
Machine Learning and GPU Accelerated Sparse Linear Solvers for
Transistor-Level Circuit Simulation: A Perspective Survey (Invited Paper)

Zhou Jin, Wenhao Li, Yinuo Bai, Tengcheng Wang, Yicheng Lu and Weifeng Liu
Super Scientific Software Laboratory, China University of Petroleum-Beijing, China

Email: {jinzhou, weifeng.liu}@cup.edu.cn, {wenhao.li, tengcheng.wang}@student.cup.edu.cn,
yinuobai693@gmail.com, luyicheng cup@163.com

Abstract— Sparse linear solvers play a crucial role in
transistor-level circuit simulation, especially for large-scale post-
layout circuit simulation when considering complex parasitic
effects. As semiconductor technology advances rapidly, the in-
creasing sizes of circuits result in sparse linear solvers that re-
quire extended execution times and additional memory resources.
Consequently, high-performance sparse linear solvers emerge as
pivotal tools to facilitate rapid circuit simulation and verification.
However, circuit matrices frequently exhibit high sparsity and
non-uniform distributions of nonzero elements, compounding
the challenge of achieving efficient acceleration. Recently, the
flourishing developments in machine learning technology and
the continuous enhancement of hardware capabilities have pre-
sented new opportunities for accelerating sparse linear solvers.
This paper provides a perspective review of these technological
advancements, while also highlighting the challenges and future
opportunities in this evolving landscape.

I. INTRODUCTION

One of the greatest challenges in integrated circuit (IC)
design is repeated executions of computationally expensive
SPICE (simulation program with IC emphasis) simulations,
particularly when highly complex chip testing/verification
is involved [30]. With increasing degrees of integration of
modern integrated circuits, the reliability of a chip design
is improved via a time-consuming verification process before
tape-out. Such verification mainly ensures the circuit behavior
and performance and its physical feasibility and robustness,
where accurate transistor-level circuit simulation is involved.
Moreover, many other stages of IC design and verification both
in the front and back end, i.e., circuit optimization, reliability
analysis, yield analysis, and signoff, also require repeated
executions of an expensive SPICE simulation (due to the large
scale of an IC design) [7].

Circuit simulation encompasses a variety of analysis types,
such as DC analysis, transient analysis, small-signal AC
analysis, and so on [17]. Although various analyses pro-
duce distinct sets of equations, these equations are ultimately
transformed into a series of sparse linear systems to be
solved through numerical discretization and linearization [22].
Consequently, solving the sparse linear systems occupies most
of the simulation time. Especially in the back-end post-layout
circuit simulation, where complex parasitic effects from the
real world need to be considered, the linear solver further
dominates the simulation time (often exceeding 90% of the
total simulation time). Therefore, the acceleration of sparse
linear solvers emerges as a paramount challenge in the field
of circuit simulation.

Sparse direct solvers are the most commonly utilized ap-
proaches in circuit simulation, primarily due to their superior-
ity in terms of precision, speed, and practical applicability. The
direct method usually solves the linear system by triangular

factorization and forward/backward substitution, and the most
representative general software packages are MUMPS [2],
UMFPACK [10], SuperLU DIST [20, 31], PARDISO [27],
etc. These packages are not specifically designed for circuit
simulation problems. Circuit matrices are usually irregular and
sparse, and it is not possible or quite difficult to form dense
sub-matrices using any of these traditional methods to take
advantage of the level-3 Basic Linear Algebra Subprograms
(BLAS) to accelerate, and therefore the solution needs to be
accelerated by incorporating circuit matrix features. Current
solvers in the field of circuit simulation are KLU [13],
NICSLU [4–6], FLU [32], GLU [16, 18, 23], etc. However,
optimizing the performance of the sparse linear solver remains
a challenge as the size of the circuit matrix continues to
increase. Fortunately, the booming development of artificial
intelligence (AI) and the increasing hardware computational
power bring new possibilities to accelerate the linear solver.
Various innovative algorithms have been proposed, includ-
ing strategies that utilize machine learning techniques to
address irregular sparsity distribution patterns (i.e., Density-
aware LU) [3, 9, 28], as well as methods that embrace
synchronization-free concepts to design GPU and heteroge-
neous distributed cluster acceleration mechanisms, thereby
harnessing the substantial parallel computing capabilities (i.e.,
SFLU, PanguLU) [14, 33]. In addition, iterative solvers with
better preconditioner are also investigated [8, 19, 29, 34].

In this paper, we present a perspective survey on recent
progress of high-performance sparse linear solvers tailored for
circuit simulation, especially enhanced with ML techniques
and GPU acceleration. We also conduct several experiments
on circuit matrices with various solvers and compare their
performance on various platforms, including CPU, GPU and
distributed clusters. We point out several challenges and
opportunities to accelerate sparse linear solvers for circuit
matrices. Finally, we demonstrate several future directions that
worth to be explored.

II. SPARSE LINEAR SOLVER IN CIRCUIT SIMULATION

Fig. 1: Transient analysis flow in SPICE simulation [7].

Sparse linear solver dominates the transient analysis
time. Transient analysis involves solving the time-domain
response of a circuit, which represents the response of circuit
components to a given excitation signal as it varies over time.



The task needs to solve a set of ordinary differential equations
(ODE).

P (x(t), dx(t)/dt, t) = 0 (1)

where x = (v, i)T ∈ Rm, m = N + M , variable vector
v ∈ RN denotes node voltage, and vector i ∈ RM represents
internal branch current. Numerical integration algorithms, i.e.,
backward Euler as shown in equation (2), are used to discrete
the ODE in the time domain.

ẋ(t)|t=tn+1 = (xn+1 − xn)/hn+1 (2)

It results in a set of nonlinear algebraic equations at each time
point,

F (x) = 0 (3)

where F (·) : Rm → Rm. Ultimately, as shown in equation (4),
the nonlinear system of equations is linearized by establishing
the Newton-Raphson (NR) iterative method [24],

xk+1 = xk −
[
J(xk)

]−1
F (xk) (4)

where J(xk) is the Jacobian matrix and k is the NR iteration
step. Therefore, the main task in transient analysis is to solve
a series of sparse linear systems.

Circuit matrix is established by modified nodal analysis.
The Jacobian matrix in Equation (4), which is also the
coefficient matrix of the linear system, is typically derived
from the circuit netlists using the Modified Nodal Analysis
(MNA) method, and the number of nonzero elements (nnz)
of the matrix then represent the number of components in
the circuit. MNA is an approach that combines Kirchhoff’s
Current Law (KCL), Kirchhoff’s Voltage Law (KVL), and
component characteristic equations into matrix form, using
node voltages and branch currents as variables. This method
ensures a low matrix order while addressing independent
source branches. Therefore, it is currently the main approach
to construct circuit matrices for SPICE simulation.

(a) ASIC 320k (b) memchip (c) Freescale1

(d) circuit5M dc (e) G2 circuit (f) transient

Fig. 2: The structure of the circuit sparse matrices [28].

Circuit matrix follows a non-uniform distribution of nnz.
The matrix generated in circuit simulation is an extremely
special class of sparse metrics with irregular nonzero elements
distribution characteristics, as shown in Fig. 2. It can be further
observed from TABLE I, the circuit matrices are typically
highly sparse, with each row usually containing fewer than 10
nonzero elements, and do not guarantee symmetry. Moreover,
a small number of nodes may be connected to a significant
number of components, leading to a substantial number of
nonzero elements in certain rows. These factors significantly
affect the efficiency of the solving process.

TABLE I: Circuit sparse matrix properties [28].

Circuit Matrix N
Entries per row

Symmetrymax min average variation
ASIC 320k 321,821 203,800 1 8.2 502.95 100.00%

memchip 2,707,524 27 2 5.5 2.06 0.32%
Freescale1 3,428,755 27 1 5.5 2.07 7.67%

circuit5M dc 3,523,317 27 1 10.7 1356.61 55.99%
G2 circuit 150,102 4 1 2.9 0.52 0.0005%
transient 178,866 60423 1 5.4 147.2 68.99%

III. SPARSE DIRECT SOLVER

The most representative and universal of direct methods
is LU factorization, which decomposes the matrix A of a
system of linear equations Ax = b into the product of a
lower triangular matrix L and an upper triangular matrix U .
When the matrix A is sparse, the process can be divided into
3 steps: 1) Pre-processing: Reorder the matrices to minimize
the number of fill-in elements. 2) Symbolic factorization:
Identify the locations of these fill-in elements. 3) Numeric
factorization: Calculate the values of nonzeros. Fig. 3 shows
the left-looking and right-looking methods for sparse LU
factorization, where the left-looking method decomposes the
matrix from left to right, one column at a time, and the
right-looking method decomposes the matrix row by row and
column by column along the diagonal.

Fig. 3: The left-looking and right-looking methods for fac-
torizing an example matrix of order four, where circles and
triangles represent nonzeros and fill-ins, respectively.

For the circuit matrix, the distribution of nonzero elements
established from the MNA is determined by the circuit topol-
ogy. Since the circuit topology remains fixed throughout the
entire simulation process, the pattern of nonzero elements
in the matrix remains unchanged, with only the numerical
values being updated in each iteration. Therefore, in circuit
simulation, reordering in pre-processing and symbolic fac-
torization typically need to be performed only once, while
numeric factorization requires multiple times. This indicates
that in circuit simulation, the most critical factor is not the time
spent on pre-processing or symbolic factorization; rather, the
primary concern lies in the speed of numeric factorization.

A. AI-based Acceleration

In the pre-processing phase, the key is to maintain nu-
merical stability and reduce the padding of nonzero elements.
The reordering method in the pre-processing stage greatly
affects the amount of floating-point operations in the numeric
factorization stage. However, finding the optimal reordering
with minimum fill-ins is typically an NP-hard problem [11].
Existing methods are primarily heuristic-based, i.e., METIS,
AMD and MMD for column permutation, MC64 and AWPM
for row permutation, etc. It can be observed from Table II
that different reordering methods produce completely different



TABLE II: Comparison between reordering methods for the
matrix from circuit simulation. The test runs on AMD EPYC
7702 CPU 2.0 GHz with SuperLU DIST 8.1.2.

Reordering
method

METIS+
AWPM1

MMD+
AWPM1

MMD+
AWPM2

METIS+
MC641

MMD+
MC641

MMD+
MC642

Reordered
matrix

Relative
fill-ins 9.63 15.26 30.00 10.05 16.47 29.93

Reordering
time (s) 52.06 51.04 70.15 3.44 3.14 19.71

Numeric
time (s) 43.09 113.28 1694.32 49.18 153.66 1500.09

1 Pre-processing for unsymmetric matrices: AT +A
2 Pre-processing for unsymmetric matrices: ATA.

numbers of fill-ins and subsequent factorization time. More-
over, none of them is always optimal for all matrices, making
it challenging to find a good alternative for different matrices.

To address this challenge, Cui et al. [9] first proposed an
AI-based approach to choose the best reordering algorithm in
power grid analysis, combined with support vector machine
(SVM) and neural network (NN). Furthermore, to expand the
application areas, Chen et al. [3] proposed a few-shot model
based method for circuit simulation matrices. However, all
existing AI-based strategies are generally based on supervised
learning to choose the best alternative among existing methods
and mainly considering the number of fill-ins as the criteria.
On the one hand, the data in [3] show that the minimum
number of fill-ins does not always imply the best factorization
time. On the other hand, existing reordering methods do not
necessarily always encompass the optimal reordering tech-
nique. Therefore, leveraging semi-supervised or unsupervised
learning to generate specific optimal reordering methods for
any matrix, rather than merely selecting from existing meth-
ods, is a highly promising direction in the future.

Fig. 4: A comparison of GEMM and SpMM on circuit
matrices with different orders [28].

In the numeric factorization phase, the most crucial
and time-consuming part is often matrix multiplication [28].
The main concepts of conventional methods, i.e., multifrontal
or supernodal, is to form dense submatrix blocks, enabling
the invocation of General Matrix Multiplication (GEMM)
in Level-3 BLAS for enhanced computational performance.
However, due to the specific property of the circuit matrix, it
has been found that introducing sparse matrix multiplication
may bring substantial acceleration potential. As shown in
Fig. 4, for different matrices, dense (GEMM) and sparse
(SpMM) multiplication show superior performance in some
cases, respectively, and selecting the appropriate kernel for

each matrix multiplication becomes a crucial issue. There-
fore, in [28] a density-aware adaptive matrix multiplication
equipped with random forest to optimize performance of the
most time-consuming matrix multiplication kernel is proposed
to accelerate the sparse LU factorization.

B. GPU Acceleration

In contrast to multi-core CPUs, GPUs possess greater
acceleration potential due to features such as a large number
of cores, large register files, and high memory bandwidth.
However, efficiently accelerating sparse LU factorization on
GPUs poses two major challenges: 1) designing specific
algorithms to accelerate the computational kernel with the
circuit matrix structure, and 2) utilizing the GPU to accelerate
task scheduling when there are strong dependencies between
tasks (often columns).

Accelerating computational kernels on GPUs. Sao et
al. [26] developed a strategy based on SuperLU DIST [21]
to aggregate small dense BLAS operations into larger ones
to fully utilize the computational power of GPUs (as shown
in Fig. 5), and they also used the CUDA stream to hide
the memory copy latency. Li’s team and others [1] also
proposed a systematic way of addressing matrix computations
on GPUs for batches containing a matrix of different sizes, and
addressed a performance-critical component in a multifrontal
sparse LU solver STRUMPACK [15]. To allow the sparse
irregular matrix to be better accelerated on GPUs, Fu et al. [14]
used a regular 2D blocking strategy in PanguLU and combined
it with the decision tree to put part of the kernels on GPUs to
achieve relative acceleration. However, it is still challenging
to combine matrix features to achieve further speedup.

(a) Aggregating small GEMM (b) Overlapping GEMM with scatter

Fig. 5: GPU-accelerated methods in SuperLU DIST[26].
Tasks scheduling on GPU. Some work choose to divide

and schedule tasks based on level-set on GPUs. Chen et
al. [5] based on G-P algorithms and combined the features
of task-level and data-level parallelism on GPUs to accelerate
sparse LU factorization, and developed the NICSLU software
package, which is optimized for the work partition, the number
of active thread groups and the memory access pattern. To
further improve the parallelism of G-P algorithms on GPU
platforms, Peng et al. [23] developed GLU 3.0 based on GLU
1.0 and 2.0, using a relaxed principle to find all required
dependencies, plus some redundant one and developed three
different modes of the GPU kernels that adapt to different
stages in computing tasks. changes. However, all of the above
methods require a high synchronization cost, and if GPUs can
be reasonably utilized for resource scheduling, it will be pos-
sible to greatly release the arithmetic power and accelerate the
sparse LU factorization. Therefore, Zhao et al. [33] proposed a
synchronization-free sparse direct method solver called SFLU
(shown in Fig. 6) on GPUs, where each thread block eliminate
one column and running all thread blocks simultaneously to



TABLE III: An overview of surveyed sparse direct solver.

Solver Left/Right looking Blocking method Kernel Parallelism
Level Method Distributed Multi-thread GPU

MUMPS1 [2] Left Multifrontal Level-3 BLAS Tree/Node Level-set ✓ ✓ -
UMFPACK1 [10] Left Multifrontal Level-3 BLAS - - - - -

SuperLU DIST1 [20, 31] Right Supernode Level-3 BLAS Supernode Level-set ✓ ✓ ✓
PARDISO1 [27] Left&Right Supernode Level-3 BLAS Supernode Pipeline ✓ ✓ -
PanguLU1 [14] Right Regular 2D block Adapative sparse kernel 2D block Synchronization-free ✓ ✓ ✓

KLU2 [13] Left Block diagonal - - - - - -
NICSLU2[4–6] Left Supernode Level-3 BLAS Supernode Level-set - ✓ ✓

FLU2 [32] Left Supernode Level-3 BLAS Supernode Register Level - ✓ -
GLU2 [16, 18, 23] Left&Right - - Element Level-set - - ✓

SFLU2 [33] Left&Right - - Element Synchronization-free - - ✓
Density-aware LU2 [28] Right Supernode Adaptive kernel Supernode Level-set ✓ ✓ -

1 Sparse direct solver for general matrices.
2 Sparse direct solver for circuit matrices.

fully utilize the GPU resources by exchanging the dependency
information stored in global memory with all thread blocks in
the computation state or in the busy waiting state. The new
method avoided global synchronizations between levels in the
existing methods and increased the amount of parallelizable
work for GPUs of a large mount of compute units. However,
when the matrix size is small or there are strong dependencies
between columns, existing GPU acceleration methods still
face challenges to fully utilize the computational power of
GPUs. Therefore, how to effectively combine computation and
scheduling strategies to fully utilize the arithmetic power of
GPUs remains a challenging problem.

Fig. 6: The SFLU method used for factorizing an example
matrix of order five [33].

TABLE III shows an overview of the direct solvers
of the sparse surveyed. We conduct experiments with Su-
perLU DIST [25], PARDISO [27], KLU [13], GLU [23],
SFLU [33] and PanguLU [14] with gcc-9.3.0, OpenMPI-
4.1.2 and cmake-3.23.1. Details of matrices [12] are shown
in TABLE IV. The experiment platform is 4*NVIDIA A100
GPUs using CUDA 11.3.0 and driver 510.85.02, with 40 GB,
B/W 1555GB/s, 2 * Intel Xeon 8180 CPUs (28 cores) and
512GB DDR4.

TABLE IV: The matrices tested.

matrix n(A) nnz(A) matrix n(A) nnz(A)
add32 4.96e3 1.98e4 meg4 5.86e3 2.53e4

circuit 3 1.21e4 4.81e4 memplus 1.78e4 9.91e4
rajat27 1.06e4 9.74e4 ckt11752 dc 1 4.97e4 3.33e5
twotone 1.21e5 1.21e6 pre2 6.59e5 5.83e6

ASIC 680k 6.82e5 2.64e6 G3 circuit 1.59e6 7.66e6

We evaluate the performance and Fig. 7 shows the experi-
mental results, where the performance of each solver is taken
to be the optimal performance on this experimental platform.
It can be seen that no solver is optimal for all matrices, and
the superiority of GPU acceleration over CPU is not always
guaranteed. Specifically, for smaller matrices (add32, meg4,

0
10
20
30
40
50
60
70

Ti
m

e 
Co

m
pa

ris
on

 (m
s)

4.
34

11
.9

0

22
.8

3

15
.7

6

29
.4

3 37
.9

4

4.
27 6.

60

6.
80 10

.6
6

10
.2

9

23
.3

4

0.
91 2.
20 2.
95 4.
13 6.

07

43
.0

4

2.
39 4.

82 9.
62

6.
35 9.

02

72
.0

9

0.
98

6.
87

18
.6

4

1.
55 5.

91

24
.3

0

0.
85 5.

44

12
.4

1

4.
47

16
.4

8 22
.1

4

add.. meg.. cir.. mem.. raj.. ckt..

SuperLU_DIST
PARDISO

KLU
GLU

SFLU
PanguLU

Fig. 7: A comparison of numeric factorization.

and circuit 3), serial solver KLU has the best performance,
followed by SFLU, and the performance of GLU is generally
balanced. The performance advantage of SFLU is gradually
manifested when the size of the matrix is gradually enlarged
(memplus and rajat27), indicating that after the matrix reaches
a certain size, the use of GPU-based synchronization-free
scheduling strategy can play a great advantage. However,
the heterogeneous distributed solvers SuperLU DIST and
PanguLU do not play a better advantage until the matrix
ckt11752 dc 1, where the advantage of SuperLU DIST and
PanguLU are gradually revealed, but the performance of
KLU and GLU starts to decline instead, which is related
to both the matrix size and the inter-column dependency.
Additionally, there are always GPU solvers (GLU or SFLU
or PanguLU) that outperform the PARDISO performance for
matrices of different sizes, reflecting the greater potential of
GPU acceleration compared to CPU multicore acceleration.
The diversity of computing platforms and matrix features all
affect performance, therefore, combining matrix features and
taking full advantage of the computing platform to further
optimize the LU factorization remains a great challenge.

C. Heterogeneous Distributed Acceleration

When confronted with large-scale matrices, the utilization
of distributed heterogeneous acceleration emerges as a highly
effective approach. In this regard, Amestoy et al. developed
MUMPS [2], which uses asynchronous communication and
dynamic task scheduling for acceleration in multifrontal meth-
ods, but MUMPS is currently only available in CPU. Su-
perLU performs heterogeneous distributed optimization; Sao
et al. [25] combined GPU optimization with the 2D [31] mesh
to further improve the algorithm by proposing a 3D mesh
algorithm. These methods are generalized but not suitable for
irregular circuit matrices, once the matrix has been reordered
to determine the structure, the strong coupling relationship
between columns also affects the scalability of these level-set
based methods. Therefore, Fu et al. [14] proposed PanguLU, a



regular scalable block-cyclic sparse direct solver on distributed
heterogeneous platforms. In PanguLU, a mapping approach
was designed for load balancing, a variety of block-wise sparse
BLAS methods were selected for higher GPU efficiency, and
a synchronization-free communication strategy was developed
to reduce the overall latency cost.

1 2 4 8 16 32 64 128
0

50

100

150

200

250

300

GF
LO

PS

11.96 19.03
34.18

58.52

96.03

168.78

278.91
297.61

0.83 1.65 3.57 6.50 12.27 20.27 26.96 27.56

ASIC_680k
SuperLU_DIST
PanguLU

1 2 4 8 16 32 64 128

5

10

15

20

25

30

13.25

19.85

29.16 29.00

25.23 24.95

28.12

24.32

4.30
6.33

11.42 10.87
13.44

11.76

8.80
6.34

G3_circuit

1 2 4 8 16 32 64 128
0

10

20

30

40

50

60

GF
LO

PS

21.58

34.79

58.23
62.96

52.31
46.72

55.05

18.91

2.70 4.88
10.48

14.30
18.72 20.24 17.97

11.37

pre2

1 2 4 8 16 32 64 128
0

20

40

60

80

23.20

32.51

43.33

63.49

36.82 37.23

83.57

22.74

0.10 0.23 0.65 1.21 2.73 4.15 4.61 3.33

twotone

Fig. 8: Performance comparison between SuperLU DIST and
PanguLU on 128 A100 GPUs, where the GFLOPS is Giga
Floating-point Operations Per Second.

We further evaluate the performance of SuperLU DIST
and PanguLU on a 32-node 128-GPU distributed clusters in
numeric factorization using 1, 2, 4, 8, 16, 32, 64 and 128
A100 GPUs, the configuration information for each node
are shown in Section III.B. Fig.8 shows the experimental
results. Compared to SuperLU DIST, PanguLU is superior
in terms of GFLOPS and scalability, which also shows that
the synchronization-free communication scheduling strategy
and sparse kernels possess significant advantages when faced
with circuit matrices. However, as the number of processes
increases, the GFLOPS of SuperLU DIST and PanguLU
continue to increase on the lagest matrix ASIC 680k, but
gradually decrease on G3 circuit, pre2, and twotone. This
reduction is mainly due to the increase in communication
costs, despite the faster computation by using more GPUs. It
indicates that, while distributed methods have the potential for
parallel acceleration, the resulting overhead is not negligible
and is not suitable for all matrices. Therefore, to exploit large-
scale supercomputers with heterogeneous processors, there is
still a great challenge to improve the scalability as well as to
reduce the synchronization and communication costs between
processes with irregularly sparse structured dependencies.

IV. SPARSE ITERATIVE SOLVER

In contrast to direct methods, iterative methods start from
an initial conjectural solution and use the information in
the system of equations to iteratively update it, gradually
approximating the true solution. With a gradual increase in
the size of the circuit, direct solvers could be very inefficient
for these large sparse circuit matrices due to the memory
limitation. Even after the permutation, the number of fill-
ins generated during factorization may be huge. Therefore,
iterative algorithms are gradually gaining attention to solve
such problems [19]. In addition, for some circuit matrices
with special structure, i.e., RF circuits with block format,

iterative solver may also demonstrate effectiveness. Since the
convergence speed of iterative methods depends too much on
precondition techniques, research mainly focuses on construct-
ing a good preconditioner.

Fig. 9: An example of building a block-Jacobi preconditioner
from a matrix A based on 3-way partitioning [29].

Zhao et al. [34] proposed a preconditioner using spectral
sparsification for nonlinear circuit simulation. Li et al. [19]
proposed a parallel incomplete LU (ILU) preconditioned
generalized minimal residual (GMRES) solver in transient
analysis for solving linear and nonlinear circuits. In [29], a
block Jacobi preconditioner was proposed as shown in Fig.
9. Chow et al. [8] developed a fine-grained parallel algorithm
for ILU. However, iterative solvers have not yet been widely
adopted as a practical alternative in circuit simulation.

V. CONCLUSIONS AND ANALYSIS

In this paper, we present a perspective survey on recent
progress of high-performance sparse linear solvers tailored
for circuit simulation. Several innovative algorithms have
been presented, including strategies for harnessing machine
learning techniques to address irregular sparsity distribution
patterns, as well as methods that embrace synchronization-free
concepts to design GPU and heterogeneous distributed cluster
acceleration mechanisms, thereby harnessing the substantial
parallel computing capabilities. Additionally, we provide a
brief introduction to several iterative solvers recently devel-
oped in circuit simulation. We also highlight the challenges
and future opportunities in this evolving landscape.
• For circuit matrices, the traditional acceleration methods

for finding dense sub-matrices are no longer applicable for the
irregular nature of the nonzero element distribution. How to
introduce sparse computations and strike a trade-off between
different computational kernels remains a pivotal challenge.
• In GPU acceleration, how to utilize massive computational

units more efficiently is the key to improve performance. This
usually requires sufficiently large matrix to be solved with
good parallelism. Moreover, better task scheduling strategies
and computational kernels need to be designed on GPUs to
improve the parallel computing performance.
• It is observed that no single solver can achieve optimal

performance for all matrices, mainly due to the difficulty
of taking into account various factors such as the matrix
and hardware platform characteristics in algorithm design.
Additionally, the data distribution of the matrix and its inherent
data dependencies may significantly influence the results.

In the future, we believe that the following research direc-
tions are worth exploring, 1) AI-based unsupervised or semi-
supervised optimization, such as producing brand new matrix
reordering method or computation kernel algorithm. 2) Design
optimization algorithms that are better suited for GPUs based
on various circuit matrix structures. 3) Distributed synchro-



nization and communication optimization. 4) Obtaining oracle
preconditioners in iterative solver.

VI. ACKNOWLEDGEMENT

This work was supported by National Key R&D Pro-
gram of China (Grant No. 2021YFB0300600), the NSFC
Key Program (Grant No. 61972415, 62204265, 62234010,
62372467), State Key Laboratory of Computer Architecture
(ICT, CAS) (Grant No. CARCHA202115), GHfund A (Grant
No. 202302017546). Weifeng Liu is the corresponding author.

REFERENCES

[1] A. Abdelfattah, P. Ghysels, W. Boukaram, S. Tomov,
X. S. Li, and J. Dongarra. Addressing irregular patterns
of matrix computations on gpus and their impact on
applications powered by sparse direct solvers. In SC
’22, 2022.

[2] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster.
Mumps: a general purpose distributed memory sparse
solver. In PARA ’00, 2000.

[3] Q. Chen, Y. Ye, M. Li, H. Yan, and L. Shi. Optimized
matrix ordering of sparse linear solver using a few-
shot model for circuit simulation. Integration, the VLSI
Journal, 2023.

[4] X. Chen. Numerically-stable and highly-scalable parallel
lu factorization for circuit simulation. In ICCAD ’22,
2022.

[5] X. Chen, L. Ren, Y. Wang, and H. Yang. Gpu-accelerated
sparse lu factorization for circuit simulation with perfor-
mance modeling. IEEE TPDS, 2014.

[6] X. Chen, Y. Wang, and H. Yang. Nicslu: An adaptive
sparse matrix solver for parallel circuit simulation. IEEE
TCAD, 2013.

[7] Y. Chen, H. Pei, X. Dong, Z. Jin, and C. Zhuo. Applica-
tion of deep learning in back-end simulation: challenges
and opportunities. In ASP-DAC ’22, 2022.

[8] E. Chow and A. Patel. Fine-grained parallel incomplete
lu factorization. SIAM SISC, 2015.

[9] G. Cui, W. Yu, X. Li, Z. Zeng, and B. Gu. Machine-
learning-driven matrix ordering for power grid analysis.
In DATE ’19, 2019.

[10] T. A. Davis. Algorithm 832: Umfpack v4.3-an
unsymmetric-pattern multifrontal method. ACM TOMS,
2004.

[11] T. A. Davis. Direct methods for sparse linear systems.
SIAM, 2006.

[12] T. A. Davis and Y. Hu. The University of Florida Sparse
Matrix Collection. ACM TOMS, 2011.

[13] T. A. Davis and E. Palamadai Natarajan. Algorithm
907: KLU, A direct sparse solver for circuit simulation
problems. ACM TOMS, 2010.

[14] X. Fu, B. Zhang, T. Wang, W. Li, Y. Lu, E. Yi, J. Zhao,
X. Geng, F. Li, J. Zhang, Z. Jin, and W. Liu. Pangulu:
A scalable regular two-dimensional block-cyclic sparse
direct solver on distributed heterogeneous systems. In
SC ’23, 2023.

[15] P. Ghysels, X. S. Li, C. Gorman, and F.-H. Rouet.
Strumpack: Scalable preconditioning using low-rank ap-
proximations and random sampling. In SC ’16, 2016.

[16] K. He, S. X.-D. Tan, H. Wang, and G. Shi. Gpu-
accelerated parallel sparse lu factorization method for
fast circuit analysis. IEEE TVLSI, 2015.

[17] Z. Jin, H. Pei, Y. Dong, X. Jin, X. Wu, W. W. Xing,
and D. Niu. Accelerating nonlinear dc circuit simulation
with reinforcement learning. In DAC’22, 2022.

[18] W. K. Lee, R. Achar, and M. S. Nakhla. Dynamic gpu
parallel sparse lu factorization for fast circuit simulation.
IEEE TVLSI, 2018.

[19] L. Li, Z. Liu, K. Liu, S. Shen, and W. Yu. Parallel
incomplete lu factorization based iterative solver for
fixed-structure linear equations in circuit simulation. In
ASP-DAC ’23, 2023.

[20] X. S. Li. An overview of superlu: Algorithms, imple-
mentation, and user interface. ACM TOMS, 2005.

[21] X. S. Li and J. W. Demmel. Superlu dist: A scalable
distributed-memory sparse direct solver for unsymmetric
linear systems. ACM TOMS, 2003.

[22] F. N. Najm. Circuit simulation. John Wiley & Sons,
2010.

[23] S. Peng and S. X.-D. Tan. Glu3.0: Fast gpu-based
parallel sparse lu factorization for circuit simulation.
IEEE Design & Test, 2020.

[24] P. Sadayappan and V. Visvanathan. Circuit simulation on
shared-memory multiprocessors. IEEE TC, 1988.

[25] P. Sao, X. S. Li, and R. Vuduc. A communication-
avoiding 3d algorithm for sparse lu factorization on
heterogeneous systems. JPDC, 2019.

[26] P. Sao, R. Vuduc, and X. S. Li. A distributed cpu-gpu
sparse direct solver. In Euro-Par ’14, 2014.

[27] O. Schenk, K. Gärtner, W. Fichtner, and A. Stricker.
Pardiso: a high-performance serial and parallel sparse
linear solver in semiconductor device simulation. FGCS,
2001.

[28] T. Wang, W. Li, H. Pei, Y. Sun, Z. Jin, and W. Liu.
Accelerating sparse lu factorization with density-aware
adaptive matrix multiplication for circuit simulation. In
DAC ’23, 2023.

[29] Y. Wang, W. Zhang, P. Li, and J. Gong. Convergence-
boosted graph partitioning using maximum spanning
trees for iterative solution of large linear circuits. In
DAC ’17, 2017.

[30] W. W. Xing, X. Jin, T. Feng, D. Niu, W. Zhao, and Z. Jin.
Boa-pta: A bayesian optimization accelerated pta solver
for spice simulation. ACM TODAES, 2022.

[31] I. Yamazaki and X. S. Li. New scheduling strategies and
hybrid programming for a parallel right-looking sparse
lu factorization algorithm on multicore cluster systems.
In IPDPS ’12, 2012.

[32] Z. Yan, B. Xie, X. Li, and Y. Bao. Exploiting architecture
advances for sparse solvers in circuit simulation. In
DATE ’22, 2022.

[33] J. Zhao, Y. Wen, Y. Luo, Z. Jin, W. Liu, and Z. Zhou.
Sflu: Synchronization-free sparse lu factorization for fast
circuit simulation on gpus. In DAC ’21, 2021.

[34] X. Zhao and Z. Feng. Gpscp: A general-purpose support-
circuit preconditioning approach to large-scale spice-
accurate nonlinear circuit simulations. In ICCAD ’12,
2012.


