
ScalFrag: Efficient Tiled-MTTKRP with Adaptive
Launching on GPUs

Wenqing Lin, Hemeng Wang, Haodong Deng, Qingxiao Sun
SSSLab, Dept. of CST, China University of Petroleum-Beijing, China

{wenqing.lin,hemeng.wang,haodong.deng}@student.cup.edu.cn, qingxiao.sun@cup.edu.cn

Abstract—Tensor decomposition, a pivotal technique in min-
ing underlying patterns from voluminous and high-dimensional
sparse datasets, plays a crucial role in unraveling latent structures
within complex data. Among the various methods employed for
tensor decomposition, Canonical Polyadic Decomposition (CPD)
stands out as a prominent choice, widely embraced across
numerous scientific disciplines and practical applications due to
its effectiveness in capturing multi-linear relationships. However,
the computational efficacy of CPD is significantly hampered by
the Matricized Tensor Times Khatri-Rao Product (MTTKRP)
operation, which constitutes its primary bottleneck. While of-
floading the MTTKRP computation onto Graphics Processing
Units (GPUs) has emerged as a prevalent strategy to leverage
their parallel processing capabilities for enhancing performance,
the inherent sparsity and irregular data access patterns intrinsic
to these operations introduce new complexities.

Addressing this challenge, we introduce an innovative method-
ology ScalFrag designed to accelerate sparse MTTKRP computa-
tions on GPU platforms. A key insight underlying our approach is
the recognition that the optimal kernel launch configuration—a
critical factor influencing GPU performance—varies consider-
ably depending on the unique characteristics of the input tensor.
We devise a dynamic kernel launch configuration selection mech-
anism to tackle this variability. This novel strategy autonomously
identifies and applies the most advantageous launch setup tai-
lored to each input tensor, optimizing computational efficiency.
Additionally, we present a stream-based algorithm for sparse
MTTKRP, further overlapping data access time. By leveraging
streaming architectures, our algorithm significantly improves
data access efficiency, mitigating the bottlenecks associated with
the irregularities of sparse tensor patterns.

The experimental results show that ScalFrag performs better
than the SOTA library ParTI, and is able to find more suitable
kernel launch parameter configurations in a short time.

Index Terms—GPU, Tensor Decomposition, MTTKRP, Sparse
Tensors, Parallel Computing, Performance Model

I. INTRODUCTION

A tensor, which is a multidimensional array, serves as a
higher-level generalization of a matrix, offering a natural way
to represent intricate and interconnected data. For example, a
3-way tensor is used in computer vision to represent video
data, where each dimension corresponds to different aspects:
video frames, frame height, and frame width. The tensors
facilitate machine learning operations like convolutions and
tasks such as action recognition and object detection. Various
essential fields, including data mining [18], recommended
systems [29], social network analysis [28], cybersecurity [5],
numerical linear algebra, computer vision [37], numerical
analysis, and healthcare [12], produce extensive sets of multi-
dimensional data in the form of sparse tensors. Tensors are

also fundamental data structures in deep learning libraries like
TensorFlow [1] and PyTorch [26], These libraries provide
high-level abstractions and operations for creating, manip-
ulating, and performing computations on tensors, enabling
efficient implementation of deep learning models and algo-
rithms. Tensor operations serve as fundamental building blocks
and often serve as the decisive operations influencing the
performance of tensor algorithms and applications.

Tensors can be efficiently and quickly analyzed using tensor
decomposition (TD). The utilization of tensor decomposition
techniques originated in the field of psychometrics in 1970
[11], with subsequent adoption in chemometrics later [2]. In
recent years, these decomposition methods have experienced a
surge in popularity due to their effectiveness in various appli-
cations such as recommended systems, conversation detection,
and so on. The most popular TD method is canonical polyadic
decomposition (CPD) model, which is a generalization of
singular value decomposition and approximates a tensor as
a sum of a finite number of rank-one tensors such that each
rank-one tensor corresponds to a useful data property [17].

Executing a complete iteration of CPD involves conduct-
ing matricized tensor times Khatri-Rao products (MTTKRP)
across every mode and the computation of the CPD for a
sparse tensor is predominantly influenced by the MTTKRP
operation, accounting for around 90% of the overall execution
time [33]. Therefore, it serves as the primary target for
optimizations in tensor decomposition. To improve the per-
formance of this memory-constrained workload, recent state-
of-the-art research has attempted to create compact represen-
tations of the tensor in each mode and has also equipped
massively parallel architectures with high bandwidth memory
(HBM) (i.e., GPU) to accelerate the MTTKRP kernel.

However, the inherent sparsity of the datasets and the
irregularity in data access patterns pose new complexities
when attempting to harness GPU power effectively. Sparse
data means that only a fraction of the data matrix/tensor
contains non-zero elements, leading to inefficient memory
usage and complex memory access patterns. Besides, a critical
aspect of GPU programming is the kernel launch configu-
ration, which determines how tasks are distributed among
GPU threads and blocks. Finding the optimal configuration
is vital for maximizing GPU performance. The complexity
arises from the fact that the ideal configuration is highly
dependent on the specific characteristics of the input tensor,
such as its dimensions and sparsity distribution. Traditional

static configurations often fail to adapt to varying inputs,
resulting in suboptimal performance. Thus, there’s a need for a
dynamic mechanism that can automatically identify and apply
the best launch setup for each unique input, thereby optimizing
computational efficiency.

Another pertinent concern arises from the prevalent focus
within the field on optimizations confined within the kernel,
neglecting consideration for the comprehensive performance
of MTTKRP from start to finish. Through empirical assess-
ments, we have discerned that a substantial portion of the
end-to-end MTTKRP process is consumed by data trans-
fer operations, surpassing computational durations in certain
tensor instances. Hence, it is our contention that enhancing
MTTKRP performance necessitates a dual approach encom-
passing optimizations within the kernel as well as those ad-
dressing end-to-end performance considerations. Furthermore,
a comprehensive understanding of the interplay between kernel
execution parameters and data transfer dynamics is necessary.
This includes identifying the most suitable block and grid
sizes that not only expedite computations but also synchronize
optimally with the data transfer schedules, thereby minimizing
idle times on either the GPU or the CPU.

To address these issues, we propose a new framework
ScalFrag for sparse tensor decomposition on GPU. First,
appropriate parameters are selected based on an auto-tuning
launch parameter selection strategy, then, the tensor is divided
into segments to process only a portion of the data at a time,
and finally, transmission and computation are performed using
a form of pipelined parallelism.

Specifically, this paper makes the following key contribu-
tions:

• We propose a method for selecting a suitable combination
of launch parameters by means of an adaptive launch
strategy that selects the optimal combination of launch
parameters based on the tensor characteristics.

• We introduce a new blocking approach to generate tensor
blocks, based on the resource constraints of hardware, for
asynchronous computing to reduce memory usage.

• We introduce a pipelined parallelism strategy, which ef-
fectively utilizes the computational resources of the GPU
by decomposing the computation process into multiple
stages and enabling parallel processing among stages.

• While exposing the fine-grained parallelism within a
block to efficiently utilize the GPU hardware, we put
the parts with low parallelism to the CPU for execution.
Through this CPU-GPU heterogeneous hybrid optimiza-
tion, substantial efficiency improvement is achieved.

The rest of this paper is organized as follows: Section II
presents the background of this paper, describes the related
tensor notations, and gives an overview of tensor decomposi-
tion. Section III presents the details of the motivation. Section
IV describes the methodology of the paper. Section V presents
the evaluation results. Section VI discusses the related work,
and Section VII concludes this paper.

II. BACKGROUND

We begin by summarizing the basic tensor notations used in
the paper, and then briefly describe the basics of the CPD and
MTTKRP computation. A more detailed description of tensor
decomposition methods developed over the last few decades,
along with their applications, can be found in the survey [17].

A. Tensor Notation

Tensors are multi-modal arrays that extend the concepts of
vectors and matrices. An N -order tensor is an array with
N modes. In this paper, we focus on a three-dimensional
tensor and mode-1 operation to explain the concepts and
associated mathematics of tensor decomposition. All notations
for vectors, matrices, and high-dimensional tensors are shown
in Table I, where a slice denotes the subarray with one index
of the tensor fixed, and a fiber denotes the subarray with two
indices of the tensor fixed, We use the following notation in
this paper:

• Scalars are written with lowercase letters (e.g., a).
• Vectors (first-order tensors) are written with bold lower-

case letters (e.g., a ∈ RI). The ith entry of a∈ RI is
denoted ai.

• Matrices (second-order tensors) are written with bold
capital letters (e.g., A ∈ RI×J). The (i, j)th entry of
A ∈ RI×J is denoted ai,j .

• Higher-order tensors are written with Euler script letters
(e.g., X ∈ RI1×···×IN). The (i1, . . . , iN)th entry of the
N -order tensor X ∈ RI1×···×IN is denoted xi1,...,iN .

• Fibers are the analog of matrix rows/columns for higher-
order tensors. A mode-n fiber of a tensor X is any vector
formed by fixing all indices of X , except the nth index
(e.g., a matrix column is defined by fixing the second
index, and is, therefore, a mode-1 fiber).

• Hadamard product is an element-wise product between
two vectors or matrices, and is denoted by the symbol
“*”.

• Kronecker product between two matrices A ∈ RI×J and
B ∈ RK×L produces the matrix C ∈ RIJ×KL where

C =


a1,1B a1,2B · · · a1,JB
a2,1B a2,2B · · · a2,JB

...
...

. . .
...

aI,1B aI,2B · · · aI,JB


and is denoted A⊗B.

B. Canonical Polyadic Decomposition

Canonical polyadic decomposition (CPD) is the higher-
level generalization of singular value decomposition (SVD),
a popular matrix decomposition technique. It is one of the
most widely applied tensor operations, which decomposes a
tensor X with rank F into the summation of F rank-one
tensors, and the rank-one tensors can be represented as the
outer products of vectors, and the CPD of a third-order tensor

+ +≈
J

I

K

Rank-one tensor Rank-one tensor Rank-one tensor

Factor1 Factor2 Factor3

Fig. 1. Canonical polyadic decomposition of a third-order tensor.

TABLE I
IMPORTANT TENSOR NOTATIONS.

Notation Definition
X A high-dimensional tensor.
N Tensor order.

I, J,K, In Tensor mode sizes.
X(n) Matricized tensor in mode-n.

X (i, j, k) An element in a high dimensional tensor.
X (i, :, :) A slice in a high dimensional tensor.
X (i, j, :) A fiber in a high dimensional tensor.

A A matrix.
A(i, j) An element in a matrix.

a A vector.
ai An element in a vector.
⊗ The symbol for Kronecker product.
⊙ The symbol for Khatri-Rao product.
∗ The symbol for Hadamard product.
† The symbol for pseudo-inverse.

is shown in Figure 1. In other words, the CPD models a
tensor X ∈ RI×J×K with three factor matrices A ∈ RI×F ,
B ∈ RJ×F and C ∈ RK×F as formulated in Equation (1).

To solve the CPD, one of the most popular approaches
is to utilize alternating least squares (ALS), where a least
square problem for each factor matrix is solved iteratively with
others fixed. The update process for factor matrix A is shown
in Equation (2). The symbol X(1)(C ⊙ B) is the MTTKRP
operation; it contains the Khatri-Rao product of B and C.
X(1) is the mode-1 matricization of X . The output of the
Khatri-Rao product is then multiplied with (BTB ∗ CTC)†,
which is the pseudo-inverse of the R×R matrix generated by
BTB and CTC. Algorithm 1 demonstrates the steps to update
each matrix using the ALS algorithm. Line 3, Line 4, and
Line 5 show the MTTKRP operations to update A,B, and C
respectively. The main bottleneck in the CPD-ALS algorithm
for sparse tensors is MTTKRP, which can be formulated as
Equation (3). The reason can be attributed to the access to the
large sparse tensor X , and the scattered access to the factor
matrices directed from X .

X (i, j, k) =
F∑

f=1

A(i, f)B(j, f)C(k, f) (1)

A = X(1)(B⊙C)(CTC ∗BTB)† (2)

Â = X(1)(B⊙C) (3)

Algorithm 1 The CPD-ALS algorithm
Require: An N -order tensor X ∈ RI1×···×IN , randomly

initialized dense factor matrices A(1) ∈ RI1×R, A(2) ∈
RI2×R, · · · , A(N) ∈ RI1×R.

Ensure: Updated factor matrices that approximate X .
1: repeat
2: while n = 1, ..., N do
3: V ← A(1)T A(1) ∗ · · · ∗ A(n−1)T A(n−1) ∗

A(n+1)T A(n+1) ∗ · · · ∗ A(N)T A(N)

4: M ← X(n)(A(N)⊙· · ·⊙A(n+1)⊙A(n−1)⊙· · ·⊙A(1))

5: A(n) ←MV † † denotes the pseudo-inverse
6: end while
7: until converged
8: return A(1), · · · ,A(N)

C. Sparse MTTKRP

MTTKRP kernel involves two basic operations:

• Tensor matricization is the process in which a tensor is
unfolded into a matrix. The mode-n matricization of a
tensor X , denoted by X(n), is obtained by laying out the
mode-n fibers of X as the columns of X(n).

• The Khatri-Rao product is the “matching column-wise”
Kronecker product of two matrices. Given A ∈ RI×F

and B ∈ RJ×F , their Khatri-Rao product is K = A⊙B,
where A⊙B = [a1⊗b1a2⊗b2 . . .aR⊗bR] ∈ RI×J×R.

For an N-order tensor X and factor matrices A(1),A(2), · · · ,
A(N), the mode-n MTTKRP is given by Equation (4).

M = X(n)(A
(N)⊙· · ·⊙A(n+1)⊙A(n−1)⊙· · ·⊙A(1)) (4)

D. Sparse Tensor Formats

Sparse tensor formats are broadly categorized into two main
families: coordinate-based and tree-based, as shown in the
Figure 2. An elementary method for sparse tensor represen-
tation involves storing the indices along each dimension and
the value for each non-zero element, known as the Coordinate
(COO) format.

0 0 0 1
0 1 1 2
0 1 2 3
1 1 0 4
1 1 2 5
2 0 1 6
2 1 2 7
2 2 2 8

7 8
6

5

4

3
2

1
𝑖 𝑗 𝑘 𝑣𝑎𝑙Slice 0

Slice 1

Slice 2

COO CSF

0 1 2

0 1 1 1 1 0 1 2

0 1 2 0 2 1 2 2

1 2 3 4 5 6 7 8

𝑖
𝑗
𝑘
𝑣𝑎𝑙

Fig. 2. COO and CSF (mode 1) formats for an example third-order tensor.

For a third-order tensor X , the COO format consists of
M(i, j, k, val) entries, where each entry represents the indices
(i, j, k) and the corresponding value of a non-zero element.
The COO format’s simplicity and suitability for parallelization
over non-zero elements make it a popular choice. Nonetheless,
a drawback of the parallel COO format is its requirement for
atomic operations to update the output matrix. The state-of-
the-art tensor formats belonging to this family include F-COO
[22], which adds flag arrays to eliminate atomic operations.
HiCOO [21], which decomposes a sparse tensor into small
sparse blocks, reducing the memory required to store tensor
nonzeros (and hence memory bandwidth conflicts), and TB-
COO [8], which leverages warp shuffle and shared memory
on GPU to enable efficient reduction.

The tree-based format family compresses sparse tensor
indices into a tree structure. Depending on the input tensor’s
structure, CSF exhibits the potential to decrease storage de-
mands and required operation counts. Some notable members
of this family are CSF, introduced by Smith et al. [31], and
BCSF, proposed by Nisa et al. [24], which mainly optimize the
load imbalance issue of CSF format and MM-CSF [23] which
provides a mixed-mode storage format for sparse tensors of
arbitrary dimensions. These formats extend the compressed
sparse row (CSR) matrix format to higher-order tensors.

E. CPU–GPU Heterogeneous Computing

Originally, GPU was primarily tailored for gaming purposes,
rendering 2D images of 3D triangles and other geometric
objects. Each pixel in the output image corresponds to an
element, and the GPU employs a cluster of processors to
compute the color of these pixels simultaneously. However,
modern GPU has evolved into more versatile tools, where
rendering is just one of their applications. Their impressive
theoretical peak performance makes them appealing for high-
performance computing tasks. Given the widespread utiliza-
tion of both CPUs and GPUs across various applications,

CUDA Thread Grid

CUDA Thread Grid

Host

Device

Device

Host

Serial code

Parallel kernel

Serial code

Parallel kernel

Fig. 3. CPU–GPU heterogeneous computing pattern.

it’s acknowledged that each of these processing units (PUs)
possesses unique features and strengths.

Modern multicore CPUs typically are equipped with a
few tens of cores, which are usually out-of-order, multi-
instruction issue cores. Additionally, CPU cores operate at
high frequencies and utilize large-sized caches to minimize the
latency of a single thread, making them well-suited for latency-
critical applications. In contrast, GPUs leverage a significantly
larger number of cores, which are typically in order and share
their control units. Furthermore, GPU cores operate at lower
frequencies and use smaller-sized caches, making them more
suitable for throughput-critical applications.

In view of these differences, collaboration between CPU and
GPU is considered to be the key to realizing high-performance
computing, and Figure 3 illustrates a heterogeneous computing
model for CPUs and GPUs. This allows the advantages of both
types of processors to be fully utilized to build heterogeneous
computing environments, thereby effectively compensating for
the respective shortcomings of CPUs and GPUs and optimiz-
ing the performance of various applications.

III. MOTIVATION

A. Parameter Sensitivity Analysis

Our MTTKRP computations performed using the NVIDIA
GeForce RTX 3090 platform revealed that different combi-
nations of gridSize and blockSize have a significant
impact on the performance of MTTKRP computations. Where
gridSize and blockSize are execution parameters of the
MTTKRP kernel on the GPU, gridSize denotes the number
of threads in the grid, while blockSize refers to the number

81
92

16
38

4

32
76

8

65
53

6

13
10

72

Gridsize

10
24

51
2

25
6

12
8

64
B

lo
ck

si
ze

244.83 221.31 190.85 167.42 126.97

317.22 288.92 258.67 221.08 185.97

339.79 318.60 290.82 258.97 219.69

341.39 340.85 318.31 289.73 258.10

266.67 276.62 275.73 268.54 247.90

vast

81
92

16
38

4

32
76

8

65
53

6

13
10

72

Gridsize

10
24

51
2

25
6

12
8

64
B

lo
ck

si
ze

230.82 231.29 217.39 183.81 142.24

300.68 300.98 288.04 253.60 199.35

296.29 301.21 303.18 287.73 252.89

276.40 291.38 297.47 298.87 286.04

200.91 222.02 230.07 232.50 229.23

flickr-3d

81
92

16
38

4

32
76

8

65
53

6

13
10

72

Gridsize

10
24

51
2

25
6

12
8

64
B

lo
ck

si
ze

230.50 230.12 223.08 197.68 159.40

281.85 285.37 282.96 260.75 217.00

276.18 278.55 283.51 281.15 259.59

264.13 272.09 276.71 279.68 276.99

209.36 220.62 222.38 222.43 227.32

deli-3d

81
92

16
38

4

32
76

8

65
53

6

13
10

72

Gridsize

10
24

51
2

25
6

12
8

64
B

lo
ck

si
ze

162.36 165.40 166.73 161.28 138.43

162.95 167.32 173.58 175.81 166.33

157.04 160.68 164.47 171.17 172.63

146.74 153.69 155.56 160.80 165.68

138.40 146.70 151.32 154.89 162.65

nell-1

81
92

16
38

4

32
76

8

65
53

6

13
10

72

Gridsize

10
24

51
2

25
6

12
8

64
B

lo
ck

si
ze

92.20 55.33 29.23 18.68 18.71

109.92 91.82 55.50 29.06 18.82

116.41 109.68 91.59 55.44 29.24

142.27 115.69 109.30 91.47 55.04

147.35 144.17 116.02 107.48 90.68

uber

81
92

16
38

4

32
76

8

65
53

6

13
10

72

Gridsize

10
24

51
2

25
6

12
8

64
B

lo
ck

si
ze

89.42 66.85 45.91 36.70 36.51

136.23 97.30 75.51 53.05 42.79

177.61 136.02 95.88 74.58 53.08

210.11 180.17 135.27 93.52 72.28

205.41 200.13 166.54 121.51 85.88

nips

81
92

16
38

4

32
76

8

65
53

6

13
10

72

Gridsize

10
24

51
2

25
6

12
8

64
B

lo
ck

si
ze

127.84 135.55 134.05 122.20 99.65

130.14 133.25 136.27 135.66 123.33

118.78 134.67 132.21 137.14 135.96

108.73 119.26 134.30 133.88 136.24

108.29 115.91 127.80 130.27 129.77

enron

81
92

16
38

4

32
76

8

65
53

6

13
10

72

Gridsize

10
24

51
2

25
6

12
8

64
B

lo
ck

si
ze

217.19 217.66 211.95 190.78 155.40

261.02 264.60 265.01 248.62 210.69

253.86 256.81 262.48 263.04 246.12

239.61 248.87 252.94 258.61 257.74

194.05 205.22 199.39 198.40 193.64

deli-4d

150

200

250

300

150

175

200

225

250

275

300

160

180

200

220

240

260

280

140

145

150

155

160

165

170

175

20

40

60

80

100

120

140

50

75

100

125

150

175

200

100

105

110

115

120

125

130

135

160

180

200

220

240

260

Fig. 4. GFlops of MTTKRP kernel with different launch settings.

of threads per thread block (TB). The results are illustrated in
Figure 4.

It can be seen that the color distribution of heatmaps
is not the same for different tensors. In general, when the
gridSize and blockSize are small, the performance is
poor. With the increase of parameter values, the performance
will gradually improve. However, when the gridSize and
blockSize reach a certain value, the performance decreases.
This indicates that the optimal values of gridSize and
blockSize are not the larger the better, but need to be
determined according to the characteristics of the tensor and
the actual situation of the computing environment. The per-
formance of the same tensor under different parameters has a
big gap, and the optimal performance parameters of different
tensors are significant different. These parameters determine
the allocation of computing resources, load balancing of tasks,
and memory access efficiency, which have a large impact on
MTTKRP computational performance.

Due to the diversity and complexity of tensor data, as well
as the variability of computing environments, it is almost
impossible to find a common and optimal set of parameter
configurations for MTTKRP computation. When we deal with
large-scale and complex tensor data, different tensors may
have different dimensionality, sparsity, data distribution, etc.,
and the hardware environments may also have significant
differences in terms of computing capability and memory
bandwidth, which make it impossible to simply apply a fixed
set of parameter configurations to fit all cases. Therefore, a
method for searching the high-performance launch parameters
is needed, which can dynamically adjust the parameter con-
figurations according to the actual situation of the tensor data

and the hardware environment, and achieve the performance
optimization of MTTKRP parallel computing.

B. Waste of Computational Resources
During the execution of MTTKRP for tensors, data transfer

is a critical aspect, especially between the host and the device.
The host and the device are connected via PCIe with 24.3
GB/s bandwidth. As shown in Figure 5, transferring data from
the host to the device (H2D) takes a lot of time. Because
tensor data is typically large, H2D takes up the vast majority
of the time. In contrast, kernel computation takes less time
and transferring data from the device to the host (D2H) takes
less time.

However, the device cannot start computation until the data
is fully transferred and must wait for the data loading to
complete. The idle waiting time indicate that the computational
resources cannot be fully utilized. Moreover, The waiting
time increases as the amount of data increases, leading to a
decrease in computational performance. Therefore, the data
transfer time becomes a bottleneck in MTTKRP computation.
In addition, the bandwidth for data transfer between host and
device is limited. When the amount of data transferred exceeds
the bandwidth capacity, the speed of data transfer is limited,
which leads to an increase in the waiting time of the device
and a decrease in the computational performance.

In this case, we need to find an effective way to reduce the
waiting time of the device so that MTTKRP computation can
fully utilize the hardware resources. To this end, we propose
a new solution: partitioning tensor data and transferring the
data while computing. This pipelined transmission method can
greatly reduce the waiting time of the device and realize the
parallel execution of data transmission and computation.

va
st-

3d

flic
kr-

3d

de
li-3

d
ne

ll-1 ub
er nip

s
en

ron

de
li-4

d
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Ti
m

e
B

re
ak

do
w

n
Host To Device Calculate Device To Host

Fig. 5. Time breakdown of MTTKRP processing.

IV. METHODOLOGY

A. Design Overview

In this section, we detail an efficient end-to-end MTTKRP
acceleration framework ScalFrag for GPU platforms. ScalFrag
aims to fully utilize the parallel processing capability of GPU
to achieve efficient acceleration of MTTKRP computation. The
ScalFrag framework consists of two parts: adaptive launch-
ing strategy, and pipelined parallel processing. The design
overview of ScalFrag is shown in Figure 6.

ScalFrag first matricizes the input tensor and then chunks
the matricized tensor. The chunked matrix is pipelined to the
device side. Before the kernel function starts, ScalFrag uses
a trained model to select the best combination of launch pa-
rameters based on the sparsity features of the matrixed tensor
after chunking. The core of the adaptive launching strategy
is to dynamically select the optimal parameter combinations
to adapt to the different characteristics of the matricized
tensor. ScalFrag utilizes the parallel processing capability
of GPU to automatically adjust the launch parameters by
analyzing the dimensions and distribution characteristics of
the tensor to maximize the computational throughput. During
kernel function computation, the frequently accessed data in
the kernel and intermediate results (e.g., computation result
mvals, factor matrices times_mat) are stored in shared
memory to reduce the latency of data accesses. After kernel
computation, ScalFrag passes the results back to the host side.

B. Adaptive Launching Strategy

Typically, MTTKRP has unique optimal launch parameter
configuration for each sparse tensor. In order to fully utilize
the computational GPU resources, we propose an adaptive
launching strategy to select the optimal parameter combina-
tions based on the sparsity distribution of the tensor. The
adaptive launching strategy is illustrated in Figure 7.

At first, we need to preprocess the input tensor. The
key feature parameters of the tensor are extracted, which
reflect the basic properties and computational require-
ments of the tensor. The feature parameters we focus on

mainly include tensor size (dimension and number of el-
ements) and sparsity (distribution and proportion of non-
zero elements). For example, the feature parameters include
numSlices, numFibers, sliceRatio, fiberRatio,
maxNnzPerSlice, maxNnzPerSlice, and so on. these
parameters not only determine the size of the computation,
but also affect the efficiency of the GPU parallel computation
and the overhead of data transfer.

In the training phase, we use the extracted key feature
parameters to train a parameter selection model whose output
is the best combination of starting parameters for input tensor
features. To obtain the best prediction performance, we try
various machine learning models such as DecisionTree, SVM,
AdaBoost, Bagging, etc., each of which has its own unique
advantages. After that, we evaluate the trained model in
terms of prediction accuracy, training and inference time. For
example, the DecisionTree regressor has the lowest MAPE
(less than 15%), which can be a good guide for the selection of
launch parameters. For these lightweight models, the training
time is less than 0.5 seconds. Since the training needs to be
performed only once, the cost can be considered negligible.
Even for online overhead, the inference time is less than
1% of the MTTKRP computation. On the other hand, the
iterative CPD process involves many MTTKRP operations,
further diluting the inference overhead.

In the practical application stage, we first extract the char-
acteristic parameters of the input tensor. These parameters
include key information such as tensor size and sparsity. Then,
we input these parameters into the trained launch parameter
selection model. The model will output an optimal launch
parameter combination based on the input feature parameters.
Finally, the optimal launch parameter combination is passed
to the GPU to initiate the MTTKRP computation. Since we
select the optimal launch parameter combination based on the
feature parameters of the tensor, the GPU is able to process the
tensor data more efficiently, achieving higher computational
throughput and hardware resource utilization.

C. Pipeline Parallelism

In order to reduce the waiting time incurred by transferring
data between a host and a device (e.g., a GPU), we have
designed and implemented a pipeline parallelization method
to improve the effectiveness of MTTKRP. Figure 8 visualizes
the whole flow of the segmented pipeline parallelism.

In the data preprocessing stage, we segment the COO format
tensor based on the pre-designed index and the number of
segments with non-zero element values. This segmentation
method is able to decompose the originally huge tensor data
into several small segments, each of which contains a portion
of non-zero elements and their corresponding coordinate in-
formation. In this way, we are able to manage and transfer
these data chunks more efficiently, thus reducing the overall
time of data transfer.

Next, we reasonably allocate storage space to accommo-
date the entire decomposed tensor data according to the
performance and storage capacity of the GPU. At the same

Transfer

Compute

Launching
Adviser

Grid Setting

Block SettingMatricized
Pipelined

SHM Setting

Block Setting

SHM Setting𝑿 Factor
Matrix𝐴ሺଵሻ
Factor
Matrix𝐴ሺଶሻ 𝑀

ሺ𝑖ଵ, 𝑖ଶ, 𝑖ଷሻ
Scale result

Accumulated

Fig. 6. The design overview of ScalFrag.

Generating Tensors Executing MTTKRP Data Collecting & Training Evaluating & Predicting

Factor
Matrix𝐴(ଵ)
Factor
Matrix𝐴(ଶ) 𝑀

(𝑖ଵ, 𝑖ଶ, 𝑖ଷ) DecisionTree

SVM

Bagging

AdaBoost

Best Model

New Tensor

Fig. 7. The adaptive launching parameter selection.

I 1 1 1 2 3 3
1 1 2 2 3 3
1 2 2 3 1 2
1 2 3 3 6 4

J
K
val

Time

Memcpy Compute

Memcpy
Memcpy

Memcpy

Compute
Compute

Compute Improvement

Device
I
J
K
val

Malloc

Host

block_num

1 1 1 2 3 3
1 1 2 2 3 3
1 2 2 3 1 2
1 2 3 3 6 4

I
J
K
val

1 1
1 1
1 2
1 2

I
J
K
val

1 1 1 2
1 1 2 2
1 2 2 3
1 2 3 3

I
J
K
val

1 1 1 2 3 3
1 1 2 2 3 3
1 2 2 3 1 2
1 2 3 3 6 4

I
J
K
val

Memcpy

Memcpy

Fig. 8. Pipeline parallelism for MTTKRP computation.

time, we create a corresponding number of CUDA streams
based on the number of segments. Each stream is responsible
for transferring and processing one or more specific data
segments, thus realizing parallel data transfer and computation.
This parallel processing method can fully utilize the GPU
resources and reduce the end-to-end execution time.

In the data transfer phase, we assign the transfer operation
for each data segment to the corresponding CUDA stream
for asynchronous transfer. This means that when data is
transferred as data segments to the GPU, the GPU can start
processing the previously completed data segment without
having to wait for the transfer of the current data segment
to complete. This asynchronous transfer increase the temporal
utilization of hardware resources caused by the data transfer,

further improving overall performance.
When segmented transmission is performed in practical

applications, the data transmission time may be greater than
the calculation time. At this time, after the data calculation of
the previous segment is completed, the next segment is still
being transmitted. This would indicate that the communication
is not fully covered. Therefore, we empirically determine
the appropriate number of segments and streams as much as
possible to minimize the device waiting time.

When the computation of the data segment is completed,
we synchronize the results from the device memory back to
the host memory. On the host, we can perform further data
processing and storing of the results. This synchronized return
ensures data accuracy and consistency, and provides reliable
data support for the tensor application.

V. EVALUATION

A. Experiment Setup

1) Platform: As depicted in Table II, we have conducted
experiments on the platform equipped with Intel Core i7 CPU
and NVIDIA RTX 3090 GPU. We adopt GCC-9.4.0 and
NVCC-12.2 compilers within an Ubuntu 20.04.6 environment.

TABLE II
HARDWARE SPECIFICATIONS.

CPU GPU

Model Intel Core i7-11700K
NVIDIA GeForce

RTX 3090
Frequency 3.6GHz 1.4GHz

Processing Units 8C16T 10496 (82 SMs)

Cache
80KB L1, 512KB L2,

16MB L3
128KB L1 (per SM),

6MB L2
Memory 32GB 24GB

Bandwidth 31.2 GB/s 936.2 GB/s

2) Dataset: We use 3D and 4D sparse tensors collected
from real-world applications, all of them from The formidable
repository of open sparse tensors and tools (FROSTT) [30].

Table III lists the order, dimension, and number of nonzeroes
of the tensors as well as the densities of these tensors.

3) Implementations: We compare ScalFrag with publicly
available framework ParTI [19], which is designed for fast
sparse tensor operations and tensor decompositions on mul-
ticore CPU and GPU architecture. ParTI supports a variety
of tensor operations, including arithmetic operations, SpTTM,
SpMTTKRP, SpCPD, sparse Tucker decomposition, and so on.
We use the optimal parameter configuration suggested by the
authors and thoroughly resize the grid and thread blocks.

TABLE III
TENSORS USED FOR EVALUATION.

Tensor Order Dimensions #nnz Density

vast 3 165K × 11K × 2 26M 6.9 × 10-3
nell-2 3 12K × 9K × 29K 77M 2.4 × 10-5

flickr-3d 3 320K × 28M × 2M 113M 7.8 × 10-12
deli-3d 3 533K × 17M × 3M 140M 6.1 × 10-12
nell-1 3 2.9M × 2.1M × 25M 144M 9.1 × 10-13
uber 4 183 × 24 × 1140 × 1717 3M 3.9 × 10-4
nips 4 2K × 3K × 14K × 17 3M 1.8 × 10-6

enron 4 6K × 6K × 244K × 1K 54M 5.5 × 10-9
flickr-4d 4 320K × 28M × 2M × 731 113M 1.1 × 10-14
deli-4d 4 533K × 17M × 3M × 1K 140M 4.3 × 10-15

B. Kernel Performance Comparison

We evaluated the performance of ScalFrag processing
sparse tensor for MTTKRP computation and compared it with
ParTI. The results are shown in Figure 9.

From the figure, it is obvious that ScalFrag outperforms
ParTI for the tested sparse tensor. This phenomenon indicates
that different tensors require significantly different hardware
resources during computation due to their unique dimen-
sionality, density, and distribution characteristics. ScalFrag
enables different sparse tensors to achieve their respective
better performance and, by means of shared memory that
reduces the time of data access during MTTKRP computation.

The results indicate that the performance acceleration of
ScalFrag is more pronounced for smaller tensors (e.g., vast,

uber, nips, etc.) or relatively smaller tensors (e.g. nell-1). This
is due to the fact that they are significantly different in terms
of the number of non-zero elements alone. In particular, for
the smaller 4d tensor nips in the dataset, the performance is
significantly improved with ScalFrag, which is nearly 2.2×
faster than ParTI; for the smallest 3d tensor vast in the dataset,
a speedup ratio of about 1.2× is also obtained.

There are many tensors with different characteristics. For
example, in the field of image recognition, the tensor is
composed of images with different resolutions and color depth.
We need to optimize the kernel parameters according to the
tensor features to improve the processing speed and accuracy.
In the financial data analysis, the tensor is formed by different
time periods and different trading varieties. We also need to
adjust the kernel parameters specifically in order to better
mine the valuable information. This not only illustrates the
importance of parameter selection for different tensor features,
but also demonstrates the effectiveness of the launch parameter
auto-tuning strategy of ScalFrag.

C. End-to-end Performance Comparison

We compare ScalFrag with ParTI on tensor datasets of
different sizes and sparsity patterns. As can be seen from the
Figure 10, parallel pipelining improves the performance of
executing MTTKRP for both 3D and 4D tensors. This suggests
that, in addition to the optimization of kernel functions, end-
to-end data transfer, storing, and computation are equally
important in the computation of MTTKRP. Especially the data
transfer between the device and the host, which has a decisive
impact on the efficiency of the whole computation process.

For tensors with fewer non-zero elements, such as the 3d
tensor vast and nell-2, and the 4d tensor uber and nips, the
transfer time from the host to the device is shorter, so the over-
lapping ratio is larger, indicating higher performance speedup.
Especially for the smallest tensor vast, which achieves an
approximate 2.0× speedup ratio. In contrast, tensors with more
non-zero elments (e.g., flickr-3d) take longer transmission
time, so pipelining can not completely cover the transmission
time. In this case, the computation still needs to wait for

 vast nell-2 flickr-3d deli-3d nell-1 uber nips enron flickr-4d deli-4d
0

50

100

150

200

250

300

350

G
Fl

op
s

ParTI ScalFrag (this work)

1.0

1.2

1.4

1.6

1.8

2.0

2.2
Sp

ee
du

p
R

at
io

 o
ve

r P
ar

TI

Speedup Ratio

Fig. 9. The performance of MTTKRP kernels with ScalFrag and ParTI.

 vast nell-2 flickr-3d deli-3d nell-1 uber nips enron flickr-4d deli-4d
0

100

200

300

400

500

En
d-

to
-e

nd
 E

xe
cu

tio
n

Ti
m

e
(s

)
ParTI ScalFrag (this work)

1.0

1.2

1.4

1.6

1.8

Sp
ee

du
p

R
at

io
 o

ve
r P

ar
TI

Speedup Ratio

Fig. 10. The end-to-end performance of MTTKRP with ScalFrag and ParTI.

the data transmission, meaning the resources remain idle
for certain duration. However, ScalFrag also achieves more
than 1.3× speedup ratios over ParTI. The results prove that
ScalFrag can be well adapted to tensors of various sizes and
sparsity characteristics.

Compared with ParTI, ScalFrag improves the performance
of MTTKRP by about 1.3× to 2.0×. ScalFrag successfully
alleviates the problem of long data calculation waiting time
mentioned in Section III-B and can be effectively applied to
the optimization of CPD procedure.

D. Impact of Block and Stream Settings

Segmenting tensor data can significantly improve the par-
allelism of data transfer and computation, thus speeding up
the overall processing. However, the choice of the number of
segments is not arbitrary, and needs to be considered based
on a variety of factors such as the size of the tensor, the
sparsity ratio, and the computational capability of the GPU.
From Figure 11, we can see that the settings of the number of
segments and the number of CUDA streams have an important
impact on the performance of MTTKRP.

2 4 8 16 322 4 8 16 322 4 8 16 322 4 8 16 32
#Blocks

280.0

290.0

300.0

310.0

320.0

Ex
ec

ut
io

n
Ti

m
e

(s
)

2 4 8 16 322 4 8 16 322 4 8 16 322 4 8 16 32
#Streams

deli-3d flickr-3d deli-4d flickr-4d

Fig. 11. The performance of MTTKRP with different settings.

When we fix the number of segments to 4 and set the num-
ber of CUDA streams to different values, the performance of
MTTKRP is different; and when the number of CUDA streams
is fixed to 4 and the number of segments is set to different

values, the performance of MTTKRP is different. Although
the difference among them is not obvious, in practical appli-
cations, we may find that the optimal number of segments is
required for different tensor datasets. The appropriate number
of segments and CUDA streams can improve the efficiency of
MTTKRP computation to some extent.

CUDA streams allow us to perform multiple tasks on the
GPU at the same time, thus enabling asynchronous data
transfer and computation. However, the setting of the number
of CUDA streams also requires careful consideration. If the
number of CUDA streams is too high, although it can further
improve parallelism, it may also lead to too much competition
between data transfer and computation, which may cause re-
source conflicts and performance degradation. On the contrary,
if the number of CUDA streams is too small, although it can
reduce the possibility of resource conflicts, it may also lead
to resource wastage between data transfer and computation,
which will also affect performance. We need to flexibly adjust
the number of segments and the number of CUDA streams
according to the characteristics of different tensor datasets to
obtain the best performance.

VI. RELATED WORK

Previous studies have mainly focused on optimizing sparse
tensor formats, auto-tuning the tensor computation process,
and accelerating sparse tensor computation on different hard-
ware platforms. These studies have proposed various sparse
tensor formats and parallel algorithms designed to efficiently
process and analyze data on multiple hardware platforms such
as CPU, GPU, and other emerging hardware.

A. Tensor Auto-tuning Optimization
There are many prior studies working on optimizing sparse

tensor programs. TACO [16] describes the first technique for
compiling compound tensor algebra expressions with dense
and sparse operands to fast kernels. Stephen et al. [6] describe
and implement a new technique for generating tensor algebra
kernels that efficiently compute on tensors stored in disparate
formats. WACO [40] introduces an innovative approach to co-
optimize the format and schedule of a given sparsity pattern

within a sparse tensor program. It introduces a unique feature
extractor utilizing a sparse convolutional network, which plays
a crucial role in designing a cost model that accounts for
different sparsity patterns. Furthermore, it employs a graph-
based ANNS, a discretized version of the gradient-based
search, efficiently and accurately finds the best format and
schedule in the large search space of the co-optimization.
Mosaic [3], which is a sparse tensor algebra compiler that can
bind tensor expressions to external functions of other tensor
algebra libraries and compilers.

Other studies explore format selection based on machine
learning models to efficiently leverage existing sparse formats
such as SpTFS [36] which adopts both supervised learning-
based and unsupervised learning-based methods to predict the
best of COO, HiCOO, and CSF formats to compute MTTKRP
for a given sparse tensor. Chou et al. [7] provide a method to
generate code that efficiently converts sparse tensors between
disparate storage formats (data layouts) such as CSR, DIA,
ELL, and many others.

B. Tensor Computation Acceleration

There have also been many prior studies working on acceler-
ating sparse tensor programs on multiple hardware platforms.
To accelerate computation on GPUs, Li et al. [20] introduce a
parallel algorithm and its GPU implementation for SpTTM
within ParTI [19], achieved by parallelizing the algorithm
across fibers. However, their approach encounters challenges
such as load imbalance and warp divergence on GPU platforms
due to varying sizes of fibers in sparse tensors. Additionally,
they implement the SpMTTKRP algorithm in ParTI [19],
dividing data partitions based on tensor non-zeros. Yet, the
performance of their method is constrained by the overhead
of atomic operations during slice updates.

Sasindu et al. [38] introduce the characteristics of a custom
memory controller that can reduce the total memory access
time of sparse MTTKRP on FPGAs and develop a custom
FPGA accelerator design [39] with (1) PEs consisting of a
collection of pipelines that can concurrently process multiple
elements of the input tensor and (2) memory controllers
to exploit the spatial and temporal locality of the external
memory accesses of the computation which achieved great
performance compared with the state-of-the-art CPU and GPU
implementations.

Other researches have focused on different platforms. Smith
et al. [32] enhance the performance of MTTKRP on the Intel
Xeon Phi Knights Landing manycore processor. GigaTensor
[14] addresses large-scale sparse tensors by offering a scalable
framework utilizing the MapReduce framework. Blanco et
al. [4] propose cstf to accelerate tensor decompositions by
employing a queuing strategy to capitalize on dependency and
data reuse with the Spark engine on distributed platforms.
Also, Kaya et al. [15] scale CPD on distributed memory
systems using the message passing interface (MPI).

C. Customized Tensor Accelerator Architecture

Numerous DL accelerators have recently been proposed
for sparse computations [10], [25]. There are also tensor
algebra accelerators for scientific applications. The prevalence
of tensor operations in big data applications has stimulated
research efforts. These efforts focus on accelerating sparse
matrix-dense vector (SpMV) [25] and sparse matrix-matrix
(SpMM) kernel [9]. By tightly coupling accelerator processing
elements (PEs) with multi-core cores, data transfer is avoided,
allowing accelerators to reuse the CPU memory system and
its virtual addresses. For example, T2S-Tensor [35] is a
language and compilation framework used to generate high-
performance hardware fore dense tensor conputations such
as GEMM, MTTKRP and DTTMc. ExTensor [13] proposes
a new approach for performing general tensor algebra using
hierarchical and compositional intersection. Tensaurus [34] co-
designs the hardware and a sparse storage format, allowing
accessing the sparse data in vectorized and streaming fashion
and maximizing the utilization of the memory bandwidth. All
these show significant speedup and energy benefit.

Additionally, Eric et al. [27] propose hardware extensions
to accelerators for supporting numerous format combinations
seamlessly and demonstrate better performance.

VII. CONCLUSION

Canonical polyadic decomposition (CPD) stands out as a
prominent choice, widely embraced across numerous scientific
disciplines and practical applications due to its effectiveness
in capturing multi-linear relationships. With the continuous
expansion of big data and deep learning applications, the
performance optimization of MTTKRP, as a core operation
in many key algorithms, is particularly important. In this
paper, MTTKRP optimization methods for GPU platforms
are discussed in depth, and an adaptive launch strategy is
designed, which dynamically selects the best combination of
launch parameters based on the sparsity features of the tensor
to ensure that the computational resources of the GPU are fully
utilized. We also introduce a pipelined parallelism technique,
which enables multiple computation tasks to be executed in
parallel by optimizing the dependencies between tasks, thus
significantly reducing the overall computation time.

The experimental results show that ScaleFrag can obtain
high performance on various tensor datasets, which is an
improvement to the MTTKRP computation. For future work,
we will continue to investigate how to further improve the
MTTKRP performance to meet more application scenarios.

ACKNOWLEDGEMENTS

This work is supported by the National Key R&D Program
of China (Grant No. 2023YFB3001604), and the Fundamen-
tal Research Funds for the Central Universities (Grant No.
2462023YJRC023). Qingxiao Sun is the corresponding author.

REFERENCES

[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C.,
Corrado, G.S., Davis, A., Dean, J., Devin, M., et al.: Tensorflow: Large-
scale machine learning on heterogeneous distributed systems. arXiv
preprint arXiv:1603.04467 (2016)

[2] Appellof, C.J., Davidson, E.R.: Strategies for analyzing data from video
fluorometric monitoring of liquid chromatographic effluents. Analytical
Chemistry 53(13), 2053–2056 (1981)

[3] Bansal, M., Hsu, O., Olukotun, K., Kjolstad, F.: Mosaic: An inter-
operable compiler for tensor algebra. Proceedings of the ACM on
Programming Languages 7(PLDI), 394–419 (2023)

[4] Blanco, Z., Liu, B., Dehnavi, M.M.: Cstf: Large-scale sparse tensor
factorizations on distributed platforms. In: ICPP ’18 (2018)

[5] Bruns-Smith, D., Baskaran, M.M., Ezick, J., Henretty, T., Lethin,
R.: Cyber security through multidimensional data decompositions. In:
CYBERSEC ’16 (2016)

[6] Chou, S., Kjolstad, F., Amarasinghe, S.: Format abstraction for sparse
tensor algebra compilers. Proceedings of the ACM on Programming
Languages 2, 123:1–123:30 (2018)

[7] Chou, S., Kjolstad, F., Amarasinghe, S.: Automatic generation of effi-
cient sparse tensor format conversion routines. In: PLDI ’20 (2020)

[8] Dun, M., Li, Y., Yang, H., Sun, Q., Luan, Z., Qian, D.: An optimized
tensor completion library for multiple gpus. In: ICS ’21 (2021)

[9] Gerogiannis, G., Yesil, S., Lenadora, D., Cao, D., Mendis, C., Torrellas,
J.: Spade: A flexible and scalable accelerator for spmm and sddmm. In:
ISCA ’23 (2023)

[10] Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M.A., Dally,
W.J.: Eie: Efficient inference engine on compressed deep neural network.
ACM SIGARCH Computer Architecture News 44(3), 243–254 (2016)

[11] Harshman, R.A., et al.: Foundations of the parafac procedure: Models
and conditions for an “explanatory” multi-modal factor analysis. UCLA
working papers in phonetics 16(1), 84 (1970)

[12] He, H., Henderson, J., Ho, J.C.: Distributed tensor decomposition for
large scale health analytics. In: IW3C2 ’19 (2019)

[13] Hegde, K., Asghari-Moghaddam, H., Pellauer, M., Crago, N., Jaleel, A.,
Solomonik, E., Emer, J., Fletcher, C.W.: Extensor: An accelerator for
sparse tensor algebra. In: MICRO ’19 (2019)

[14] Kang, U., Papalexakis, E., Harpale, A., Faloutsos, C.: Gigatensor:
scaling tensor analysis up by 100 times-algorithms and discoveries. In:
KDD ’12 (2012)

[15] Kaya, O., Uçar, B.: Scalable sparse tensor decompositions in distributed
memory systems. In: SC ’15 (2015)

[16] Kjolstad, F., Kamil, S., Chou, S., Lugato, D., Amarasinghe, S.: The
tensor algebra compiler. Proceedings of the ACM on Programming
Languages 1, 77:1–77:29 (2017)

[17] Kolda, T.G., Bader, B.W.: Tensor decompositions and applications.
SIAM review 51(3), 455–500 (2009)

[18] Kolda, T.G., Sun, J.: Scalable tensor decompositions for multi-aspect
data mining. In: ICDMW ’08 (2008)

[19] Li, J., Ma, Y., Yan, C., Sun, J., Vuduc, R.: Parti: a parallel tensor
infrastructure for data analysis. In: NIPS, Tensor-Learn Workshop (2016)

[20] Li, J., Ma, Y., Yan, C., Vuduc, R.: Optimizing sparse tensor times matrix
on multi-core and many-core architectures. In: IA3 ’16 (2016)

[21] Li, J., Sun, J., Vuduc, R.: Hicoo: Hierarchical storage of sparse tensors.
In: SC ’18 (2018)

[22] Liu, B., Wen, C., Sarwate, A.D., Dehnavi, M.M.: A unified optimization
approach for sparse tensor operations on gpus. In: CLUSTER ’17’
(2017)

[23] Nisa, I., Li, J., Sukumaran-Rajam, A., Rawat, P.S., Krishnamoorthy,
S., Sadayappan, P.: An efficient mixed-mode representation of sparse
tensors. In: SC ’19 (2019)

[24] Nisa, I., Li, J., Sukumaran-Rajam, A., Vuduc, R., Sadayappan, P.: Load-
balanced sparse mttkrp on gpus. In: IPDPS ’19 (2019)

[25] Nurvitadhi, E., Mishra, A., Marr, D.: A sparse matrix vector multiply
accelerator for support vector machine. In: CASES ’15 (2015)

[26] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,
Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An
imperative style, high-performance deep learning library. Advances in
neural information processing systems 32 (2019)

[27] Qin, E., Jeong, G., Won, W., Kao, S.C., Kwon, H., Srinivasan, S., Das,
D., Moon, G.E., Rajamanickam, S., Krishna, T.: Extending sparse tensor
accelerators to support multiple compression formats. In: IPDPS ’21
(2021)

[28] Rettinger, A., Wermser, H., Huang, Y., Tresp, V.: Context-aware tensor
decomposition for relation prediction in social networks. Social Network
Analysis and Mining 2(4), 373–385 (2012)

[29] Shi, Y., Karatzoglou, A., Baltrunas, L., Larson, M., Hanjalic, A., Oliver,
N.: Tfmap: optimizing map for top-n context-aware recommendation.
In: SIGIR ’12 (2012)

[30] Smith, S., Choi, J.W., Li, J., Vuduc, R., Park, J., Liu, X., Karypis, G.:
FROSTT: The formidable repository of open sparse tensors and tools
(2017), http://frostt.io/

[31] Smith, S., Karypis, G.: Tensor-matrix products with a compressed sparse
tensor. In: IA3 ’15 (2015)

[32] Smith, S., Park, J., Karypis, G.: Sparse tensor factorization on many-core
processors with high-bandwidth memory. In: IPDPS ’17 (2017)

[33] Smith, S., Ravindran, N., Sidiropoulos, N.D., Karypis, G.: Splatt:
Efficient and parallel sparse tensor-matrix multiplication. In: IPDPS ’15
(2015)

[34] Srivastava, N., Jin, H., Smith, S., Rong, H., Albonesi, D., Zhang,
Z.: Tensaurus: A versatile accelerator for mixed sparse-dense tensor
computations. In: HPCA ’20 (2020)

[35] Srivastava, N., Rong, H., Barua, P., Feng, G., Cao, H., Zhang, Z.,
Albonesi, D., Sarkar, V., Chen, W., Petersen, P., et al.: T2s-tensor:
Productively generating high-performance spatial hardware for dense
tensor computations. In: FCCM ’19 (2019)

[36] Sun, Q., Liu, Y., Yang, H., Dun, M., Luan, Z., Gan, L., Yang, G., Qian,
D.: Input-aware sparse tensor storage format selection for optimizing
mttkrp. IEEE Transactions on Computers 71(8), 1968–1981 (2022)

[37] Vasilescu, M.A.O.: Multilinear projection for face recognition via canon-
ical decomposition. In: FG ’11 (2011)

[38] Wijeratne, S., Wang, T.Y., Kannan, R., Prasanna, V.: Towards pro-
grammable memory controller for tensor decomposition. In: DATA ’22
(2022)

[39] Wijeratne, S., Wang, T.Y., Kannan, R., Prasanna, V.: Accelerating sparse
mttkrp for tensor decomposition on fpga. In: FPGA ’23 (2023)

[40] Won, J., Mendis, C., Emer, J.S., Amarasinghe, S.: Waco: learning
workload-aware co-optimization of the format and schedule of a sparse
tensor program. In: ASPLOS ’23 (2023)

