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Abstract—Static Timing Analysis (STA) is one of the most
widely used and successful analysis engines in digital circuit
design in recent years. However, the Deterministic Static Tim-
ing Analysis (DSTA) does not take into account the effect of
process parameter variability on circuit performance, which
arouses people’s attention to the ability of STA to effectively
simulate statistical changes. Therefore, Statistical Static Timing
Analysis (SSTA) has been proposed and extensively studied.
Traditional SSTA algorithms, such as probabilistic propagation
based on Gaussian distribution and Monte Carlo simulation,
cannot achieve a high accuracy and good performance. In this pa-
per, a SSTA algorithm considering skew distribution, SD-SSTA,
is proposed, which successfully realizes accurate calculation of
arrival time and timing margin, and has excellent performance.

The paper makes three contributions. (1) We convert the non-
Gaussian distribution into a Gaussian Mixture Model (GMM),
which fits the real result better than the traditional SSTA
algorithms. (2) We consider the influence of skew and introduce
Skew Adjustment Factor (SAF) into the calculation of timing
margin to ensure that the results are more realistic. (3) We use
the name mapping method to reduce the memory consumption
of the algorithm, which further improves the algorithm memory
performance. Compared with SSTA algorithm based on Gaussian
distribution, SD-SSTA algorithm has excellent performance in
both accuracy and performance.

Index Terms—Statistical Static Timing Analysis, non-Gaussian,
Gaussian Mixture Model, Timing Margin

I. INTRODUCTION

With the rapid development of integrated circuit (IC) tech-
nology, timing becomes more and more critical in modern
IC design. Static Timing Analysis (STA) is a critical step in
ensuring the successful tapeout of IC. One reason STA tools
are widely used is that their algorithmic complexity is linearly
related to the complexity of IC design. This feature ensures
that STA tools can efficiently analyze ICs with reasonable time
and memory requirements [1].

Traditional STA tools assume that the manufacturing pro-
cess parameters (such as ion implantation concentration, oxide
thickness, etc.) are fixed values [2], so the logic gate and
interconnect delay is a constant. However, this is obviously
inconsistent with the actual situation, due to the limitations of
various factors such as equipment, even if it is the same type of
multiple logic gates on the same chip, its delay parameters can
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not be exactly the same. To introduce this uncertainty, design-
ers often introduce a pessimistic quantity into traditional STA
tools, and under advanced manufacturing processes, choosing
a pessimistic quantity has become increasingly difficult [3],
[4]. In order to more realistically simulate this uncertainty,
a more accurate Statistical Static Timing Analysis (SSTA) is
proposed.

In current SSTA research [5]–[7], various methods have
emerged to estimate the timing performance of circuits more
accurately. The probability propagation method can effectively
calculate the output probability distribution by propagating the
probability distribution of the mutation source to the sequential
path of the circuit [8], [9]. In order to facilitate analysis
and shorten running time, Gaussian distribution is always the
main choice of statistical distribution. However, in the actual
manufacturing process, due to the complex correlation and
nonlinear effects between the process parameters, the arrival
time of the nodes may not be Gaussian distribution. In these
cases, then, Monte Carlo simulation seems to be a promising
method for dealing with arbitrary distributions [10], which
improves the treatment of variability through random sam-
pling of process parameters. However, Monte Carlo simulation
usually requires a large number of random sampling and
simulation, resulting in high computational complexity. This
can become less practical for timing analysis of large-scale
IC, especially when multiple process parameters need to be
considered [11]. Therefore, to maintain the high accuracy and
good performance simultaneously is non-trivial.

In the paper, we propose SD-SSTA algorithm and name
mapping method to resolve these problems. (1) We pro-
pose a SSTA algorithm considering non-Gaussian distribution.
The algorithm uses Monte Carlo method for max operations
on non-Gaussian distributions, and then converts the non-
Gaussian distribution into the GMM.Azuma et al [12] give
closed formulas for the parameters of the GMM so as to
realize the forward propagation of the non-Gaussian distri-
bution and calculate the arrival time more accurately. Further,
we introduce SAF into the formula for calculating the timing
margin. The value of SAF is affected by two factors, one is
the skewness and the other is the variance of the delay. For
different circuits, we dynamically adjust the scale parameter
in SAF according to the variance size of the relevant circuit



design file. The purpose is to ensure that the calculation of
timing margin is more realistic. (2) We propose a method
of name mapping to reduce the memory requirement of the
algorithm. In the circuit design file, node names are recorded
as string types. For large-scale circuits, these names are often
long, so reading them into a data structure can take up a lot of
memory space, and the time to compare two string variables
is significantly greater than the time to compare two integer
variable. By mapping string type to integer type, the memory
can be reduced effectively and the time can be shortened.

In the experimental part, we compare the SD-SSTA algo-
rithm with the traditional SSTA algorithm [13], and evaluate
the accuracy of their timing margin at the endpoints. The
experimental results show that the SD-SSTA algorithm not
only maintains high accuracy, but also exhibits excellent time
and space efficiency.

II. PRELIMINARIES

A. Mathematical Preliminaries

In this paper we use the following explicit notation for the
Gaussian probability density functions (PDFs):

ϕ(x|µ, σ) def
=

1√
2πσ

φ

(
x− µ

σ

)
, φ(x)

def
= e−

1
2x

2

(1)

where the function φ(x) is referred to as the Gaussian kernel.
The Cumulative Distribution Function (CDF) of the standard
Gaussian distribution will be denoted as follows:

Φ(x|µ, σ) def
=

1√
2π

∫ x

−∞
φ(t)dt (2)

B. Arrival Time and Timing Margin

Sequential circuits refer to circuits in digital circuits that
have specific timing requirements, and operate in a certain
order under the control of a specific clock signal. In the design
and analysis of sequential circuits, there are two important
concepts: Arrival Time and Timing Margin.

1) Arrival Time: Arrival time refers to the time required for
a specific point in a circuit to receive a signal from other logic
units. This time encompasses the cumulative delay along all
paths through which the signal propagates to reach the given
point.Accurate calculation of the arrival time is essential to
ensure the correct function of the circuit and to meet timing
requirements.

2) Timing Margin: The timing margin is typically defined
as the time margin before or after a signal reaches the
target component, representing the time difference around
its intended processing time. In general timing analysis, it
encompasses both setup time and hold time, ensuring that the
signal arrives and stabilizes within the specified time window
to guarantee proper circuit operation.

C. Statistical STA

In the SSTA, the key parameters in the circuit, such as logic
gate delay and signal arrival time, are modeled as a Gaussian
distribution. This is a simplified assumption. For example,

[14], [15] assume that all sources of change are Gaussian and
independent of each other.

In order to calculate the arrival time and timing margin in
the block-based SSTA framework, two atomic operations are
required, namely Add and Max. A similar discussion applies
to subtraction and minimization.

1) Add Operation: The arrival time at the cell output is
calculated by adding the input arrival time to the cell delay.
For SSTA, the arrival time and cell delay are random variables
(RVs) that obey the Gaussian distribution, so the Add operation
is essentially the addition of the Gaussian distribution.

P =
∑

Pi (ui, σi) ∼= N (µ, σ) (3)

µ =

n∑
i=1

µi and σ =

√√√√ n∑
i=1

n∑
j=1

ρijσiσj (4)

N(µ,σ) is Gaussian with mean µ and sigma σ and Pi is the
delay distribution for each individual cell on the path and ρij
is the correlation coefficient between delays of cells i and j.

2) Max Operation: the maximum operation is required for
multiple input units, where the worst-case output arrival time
is the maximum of all output arrival times.

Fig. 1: For two independent normal distributions with different
means and variances, the Max operation depends mainly on
their means.

Suppose that to obtain the maximum values of two inde-
pendent Gaussian distributions P1 and P2 as shown in Figure
1, the mean are µ1 and µ2, respectively, and the standard
deviation are σ1 and σ2 respectively. SSTA algorithm use µ +
N ×σ (N is constant.) as the comparison condition. The result
of the Max operation is given by

µ = max(µ1, µ2) (5)

σ =
max(µ1 + N× σ1, µ2 + N× σ2)− µ

N
(6)

D. Gaussian Mixture Model (GMM)

A GMM can be regarded as a model composed of K
individual Gaussian models, where these K models serve as
the hidden variables of the mixture model. In general, any
probability distribution can be used in a mixture model, but
GMMs are chosen because Gaussian distributions possess
excellent mathematical properties and efficient computational
performance. They can smoothly fit PDFs of arbitrary shapes.
GMM is widely used in signal processing [16] and machine
learning [17], [18]. A simple example is shown in Figure 2,
where the gray area represents the GMM formed by the two



Fig. 2: A GMM consists of two Gaussian distributions.

Gaussian distributions P3 and P4. And The mathematical form
of GMM is as equation 7. Such basis function ϕ(x) is called
Radial Basis Function (RBF).

fGMM (x) =

N∑
i=1

wi · ϕ(x|µi, σi) (7)

E. Skewness

In practical scenarios, due to variations in manufacturing
processes, environmental factors, etc., arrival times may ex-
hibit a certain degree of asymmetry. Therefore, using skewed
distributions can more accurately reflect real-world situations
and improve modeling accuracy. Skewness is a measure of the
degree to which a probability distribution deviates from sym-
metry in probability statistics. The skewness of a probability
distribution is quantified by statistical measures, with the most
common measure being the skewness coefficient. In computer
science, kernel density estimation, quantile regression, and
mixture models are commonly used for modeling skewed
distributions [19]–[21].

III. ALGORITHM FRAMEWORKS

A. Overall Framework

Our proposed SD-SSTA algorithm is divided into the fol-
lowing three stages. (1) Read the circuit design file and
establish the data structure of the timing diagram. (2) Forward
propagation is carried out, and the arrival time of all nodes
is gradually calculated from the root nodes of the timing
diagram. (3) Calculate timing margin at the endpoints of the
specified timing path. Figure 3 shows the flow of SD-SSTA
algorithm.

B. SD-SSTA

1) Build Timing Diagram: We collect statistical data of cir-
cuit elements and organize circuit design files, which include
various important parts describing circuit structure and timing
information. A simple circuit example is shown in Figure 4,
where the SD-SSTA algorithm constructs the timing diagram
shown in Figure 5 by reading the circuit design file.

2) Operations for SD-SSTA: The initial inputs are Gaussian
distributions, add the input and delay of the logic gate. The
distribution of the logic gate output is shown as follows

fgate = Max(X1, X2) +X0 (8)

where X1 and X2 are the RVs that describe the arrival time of
input signals, and X0 is the RV that gives the gate operation
time. The logic gate delay often has Gaussian distribution [22].

In this paper, the non-Gaussian distribution is described by
adding skewness coefficient to the Gaussian distribution. So
the calculation of arrival time by SD-SSTA algorithm involves
two parts.

a) µ and σ: A non-Gaussian distribution is usually
formed after Max operation. So we propose to model the
PDF of the max with GMM. First, we use Monte Carlo
simulation to model non-Gaussian distributions, and then fit
it using GMM. In other words, it can be decomposed into
RBFs [23]. Furthermore, we extract the µ and σ of each fitted
RBF from the model’s attributes. As thus we handle non-
Gaussian distributions as linear combinations of functions of
the equation 1, as schematically shown in Figure 6. Finally, µ
and σ of arrival time are extracted by the following formula:

ugate =

N∑
i=1

wi · µi and σgate =

√√√√ N∑
i=1

wi · σ2
i (9)

where N, wi, µi and σi corresponds to formula (6) one by
one.

b) skewness coefficient: The PDF for the maximum of
two correlated Gaussian RVs (X1 andX2) has the form:

fmax (x, ρ) = f1(x)Φ

[
1√

1− ρ2

(
x− u2

σ2
− ρ

x− u1

σ1

)]

+f2(x)Φ

[
1√

1− ρ2

(
x− u1

σ1
− ρ

x− u2

σ2

)]
(10)

where fi(x) is a Gaussian PDF the ith distribution (i = 1,2)
respectively.

The third moment is a measure of skewness. Therefore, by
calculating the third moment, we can describe the skewness
of a non-Gaussian distribution after the MAX operation. The
calculation formula is as follows

skew = E
[
(X − µ)3

]
=

∫ ∞

−∞
(x− µ)3fmax(x)dx (11)

Algorithm 1 describes the operations for SD-SSTA using
pseudo-code.

From the pseudo-code, we can see that the SD-SSTA
algorithm uses the idea of topological sorting to calculate the
arrival time. Based on the timing diagram, the arrival time is
calculated from the root nodes from shallow to deep, which
is called forward propagation. Each iteration computes the
current root nodes and then updates the root nodes as the root
nodes for the next iteration.



Fig. 3: Implementation process of SD-SSTA algorithm.

Fig. 4: A simple example of a sequential circuit.

Fig. 5: Visualization of data structure for timing diagram.

3) Calculation of Time Margin: SD-SSTA algorithm calcu-
lates the timing margin at the endpoints of the specified timing
path. For the trigger triggered by the rising edge as shown
in Figure 4, timing margin of the falling signal at DFF/D in
Figure 4 applies the following formulas to calculate.

reqT ime = CP + umin,rise −N × σmin,rise

− SetupV aluefall
(12)

arrT ime = umax,fall +N × σmax,fall (13)

SAF = skew × k (14)

Timing margin = reqT ime–arrT ime+ SAF (15)

N is the specified confidence interval. CP is the clock period.
µmax/min,rise/fall and σmax/min,rise/fall mean that on the node, the
data jump direction is rise/fall, and the mean and sigma
values in the max/min environment. SetupV aluefall is the
value from node n1 to n2, and the jump direction of n2 is

Algorithm 1 Operations for SD-SSTA

Input: graph G and delay distributions for nodes and input
signals

Output: the arrival time of all nodes
1: Topologically sort graph G; # Every time we get G

′
(all

the nodes with zero degree.)
2: for node in G

′
do

3: node← initialise;
4: if numberpredecessor nodes>1 then
5: for predecessor nodes of the node do
6: fmc ← utilise the Monte Carlo;
7: fGMM ← decompose fmc into RBFs;
8: end for
9: end if

10: if numberpredecessor nodes=1 then
11: fGMM ← fgate of predecessor node;
12: end if
13: fgate ← fGMM + f0;
14: end for

the establishment time requirement of rise/fall. k is the scale
factor, which value is dynamically adjusted according to the
size of the standard deviation of the distribution. SAF is a
skew adjustment factor whose value varies according to the
positive or negative and magnitude of PDF skew. For positive
skewness, SAF>0 and for negative skewness, SAF<0.

C. Performance Optimization

In STA, names of a logic gate are usually stored in the
circuit file in the form of strings. For large-scale circuits,
the search and comparison of strings will consume a lot of
memory and time. We propose a name mapping method to
map all names of a logic gate in the circuit file into integer
numbers, and only use integer numbers for calculation during
the operation of the program. This way, especially in large-
scale circuits, saves a lot of memory, and also reduces the
running time to a certain extent. Figure 7 shows the mapping
process for the Hash function.



Fig. 6: Implementation of non-Gaussian distributed Max and Add operations.

Fig. 7: Name mapping method.

IV. EXPERIMENT RESULTS

A. Experimental Setup

In order to improve the computational efficiency, the paper
assumes that each unit delay is independent from each other,
without considering the correlation between them. So ρij=0
for i ̸=j, equation 4 reduceds to 16 and equation 10 reduceds
to 17.

µ =

n∑
i=1

µi and σ =

√√√√ n∑
i=1

σ2
i (16)

fmax (x) = f1(x)Φ

(
x− u2

σ2

)
+ f2(x)Φ

(
x− u1

σ1

)
(17)

To have a higher level of confidence, we set the constant N
of equation 12 and equation 13 to 3.

The paper uses GNU time to supervise the calculation of
arrival time and timing margin by two algorithms.

1) Environment Configuration: The specific experimental
environment configuration of this paper is shown in table I.
The tool implementation uses python3, python version is 3.8.1.

TABLE I: Environment configuration.

CPU AMD EPYC 7702 64-Core Processor
System Ubuntu
Architecture x86 64
Thread(s) per core 2

2) Test cases: The paper uses three test cases for the
experiment,the data came from the 2023 of the integrated
circuit eda elite challenge, each case containing three circuit
design files. (1) Timing diagram file,which stores sense,max
rise delay mean, max rise delay sigma, max fall delay mean,
max fall delay sigma, min rise mean , min rise delay sigma
,min fall delay mean, min fall delay sigma data; (2) Setup
time check file, which records all check constraint information
includes sense rise constraint ,fall constraint data; (3) End-
points list, which records the endpoints of all timing paths.
The information of different cases is shown in Table II.

TABLE II: Information about the test cases. The first two
lines reflect the data size of the cases (The values in the first
row can reflect the number of nodes and edges in the timing
diagram. The values in the second row represent the number
of endpoints.). The values in the third row is the mean of the
standard deviations of the various cases.

Circuit 1 Circuit 2 Circuit 3
Timing diagram file 7894 8794 126998
Endpoints list 1313 1313 4502
Mean of σ 0.004047 0.036749 0.000744

3) Evaluation index: In the paper, we use the results of
equation 20, scoretotal, as an evaluation index. It can measure
the accuracy of SD-SSTA algorithm to calculate the timing
margin of all endpoints.

errsingle = abs

(
our results− standard result

standard result

)
(18)

scoresingle =

{
1− errsingle , errsingle ≤ 20%

0 , errsingle ≤ 20%
(19)

scoretotal = 100×
∑

all results scoresingle
number of results

(20)

For a single endpoint, the error of the result is calculated as
in equation 18, and its score is calculated as in equation 19.
When the error of a single endpoint exceeds 20%, the result
is invalid, and the endpoint score is zero. For all endpoints, as
in equation 20, full score are 100.



B. Accuracy result

Based on equation 20, we calculate the corresponding
timing margin accuracy score. Table III compares the timing
margin calculated by SSTA [13] and SD-SSTA algorithms for
three different test cases.

TABLE III: Final score for each case.

Method Accuracy score of different cases
Circuit 1 Circuit 2 Circuit 3

SSTA 97.450931 80.584524 99.425688
SD-SSTA 99.477106 98.251913 99.861775

As can be seen from the table, the variance of circuit 3 is
too small, that is, the variation range of process parameters
is small, so the traditional algorithm can achieve an accurate
calculation. The variance of circuit 2 is too large, a larger
variance means that the Gauss distribution is more flat, which
means that the process parameters vary in a wide range,
the traditional SSTA in this case, often lead to greater error
and the superiority of SD-SSTA algorithm becomes apparent.
All in all, SD-SSTA algorithm has higher accuracy than the
traditional algorithm implemented with Gaussian distribution.

C. Time and Memory performance analysis

In this paper, the “Elapsed (wall clock) time” from the
GNU time output results is chosen as the runtime, and the
“Maximum resident set size” is used to represent the peak
memory usage. We compare the algorithm using the name
mapping method with the original algorithm, and the efficiency
of optimization is shown in Figure 8.

Fig. 8: Time and memory comparison before and after the
name mapping method is used.

As can be seen from the Figure 8, the name mapping method
reduces the time and memory of the algorithm, and its effect
is especially obvious for large-scale circuits.

CONCLUSION

In this paper, a non-Gaussian distribution based SSTA
method, SD-SSTA, is proposed. Different from the traditional
SSTA, we use GMM to model non-Gaussian distribution,
and introduce skewness coefficient on the basis of Gaussian
distribution. A non-Gaussian distribution is represented by µ,
σ and skewness coefficient, that is, the non-Gaussian distri-
bution is parameterized. Using these parameters, the forward
propagation of arrival time is calculated accurately. In the

calculation of timing margin, we consider the influence of
skew and introduce SAF into the formula. Compared with
the traditional SSTA results, the SD-SSTA algorithm has sig-
nificantly improved the accuracy of the calculation of timing
margin. Further, the memory and time are reduced effectively
and the performance of the algorithm is improved by name
mapping.
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