c

×2 c

×3 d

Cuda Core Unit

Allocate space for matrix C

Fig. 4. An example of the numeric computation process of multiplying two sparse matrices, with emphasis on the computation of one block-row of the
resulting matrix. In our SpGEMM algorithm flow: the step of matrix data analysis computes the number of intermediate blocks in each block-row of C; the
step of binning divides all block-rows into eight bins based on the quantity obtained in the previous step; the two-step symbolic computation gets the positions
of all blocks in the matrix C; and the final numeric computation uses the hybrid of tensor cores and CUDA cores to compute the values of matrix C and
obtains the bitmap. In the numeric computation process: first, the number of nonzeros of blockA is obtained by reading the bitmap of blockA, which in turn
determines whether to use tensor cores for computation; then, we use bitmap multiplication to find the valid blockB in order to prepare data for tensor core
computation; next, the position of blockC in C is found by binary search and the map is written back to it, which is also the location where the values of
blockC are written back to; finally, we call tensor cores to perform GEMM to get the values of blockC, use the shuffle instructions to extract the result and
write that back to C or call CUDA cores to multiply the nonzeros from blockA and blockB to get the result and write it back to the matrix C.

(1) The first step is to prepare the data for f ragA. To
expedite the assembly of the anticipated shape and conform
to the computational logic, we replicate the predetermined
blockA into f ragA. That is, the values of two 4-by-4 blocks in
f ragA are loaded from the same blockA. This approach allows
us to directly select two valid blockBs from the same block-
row of the matrix A. Figure 4 illustrates under the Tensor Core
Unit tag an example of f ragA containing two identical 4-by-4
blocks.

(2) The second step is to prepare the data for f ragB. Not
every blockB multiplied with blockA can produce a result
blockC containing nonzeros certainly, so we determine the
validity of blockB by performing bitmap multiplication in
advance, as shown in lines 7-9 in Algorithm 4 and on the
left-hand side of Figure 4 middle plot. After that, we load two
consecutive valid blockBs into f ragB to complete the data
preparation of f ragB.

(3) The next step is to find cidB in the BlcCidC array
by using binary search to determine the memory offset of
the resulting blockC and write the mapC obtained by bitmap
multiplication back into the BlcMapC array using the bit
operation OR. Figure 4 represents this process in the central
part of its middle plot.

(4) The final step is to call the mma instruction to perform a

small GEMM operation and accumulate the results. The data
in f ragA, f ragB and f ragC are stored in registers spread
across all 32 CUDA threads in a warp, and the mma instruction
is co-executed by 32 threads together. We need to extract
the values of valid blocks in f ragC by using the shuffle
instructions and accumulate these values to BlcValC array.
The right-hand side of Figure 4 middle part illustrates the
shuffle operations.

Conversely, when the number of nonzeros in blockA is less
than 10, a thread-level computation mode is adopted using
CUDA cores instead of tensor cores, that is, the operation of
multiplying blockA by blockB to get blockC is executed by
one thread. Similarly to the first three steps of tensor core
computation, we need to identify the blockB that can produce
a resulting matrix containing nonzeros and then use binary
search to determine the position where the result is written
back to. The thread then locates the positions of nonzeros in
blockA and blockB by accessing the bitmaps, computes the
corresponding values using CUDA cores, gets the results, and
writes them back to the BlcValC array. The bottom part of
Figure 4 illustrates the numeric SpGEMM with CUDA cores.

Algorithm 4 A pseudocode of numeric SpGEMM
Input: matA, matB, matC (BlcPtr, BlcCid, BlcMap, BlcVal)
Output: matC (BlcMap, BlcVal)

1: for i = BlcPtrA[rowid] to BlcPtrA[rowid +1] do
2: mapA← BlcMapA[i]
3: if POPCOUNT(mapA) ≥ 10 then

▷ Tensor Core Compute, warp-level
4: cidA← BlcCidA[i]
5: get f ragA from BlcValA
6: for j = BlcPtrB[cidA] to BlcPtrB[cidA+1] do
7: mapB← BlcMapB[j, j+1]
8: mapC← BITMAPMULTIPLY(mapA, mapB)
9: if mapC then

10: get f ragB from BlcValB
11: Binary Search cidB from BlcCidC
12: Accumulate mapC to BlcMapC
13: MMA_884(f ragC, f ragA, f ragB)
14: Extract result from f ragC by shuffle instructions
15: Accumulate result to BlcValC
16: end if
17: end for
18: else

▷ CUDA Core Compute, thread-level
19: cidA← BlcCidA[i]
20: for j = BlcPtrB[cidA] to BlcPtrB[cidA+1] do
21: mapB← BlcMapB[j, j+1]
22: mapC← BITMAPMULTIPLY(mapA, mapB)
23: if mapC then
24: Binary Search BlcCidB from BlcCidC
25: Loop through each bit in MapC, compute and get valC
26: Accumulate mapC to BlcMapC
27: Accumulate valC to BlcValC
28: end if
29: end for
30: end if
31: end for

D. SpMV for the Solve Phase

The SpMV algorithm performs the multiplication of a sparse
matrix A by a dense vector x to obtain a dense vector y, and is
a frequently called operation in the solve phase. In our SpMV
algorithm, we develop strategies for adaptive selecting load
balancing methods and computation cores, and implement the
use of a hybrid of tensor cores and CUDA cores.

1) Adaptive Selection: We get a parameter variation of
the matrix through data preprocessing to evaluate the balance
of the distribution of blocks. The value of this parameter
makes it possible to determine whether to invoke the load
balanced strategy to execute the computation. Regarding load
balancing, we fix the workload of each warp to 64 blocks.
A number of warps collaboratively complete the computation
of one block-row in the matrix. The choice between CUDA
or tensor core is made based on the parameter representing
the average number of nonzeros within a block, denoted as
avg_nnz_blc. When avg_nnz_blc is greater than or equal to
10, the kernel uses tensor cores for computation. Conversely,
the kernel employing CUDA cores is utilized.

2) Tensor Core Computation: Due to the shape restriction
on the input matrix shape to a minimum of 8-by-4, we should
compute two blocks per call to use the tensor core. As shown
in Figure 5, firstly, we need to determine the offset of the
first block to be computed by the current warp, then load the
values of the two continuous blocks into the register f ragA
of the 32 threads in this warp. Following this, the values of
the vector x corresponding to these two block positions are
mapped onto the register f ragB. After the data preparation,

Fig. 5. An example of our load-balanced SpMV algorithm that utilizes tensor
cores for computation. In this SpMV algorithm, each warp is allocated the
same number of blocks to ensure load balancing. The tensor core instruction
is called multiple times within a warp to perform GEMM computation and
the results are accumulated to individual fragments. Lastly, the results are
extracted by the shuffle instructions and written back to vector y.

the mma instruction of the tensor cores is called to perform a
small dense GEMM. Ultimately, the results of all these blocks
are accumulated in f ragY , and we extract the values on the
diagonal of f ragY to write back to the vector y.

3) CUDA Core Computation: For matrices that are par-
ticularly sparse, the efficiency of using tensor cores often
diminishes. Therefore, we opt for the utilization of CUDA
cores to carry out the computations. We set the computation
that a block is processed collectively by four threads, with
each thread being responsible for the nonzeros of one row
within the block. As shown in lines 10-11 of Algorithm 5,
each thread determines the positions of nonzeros by the bitmap
corresponding to its block, multiples these elements by the
values of the vector x, and stores the results in the register
res. Subsequently, a warp-level sum operation is performed,
resulting in the writing back of the results to the vector y.

E. Full Data Flow

Figure 6 shows the full data flow of AmgT, where the
solid-line arrows represent operations, and the dashed-line
arrows represent data transfer. Although the AmgT SpGEMM
and SpMV routines use the mBSR format to complete the
most time-consuming AMG phases, there are still several
components, e.g., coarsening and solving the coarsest level,
requiring the CSR format. During the setup phase, AmgT
performs CSR2MBSR format conversion on matrices that require
SpGEMM operations. In addition, AmgT performs MBSR2CSR
on the matrix resulted from the RAP operation.

In the setup phase, the input matrix A1 is initially read
and stored in the CSR format, followed by the coarsening
operation, as Figure 6 indicates 1 . Prior to the interpolation

Algorithm 5 A pseudocode of SpMV using CUDA Cores
Input: BlcPtrA, BlcCidA, BlcMapA, BlcValA, vecX, ridWarp, rptWarp
Output: vecY

1: groupid← laneid >> 2
2: tid_in_group← laneid & 3
3: rowid← ridWarp[warpid]
4: start← rptWarp[rowid]×WARP_CAPACITY
5: end← start +WARP_CAPACITY
6: for i = start +groupid to end stride 8 do
7: mapA← BlcMapA[i]
8: for j = 0 to BSR_N do
9: idx← tid_in_group×BSR_N + j

10: if GETBIT(mapA,idx) then
11: Compute temporary result of vecY
12: end if
13: end for
14: end for
15: Call WarpLevelSum to get the result
16: if laneid < 4 then
17: Write back the result to vecY
18: end if

operation 2 , the intermediate matrices in the CSR format
involved in 2 invoke a CSR2MBSR format conversion 4 to
get the mBSR format. Subsequently, the SpGEMM based
on the mBSR format in 2 is executed. After that, we can
directly obtain the matrices R1 and P1 in the mBSR format.
The matrices A1, R1 and P1 in the mBSR format undergo the
Galerkin product, i.e., the RAP operation, 3 , resulting in the
next-level mBSR-formatted matrix A2. Next, the matrix A2

invokes an MBSR2CSR format conversion 5 to generate the
matrix A2 in the CSR format. The aforementioned process is
iteratively executed until the coarsest M-th level is reached.

In the solve phase, each level sequentially performs pre-
smoothing 6 and restriction 7 operations from top to bottom
on the mBSR-formatted matrices Ak and Rk obtained in the
setup phase. Operations 6 and 7 can also be completed by
invoking the SpMV operation based on the mBSR format, until
reaching the M-th level. At the M-th level, the matrix AM in the
CSR format (after 5 already completed in the setup phase) is
solved by employing an iterative or direct method 10 . Finally,
each level again uses the mBSR-formatted matrices Ak and Pk

obtained during the setup phase to execute the interpolation
8 and post-smoothing 9 operations in a bottom-top manner
by SpMV.

Within the data flow of AmgT, we directly use a configu-
ration proposed by Tsai et al. [20], and set the various levels
involving SpGEMM and SpMV with three precisions: the
first level employs double precision, the second level utilizes
float precision, while the remaining levels use half precision.
The data precision conversions with very low costs will be
completed before calling the kernels.

F. Incorporation into HYPRE

In addition to running as a standalone library, AmgT
is also incorporated into the HYPRE library to work with
more components. Specifically, the arrays of our mBSR
format with a prefix AmgT_mBSR_ are added to HYPRE’s
hypre_CSRMatrix data structure, then after a format con-
version AmgT_CSR2mBSR, our SpGEMM and SpMV ker-
nels named AmgT_mBSR_SpGEMM and AmgT_mBSR_SpMV can
be called in the hypre_CSRMatrixMultiplyDevice and

Fig. 6. The full data flow of AmgT exemplified by an M-level grid and
iteration of one V-cycle.

hypre_CSRMatrixMatvecDevice2 functions, respectively. In
this way, with a minimal interface change, AmgT can directly
bring performance gains to the AMG components using the
two kernels.

V. EVALUATION

A. Experimental Setup

We compare our AmgT solver with the original GPU
version of the latest HYPRE v2.31.0 calling cuSPARSE v12.2
on two NVIDIA GPUs A100 and H100 and rocSPARSE v6.1.2
on one AMD GPU MI210 (see Table I for specifications),
respectively.

TABLE I
THE SPECIFICATION OF THE A100, H100 AND MI210 GPUS.

NVIDIA and AMD GPUs Precision CUDA/Radeon Core Tensor/Matrix Core
A100 (Ampere) PCIe

6912 CUDA cores
80 GB, 1.94 TB/s

FP64 9.7 TFlops 19.5 TFlops
FP32/TF32 19.5 TFlops 156 TFlops

FP16 78 TFlops 312 TFlops
H100 (Hopper) SXM5

16896 CUDA cores
64 GB, 2.02 TB/s

FP64 33.5 TFlops 66.9 TFlops
FP32/TF32 66.9 TFlops 494.7 TFlops

FP16 133.8 TFlops 989.4 TFlops
MI210 (CDNA2) PCIe
6656 Stream Processors

64 GB, 1.6 TB/s

FP64 22.6 TFlops 45.3 TFlops
FP32 22.6 TFlops 45.3 TFlops
FP16 181.0 TFlops 181.0 TFlops

To align the comparison, AmgT works inside HYPRE as
shown in Section IV.F. For both libraries, we set the same
components and parameters, e.g., coarsening (PMIS, str_thr =
0.25, max_row_sum = 0.8, max_coarse_size = 3), interpola-
tion (Extended+i with truncation options, trunc_ f act = 0.1,
max_elmts = 4), smoother (L1_Jacobi, num_sweep = 1). The
numbers of calls to SpGEMM (determined by the number of
levels) and SpMV (determined by the number of smoothing
and iterations) are also identical.

In the setup phase, we make the number of levels no larger
than seven, which means that, excluding the coarsest grid, each
of the remaining six levels takes one SpGEMM operation in
interpolation and two in RAP, totaling 18 SpGEMM calls.

(a) Performance comparison on NVIDIA A100 GPU

0

100

200

300

400

500

Ti
m

e
(m

s)

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

spmsr..

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

therm..

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)
Pres_..

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

Chevr..

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

venka..

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

bcsst..

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

mc2de..

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

stoma..

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

parab..

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

cant

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

TSOPF..

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

af_sh..

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

msdoo..

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

CoupC..

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

nd24k

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

ldoor

Setup SpGEMM Solve SpMV

94
.3

6

94
.3

4

11
6.

94

10
7.

50

12
5.

00

14
0.

61

32
9.

03

19
3.

87 23
8.

44

25
7.

15

19
0.

50

29
5.

26

25
6.

95 30
2.

33

48
8.

75

50
4.

24

57
.0

6

56
.6

2

77
.1

9

75
.3

1

87
.7

0

10
1.

32

19
2.

60

92
.1

8

19
2.

95

19
7.

06

13
6.

77 20
1.

24

20
3.

14

22
2.

50

31
7.

66

39
8.

97

57
.7

4

56
.5

0

75
.4

2

71
.7

8

86
.4

7

98
.0

6

18
7.

90

92
.3

1

19
0.

23

18
7.

98

13
4.

62 19
0.

63

19
9.

36

22
0.

19

29
3.

39

38
5.

83

(b) Performance comparison on NVIDIA H100 GPU

0

100

200

300

400

500

Ti
m

e
(m

s)

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

spmsr..

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

therm..

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

Pres_..

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

Chevr..

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

venka..

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)
bcsst..

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

mc2de..

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

stoma..

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

parab..

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

cant

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

TSOPF..

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

af_sh..

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

msdoo..

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

CoupC..

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

nd24k

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

ldoor

43
.6

2

67
.1

2

65
.3

6

51
.6

6

61
.0

2

72
.1

8

14
4.

08

10
2.

12

11
5.

19

13
4.

43

11
3.

49

12
5.

86

14
6.

52

13
4.

44

24
1.

45

25
4.

27

26
.1

8

50
.9

0

45
.0

3

37
.7

3

47
.3

9

56
.1

3 99
.9

2

49
.3

4 11
1.

01

11
4.

52

93
.1

1

91
.8

6

11
7.

33

10
3.

92

21
2.

39

22
1.

12

26
.6

0

50
.0

8

43
.0

2

37
.7

0

46
.5

0

52
.2

6 96
.8

5

48
.5

5 10
7.

78

10
4.

94

89
.5

8

90
.9

6

11
1.

19

10
0.

32

18
5.

15 21
3.

60

(c) Performance comparison on AMD MI210 GPU

0

2500

5000

7500

10000

12500

15000

17500

20000

Ti
m

e
(m

s)

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

spmsr..

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

therm..

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

Pres_..

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

Chevr..

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

venka..

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

bcsst..

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

mc2de..

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

stoma..

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

parab..
HY

PR
E

(F
P6

4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

cant

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

TSOPF..

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

af_sh..

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

msdoo..

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

CoupC..

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

nd24k

HY
PR

E
(F

P6
4)

Am
gT

 (F
P6

4)

Am
gT

 (M
ixe

d)

ldoor

31
7.

94

80
8.

01

54
9.

78

70
8.

39

94
3.

27

93
7.

28 23
43

.9
3

21
61

.6
7

41
88

.0
2

26
59

.1
0

16
39

.2
1

60
72

.7
7 89

09
.9

4

84
77

.4
4

13
24

0.
93

19
53

9.
79

13
0.

98

45
8.

39

24
4.

07

32
9.

58

53
5.

81

39
3.

69

14
31

.5
0

85
6.

23 24
40

.0
1

12
41

.7
1

11
19

.7
5

16
55

.1
3

28
83

.6
4

23
57

.5
8

83
19

.8
0

61
90

.1
4

12
9.

89

45
7.

16

24
4.

57

33
4.

92

53
5.

97

38
9.

45

14
29

.1
4

82
6.

21 25
17

.2
1

11
85

.0
9

11
08

.2
0

16
53

.2
2

28
66

.4
2

24
39

.8
4

83
84

.0
6

61
86

.0
3

Fig. 7. Performance comparison of the baseline HYPRE using FP64 cuSPARSE and FP64 rocSPARSE kernels, our AmgT using FP64, and our AmgT
using mixed-precision running on the 16 representative matrices on two NVIDIA GPUs A100 and H100 and one AMD GPU MI210. In this figure, the
x-axis represents the matrices running HYPRE (FP64), AmgT (FP64), and AmgT (Mixed precision), while the y-axis represents the execution time. The total
time comprises the setup phase, which includes SpGEMM execution and other operations, and the solve phase, which involves SpMV execution and other
operations. The subfigures (a), (b) and (c) represent the performance on an A100, an H100 and an MI210, respectively.

In the solve phase, we set the maximum number of iterations
to 50, regardless of convergence. If the coarsest level uses a
direct method, in a single V-cycle, each level calls SpMV five
times (during the five phases in Algorithm 2). Thus, for a 7-
level grid, excluding the coarsest level, the remaining six levels
collectively call SpMV 30 times. Additionally, one SpMV runs
after each V-cycle to compute the residual. So, one iteration
involves 31 SpMV calls. For the solve phase of 50 iterations,
a total of 1550 SpMV calls are made. Plus an additional
SpMV computing the initial residual, the entire solve phase
requires 1551 SpMV calls. If the coarsest level uses an iterative
method, each iteration involves 1 or 3 extra SpMVs, resulting
in 50 or 150 calls for 50 iterations. Thus, the entire solve phase
includes 1601 or 1701 SpMV calls.

Table II lists 16 representative matrices from the SuiteSparse
Matrix Collection [69]. The matrices are from diverse groups
and are generated from a variety of scientific problems such as
thermal, computational fluid dynamics, structural, and power
networks. The orders of the matrices range from tens to
hundreds of thousands, and the numbers of nonzeros are in the
range of hundreds of thousands and tens of millions. Although
the dataset could reflect the adaptability of AMG, we do not
ensure that all 16 linear systems could converge in the AMG

settings mentioned above. To make this work more focused,
we mainly demonstrate performance gains from our AmgT.

TABLE II
THE 16 REPRESENTATIVE MATRICES EVALUATED.

Group Matrix #Orders #Nonzeros #Levels #SpGEMM #SpMV
GHS_indef spmsrtls 29,995 229,947 2 3 351

Schmid thermal1 82,654 574,458 2 3 351
ACUSIM Pres_Poisson 14,822 715,804 3 6 551
Chevron Chevron2 90,249 803,173 2 3 351
Simon venkat25 62,424 1,717,792 3 6 601
Boeing bcsstk39 46,772 2,089,294 4 9 851

Williams mc2depi 525,825 2,100,225 5 12 1101
Norris stomach 213,360 3,021,648 2 3 351

Wissgott parabolic_fem 525,825 3,674,625 3 6 601
Williams cant 62,451 4,007,383 7 18 1701
TSOPF TSOPF_RS_b300_c3 42,138 4,413,449 7 18 1701

Schenk_AFE af_shell4 504,855 17,588,875 2 3 351
INPRO msdoor 415,863 20,240,935 3 6 601
Janna CoupCons3D 416,800 22,322,336 3 6 601
ND nd24k 72,000 28,715,634 7 18 1701

GHS_psdef ldoor 952,203 46,522,475 3 6 601

B. Performance Comparison in Double Precision
Figure 7 presents a comparison of the execution time of

the 16 matrices on the A100 (top) and H100 (middle) GPUs
using cuSPARSE-support HYPRE, double precision AmgT,
and mixed precision AmgT. In this figure, the green portion
indicates the time taken during the setup phase, with the shad-
owed overlay representing the time overhead of SpGEMM.

1 2 3
SpGEMM
spmsrtls

-0.5

0.0

0.5

1.0

Ti
m

e
(m

s)
(lo

g 1
0

 sc
ale

)

0 100 200 300
SpMV

spmsrtls

-2.00

-1.75

-1.50

-1.25

2 4 6
SpGEMM
thermal1

-0.5

0.0

0.5

1.0

0 200 400 600
SpMV

thermal1

-2.00

-1.75

-1.50

-1.25

-1.00

2 4 6
SpGEMM

Pres_Poisson

-0.5

0.0

0.5

1.0

0 200 400
SpMV

Pres_Poisson

-2.0

-1.5

-1.0

1 2 3
SpGEMM
Chevron2

0.0

0.5

1.0

0 100 200 300
SpMV

Chevron2

-1.8

-1.6

-1.4

-1.2

2 4 6
SpGEMM
venkat25

-0.5

0.0

0.5

1.0

Ti
m

e
(m

s)
(lo

g 1
0

 sc
ale

)

0 200 400 600
SpMV

venkat25

-2.00

-1.75

-1.50

-1.25

2.5 5.0 7.5
SpGEMM
bcsstk39

-0.5

0.0

0.5

1.0

0 250 500 750
SpMV

bcsstk39

-2.00

-1.75

-1.50

-1.25

-1.00

5 10
SpGEMM
mc2depi

-1.0

-0.5

0.0

0.5

1.0

0 500 1000
SpMV

mc2depi

-2.0

-1.5

-1.0

-0.5

1 2 3
SpGEMM
stomach

0

1

0 100 200 300
SpMV

stomach

-2.0

-1.5

-1.0

-0.5

2 4 6
SpGEMM

parabolic_fem

-0.5

0.0

0.5

1.0

Ti
m

e
(m

s)
(lo

g 1
0

 sc
ale

)

0 200 400 600
SpMV

parabolic_fem

-2.0

-1.5

-1.0

-0.5

5 10 15
SpGEMM

cant

-0.5

0.0

0.5

1.0

0 500 1000 1500
SpMV
cant

-2.00

-1.75

-1.50

-1.25

-1.00

5 10 15
SpGEMM

TSOPF_RS_b300_c3

-0.5

0.0

0.5

1.0

0 500 1000 1500
SpMV

TSOPF_RS_b300_c3

-2.00

-1.75

-1.50

-1.25

-1.00

1 2 3
SpGEMM
af_shell4

-0.5

0.0

0.5

1.0

1.5

0 100 200 300
SpMV

af_shell4

-1.5

-1.0

-0.5

2 4 6
SpGEMM
msdoor

-0.5

0.0

0.5

1.0

Ti
m

e
(m

s)
(lo

g 1
0

 sc
ale

)

0 200 400 600
SpMV

msdoor

-2.0

-1.5

-1.0

-0.5

2 4 6
SpGEMM

CoupCons3D

-0.5

0.0

0.5

1.0

0 200 400 600
SpMV

CoupCons3D

-2.0

-1.5

-1.0

-0.5

5 10 15
SpGEMM

nd24k

-0.5

0.0

0.5

1.0

0 500 1000 1500
SpMV
nd24k

-2.0

-1.5

-1.0

-0.5

2 4 6
SpGEMM

ldoor

-0.5

0.0

0.5

1.0

0 200 400 600
SpMV
ldoor

-2

-1

0

HYPRE (FP64) AmgT (FP64) AmgT (Mixed)

Fig. 8. Performance of every SpGEMM and SpMV run in HYPRE, AmgT, and AmgT of mixed precision on H100. The x-axis shows the time sequence of
running the two kernels, the y-axis is the kernel execution time, and the three colored dots represent the three methods. Here, each matrix has two subfigures.

The blue portion denotes the time during the solve phase,
and the shadowed overlay on this indicates the time overhead
of SpMV. Taking into account the total execution time, our
AmgT (FP64), in comparison to HYPRE, yields performance
improvements of 1.46× and 1.32× (up to 2.10× and 2.06×)
speedups on the A100 and H100 GPUs, respectively.

For the setup phase, compared with HYPRE calling cuS-
PARSE kernels, AmgT (FP64) achieves a geomean of 1.57×
and 1.53× (up to 2.20× and 3.02×) speedups on the A100
and H100 GPUs, respectively, where the execution time of
SpGEMM reaches a geomean of 3.09× and 2.40× (up to
7.61× and 6.11×) speedups. Taking the performance of matrix
‘cant’ as an example, this matrix executed 18 SpGEMM
calls in the setup phase, six of which are performed in
the interpolation operation and the rest are in the Galerkin
product. In this process, our SpGEMM algorithm has overall
speedups of 2.38× and 2.02× over the SpGEMM function
in cuSPARSE on the two GPUs, respectively; reflecting on
the entire setup phase, the execution time of AmgT is 1.48×
and 1.42× faster than HYPRE. By utilizing our SpGEMM
algorithm, the proportion of SpGEMM execution time in the
setup phase is reduced from 58.80% to 41.39%.

With regard to the execution time for the solve phase, our
AmgT with FP64 precision, compared to HYPRE that calls
cuSPARSE kernels, achieves speedups of 1.24× and 1.13×
(up to 1.89× and 1.64×) on the A100 and H100 GPUs, re-
spectively. Further observation of the execution time of SpMV
reveals that our SpMV algorithm achieves on average 1.34×
and 1.19× (up to 2.21× and 2.09×) speedups compared to the
cuSPARSE SpMV method on the two GPUs. Taking the matrix
‘venkat25’ as an example, it calls SpMV 601 times in the solve

phase. From the perspective of the total execution time for
these SpMV operations, our mBSR format SpMV algorithm,
is 1.43× and 1.37× faster than cuSPARSE on the two GPUs,
respectively. Also, when we observe the overall time for the
solve phase, our AmgT method with FP64 precision is 1.29×
and 1.25× faster than HYPRE. By leveraging the tensor core
accelerated SpMV algorithm we provided, the proportion of
time devoted to SpMV operations for the matrix ‘venkat25’
during the solve phase drops from 75.56% to 68.38%.

C. Performance Comparison in Mixed Precision

We adopt one of the precision configurations proposed by
Tsai et al. [20], utilizing double precision at the finest level,
single precision at the second level, and half precision for the
remaining levels. We test the overall execution time of the 16
representative matrices, with the setup and solve presented in
Figure 7 in the bars AmgT (Mixed). Overall, AmgT (Mixed)
shows geomean speedups of 1.02× and 1.04× (up to 1.08×
and 1.15×) over AmgT (FP64) on the two GPUs, respectively.
The performance of mixed-precision SpGEMM and SpMV
exceeds that in double precision, with geomean speedups of
1.06× and 1.06× (up to 1.39× and 1.28×) and 1.05× and
1.08× (up to 1.24× and 1.27×) on the two GPUs, respectively.
Given our restriction of maximum grid levels to seven, some
matrices only generate two or three grid levels, and the size of
the matrix is considerably smaller at the coarser levels. With
these conditions, the performance improvement derived from
mixed precision under our current configuration is convincing
enough to illustrate the efficiency of mixed precision.

Taking the matrix ‘bcsstk39’ as an example, which gen-
erates a four-level grid, and thus three precision kernels are

all utilized. This matrix executes nine SpGEMM operations,
with our mixed precision SpGEMM, achieves acceleration of
1.13× and 1.28×, compared to the double precision SpGEMM
on the two GPUs, respectively. In the solve phase, the matrix
performs 851 SpMV operations, our mixed precision SpMV
achieves speedups of 1.07× and 1.09× over the double
precision SpMV on the two GPUs, respectively.

D. Detailed Performance of the 16 Matrices
To capture the costs of each SpGEMM and SpMV operation

in the setup and solve phases more clearly, we record the exe-
cution time of all instances of the two kernel calls throughout
the process for the 16 matrices using the three approaches.
Figure 8 presents these performance results on the H100 GPU.
With these records, we can further clarify the reason for the
performance behavior of the 16 matrices in Figure 7.

Taking the matrix ‘TSOPF_RS_b300_c3’ as an example,
which generates seven grid levels, executes 18 SpGEMM in
the setup phase, and 1701 SpMV in the solve phase. Observing
the execution time of SpGEMM for this matrix, AmgT (FP64)
is 1.51× faster than HYPRE (FP64), and AmgT (Mixed) is
1.08× faster than AmgT (FP64). The corresponding SpGEMM
performance subfigure of this matrix shows that the blue dots
(HYPRE) are higher than the yellow (AmgT with double
precision) and red (AmgT with mixed precision), and the red
dots are slightly higher than the yellow dots for most of the
operations after the fourth. Regarding SpMV, AmgT (FP64)
is 1.41× faster than HYPRE (FP64), and AmgT (Mixed) is
1.08× faster than AmgT (FP64). Its corresponding SpMV
performance subfigure in Figure 8 displays the runtime of the
1701 SpMV operations. The topmost level of dots represents
the time to perform SpMV on the finest grid level of the
matrix, and it is evident that the blue dots are higher than
the red and yellow dots. The predominantly yellow dots at the
bottom levels of the subfigure represent the execution times of
our half-precision SpMV operations. Compared to the red dots
in the higher levels, these indicate that the mixed-precision
method significantly reduces the execution time for SpMV.

sp
m

sr
..

th
er

m
..

Pr
es

_.
.

Ch
ev

r..
ve

nk
a.

.
bc

ss
t..

m
c2

de
..

sto
m

a.
.

pa
ra

b.
.

ca
nt

TS
OP

F.
.

af
_s

h.
.

m
sd

oo
..

Co
up

C.
.

nd
24

k
ldo

or

Gm
ea

n0.8

1.0

1.2

1.4

1.6

1.8

2.0

Sp
ee

du
p 1.

59

1.
34 1.
37

1.
50

1.
16

1.
34

1.
82

1.
66

1.
13

1.
25

1.
23

1.
84

1.
20 1.

30

1.
04 1.

14

1.
35

1.
11

1.
02 1.

06 1.
11

1.
05 1.

09

1.
05 1.

10

1.
04 1.
04 1.
06

1.
06

1.
01 1.
04

1.
03

1.
02 1.
06

AmgT (FP64) vs. HYPRE (FP64) AmgT (Mixed) vs. AmgT (FP64)

Fig. 9. Performance comparison of HYPRE (FP64), AmgT (FP64) and AmgT
(Mixed) on eight A100 GPUs.

E. Performance on Multi-GPU
Because of the incorporation into HYPRE, AmgT naturally

supports distributed computing. We thus also compare the

performance of HYPRE (FP64), AmgT (FP64) and AmgT
(Mixed) on eight A100 GPUs, as shown in Figure 9. Compared
to HYPRE (FP64), our AmgT (FP64) method achieves a
geomean of 1.35× (up to 1.84×) speedups. Also, our AmgT
(Mixed) method gets a geomean of 1.06× (up to 1.11×)
speedups over the AmgT (FP64) method. Although data
partitioning leads to higher communication costs with less
computation per GPU, our algorithms are still able to maintain
stable superiority relative to the HYPRE with cuSPARSE.

sp
m

sr
..

th
er

m
..

Pr
es

_.
.

Ch
ev

r..
ve

nk
a.

.
bc

ss
t..

m
c2

de
..

sto
m

a.
.

pa
ra

b.
.

ca
nt

TS
OP

F.
.

af
_s

h.
.

m
sd

oo
..

Co
up

C.
.

nd
24

k
ldo

or

0

2

4

6

8

10

Ru
nt

im
e

(m
s)

0.
95 1.

62

1.
03 1.
06

1.
02 1.
24

3.
39

1.
40

3.
69

1.
16 1.
25

3.
35 3.
57

2.
87 3.

42

8.
69

1.
02 1.

35

1.
13 1.
20

1.
13 1.
33 1.

89 2.
07

3.
21

1.
60

1.
47

3.
19 3.

70

2.
84

4.
20

7.
24

AmgT (CSR to mBSR)
cuSPARSE (CSR to BSR)

Fig. 10. Format conversion cost comparison of the CSR to mBSR in AmgT
and CSR to BSR in cuSPARSE.

F. Performance on AMD GPU

We also deploy our AmgT on AMD GPUs. Since the input
sizes supported by the AMD Matrix Core are not suitable
for our algorithm, we abandon the use of the Matrix Core in
favor of using the standard compute cores exclusively for the
computation. We compare our algorithm with HYPRE calling
the rocSPARSE kernels, and the subfigure (c) of Figure 7
shows the performance results on an AMD MI210 GPU.

For the setup phase, compared with HYPRE (FP64) calling
rocSPARSE kernels, AmgT (FP64) attaches a geomean of
1.78× (up to 2.05×) speedups on the MI210 GPU, where the
execution time of SpGEMM operations achieves a geomean of
4.67× (up to 5.96×) speedups. For the solve phase, our AmgT
(FP64) gets a geomean of 2.42× (up to 4.53×) speedups on
the MI210 GPU over HYPRE, where the execution time of
SpMV operations reaches a geomean of 2.92× (up to 6.70×)
speedups. Due to the limited support for the FP16 precision
in the programming instructions, we did not utilize the FP16
precision in our mixed-precision implementation. Instead, we
set the finest level to use FP64 precision, while the remaining
levels employ FP32 precision. Additionally, the AMD MI210
GPU has equal compute capabilities for both FP64 and FP32
precisions. As a result, the performances of our AmgT (FP64)
and AmgT (Mixed) are nearly identical.

G. Format Conversion Cost

We also compare the costs of converting a matrix from the
CSR to the mBSR in AmgT and the BSR in cuSPARSE. Still
using the 16 representative matrices, the format conversion
costs are plotted in Figure 10. Since the main difference
between the mBSR and the BSR formats is the addition of
the BlcMap array, the two conversion costs are very similar.

The format conversion, as explained in Section IV.E, is
called 2×#Levels-1 times in the entire data flow, and generally
occupies about longer than 5% overall execution time. Because
the tensor core friendly SpGEMM and SpMV in our AmgT
both use exactly the same mBSR, the conversion costs are well
limited.

VI. RELATED WORK

Fast algorithms for the key components of AMG always
receive much attention. Coarsening, normally the first stage
of the setup phase, has a variety of representative methods,
such as the parallel modified independent set (PMIS) [71] the
semicoarsening scheme [72] and the algebraic interface [73].
The interpolation stage also has multiple efficient approaches,
such as long-range [74], distance-two [75], element [76],
optimal implementation [77], and area-specific [78]. Li et
al. [35] recently showed that interpolation can use SpGEMM
for better performance, and this method is selected in our
work. Xu et al. [79] proposed the αSetup-AMG based on an
adaptive setup strategy. Smoothing is a key component in the
solve phase, and machine learning methods were developed to
select good smoothers [80]. Chow et al. [81] surveyed various
parallel techniques for AMG.

In addition to the graph-style components mentioned above,
sparse kernels also play an important role in AMG. Much
SpGEMM work focuses on scalability [32], [37], [38], [43],
[44], [47], compression [32], [33], [39], vectorization [45],
[46], [46], [51] and new accumulators [41], [42], [82]. As
for SpMV, cache-friendly data layout [53]–[57], [67], [83],
load balancing [58], [59], [62], [65], [66], vectorization [52],
[60], [61], [64] and sparse communication [84] received the
most attention. In particular, tSparse [36] can use tensor cores
for dense parts in SpGEMM and DASP [63] designed a new
sparse format in order to efficiently utilize Tensor Core for
SpMV. Futhermore, sparse kernels were also accelerated on
FPGAs [68] and ReRAM hardware [85]. Compared to the
studies, our AmgT runs on a unified sparse format, accelerates
both kernels on tensor cores, and shows obviously better
performance in AMG.

In addition to the components accelerated on a single
node, AMG on distributed memory systems requires addi-
tional efforts to reduce communication [86], [87] and realize
scalability [7], [8], [88], [89], through modeling [90], dis-
cretization [91], [92], fault resilience [93], domain decompo-
sition [94], [95], sparsification [96] and task parallelism [97].
Although the AmgT proposed in this paper focuses on op-
timizations on GPUs, it could be incorporated into existing
libraries like HYPRE and benefit large-scale platforms.

A number of mathematical software for AMG have been
developed. HYPRE [22] with BoomerAMG [98] includes
easy-to-use interfaces [99]–[101] and GPU support [17]. It
was also integrated into the xSDK [102], prepared for Exas-
cale computing [103], and used as a representative workload
to benchmark heterogeneous supercomputers [104]. Bell et
al. [16] implemented AMG with fine-grained parallelism on
GPUs, and developed the CUSP library [23] with a Python

interface [105]. Naumov et al. [15] implemented classical
and aggregation-based AMG methods on GPUs in the AmgX
library. A multiple precision AMG [20] algorithm was recently
developed in the Ginkgo library [25]. Park et al. [7], Yang et
al. [14], Yuan et al. [21], Liu et al. [9], Bernaschi et al. [19],
Wang et al. [10] and Boukhris et al. [18] also optimized
AMG on multicores or GPUs. In addition to general purpose
processors, AMG was also accelerated on FPGAs [12] and
ReRAM hardware [13]. In comparison, our AmgT is a new
library that largely uses tensor cores and their mixed-precision
ability for state-of-the-art performance.

Existing research also proposed scientific kernels on ten-
sor cores, such as reduction and scan [106], GEMM with
extended precision [107], matrix factorization [108], [109],
stencil [110], [111], FFT [112], basic linear algebra oper-
ations [113], [114], sparse matrix multiplication [36], [63],
[115]–[117], iterative refinement [118], and random projec-
tion [119]. Compared with those studies, our work shows that
more irregular kernels could be accelerated by tensor cores,
and using a unified storage format can be more efficient in the
complete AMG procedure.

In addition, mixed precision computations also show
great potential for scientific kernels. A series of linear al-
gebra methods [120], in particular iterative solvers such as
conjugate gradient [121]–[123], generalized minimal residual
(GMRES) [124]–[126] and preconditioner [127], as well as
AMG [20] demonstrated the effectiveness of mixed precision.
In our work, SpGEMM and SpMV kernels have higher poten-
tial to obtain benefits from mixed precision through the use of
tensor cores.

VII. CONCLUSION

We in this paper have proposed AmgT, a new solver that
utilizes the tensor core and mixed precision ability of the latest
GPUs for the entire procedure of AMG. Both SpGEMM and
SpMV operations with multiple precisions are accelerated on
top of a unified sparse format called mBSR and on tensor
core units. On single-GPU (A100, H100 and MI210) and
multi-GPU (eight A100) platforms, our AmgT significantly
outperforms the latest GPU version of the HYPRE library.

ACKNOWLEDGEMENTS

We greatly appreciate the invaluable comments of all re-
viewers. Weifeng Liu is the corresponding author of this paper.
This work was partially supported by the National Key R&D
Program of China (Grant No. 2023YFB3001604), the National
Natural Science Foundation of China (Grant No. U23A20301,
No. 62372467, No. 62204265 and No. 62234010) and the
State Key Laboratory of Computer Architecture (ICT, CAS)
(Grant No. CARCHA202115). This work was partially sup-
ported by the Spanish Ministry of Science and Innova-
tion MCIN/AEI/10.13039/501100011033 (contracts PID2019-
107255GB-C21 and PID2019-105660RBC22) and by the Gen-
eralitat de Catalunya (contract 2021-SGR-00865). We are also
very grateful to Yuyao Niu and Runzhang Mao for help in the
evaluation.

REFERENCES

[1] R. Falgout, “An introduction to algebraic multigrid,” Computing in
Science & Engineering, vol. 8, no. 6, pp. 24–33, 2006.

[2] J. Xu and L. Zikatanov, “Algebraic multigrid methods,” Acta Numerica,
vol. 26, pp. 591–721, 2017.

[3] K. Stüben, “A review of algebraic multigrid,” in Numerical Analysis:
Historical Developments in the 20th Century, 2001, pp. 331–359.

[4] A. Gholami, D. Malhotra, H. Sundar, and G. Biros, “Fft, fmm, or
multigrid? a comparative study of state-of-the-art poisson solvers for
uniform and nonuniform grids in the unit cube,” SIAM Journal on
Scientific Computing, vol. 38, no. 3, pp. C280–C306, 2016.

[5] T. Mifune, T. Iwashita, and M. Shimasaki, “A fast solver for fem
analyses using the parallelized algebraic multigrid method,” IEEE
Transactions on Magnetics, vol. 38, no. 2, pp. 369–372, 2002.

[6] S. Buckeridge and R. Scheichl, “Parallel geometric multigrid for global
weather prediction,” Numerical Linear Algebra with Applications,
vol. 17, no. 2-3, pp. 325–342, 2010.

[7] J. Park, M. Smelyanskiy, U. M. Yang, D. Mudigere, and P. Dubey,
“High-performance algebraic multigrid solver optimized for multi-core
based distributed parallel systems,” in SC ’15, 2015, pp. 1–12.

[8] A. H. Baker, T. Gamblin, M. Schulz, and U. M. Yang, “Challenges of
scaling algebraic multigrid across modern multicore architectures,” in
IPDPS ’11, 2011, pp. 275–286.

[9] H. Liu, B. Yang, and Z. Chen, “Accelerating algebraic multigrid solvers
on nvidia gpus,” Computers & Mathematics with Applications, vol. 70,
no. 5, pp. 1162–1181, 2015.

[10] L. Wang, X. Hu, J. Cohen, and J. Xu, “A parallel auxiliary grid
algebraic multigrid method for graphic processing units,” SIAM Journal
on Scientific Computing, vol. 35, no. 3, pp. C263–C283, 2013.

[11] D. Demidov, “Amgcl: An efficient, flexible, and extensible alge-
braic multigrid implementation,” Lobachevskii Journal of Mathematics,
vol. 40, pp. 535–546, 2019.

[12] P. Haghi, T. Geng, A. Guo, T. Wang, and M. Herbordt, “Fp-amg:
Fpga-based acceleration framework for algebraic multigrid solvers,”
in FCCM ’20, 2020, pp. 148–156.

[13] M. Fan, X. Tian, Y. He, J. Li, Y. Duan, X. Hu, Y. Wang, Z. Jin, and
W. Liu, “Amgr: Algebraic multigrid accelerated on reram,” in DAC
’23, 2023, pp. 1–6.

[14] X. Yang, S. Li, F. Yuan, D. Dong, C. Huang, and Z. Wang, “Optimizing
multi-grid computation and parallelization on multi-cores,” in ICS ’23,
2023, pp. 227–239.

[15] M. Naumov, M. Arsaev, P. Castonguay, J. Cohen, J. Demouth, J. Eaton,
S. Layton, N. Markovskiy, I. Reguly, N. Sakharnykh, V. Sellappan, and
R. Strzodka, “Amgx: A library for gpu accelerated algebraic multigrid
and preconditioned iterative methods,” SIAM Journal on Scientific
Computing, vol. 37, no. 5, pp. S602–S626, 2015.

[16] N. Bell, S. Dalton, and L. N. Olson, “Exposing fine-grained parallelism
in algebraic multigrid methods,” SIAM Journal on Scientific Comput-
ing, vol. 34, no. 4, pp. C123–C152, 2012.

[17] R. D. Falgout, R. Li, B. Sjögreen, L. Wang, and U. M. Yang,
“Porting hypre to heterogeneous computer architectures: Strategies and
experiences,” Parallel Computing, vol. 108, p. 102840, 2021.

[18] S. Boukhris, A. Napov, and Y. Notay, “Algebraic multigrid using
a stencil-csr hybrid format on gpus,” SIAM Journal on Scientific
Computing, vol. 45, no. 3, pp. C154–C178, 2023.

[19] M. Bernaschi, A. Celestini, F. Vella, and P. D’Ambra, “A multi-
gpu aggregation-based amg preconditioner for iterative linear solvers,”
IEEE Transactions on Parallel and Distributed Systems, vol. 34, no. 8,
2023.

[20] Y.-H. M. Tsai, N. Beams, and H. Anzt, “Three-precision algebraic
multigrid on gpus,” Future Generation Computer Systems, vol. 149,
pp. 280–293, 2023.

[21] F. Yuan, X. Yang, S. Li, D. Dong, C. Huang, and Z. Wang, “Optimizing
multi-grid preconditioned conjugate gradient method on multi-cores,”
IEEE Transactions on Parallel and Distributed Systems, vol. 35, no. 5,
pp. 768–779, 2024.

[22] R. D. Falgout and U. M. Yang, “hypre: A library of high performance
preconditioners,” in ICCS ’02, 2002, pp. 632–641.

[23] S. Dalton, N. Bell, L. Olson, and M. Garland, “Cusp: Generic parallel
algorithms for sparse matrix and graph computations,” 2014.

[24] X. Xu, X. Yue, R. Mao, Y. Deng, S. Huang, H. Zou, X. Liu, S. Hu,
C. Feng, S. Shu, and Z. Mo, “Jxpamg: a parallel algebraic multigrid

solver for extreme-scale numerical simulations,” CCF Transactions on
High Performance Computing, vol. 5, no. 1, pp. 72–83, 2023.

[25] H. Anzt, T. Cojean, G. Flegar, F. Göbel, T. Grützmacher, P. Nayak,
T. Ribizel, Y. M. Tsai, and E. S. Quintana-Ortí, “Ginkgo: A modern
linear operator algebra framework for high performance computing,”
ACM Trans. Math. Softw., vol. 48, no. 1, 2022.

[26] J. Burgess, “Rtx on – the nvidia turing gpu,” in Hot Chips ’19, 2019,
pp. 1–27.

[27] J. Choquette and W. Gandhi, “Nvidia a100 gpu: Performance &
innovation for gpu computing,” in Hot Chips ’20, 2020, pp. 1–43.

[28] J. Choquette, “Nvidia hopper gpu: Scaling performance,” in Hot Chips
’22, 2022, pp. 1–46.

[29] A. Biswas, “Sapphire rapids,” in Hot Chips ’21, 2021, pp. 1–22.
[30] H. Jiang, “Intel’s ponte vecchio gpu : Architecture, systems & soft-

ware,” in Hot Chips ’22, 2022, pp. 1–29.
[31] A. Smith and N. James, “Amd instinct mi200 series accelerator and

node architectures,” in Hot Chips ’22, 2022, pp. 1–23.
[32] A. Buluç and J. R. Gilbert, “Parallel sparse matrix-matrix multiplication

and indexing: Implementation and experiments,” SIAM Journal on
Scientific Computing, vol. 34, no. 4, pp. C170–C191, 2012.

[33] ——, “Challenges and advances in parallel sparse matrix-matrix mul-
tiplication,” in ICPP ’08, 2008, pp. 503–510.

[34] ——, “On the representation and multiplication of hypersparse matri-
ces,” in IPDPS ’08, 2008, pp. 1–11.

[35] R. Li, B. Sjögreen, and U. M. Yang, “A new class of amg interpolation
methods based on matrix-matrix multiplications,” SIAM Journal on
Scientific Computing, vol. 43, no. 5, pp. S540–S564, 2021.

[36] O. Zachariadis, N. Satpute, J. Gómez-Luna, and J. Olivares, “Accel-
erating sparse matrix-matrix multiplication with gpu tensor cores,”
Computers & Electrical Engineering, vol. 88, p. 106848, 2020.

[37] A. Azad, G. Ballard, A. Buluç, J. Demmel, L. Grigori, O. Schwartz,
S. Toledo, and S. Williams, “Exploiting multiple levels of parallelism
in sparse matrix-matrix multiplication,” SIAM Journal on Scientific
Computing, vol. 38, no. 6, pp. C624–C651, 2016.

[38] G. Ballard, A. Buluç, J. Demmel, L. Grigori, B. Lipshitz, O. Schwartz,
and S. Toledo, “Communication optimal parallel multiplication of
sparse random matrices,” in SPAA ’13, 2013, pp. 222–231.

[39] M. T. Hussain, O. Selvitopi, A. Buluç, and A. Azad, “Communication-
avoiding and memory-constrained sparse matrix-matrix multiplication
at extreme scale,” in IPDPS ’21, 2021, pp. 90–100.

[40] Y. Nagasaka, S. Matsuoka, A. Azad, and A. Buluç, “Performance
optimization, modeling and analysis of sparse matrix-matrix products
on multi-core and many-core processors,” Parallel Computing, vol. 90,
p. 102545, 2019.

[41] Y. Nagasaka, A. Nukada, and S. Matsuoka, “High-performance and
memory-saving sparse general matrix-matrix multiplication for nvidia
pascal gpu,” in ICPP ’17, 2017, pp. 101–110.

[42] M. Deveci, C. Trott, and S. Rajamanickam, “Multithreaded sparse
matrix-matrix multiplication for many-core and gpu architectures,”
Parallel Computing, vol. 78, pp. 33–46, 2018.

[43] G. Ballard, C. Siefert, and J. Hu, “Reducing communication costs for
sparse matrix multiplication within algebraic multigrid,” SIAM Journal
on Scientific Computing, vol. 38, no. 3, pp. C203–C231, 2016.

[44] G. Ballard, A. Druinsky, N. Knight, and O. Schwartz, “Hypergraph par-
titioning for sparse matrix-matrix multiplication,” ACM Trans. Parallel
Comput., vol. 3, no. 3, 2016.

[45] Y. Niu, Z. Lu, H. Ji, S. Song, Z. Jin, and W. Liu, “Tilespgemm: a tiled
algorithm for parallel sparse general matrix-matrix multiplication on
gpus,” in PPoPP ’22, 2022.

[46] V. Le Fèvre and M. Casas, “Efficient execution of spgemm on long
vector architectures,” in HPDC ’23, 2023, p. 101–113.

[47] W. Liu and B. Vinter, “An efficient gpu general sparse matrix-matrix
multiplication for irregular data,” in IPDPS ’14, 2014, pp. 370–381.

[48] Z. Xie, G. Tan, W. Liu, and N. Sun, “A pattern-based spgemm library
for multi-core and many-core architectures,” IEEE Transactions on
Parallel and Distributed Systems, vol. 33, no. 1, pp. 159–175, 2022.

[49] ——, “Ia-spgemm: An input-aware auto-tuning framework for parallel
sparse matrix-matrix multiplication,” in ICS ’19, 2019, pp. 94–105.

[50] J. Liu, X. He, W. Liu, and G. Tan, “Register-aware optimizations for
parallel sparse matrix-matrix multiplication,” International Journal of
Parallel Programming, vol. 47, no. 3, pp. 403–417, 2019.

[51] H. Cheng, W. Li, Y. Lu, and W. Liu, “Haspgemm: Heterogeneity-aware
sparse general matrix-matrix multiplication on modern asymmetric
multicore processors,” in ICPP ’23, 2023, pp. 807–817.

[52] R. Li and Y. Saad, “Gpu-accelerated preconditioned iterative linear
solvers,” The Journal of Supercomputing, vol. 63, pp. 443–466, 2013.

[53] A. N. Yzelman and R. H. Bisseling, “Cache-oblivious sparse matrix-
vector multiplication by using sparse matrix partitioning methods,”
SIAM Journal on Scientific Computing, vol. 31, no. 4, pp. 3128–3154,
2009.

[54] ——, “Two-dimensional cache-oblivious sparse matrix-vector multipli-
cation,” Parallel Computing, vol. 37, no. 12, pp. 806–819, 2011.

[55] A. N. Yzelman and D. Roose, “High-level strategies for parallel shared-
memory sparse matrix-vector multiplication,” IEEE Transactions on
Parallel and Distributed Systems, vol. 25, no. 1, pp. 116–125, 2014.

[56] A. Buluç, S. Williams, L. Oliker, and J. Demmel, “Reduced-bandwidth
multithreaded algorithms for sparse matrix-vector multiplication,” in
IPDPS ’11, 2011, pp. 721–733.

[57] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E. Leiserson,
“Parallel sparse matrix-vector and matrix-transpose-vector multiplica-
tion using compressed sparse blocks,” in SPAA ’09, 2009, pp. 233–244.

[58] J. I. Aliaga, H. Anzt, T. Grützmacher, E. S. Quintana-Ortí, and A. E.
Tomás, “Compression and load balancing for efficient sparse matrix-
vector product on multicore processors and graphics processing units,”
Concurrency and Computation: Practice and Experience, vol. 34,
no. 14, p. e6515, 2022.

[59] H. Anzt, T. Cojean, C. Yen-Chen, J. Dongarra, G. Flegar, P. Nayak,
S. Tomov, Y. M. Tsai, and W. Wang, “Load-balancing sparse matrix
vector product kernels on gpus,” ACM Trans. Parallel Comput., vol. 7,
no. 1, 2020.

[60] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. Bishop, “A
unified sparse matrix data format for efficient general sparse matrix-
vector multiplication on modern processors with wide simd units,”
SIAM Journal on Scientific Computing, vol. 36, no. 5, pp. C401–C423,
2014.

[61] W. Liu and B. Vinter, “Csr5: An efficient storage format for cross-
platform sparse matrix-vector multiplication,” in ICS ’15, 2015, pp.
339–350.

[62] D. Merrill and M. Garland, “Merge-based parallel sparse matrix-vector
multiplication,” in SC ’16, 2016, pp. 678–689.

[63] Y. Lu and W. Liu, “Dasp: Specific dense matrix multiply-accumulate
units accelerated general sparse matrix-vector multiplication,” in SC
’23, 2023, pp. 1–14.

[64] C. Gómez, F. Mantovani, E. Focht, and M. Casas, “Efficiently running
spmv on long vector architectures,” in PPoPP ’21, 2021, pp. 292–303.

[65] H. Mi, X. Yu, X. Yu, S. Wu, and W. Liu, “Balancing computation and
communication in distributed sparse matrix-vector multiplication,” in
CCGrid ’23, 2023, pp. 535–544.

[66] W. Li, H. Cheng, Z. Lu, Y. Lu, and W. Liu, “Haspmv: Heterogeneity-
aware sparse matrix-vector multiplication on modern asymmetric mul-
ticore processors,” in CLUSTER ’23, 2023, pp. 1–12.

[67] Y. Niu, Z. Lu, M. Dong, Z. Jin, W. Liu, and G. Tan, “Tilespmv: A tiled
algorithm for sparse matrix-vector multiplication on gpus,” in IPDPS
’21, 2021, pp. 68–78.

[68] E. Yi, Y. Duan, Y. Bai, K. Zhao, Z. Jin, and W. Liu, “Cuper:
Customized dataflow and perceptual decoding for sparse matrix-vector
multiplication on hbm-equipped fpgas,” in DATE ’24, 2024, pp. 1–6.

[69] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, 2011.

[70] X. Fu, B. Zhang, T. Wang, W. Li, Y. Lu, E. Yi, J. Zhao, X. Geng,
F. Li, J. Zhang, Z. Jin, and W. Liu, “Pangulu: A scalable regular two-
dimensional block-cyclic sparse direct solver on distributed heteroge-
neous systems,” in SC ’23, 2023, pp. 1–14.

[71] H. De Sterck, U. M. Yang, and J. J. Heys, “Reducing complexity in
parallel algebraic multigrid preconditioners,” SIAM Journal on Matrix
Analysis and Applications, vol. 27, no. 4, pp. 1019–1039, 2006.

[72] P. N. Brown, R. D. Falgout, and J. E. Jones, “Semicoarsening multigrid
on distributed memory machines,” SIAM Journal on Scientific Comput-
ing, vol. 21, no. 5, pp. 1823–1834, 2000.

[73] X. Xu and Z. Mo, “Algebraic interface-based coarsening amg precon-
ditioner for multi-scale sparse matrices with applications to radiation
hydrodynamics computation,” Numerical Linear Algebra with Appli-
cations, vol. 24, no. 2, p. e2078, 2017.

[74] U. M. Yang, “On long-range interpolation operators for aggressive
coarsening,” Numerical Linear Algebra with Applications, vol. 17, no.
2-3, pp. 453–472, 2010.

[75] H. De Sterck, R. D. Falgout, J. W. Nolting, and U. M. Yang, “Distance-
two interpolation for parallel algebraic multigrid,” Numerical Linear
Algebra with Applications, vol. 15, no. 2-3, pp. 115–139, 2008.

[76] M. Brezina, A. J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones, T. A.
Manteuffel, S. F. McCormick, and J. W. Ruge, “Algebraic multigrid
based on element interpolation (amge),” SIAM Journal on Scientific
Computing, vol. 22, no. 5, pp. 1570–1592, 2001.

[77] J. Brannick, F. Cao, K. Kahl, R. D. Falgout, and X. Hu, “Optimal in-
terpolation and compatible relaxation in classical algebraic multigrid,”
SIAM Journal on Scientific Computing, vol. 40, no. 3, pp. A1473–
A1493, 2018.

[78] A. H. Baker, T. V. Kolev, and U. M. Yang, “Improving algebraic multi-
grid interpolation operators for linear elasticity problems,” Numerical
Linear Algebra with Applications, vol. 17, no. 2-3, pp. 495–517, 2010.

[79] X. Xu, Z. Mo, X. Yue, H. An, and S. Shu, “αsetup-amg: an adaptive-
setup-based parallel amg solver for sequence of sparse linear systems,”
CCF Transactions on High Performance Computing, vol. 2, pp. 98–
110, 2020.

[80] R. Huang, R. Li, and Y. Xi, “Learning optimal multigrid smoothers
via neural networks,” SIAM Journal on Scientific Computing, vol. 45,
no. 3, pp. S199–S225, 2023.

[81] E. Chow, R. D. Falgout, J. J. Hu, R. S. Tuminaro, and U. M. Yang,
“A survey of parallelization techniques for multigrid solvers,” Parallel
Processing for Scientific Computing, pp. 179–201, 2006.

[82] C. R. Trott, D. Lebrun-Grandié, D. Arndt, J. Ciesko, V. Dang,
N. Ellingwood, R. Gayatri, E. Harvey, D. S. Hollman, D. Ibanez,
N. Liber, J. Madsen, J. Miles, D. Poliakoff, A. Powell, S. Raja-
manickam, M. Simberg, D. Sunderland, B. Turcksin, and J. Wilke,
“Kokkos 3: Programming model extensions for the exascale era,” IEEE
Transactions on Parallel and Distributed Systems, vol. 33, no. 4, pp.
805–817, 2022.

[83] J. D. Trotter, S. Ekmekçibaşı, J. Langguth, T. Torun, E. Düzakın,
A. Ilic, and D. Unat, “Bringing order to sparsity: A sparse matrix
reordering study on multicore cpus,” in SC ’23, 2023, pp. 1–13.

[84] I. Ismayilov, J. Baydamirli, D. Sağbili, M. Wahib, and D. Unat, “Multi-
gpu communication schemes for iterative solvers: When cpus are not
in charge,” in ICS ’23, 2023, pp. 192–202.

[85] M. Fan, X. Cheng, D. Yang, Z. Jin, and W. Liu, “Recg: Reram-
accelerated sparse conjugate gradient,” in DAC ’24, 2024, pp. 1–6.

[86] P. S. Vassilevski and U. M. Yang, “Reducing communication in
algebraic multigrid using additive variants,” Numerical Linear Algebra
with Applications, vol. 21, no. 2, pp. 275–296, 2014.

[87] H. Gahvari, W. Gropp, K. E. Jordan, M. Schulz, and U. M. Yang,
“Modeling the performance of an algebraic multigrid cycle using
hybrid mpi/openmp,” in ICPP ’12, 2012, pp. 128–137.

[88] A. H. Baker, R. D. Falgout, T. V. Kolev, and U. M. Yang, “Scaling
hypre’s multigrid solvers to 100,000 cores,” in High-performance
scientific computing: algorithms and applications, 2012, pp. 261–279.

[89] A. J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones, T. A. Manteuffel,
S. F. McCormick, G. N. Miranda, and J. W. Ruge, “Robustness
and scalability of algebraic multigrid,” SIAM Journal on Scientific
Computing, vol. 21, no. 5, pp. 1886–1908, 2000.

[90] H. Gahvari, A. H. Baker, M. Schulz, U. M. Yang, K. E. Jordan, and
W. Gropp, “Modeling the performance of an algebraic multigrid cycle
on hpc platforms,” in ICS ’11, 2011, pp. 172–181.

[91] H. Sundar, G. Stadler, and G. Biros, “Comparison of multigrid
algorithms for high-order continuous finite element discretizations,”
Numerical Linear Algebra with Applications, vol. 22, no. 4, pp. 664–
680, 2015.

[92] R. S. Sampath, S. S. Adavani, H. Sundar, I. Lashuk, and G. Biros,
“Dendro: Parallel algorithms for multigrid and amr methods on 2:1
balanced octrees,” in SC ’08, 2008, pp. 1–12.

[93] M. Casas, B. R. de Supinski, G. Bronevetsky, and M. Schulz, “Fault
resilience of the algebraic multi-grid solver,” in ICS ’12, 2012, pp.
91–100.

[94] W. B. Mitchell, R. Strzodka, and R. D. Falgout, “Parallel performance
of algebraic multigrid domain decomposition,” Numerical Linear Al-
gebra with Applications, vol. 28, no. 3, p. e2342, 2021.

[95] G. Haase, M. Kuhn, and S. Reitzinger, “Parallel algebraic multigrid
methods on distributed memory computers,” SIAM Journal on Scientific
Computing, vol. 24, no. 2, pp. 410–427, 2002.

[96] A. Bienz, R. D. Falgout, W. Gropp, L. N. Olson, and J. B. Schroder,
“Reducing parallel communication in algebraic multigrid through spar-

sification,” SIAM Journal on Scientific Computing, vol. 38, no. 5, pp.
S332–S357, 2016.

[97] A. AlOnazi, G. S. Markomanolis, and D. Keyes, “Asynchronous task-
based parallelization of algebraic multigrid,” in PASC ’17, 2017, pp.
1–11.

[98] V. E. Henson and U. M. Yang, “Boomeramg: A parallel algebraic
multigrid solver and preconditioner,” Applied Numerical Mathematics,
vol. 41, no. 1, pp. 155–177, 2002.

[99] R. D. Falgout, J. E. Jones, and U. M. Yang, “Conceptual interfaces
in hypre,” Future Generation Computer Systems, vol. 22, no. 1, pp.
239–251, 2006.

[100] ——, “Pursuing scalability for hypre’s conceptual interfaces,” ACM
Trans. Math. Softw., vol. 31, no. 3, pp. 326–350, 2005.

[101] R. D. Falgout and P. S. Vassilevski, “On generalizing the algebraic
multigrid framework,” SIAM Journal on Numerical Analysis, vol. 42,
no. 4, pp. 1669–1693, 2004.

[102] R. Bartlett, I. Demeshko, T. Gamblin, G. Hammond, M. A. Heroux,
J. Johnson, A. Klinvex, X. Li, L. C. McInnes, J. D. Moulton, D. Osei-
Kuffuor, J. Sarich, B. Smith, J. Willenbring, and U. M. Yang, “xsdk
foundations: Toward an extreme-scale scientific software development
kit,” Supercomputing Frontiers and Innovations, vol. 4, no. 1, pp. 69–
82, 2017.

[103] A. H. Baker, R. D. Falgout, H. Gahvari, T. Gamblin, W. Gropp, T. V.
Kolev, K. E. Jordan, M. Schulz, and U. M. Yang, “Preparing algebraic
multigrid for exascale,” LLNL Technical Report, 2012.

[104] I. Karlin, Y. Park, B. R. de Supinski, P. Wang, B. Still, D. Beckingsale,
R. Blake, T. Chen, G. Cong, C. Costa, J. Dahm, G. Domeniconi,
T. Epperly, A. Fisher, S. Kokkila-Schumacher, S. Langer, H. Le, E. K.
Lee, N. Maruyama, X. Que, D. Richards, B. Sjogreen, J. Wong,
C. Woodward, U. Yang, X. Zhang, B. Anderson, D. Appelhans,
L. Barnes, P. Barnes, S. Bastea, D. Boehme, J. A. Bramwell, J. Brase,
J. Brunheroto, B. Chen, C. R. Cooper, T. DeGroot, R. Falgout,
T. Gamblin, D. Gardner, J. Glosli, J. Gunnels, M. Katz, T. Kolev,
I.-F. W. Kuo, M. P. Legendre, R. Li, P.-H. Lin, S. Lockhart, K. Mc-
Candless, C. Misale, J. Moreno, R. Neely, J. Nelson, R. Nimmakay-
ala, K. O’Brien, K. O’Brien, R. Pankajakshan, R. Pearce, S. Peles,
P. Regier, S. Rennich, M. Schulz, H. Scott, J. Sexton, K. Shoga, S. Sun-
dram, G. Thomas-Collignon, B. Van Essen, A. Voronin, B. Walkup,
L. Wang, C. Ward, H.-F. Wen, D. White, C. Young, C. Zeller, and
E. Zywicz, “Preparation and optimization of a diverse workload for a
large-scale heterogeneous system,” in SC ’19, 2019, pp. 1–17.

[105] N. Bell, L. N. Olson, and J. Schroder, “Pyamg: Algebraic multigrid
solvers in python,” Journal of Open Source Software, vol. 7, no. 72,
p. 4142, 2022.

[106] A. Dakkak, C. Li, J. Xiong, I. Gelado, and W.-m. Hwu, “Accelerating
reduction and scan using tensor core units,” in ICS ’19, 2019, pp. 46–
57.

[107] B. Feng, Y. Wang, G. Chen, W. Zhang, Y. Xie, and Y. Ding, “Egemm-
tc: accelerating scientific computing on tensor cores with extended
precision,” in PPoPP ’21, 2021, pp. 278–291.

[108] S. Zhang, E. Baharlouei, and P. Wu, “High accuracy matrix com-
putations on neural engines: A study of qr factorization and its
applications,” in HPDC ’20, 2020, pp. 17–28.

[109] S. Zhang, R. Shah, H. Ootomo, R. Yokota, and P. Wu, “Fast symmetric
eigenvalue decomposition via wy representation on tensor core,” in
PPoPP ’23, 2023, pp. 301–312.

[110] X. Liu, Y. Liu, H. Yang, J. Liao, M. Li, Z. Luan, and D. Qian, “Toward
accelerated stencil computation by adapting tensor core unit on gpu,”
in ICS ’22, 2022, pp. 1–12.

[111] Y. Chen, K. Li, Y. Wang, D. Bai, L. Wang, L. Ma, L. Yuan, Y. Zhang,
T. Cao, and M. Yang, “Convstencil: Transform stencil computation to
matrix multiplication on tensor cores,” in PPoPP ’24, 2024, pp. 333–
347.

[112] L. Pisha and L. Ligowski, “Accelerating non-power-of-2 size fourier
transforms with gpu tensor cores,” in IPDPS ’21, 2021, pp. 507–516.

[113] S. Zhang, V. Karihaloo, and P. Wu, “Basic linear algebra operations
on tensorcore gpu,” in ScalA ’20, 2020, pp. 44–52.

[114] S. Zhang and P. Wu, “Recursion brings speedup to out-of-core
tensorcore-based linear algebra algorithms: A case study of classic
gram-schmidt qr factorization,” in ICPP ’21, 2021, pp. 1–11.

[115] H. Wang, W. Yang, R. Hu, R. Ouyang, K. Li, and K. Li, “A novel
parallel algorithm for sparse tensor matrix chain multiplication via tcu-
acceleration,” IEEE Transactions on Parallel and Distributed Systems,
vol. 34, no. 8, pp. 2419–2432, 2023.

[116] S. Li, K. Osawa, and T. Hoefler, “Efficient quantized sparse matrix
operations on tensor cores,” in SC ’22, 2022, pp. 1–15.

[117] R. Fan, W. Wang, and X. Chu, “Dtc-spmm: Bridging the gap in
accelerating general sparse matrix multiplication with tensor cores,”
in ASPLOS ’24, 2024, pp. 253–267.

[118] A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham, “Harnessing
gpu tensor cores for fast fp16 arithmetic to speed up mixed-precision
iterative refinement solvers,” in SC ’18, 2018, pp. 603–613.

[119] H. Ootomo and R. Yokota, “Mixed-precision random projection for
randnla on tensor cores,” in PASC ’23, 2023, pp. 1–11.

[120] A. Abdelfattah, H. Anzt, E. G. Boman, E. Carson, T. Cojean, J. Don-
garra, A. Fox, M. Gates, N. J. Higham, X. S. Li, J. Loe, P. Luszczek,
S. Pranesh, S. Rajamanickam, T. Ribizel, B. F. Smith, K. Swirydowicz,
S. Thomas, S. Tomov, Y. M. Tsai, and U. M. Yang, “A survey of numer-
ical linear algebra methods utilizing mixed-precision arithmetic,” The
International Journal of High Performance Computing Applications,
vol. 35, no. 4, pp. 344–369, 2021.

[121] I. Yamazaki, E. Carson, and B. Kelley, “Mixed precision s-step
conjugate gradient with residual replacement on gpus,” in IPDPS ’22,
2022, pp. 886–896.

[122] E. Carson, T. Gergelits, and I. Yamazaki, “Mixed precision s-step
lanczos and conjugate gradient algorithms,” Numerical Linear Algebra
with Applications, vol. 29, no. 3, p. e2425, 2022.

[123] D. Yang, Y. Zhao, Y. Niu, W. Jia, E. Shao, W. Liu, G. Tan, and Z. Jin,
“Mille-feuille: A tile-grained mixed precision single-kernel conjugate
gradient solver on gpus,” in SC ’24, 2024.

[124] E. Carson and N. J. Higham, “Accelerating the solution of linear
systems by iterative refinement in three precisions,” SIAM Journal on
Scientific Computing, vol. 40, no. 2, pp. A817–A847, 2018.

[125] E. Oktay and E. Carson, “Multistage mixed precision iterative refine-
ment,” Numerical Linear Algebra with Applications, vol. 29, no. 4, p.
e2434, 2022.

[126] E. Carson and N. Khan, “Mixed precision iterative refinement with
sparse approximate inverse preconditioning,” SIAM Journal on Scien-
tific Computing, vol. 45, no. 3, pp. C131–C153, 2023.

[127] V. Georgiou, C. Boutsikas, P. Drineas, and H. Anzt, “A mixed precision
randomized preconditioner for the lsqr solver on gpus,” in ISC ’23,
2023, pp. 164–181.

Appendix: Artifact Description/Artifact Evaluation
Artifact Description (AD)

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS

A. Paper’s Main Contributions

This work makes the following contributions:

C1 We design a unified sparse matrix format that sup-
ports both SpGEMM and SpMV;

C2 We propose tensor core and mixed precision friendly
SpGEMM and SpMV kernels;

C3 We develop the AmgT solver and incorporate it into
the Hypre library;

C4 We show significant performance gain of AmgT on
two latest NVIDIA GPUs.

B. Computational Artifacts

https://zenodo.org/doi/10.5281/zenodo.12581721

II. ARTIFACT IDENTIFICATION

Relation To Contributions

This artifact names AmgT, a new AMG solver that utilizes
the tensor core and mixed precision ability of the latest
GPUs during multiple phases of the AMG algorithm. (C1

and C2) Considering that the sparse general matrix-matrix
multiplication (SpGEMM) and sparse matrix-vector multipli-
cation (SpMV) are extensively used in the setup and solve
phases, respectively, we propose a novel method based on a
unified sparse storage format that leverages tensor cores and
their variable precision. (C3) Our method improves both the
performance of GPU kernels, and also minimizes the cost
of format conversion in the whole data flow of AMG. To
better utilize algorithm components in existing libraries, the
data format and compute kernels of the AmgT solver are
incorporated into the Hypre library. (C4) The experimental
results on NVIDIA A100 and H100 GPUs show that our
AmgT outperforms the original GPU version of Hypre by
a factor of on average 1.46× and 1.32× (up to 2.10× and
2.06×), respectively.

Expected Results

This artifact contains AmgT in double and mixed precision
as well as Hypre calling cuSPARSE kernels. In the test results,
the execution time of AmgT (FP64) is less than Hyper, and the
execution time of AmgT (Mixed) is less than AmgT (FP64).

Expected Reproduction Time (in Minutes)

Total time: 2 hours. The estimated time to download the
datasets, compile this artifact, run the executable files and plot
the performance results are 10 min, 10 min, 1.5 hours and 1
min, respectively.

Artifact Setup (incl. Inputs)

• Hardware
GPU: NVIDIA A100 GPU (PCIe, 80GB, 1.94TB/s) or
NVIDIA H100 GPU (SXM5, 64GB, 2.02TB/s). Overall,
the GPU being used should be one or two NVIDIA GPUs
with FP64 Tensor Core.
CPU: Intel(R) Xeon(R) Platinum 8358P CPU. Please use
a multicore CPU.
Disk Space: at lease 3 GB (to store the experiment input
dataset).

• Software
Open MPI v4.0.0 or above;
NVIDIA CUDA Toolkit v12.2 or above;
GCC v9.4.0 or above;
Python 3.9 or above;
Pandas package v2.2.2.

• Datasets / Input
Our experimental dataset includes 16 matrices in the
SuiteSparse Matrix Collection which is publicly available
(https://sparse.tamu.edu/about).

Artifact Execution

This artifact consists of four tasks: downloading the test
matrices (T1), compiling the program (T2), running the pro-
gram (T3) and organizing and plotting the result data (T4).
The task T1 corresponds to the script matrix.py, which
downloads 16 representative matrices from the SuiteSparse
Matrix Collection that will be used as input by the task T3.
The task T2 is to compile the AmgT and the preprocessing
program by executing the script compile.sh. After that,
we can get all seven executable files which will be used in
task T3. The task T3 runs all programs in turn to obtain the
performance results of each program on these 16 matrices by
executing the script run.sh. The performance results will be
used in the task T4. The task T4 extracts the performance data
from all the output files obtained from the previous task and
plots these results by executing the script figures.sh.

The overall execution flow of the artifact is: T1 (prepare)
→ T2 (compile) → T3 (run) → T4 (analysis)

Artifact Analysis (incl. Outputs)

After executing the complete workflow, all the performance
data has been stored in the form of figures in three files
Fig7.pdf, Fig8.pdf and Fig9.pdf.

Artifact Evaluation (AE)
Artifact Setup (incl. Inputs)

• Preparation for Dataset
Download the 16 matrices from the SuitSparse. Run the
following command: $python3 matrix.py
The 16 matrices are automatically downloaded to the
folder ./matrix/.

• Installation and Compilation
Modify the configuration information of comile.sh.
Step 1: Modify the CUDA HOME
Step 2: Modify the GPU to A100 or H100.
Run the following command: $source compile.sh
After executing the command, it will generate 7 exe-
cutable files in ./hypre_test/runnable_files/,
which including:
CuSparse: Test case using the cuSPARSE kernels.
No_Mixed: Test case using the AmgT (FP64 precision).
Mixed: Test case using the AmgT (mixed precision).
CuSparse_PrintKernel: Test case using the cuS-
PARSE kernels which records the overhead of each kernel
call.
No_Mixed_PrintKernel: Test case using the FP64-
precision AmgT which records the overhead of each
kernel call.
Mixed_PrintKernel: Test case using the mixed-
precision AmgT which records the overhead of each
kernel call.
Preprocess: Test case about format coversion.

Artifact Execution

• Evaluation
Execute the following command to run all executable
files: $nohup bash run.sh 2>&1
The output files will be stored in the path:
./hypre_test/data/.
All the test cases are generated in the HYPRE framework,
where the version of the main operation calling the
cuSPARSE implementation is our baseline. The rest of
the test cases are the versions calling the FP64 precision
kernel or the mixed precision kernel newly proposed in
this work. During the running tests, we mainly record
the time of the Setup phase, the execution time of the
SpGEMM operation, the time of the Solve phase and the
execution time of the SpMV operation during the whole
solving process of the Amg solver.
Since we propose a new data structure different from
HYPRE, which incurs additional preprocessing costs, we
test and record this overhead as well.

Artifact Analysis (incl. Outputs)

• Plotting and Analysis
Under the path ./figures/, execute the following
command to plot performance: $bash figures.sh
Then, the files Fig7.pdf, Fig8.pdf and Fig9.pdf
corresponded to the Figure 7, 8 and 9 in the paper will
be generated.

The Fig7.pdf shows the performance comparison of
the baseline Hypre using FP64 cuSPARSE kernels, our
AmgT using FP64, and our AmgT using mixed-precision
running on the 16 representative matrices. The expected
performance trend should be as shown in the paper
that the execution time of AmgT (FP64) is less than
Hyper, and the execution time of AmgT (Mixed) is
slightly less than AmgT (FP64). The Fig8.pdf records
the execution time of all instances of the kernel calls
througout the process for the 16 matrices using the three
approaches, which can obtain more detailed performance.
The Fig9.pdf shows the format conversion cost com-
parison of the CSR to mBSR in AmgT and CSR to
BSR in cuSPARSE. Because the newly proposed format
mBSR differs very little from the BSR format, the two
conversion costs are almost very similar.

	Introduction
	Key Components of AMG
	Setup Phase
	Solve Phase

	Tensor Core Units and Mixed Precision for AMG acceleration
	The AmgT Solver
	Overview
	Unified Sparse Matrix Format
	SpGEMM for the Setup Phase
	Data analysis and binning
	Two-step symbolic computation
	Numeric Computation

	SpMV for the Solve Phase
	Adaptive Selection
	Tensor Core Computation
	CUDA Core Computation

	Full Data Flow
	Incorporation into HYPRE

	Evaluation
	Experimental Setup
	Performance Comparison in Double Precision
	Performance Comparison in Mixed Precision
	Detailed Performance of the 16 Matrices
	Performance on Multi-GPU
	Performance on AMD GPU
	Format Conversion Cost

	Related Work
	Conclusion
	References

