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Abstract—MBIST (Memory Built-In Self-Test) is a widely used
methodology in chip design and fabrication to detect and localize
faults in memories. Due to the large memory sizes of modern
chips, memories need to be grouped in order to manage and test
them efficiently. However, due to the high number of constraints
and memories, the time complexity of solving directly using
heuristic algorithms is high and the grouping results obtained
are of poor quality. In this paper, we propose a heuristic-
based MBIST grouping algorithm to maintain high efficiency
while achieving high quality grouping. We firstly divide the
numerous constraints into two categories to reduce the constraint
dimensions and obtain an initial grouping result. We then use
a greedy algorithm with a penalty term to quickly obtain the
result that satisfies all the constraints from the initial result
in order to reduce the time consumption and the size of the
grouping. In order to avoid local optimal solutions, we further
use an improved genetic algorithm to optimize the result of
the greedy algorithm to obtain higher quality groupings. The
experimental results demonstrate that our algorithm reduces the
number of groups 119.44% on average compared with the K-
Means method. Compared with simulated annealing algorithm
and genetic algorithm, EMGA reduces the number of groups by
8.35% and 4.66%, and time by 79.51% and 73.30%, respectively.

Index Terms—MBIST, grouping, greedy algorithm, genetic
algorithm

I. INTRODUCTION

The design for testability (DFT) in digital circuit design
refers to the ability to consider test and fault localization dur-
ing the chip design process [1]. As chip complexity increases
and manufacturing processes advance, traditional test methods
can no longer meet the demand for efficient and accurate
testing. Therefore, DFT has become the key to resolving this
problem [2]. Reasonable testability design can improve the
quality and reliability of the chip.

MBIST (Memory Built-In Self-Test) is a technique in
DFT used for memory testing, which realizes self-testing by
embedding test circuits in the design of integrated circuits
[3]. By adding specialized test circuits and control logic
inside the memory, MBIST technology allows the memory
to automatically execute test patterns and perform write, read,
and compare operations on the memory cell, thereby detecting
faults in the memory cell. MBIST technology can be tested
during the chip manufacturing process, or while the chip is in
operation, in order to ensure the reliability and correctness of

the memory [4]. It has become a commonly used technique
in modern integrated circuit design and is particularly suitable
for testing and fault diagnosis of large-scale memories [5].

Due to the large number of memories in the chip, testing
the whole chip individually will consume a lot of time and test
resources. Therefore, memory grouping allows the entire test
process to be decomposed into multiple smaller test tasks, each
focusing only on a specific memory group. This reduces the
size and complexity of testing and improves test parallelism
and efficiency. At the same time, memory grouping can also
help discover and locate faults in memory groups, facilitating
fault diagnosis and repair [6].

Current work focuses more on exploring efficient testing
schemes, memory fault modeling, and improvement of fault
localization techniques. There are also some scholars who
use machine learning to perform memory grouping. Machine
learning algorithms usually require large amounts of training
data to achieve good performance [7]. The data collection and
labeling process can be very time-consuming and laborious.
And if the training data is insufficient or inaccurate, it may
lead to degraded model performance or produce unreliable
grouping results. Therefore, traditional heuristic algorithms
and optimization methods may still be viable and effective
options [8].

In this paper, we propose an innovative evolutionary mem-
ory grouping algorithm, EMGA, to improve efficiency and get
high quality groupings. In order to quickly obtain an initial
input, we first classify the constraints into two categories:
hard and soft constraints, and obtain the initial grouping
result by hard constraints. We then use a greedy algorithm
with a penalty term to quickly obtain a result that satisfies
both types of constraints from the initial result in order to
reduce time consumption and group size. In order to avoid
local optimal solutions, we further use an improved genetic
algorithm to optimize the result of the greedy algorithm to
obtain higher quality groupings. We verify the performance of
the proposed algorithm on 5 test sets. The experimental results
demonstrate a 119.44% reduction in the number of groups
in EMGA compared with the K-Means algorithm. Compared
with simulated annealing algorithm and genetic algorithm,
EMGA reduces the number of groups by 8.35% and 4.66%
and time by 79.51% and 73.30%.



II. PROBLEM STATEMENT

A. MBIST Grouping

As shown in Fig. 1, efficient planning and grouping of
memory cells and their assignment to different MBIST con-
trollers is critical to optimizing the test flow and ensuring the
reliability of the memory subsystem.
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Fig. 1: Memory grouping.

The need for MBIST grouping stems from several key con-
siderations. First, by grouping memories, phased testing can be
achieved, thus reducing overall test time. More targeted testing
in different test phases can improve test efficiency. Second,
different memory groups may have different characteristics
and test requirements. Some memory groups may be more
sensitive to read and write operations, while others may be
more focused on boundary condition testing. Grouping memo-
ries enables better allocation of test resources for optimal test
coverage. Third, grouping helps with fault localization. If a
problem is found during testing, partitioning helps to narrow
down the scope of the fault so that it is easier to find the
specific memory group with the problem in order to quickly
locate and troubleshoot the problem.

B. Multi-Constraint Problem and Optimization

The grouping process begins with the problem of multiple
constraints. Multiple constraints means that various factors
or constraints need to be considered simultaneously in the
grouping process. These restrictions may relate to different
characteristics. Only memories that satisfy all the constraints
can be grouped, and the less the final grouping result, the bet-
ter. In this paper, we select some of the following constraints
which are usually the most important and define them formally.

Given a set of memory sets M :
M = {M1,M2,M3, . . . ,Mm}, m is the total number of

memories.
The memory grouping set is G:
G = {G1, G2, G3, . . . , Gn}, n is the total number of

groups.
If each group contains k memories, power consumption

limit for each group of memory is:

k∑
i=1

Poweri ≤Max Power (1)

And ∀Mi,Mj ∈ Gn :√
(xi − xj)2 + (yi − yj)2 ≤Max Distance (2)

There are also some restrictions on attribute classes,
∀Mi,Mj ∈ Gn :



Mi.LogicalAddressMap = Mj .LogicalAddressMap
Mi.clk = Mj .clk
Mi.type = Mj .type
Mi.operationSet = Mj .operationSet
Mi.logicalPorts = Mj .logicalPorts
Mi.ShadowRead = Mj .ShadowRead
Mi.ShadowWrite = Mj .ShadowWrite
Mi.ShadowWriteOK = Mj .ShadowWriteOK
Mi.WriteOutOfRange = Mj .WriteOutOfRange

(3)

Optimization is the primary goal, aimed at finding the
best solution while considering these constraints. Faced with
numerous constraints, it is unacceptable to consider the com-
plexity of grouping simultaneously. Optimization methods
need to be considered for step-by-step judgments to reduce the
time complexity by reducing the constraint dimensions at each
stage. In addition, the optimization process must be adaptive
and able to respond to changes in constraints or objectives.

C. Genetic Algorithm

The genetic algorithm (GA) is an optimization algorithm
that simulates the natural evolutionary process and is based
on the principles of genetics in biology and Darwin’s theory
of evolution. This algorithm solves optimization problems by
simulating evolutionary operations such as natural selection,
crossover, and mutation to select individuals with higher
fitness from an initial population [9].

GA is inherently adapted to multi-objective optimization
problems and can optimize multiple objective functions si-
multaneously. It is able to perform global search in the
entire search space and does not easily fall into local optimal
solutions, which is suitable for complex multi-peak functions
and high-dimensional optimization problems. GA can also
easily cope with changes in the problem, such as modifying
the objective function and adjusting the constraints. Due to
its population-based evolutionary nature, the algorithm is rel-
atively insensitive to changes in the problem structure and can
adapt to different types of optimization problems. However,
since the genetic algorithm is a stochastic search algorithm, it
usually requires a lot of iterations and calculations to find a
better solution. For complex problems, the search process of
the algorithm may take a long time to converge.
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Fig. 2: Overall framework of MBIST grouping.

III. ALGORITHM FLOW

A. Overall Process

As shown in Fig. 2, EMGA contains three main parts.
The first part is parser and hard partitioning. Due to the
fact that attribute information such as memory type, power
consumption, and various grouping constraints almost all exist
in the design file of the memory, it is necessary to extract the
memory information and constraints from the file and save
them in the corresponding data structure. After reading the
information, we can divide the constraints into hard constraints
and soft constraints. As shown in Fig. 3, based on hard
constraints, the memories is hard partitioned to obtain initial
groupings. The second part uses a greedy algorithm to reduce
the size of each grouping and quickly obtain results that satisfy
both hard and soft constraints based on the initial groupings.
The third part uses genetic algorithms to find fewer groupings
to avoid local optimal solutions.
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Fig. 3: The three parts of EMGA.

B. Parser and Hard Partition

The main problem encountered during the data reading
process is the differences in file format and encoding methods.
For example, for the power attribute of memory, it is stored
in three different types of files and needs to be obtained
according to priority. In the specific implementation, we first
obtain the value from lvlib. If it exists, we will read the
value. If it does not exist, we will read it from summ files
according to priority until we obtain the value. For files
with the same attributes but different formats, we adopt a
unified strategy of converting them to lowercase format for
consistency checking and extraction. Given the differences in
file processing methods among different operating systems, we
perform preprocessing before reading files to ensure smooth
operation in subsequent operations, and so on.

Due to the large amount of constraint information read
in, the complexity of grouping directly is unacceptable.
It is necessary to consider whether grouping can be di-
vided into multiple steps to reduce complexity. We clas-
sify constraint information into two categories. In the con-
straints mentioned in Section II, the condition of using
an equal sign constraint can be called a hard constraint,
which contains LogicalAddressMap, clk, type, operationSet,
logicalPorts, ShadowRead, ShadowWrite, ShadowWriteOK
and WriteOutOfRange. The conditions of inequality con-
straints can be referred to as soft constraints, namely power
consumption limitations and distance limitations. During the
parser process, an initial grouping can be quickly obtained
through hard constraints.

C. Improved Greedy

The initial grouping obtained in the previous step will be the
initial input to the greedy algorithm. This step handles each
hard-divided grouping separately. Use the greedy algorithm to



continue dividing each grouping so that it satisfies the soft
constraints.

When applying greedy algorithms, it is difficult to adjust
the optimization strategy using random greedy algorithms.
The randomness of random greedy algorithms makes their
behavior more uncertain, making it difficult to adjust the
optimization strategy of the algorithm. In order to make the
greedy algorithm to get a relatively good result after that, we
add loss function to improve the greedy algorithm.

Pg is the number of groupings when considering only
power consumption, and Lg is the number of groupings when
considering only distance. λ is Pg

Pg+Lg
, and µ is Lg

Pg+Lg
. Wi

is the power consumption after adding the i-th memory to
the current group, and Di is the maximum distance after
adding the i-th memory to the current group. Max Power
and Max Distance are the maximum power consumption
and maximum distance. The loss function is defined as:

F = λ · Wi+1 −Wi

Max Power
+ µ · Di+1 −Di

Max Distance
(4)

This loss function is mainly introduced to generate bet-
ter initial solutions quickly and efficiently, and the memory
with the smallest loss function value is always chosen each
time. In the initial stage of greedy algorithms, the goal is
to allocate data to memory as close as possible to slow
down the maximum distance growth rate allocated by the
controller. Due to the low memory power consumption, the
loss function is temporarily considered to have lower memory
power consumption. At the end of the greedy algorithm, as
the distance between memory is close to the upper limit, it is
attempted to add memory that meets the distance requirements
and has lower power consumption to the group. This will end
up with a new grouping.

D. Optimization through Genetic Algorithm
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Fig. 4: Population iteration process.

A good quality initial solution obtained by the improved
greedy algorithm will be used as the initial input to the genetic
algorithm.

As a result of the constraint partitioning, the current con-
straints are left with soft constraints, i.e., power consumption
and distance. The constraint on power consumption is similar
to a one-dimensional packaging problem, and after adding
distance constraints, this problem can be seen as a one-
dimensional packing problem with conflicts. In traditional one-
dimensional packing problems, genetic algorithms have the
best performance. Genetic algorithms are usually divided into
two main parts, gene coding and population iteration. In the
genetic coding phase, we use real number coding. Compared
to discrete coding, real number coding provides more solution
space, which helps to find better solutions. In the population
iteration phase, we employ diverse crossover and mutation
techniques to increase the likelihood of jumping out of the
locally optimal solution. Further, to improve the temporal
performance, we adopt a space-for-time strategy and introduce
adaptive mutation to optimize the quality of the population.

Algorithm 1 Genetic Algorithm

Require: D = {x1, x2, ..., xn}, D is the initial grouping
Ensure: R = {x1, x2, ..., xm}, R is the final grouping

1: for i in n do
2: xi

encoding−−−−−−→ Initialize group{ζ1, ζ2, ..., ζ8}
3: while Failure to meet termination conditions do
4: Generate parent generation
5: for j in 8 do
6: Choose u, v, Min(F (ζu), F (ζv))

in−→ P , F (ζ) is
fitness function, P is the parent generation

7: Update j ← j + 1
8: end for
9: Cross connection

random < probability ? Multi-point crossing :
Single-point crossing

10: Variation
random < probability ? Sequential variation :
Greedy inversion

11: Update F (ζ)← F (ζ)
12: Elitist selection
13: end while
14: Update i← i+ 1

15: Min(F (ζ1), F (ζ1), ..., F (ζ8))
decoding−−−−−−→ R

16: end for
17: return R

1) Gene Coding: In coding schemes, the traditional encod-
ing method is generally binary encoding. However, consider-
ing that both the number of groups and the amount of memory
are integers, real number encoding can consider the problem
space as a continuous space. In this way, genetic algorithms
can search in continuous space. In addition, for problems
with a large number of groups or memory, using real number
encoding can provide a more fine-grained representation. In



binary coding, each gene locus can only take 0 or 1, leading
to the discreteness and limitations of the solution space.
Real number encoding can provide more range of values and
selection space. So using integer encoding for chromosomes
is more appropriate, where each gene segment represents a
memory.

2) Population Iteration: The steps of population iteration
are shown in Figure. 4. To accelerate convergence as well
as to save computational resources, we use the results of the
greedy algorithm as the original initial solution for the iterative
process. In the subsequent iteration process, we generate
the parent generation through binary tournaments, and the
individuals in the parent generation generate the offspring
through crossover and mutation. Compared with traditional
genetic algorithms, we adopt diverse crossover and mutation
strategies, our crossover uses single-point crossover and mul-
tipoint crossover, and mutation uses sequential mutation and
greedy inversion. These diverse operations not only expand
the search space, but also help to avoid falling into local
optimal solutions. Next, we perform elite selection among
the generated offspring and parents, and the result is used
as the initial solution for the next iteration. When the fitness
of the population does not change or the maximum number
of iterations is reached after a certain number of consecutive
iterations, the algorithm will terminate and return the current
optimal solution.

3) Algorithm Optimization: Due to the fact that genetic
algorithm is a population based heuristic algorithm, the large
amount of data processed during genetic and selection results
in average time efficiency, requiring optimization over time.
Firstly, the idea of exchanging space for time requires frequent
comparison of whether the distance exceeds the limit in fitness
evaluation. Therefore, calculating and saving the distance
first can significantly reduce time consumption. In addition,
to reduce unnecessary mutation consumption, an adaptive
mutation method is adopted to dynamically adjust the mu-
tation rate based on individual fitness values. Individuals with
lower fitness can increase their mutation rate to enhance their
exploratory ability. Individuals with higher fitness can reduce
their mutation rate to maintain their excellent characteristics.

IV. EXPERIMENT RESULTS

A. Experimental Setup

In the experimental section, we compare the performance
of K-Means algorithm, simulated annealing algorithm, ge-
netic algorithm, and EMGA. The constraints include distance
between memories and memory power consumption. The
number of groups generated by each algorithm and the running
time are recorded according to the different constraints. Our
experimental platform is:

• CPU: Intel(R) Core(TM) i5-11400H @ 2.70GHz
• Memory: 16GB
• System: Ubuntu 22.04.3 LTS

B. Dataset Description

The specific description of the test sets is shown in Table
I. In testcase02 through testcase04, the memory has its own
location coordinates for computing the euclidean distance. But
testcase01 and testcase05 do not provide location coordinates,
so we use the difference in the number of memory hierarchies
as a constraint on the distance.

TABLE I: Test Sets Description

Test sets Number of memories Power Position coordinates From real design

testcase01 69 ✓ ✓

testcase02 547 ✓ ✓ ✓

testcase03 98 ✓ ✓ ✓

testcase04 25 ✓ ✓ ✓

testcase05 20000 ✓

C. Performance Evaluation

Table II shows the experimental results. Combined number
of groups and runtime, EMGA has the best performance.

1) Number of groups: The average number of groups for
the four algorithms is shown in Fig. 5. The EMGA shows
superior performance in group generation, simulated annealing
and genetic algorithms perform slightly worse, and K-Means
algorithm has the lowest performance.

K-Means SA GA EMGA(Ours)

Fig. 5: Average number of groups from testcase01 to test-
case05 for different algorithms.

EMGA combines the advantages of greedy and genetic
algorithms. It quickly obtains an initial solution and is able to
maintain a multi-solution set containing multiple good solu-
tions from the search by an improved genetic algorithm. There
may be some differences between these solutions, providing
more options. This gives our algorithm better performance
than the plain genetic algorithm. In contrast, the simulated
annealing algorithm and the K-Means algorithm are more
susceptible to the limitations of local search and may fall into
local optimal solutions. The simulated annealing algorithm is
relatively easy to fall into a certain neighborhood of solutions,
leading to the generation of more and similar groupings. The
K-Means algorithm itself tends to find local optimal solutions
rather than global optimal solutions.



TABLE II: The Number of Groups and Runtime for K-Means, SA, GA, and EMGA

Test sets Power Distance(>1e5)/
Hierarchy(<20)

K-Means [10] SA [11] GA [9] EMGA(Ours)
Number of groups Time(s) Number of groups Time(s) Number of groups Time(s) Greedy stage Improved GA stage Total time(s)

testcase01
0.1 3 68 0.051 17 0.577 17 0.587 17 17 0.198

0.07 2 70 0.059 21 0.491 21 0.580 21 21 0.196
0.11 1 70 0.061 20 0.551 20 0.573 20 20 0.198

testcase02
0.1 2000000 87 0.319 61 2.785 59 3.002 62 57 1.022

0.06 700000 184 0.483 116 2.943 115 2.943 116 110 0.823
0.05 700000 203 0.584 139 2.976 129 2.343 130 122 0.797

testcase03
0.05 500000 44 0.020 34 0.665 32 0.647 35 31 0.225
0.04 500000 50 0.017 42 0.698 41 0.654 41 39 0.221
0.04 400000 53 0.019 43 0.687 43 0.649 43 42 0.222

testcase04
0.04 400000 11 0.005 7 0.139 7 0.281 9 7 0.096
0.03 400000 13 0.005 9 0.128 9 0.280 10 9 0.097
0.03 500000 13 0.005 9 0.131 9 0.303 9 9 0.097

testcase05
0.1 5 19687 705.093 14061 91.770 13327 90.128 13259 13005 30.419

0.15 8 17794 669.244 4978 141.004 4831 121.713 4713 4616 29.438
0.4 11 2335 130.377 478 199.726 466 116.494 435 423 27.688

K-Means SA GA EMGA(Ours)

Fig. 6: Average grouping time from testcase01 to testcase05
for different algorithms.

2) Runtime: In Fig. 6, overall EMGA’s time is inferior
to the K-Menas algorithm, but stronger than the simulated
annealing and genetic algorithms. However, in testcase05, the
time of our algorithm clearly has the best performance, with
the simulated annealing and genetic algorithms having the next
best time and K-Means having the longest time.

When using the euclidean distance constraints, because the
time complexity of K-Means is relatively low and the distance
and power constraints are processed in steps, K-Means has
the shortest running time. For test cases without positional
coordinates, the gap between memory levels is small, which di-
minishes the advantage of the K-Means algorithm and greatly
increases the runtime of the algorithm. EMGA pre-processes
the groupings to reduce the time complexity of the groupings
and get a better initial solution. This initial solution is further
optimized using an improved genetic algorithm to make the
algorithm converge faster and find better results.

Considering both the number of groups and runtime, EMGA
performs the best in this experiment. It can generate a smaller
number of high-quality groups in a relatively short time. The
K-Means algorithm, while advantageous in terms of runtime,
sacrifices the quality of the grouping. Due to the use of
genetic algorithms, EMGA is inherently parallel as the entire
population can evolve at the same time. This allows EMGA
to search the solution space somewhat faster, which may
be especially important in large-scale problems and high-
dimensional spaces.

V. CONCLUSIONS

This paper aims to propose a strategy that combines
greedy algorithms and genetic algorithms to reduce power
consumption, optimize memory block grouping, and improve
the overall performance of memory systems. By using greedy
algorithms to quickly find local optimal solutions and using
them as initial solutions for genetic algorithms, we have
successfully improved the convergence speed of the algorithm
and the quality of the final solution. This combination strategy
fully utilizes the local search advantages of greedy algorithms
and the global search characteristics of genetic algorithms.
The experimental results show that the proposed algorithm has
significant performance improvements in power consumption,
distance, and execution time under different test sets and
constraints.
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