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Abstract—The relentless pursuit of energy-efficient electronic
devices necessitates advanced methodologies for low-power design
verification, with a particular focus on mitigating power supply
noise. The challenges posed by shrinking voltage margins in low-
power designs lead to a significant demand for rapid and accurate
power supply noise simulation and verification techniques. Too
large supply noise inevitably results in the raise of supply level,
thereby hurting the lower power design target. Spectral methods
have demonstrated as a great alternative to produce a sparse
sub-matrix with spectral-similarity property as the preconditioner
to efficiently reduce the iteration number and solve the linear
system for supply noise verification. However, existing methods
either suffer from high computational complexity or rely on
approximations to reduce computational time. Therefore, a novel
approach is needed to efficiently generate high-quality precon-
ditioners. In this paper, we propose a two-stage spectral-aware
algorithm to address these challenges. Our approach has three
main highlights. Firstly, by introducing spectral-aware weights, we
can better assess the priority of edges and construct high-quality
spanning trees with the minimum relative condition number. Sec-
ondly, by leveraging eigenvalue transformation strategies, we can
quickly and accurately recover off-tree edges that are spectrally
critical, avoiding time-consuming iterative computations. Thirdly,
we proposed a fast computation method to further decrease the
computational complexity of the effective resistance. Compared
with two SOTA methods, GRASS and feGRASS, our approach
demonstrates higher accuracy and efficiency in preconditioner
generation (37.3x and 2.13x speedup, respectively) as well as
significant improvements in accelerating the linear solver for
power supply noise analysis in power grid simulation and other
Laplacian graphs (5.16x and 1.70x speedup, respectively).

Index Terms—Low power design verification, power supply
noise analysis, power grid simulation, spectral graph sparsifica-
tion, iterative solver

I. INTRODUCTION

Due to scaling supply voltage and increasing current density,
the narrowing gap between operating and threshold voltages
makes circuit performance more susceptible to supply voltage
fluctuations. Power supply noise (PSN) refers to undesirable
voltage variations in the power supply. Accurate analysis is
crucial in integrated circuit design as it helps understand the
impact of voltage fluctuations on timing, signal integrity, and
system reliability. Power supply noise analysis guides decisions
on power distribution network design, decoupling capacitor
placement, and noise mitigation strategies for improved circuit
performance and reliability [1]–[3].

To analyze power supply noise, a series of linear equations is
established using the modified nodal analysis (MNA) method.
With ongoing semiconductor scaling and increasing device
integration, the size of the matrix has expanded to billions
of entries, presenting significant computational challenges for
efficient and accurate power supply noise analysis. To enhance
the efficiency of iterative solvers used for solving large linear
systems [4]–[6], preconditioners are often employed. The Pre-
conditioned Conjugate Gradient (PCG) method is a widely used
example [7]. It significantly reduces the time required to solve
large-scale linear systems, improving simulation efficiency in
the analysis process.

Recently, the spectral graph sparsification has undergone
significant development [8], [9] and shown its great potential
in accelerating power supply noise analysis. The spectral graph
sparsification, aiming to produce an ultra-sparse subgraph while
maintaining spectral similarity to the original graph, could
be leveraged as an effective method to generate high-quality
preconditioners due to the similarity between the Laplacian ma-
trices of graphs and the coefficient matrices of resistance circuit
equations. The GRASS algorithm, introduced in [10], leverages
approximate dominant generalized eigenvectors to effectively
identify and recover spectrally critical off-tree edges. However,
it heavily relies on the frequent computation of highly dimen-
sional matrices’ pseudoinverse, which can pose computational
challenges, especially for large-scale matrices. To address this
issue, alternative approaches have been proposed in [11] and
[12], e.g., feGRASS, which focuses on effective edge weight
and spectral edge similarity and exhibits remarkable efficiency
by generating comparable preconditioners in significantly less
time compared to GRASS. However, excessive approximations
introduced during the analysis of trace reduction resulted in
slightly inferior performance of the preconditioner.

Despite the quick advancements in spectral-based methods
for fast power supply noise analysis, existing works are either
highly intensive to ensure the effectiveness of preconditioners
or introduce extra approximations to reduce the generation time.
These two challenges remain the main obstacles for the applica-
tions of spectral-based solvers. In this paper, to simultaneously
address both challenges, we propose a novel two-stage spectral
graph sparsification method involving the construction of the



Maximum Spectral-Aware Weight Spanning Tree (MSWST)
and the recovery of spectrally critical off-tree edges based on
eigenvalue transformation. The proposed method achieves an
average optimization of 37.30x and 2.13x in computation time,
as well as 1.12x and 1.25x in the relative condition number
compared with GRASS and feGRASS, respectively. Our major
contributions are summarized as follows:

1) We propose the spectral-aware weight, which reweights
edges based on the volume and distance of their end-
points. The MSWST aims to achieve a lower relative
condition number.

2) We propose an eigenvalue transformation-based strategy
for recovering off-tree edges. By converting the general-
ized eigenvalues into their reciprocals, we observe that
analyzing the reciprocals uncovers a more concise, pre-
cise, and illuminating quantitative relationship between
edge recovery and reduction in relative condition number.

3) We introduce a novel, rapid computation method of
effective resistances. This method exploits an empirical
connection between the quadratic forms, in the context,
of the Laplacian matrix and its pseudoinverse. This
connection will assist us in avoiding frequent calculations
of high-dimensional matrices’ pseudoinverse.

II. BACKGROUND

A. Laplacian Matrix and Linear Circuit Equation

For a connected, weighted, undirected graph G = (V,E,w),
where V and E represent the sets of vertices and edges,
respectively, the Laplacian matrix LG is constructed as:

LG =
∑

(i,j)∈E

wi,jgi,jg
T
i,j (1)

Here, wi,j is the weight of the edge connecting vertices i and j,
and gi,j = gi−gj with gi being the i-th column of the identity
matrix.

The Laplacian matrices are similar to the coefficient matrices
of the resistance circuit equations. The latter can be obtained
by excluding a specific row and column from the correspond-
ing Laplacian matrices. These linear circuit equations can
be memory-efficiently solved on a large scale using iterative
solvers like PCG [4], [13].

B. Preconditioner for the Iterative Solver

The quality of preconditioners heavily impacts the fast
convergence of the PCG method. A commonly used metric to
quantify preconditioner quality is the relative condition number
between the preconditioner and the original matrix.

Given arbitrary matrices A and B, their relative condition
number can be defined as follows:

κ(A,B) =
λmax(A,B)

λmin(A,B)
(2)

Here, λ(A,B) denotes the generalized eigenvalue between A
and B. The corresponding generalized eigenvector u ∈ Rn×1

bridges A and B through the following equation:

Au = λBu (3)

The iteration complexity of PCG can be described by the
following expression, where A is the original matrix, B is the
preconditioner, and ϵ represents the desired accuracy of the
solution [7]:

O(κ(A,B)
1
2 log

[
1

ϵ

]
) (4)

This expression signifies that the number of iterations required
for convergence at a specific accuracy grows with the square
root of the relative condition number.

Therefore, one of the most crucial objectives in achieving
rapid convergence with a given level of accuracy is to generate
a preconditioner with a smaller condition number κ(A,B).

C. The Spanning Tree to Accelerate Iterative Solver

Recently, spectral graph sparsification has emerged as a
powerful approach for generating preconditioners. Among sub-
graphs, spanning trees, particularly the least stretch spanning
tree (LSST ), have shown remarkable performance.

Let’s consider a spanning tree T = (V,E′, w′) of a graph G
with |E′| = |V | − 1. LG and LT represent the Laplacian ma-
trices of the original graph and its spanning tree, respectively.
The stretch of the shortest path S connecting two randomly
chosen elements from V is defined as follows:

Stretch(S) = ws

∑
ei∈S

1

wei

(5)

where wei and ws respectively stand for the weight of the
sole edge and total edges in the path. The average stretch
AveStretch(T ) of all such paths Si in T can be defined as:

AveStretch(T ) =
1

|E|

C(|V |,2)∑
i=1

Stretch(Si) (6)

where C(m,n) represents the combination number. It has been
proven that [10]:

TotStretch(T ) = |E|AveStretch(T ) = Tr(L+
TLG) (7)

where Tr(L+
TLG) denotes the trace of L+

TLG. The LSST is
the spanning tree that minimizes TotStretch(T ) among all
spanning trees.

Moreover, it is important to note that the generalized eigen-
values and eigenvectors between LG and LT are equivalent to
ordinary those of L+

TLG. Additionally, it can be observed that
λmin(LG, LP ) is always greater than 1. Based on these facts,
we can derive the following inequality:

κ(LG, LT ) ≤ λmax(LG, LT )

<

n∑
i

λi(LG, LT ) = Tr(L+
TLG)

(8)

Eq. (7) and (8) explain why the LSST was chosen as a
preconditioner to achieve preliminary success. The lower the
TotStretch, the lower the upper boundary of κ. The LSST
holds the minimum TotStretch.

Furthermore, in subsequent experiments, more complex sub-
graphs formed by recovering a few off-tree edges in spanning
trees have shown even better performance. These subgraphs



can further reduce κ, leading to a more significant drop in the
number of iterations. The construction of spanning trees and the
recovery of off-tree edges are identified as the two fundamental
steps in spectral graph sparsification.

Many previous approaches have attempted to efficiently
construct the preconditioner with a minimum κ in the steps
mentioned above. However, there is still room for improvement.
Limited consideration of factors such as volume and distance,
which can significantly affect the condition number, is one
deficiency. The other one is the loss of effectiveness when loads
of approximations are made to avoid computationally intensive
calculations [11], [14], such as the computation of the pseudo-
inverse and quadratic form of large-scale matrices.

III. PROPOSED PRECONDITIONER GENERATOR FOR POWER
SUPPLY NOISE ANALYSIS

In this section, we propose a new spectral sparsification
method to overcome the limitations of existing approaches
and provide a more effective method for preconditioner con-
struction in large-scale linear systems, which includes the use
of a spectral-aware weight to produce a better spanning tree
and an eigenvalue-transformation-based strategy to find and
recover the most spectral-critical off-tree edges. Additionally,
we further reduce the time complexity of effective resistance
computation based on the Rayleigh-Ritz theorem [15].

A. Spectral-Aware Weight to Produce Spanning Trees

The construction of LSST primarily emphasizes the influ-
ence of its elements and structure on Tr(L+

TLG). This suggests
the potential existence of superior spanning tree candidates that
consider more precise boundaries. Accordingly, we propose a
novel method to construct such trees.

To achieve this objective, we perform normalization on the
vector u and substitute A and B in Eq. (3) with LG and LT

respectively. By left-multiplying both sides of Eq. (3) with uT ,
we obtain the following equation:

uTLGu = λuTLTu (9)

λ =
uTLGu

uTLTu
(10)

Consequently, for λmax(LG, LT ), based on Rayleigh-Ritz
theorem [15], we have the following equality:

λmax = max
uTLGu

uTLTu
≥ max

gTi LGgi
gTi LT gi

(11)

In this context, the term gTi LGgi represents the sum of edge
weights connecting vertex i in T , which defines the vertex
volume. For convenience, we define the maximum volume mis-
match (MVM) as max

gT
i LGgi

gT
i LT gi

, indicating the largest disparity
in volumes between G and T . Minimizing MVM proves to be
a more effective approach in reducing κ(LG, LT ), as illustrated
in Eq. (11).

Thus, to minimize κ(LG, LT ), we prioritize edges con-
nected to vertices with higher volume within G. Moreover,
it is advantageous to integrate the fundamental principle of

LSST construction, namely the centralized structure, into the
construction of the new spanning tree.

Building upon the preceding analysis, we introduce a novel
type of edge weight:

Wspec = wi,j ×
max(deg(i), deg(j))

log(dist(i, r) + dist(j, r) + 1)
(12)

In this definition, wi,j represents the weight of the edge, deg(i)
and deg(j) denote the degrees of its endpoints, and dist(i, r)
and dist(j, r) indicate the distances from endpoints to the
root vertex r. Typically, the vertex with the highest volume
is designated as the root vertex. This index is referred to as the
edge’s spectral-aware weight.

The spectral-aware weight of an edge is determined by its
weight, the degrees of its endpoints, and the distances from its
endpoints to the root vertex. This definition ensures that edges
connecting higher-degree vertices or those closer to the root
vertex are given higher weight. Therefore, when attempting
to construct a MSWST, these edges are more likely to be
retained within the spanning tree. The algorithm is illustrated
in Algorithm 1.

Algorithm 1 Construction of the Maximum Spectral-Aware
Weight Spanning Tree (MSWST)

Input: Undirected, connected, weighted graph G = (V,E,w).
Output: The MSWST T

1: Find the vertex r with the largest volume in V .
2: Run BFS search from r to obtain the no-weighted distance

between it and other points.
3: Compute the spectral-aware weight of all edges in E

according to (12), and obtain graph G′ = (V,E,wspec).
4: Run Kruskal algorithm on G′ to obtain the MSWST T .

Furthermore, it is important to note that we employ different
operations for distance and volume. This distinction arises from
their influences on different boundaries of κ. The volume has a
crucial influence on minimizing MVM, which is a more precise
boundary. Therefore, it is essential and justified to utilize a
linear operation with a higher derivative for it.

B. Eigenvalue Transformation to Recover Edges

After constructing the MSWST, the key point is to select
a small number of spectral-critical off-tree edges and recover
them in the spanning tree. This step aims to generate the
final output subgraph, denoted as P , with further decreased
κ(LG, LP ).

However, accurately determining the impact of removing or
adding edges on the variation of κ(LG, LT ) or λmax(LG, LP )
poses a significant challenge. In this subsection, we present a
novel method utilizing eigenvalue transformation to elucidate
the relationship between edge recovery and κ(LG, LP ).

By referencing Eq. (3) and dividing both sides by λ, we can
derive the following equation:

Bu =
1

λ
Au (13)



By replacing A and B with LG and LP , respectively, the
equation could reveal the relationship between λ(LG, LP ) and
λ(LP , LG):

λ(LG, LP ) =
1

λ(LP , LG)
(14)

With this new understanding, we can review Eq. (2) as follows:

κ(LG, LP ) =

1
λmin(LP ,LG)

1
λmax(LP ,LG)

(15)

=
λmax(LP , LG)

λmin(LP , LG)
(16)

≤ 1

λmin(LP , LG)
(17)

Eq. (15) to (17) establish a new upper bound for κ(LG, LP ).
Therefore, through eigenvalue transformation, we can ana-
lyze the impact on κ(LG, LP ) from relatively computation-
ally tractable λ(LP , LG) instead of λ(LG, LP ). Meanwhile,
λmin(LP , LG) obeys a similar inequality:

λmin(LP , LG) <

n∑
i=1

λi(LP , LG) = Tr(L+
GLP ) (18)

Thus, if the impact of edge recovery on the Tr(L+
GLP )

can be determined, we can indirectly infer its influence on
λmin(LP , LG). Assuming that P becomes P’ after recovering
an edge wi,jgi,jg

T
i,j , we have:

Tr(L+
GLP ′) = Tr(L+

G(LP + wi,jgi,jg
T
i,j)) (19)

= Tr(L+
GLP ) + wi,jTr(L

+
Ggi,jg

T
i,j) (20)

Due to Tr(AB) = Tr(BA):

Tr(L+
GLP ′) = Tr(L+

GLP ) + wi,jTr(g
T
i,jL

+
Ggi,j) (21)

= Tr(L+
GLP ) + wi,jg

T
i,jL

+
Ggi,j (22)

Since L+
G is a semi-positive definite matrix and the edge weight

wi,j is positive, the term wi,jg
T
i,jL

+
Ggi,j is positive. Therefore,

recovering a single edge can increase Tr(L+
GLP ), leading to

an increase in λmin(LP , LG) and ultimately a decrease in
κ(LG, LP ), as stated in Eq. (17).

Algorithm 2 Preconditioner Generator for Iterative Solvers

Input: Connected, weighted, undirected graph G = (V,E,w).
Output: Ultra-sparse subgraph P , which preserve the spectral

characteristics of the original graph G.
1: Run algorithm 1 to get MSWST T .
2: Compute wi,jg

T
i,jLGgi,j of all off-tree edges in E.

3: Sort all off-tree edges in descending order according to
wi,jg

T
i,jLGgi,j .

4: Recover a small number of off-tree edges in T to obtain
ultra-sparse subgraph P .

Therefore, we can compute the value of wi,jg
T
i,jL

+
Ggi,j for

each edge and recover a limited number of edges in descending
order. The recovery allows us to generate the subgraph with

a lower κ(LG, LP ). The whole algorithm is illustrated in
Algorithm 2.

C. Further Reduce the Computing Complexity

Computing L+
G accurately remains a challenge. To address

this issue, we utilize the Rayleigh-Ritz theorem [15]. In this
subsection, we carefully add the same slight positive number
to each diagonal element in the Laplacian matrix, which
transforms it into a full-rank matrix.

Theorem I: With gi,j defined in Eq. (1), the quadratic forms
of LG and L+

G are related as follows:

(gTi,jLGgi,j)(g
T
i,jL

+
Ggi,j) ≈ 4 (23)

Proof: Based on the Rayleigh-Ritz theorem, we have:

λmin(LG) <
gTi,jLGgi,j

gTi,jgi,j
< λmax(LG)

λmin(L
+
G) <

gTi,jL
+
Ggi,j

gTi,jgi,j
< λmax(L

+
G)

(24)

It is worth noting that:

λmax(LG)λmin(L
+
G) = 1

λmin(LG)λmax(L
+
G) = 1

(25)

gTi,jgi,j = 2 (26)

Therefore, we have the following inequality:

4
λmin(LG)

λmax(LG)
< (gTi,jLGgi,j)(g

T
i,jL

+
Ggi,j) < 4

λmax(L
+
G)

λmin(LG)
(27)

In fact, for a nonsingular graph, the spectral interval of its
Laplacian matrix is very small, which leads to the approxima-
tion in Eq.(23). That ends the proof.

This theorem establishes the inverse proportionality between
two quadratic forms under certain conditions. This property aids
in computing our algorithm without L+

G by solely calculating
gTi,jLGgi,j for each edge and recovering them in ascending
order.

Another unresolved and challenging problem is the reduction
of time overheads associated with the quadratic form in the
context. The following theorem addresses this problem:

Theorem II: With gi,j defined in Eq. (1), the quadratic form
can be computed in O(1) time.

Proof:
gTi,jLGgi,j = gTi,j((LG)i − (LG)j) (28)

where (LG)i represents the i-th column of LG,

gTi,jLGgi,j = LG(i, i) + LG(j, j)− LG(i, j)− LG(j, i) (29)

Considering that LG is a symmetric matrix,

gTi,jLGgi,j = LG(i, i) + LG(j, j)− 2LG(i, j) (30)

Equation (30) shows that the computation involves only three
elements in the matrix and a fundamental operation among
them, which concludes the proof.



IV. EXPERIMENTAL RESULTS

A. Experiment Setup

We implement our method using the C++ programming
language and run it on an AMD EPYC 7702 CPU with 2.0 GHz
and 512 GB RAM. We also select a diverse range of bench-
mark datasets, as illustrated in TABLE I, including six power
grid matrices downloaded from the IBM power grid circuits
(ibmpg3-ibmpg8) [16] and 14 large-scale connected graphs
downloaded from the SuiteSparse Matrix Collection [17]. Such
datasets represent a significant computational challenge and are
commonly encountered in many applications, including circuit
simulation and network analysis.

TABLE I: Test Cases and Their Detailed Information

Index Case Node Edge Index Case Node Edge

1 ibmpg3 8.5×105 1.4×106 11 NACA0015 1.7×107 5.0×107

2 ibmpg4 9.5×105 1.6×106 12 delaunay n19 5.2×105 1.6×106

3 ibmpg5 1.1×106 1.6×106 13 delaunay n20 1.0×106 3.1×106

4 ibmpg6 1.7×106 2.5×106 14 delaunay n21 2.1×106 6.3×106

5 ibmpg7 1.5×106 2.4×106 15 delaunay n22 4.2×106 1.3×107

6 ibmpg8 1.5×106 2.4×106 16 delaunay n23 8.4×106 2.5×107

7 333SP 3.7×106 1.1×107 17 delaunay n24 1.7×107 5.0×107

8 M6 3.5×106 1.1×107 18 com-Youtube 1.1×106 3.0×106

9 AS365 3.8×106 1.1×107 19 com-DBLP 3.2×105 1.0×106

10 NRL 4.2×106 1.2×107 20 venturiLevel3 4.0×106 8.0×106

We conduct the comparison among the proposed algorithm
and two state-of-the-art spectral graph sparsification algorithms,
GRASS [10] and feGRASS [11] in various dimensions, ranging
from time overheads, the relative condition number to solver’s
performance.

B. Time Consumption to Construct Sparsifier

To ensure a fair comparison, we specify that the output
subgraphs generated by all three algorithms must satisfy iden-
tical conditions, specifically, the recovery of 0.05|V | off-tree
edges during the construction of the preconditioner. TABLE
II presents the efficiency and effectiveness of GRASS and
feGRASS in comparison to our proposed method for producing
the preconditioner, indicated by Ratio1 and Ratio2, respectively.
As demonstrated in TABLE II, our proposed method exhibits
a significant improvement in speed compared with GRASS,
achieving an average (maximum) speedup of 37.3x (83.27x)
and even surpassing feGRASS with an average (maximum)
speedup of 2.13x (2.55x). This improved performance is at-
tributed to our approach of analyzing trace reduction instead of
estimating the dominant generalized eigenvalue and eigenvector
in GRASS, as well as leveraging eigenvalue transformation
to convert the objective from Tr(L+

TLG) in feGRASS to
Tr(L+

GLT ).

C. Relative Condition Number for Preconditioner

The minimum generalized eigenvalue is typically approx-
imately equal to 1 and its computation is extremely time-
consuming. Consequently, we compute the maximum eigen-
value and consider it as κ instead. It is also worth noting that
in the experiment, the singularity of the Laplacian matrix is the
insurmountable challenge for the computation of generalized
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Fig. 1: Tendency between the sparsity and relative condi-
tion number of the generated sparse subgraph, for test case
delaunay n19.

eigenvalues. To address this issue without significantly disturb-
ing the results, We add a small, uniform value to all diagonal
elements, thus forcing the Laplacian matrix to be full-rank.

In TABLE II, we could observe that the proposed algorithm
outperforms feGRASS for all cases. The Ratio2 can reach
1.25x on average, and the maximum one can reach 1.65x, even
achieving excellent results beyond GRASS in half of cases. It
is evident that eigenvalue transformation significantly reduces
computational complexity while ensuring the effectiveness of
the results.

Furthermore, Taking the example of delaunay n19, as illus-
trated in Fig.1, we adjust the number of recovered off-tree edges
and track the trend of the relative condition number of different
preconditioners. Our proposed method consistently outperforms
the other algorithms across all indicators. Notably, our method
exhibits a steeper decline near the starting point. These indicate
the effectiveness and practicality of eigenvalue transformation
to identify spectrally-critical off-tree edges.

D. Iterative Solver Performance

We take the sparsifier produced from the proposed method,
GRASS, and feGRASS, respectively, as the preconditioner of
the iterative solver and compare the total iteration number and
computational time. PCG is chosen as the iterative solver for
the test experiment. The preparatory items for the experiment
are as follows. Firstly, it is essential to perform a Cholmod
factorization algorithm on the sparse subgraphs output by
each algorithm prior to running PCG [18]. Secondly, since
the specific form of right-hand side vector b does not impact
the solution time, a randomly generated b is used for testing.
Finally, a termination criterion is set for the PCG runtime:
||LGx − b|| < 10−3||b||. It is worth noting that we embedded
the spectral sparsification algorithm and Cholmod factorization
into the PCG, and the time in the table actually includes the
spectral sparsification time, Cholmod factorization time, and
solver’s runtime.

In TABLE II, it is evident that the preconditioners gener-
ated by the proposed method exhibit superior performance on
iteration number, compared to those produced by feGRASS.
Notably, in nearly half of the cases, our method outperforms



TABLE II: performance comparisons

Case

GRASS [10] feGRASS [11] Proposed

Preconditioner Solver Preconditioner Solver Preconditioner Solver
Runtime(s) κ #iter time(s) Runtime(s) κ #iter time(s) Runtime(s) Ratio1 Ratio2 κ Ratio1 Ratio2 #iter Ratio1 Ratio2 time(s) Ratio1 Ratio2

ibmpg3 6.41 68.32 23 8.31 0.32 87.32 38 1.96 0.17 37.71x 1.88x 72.15 0.95x 1.21x 27 0.85x 1.41x 0.58 14.42x 3.40x
ibmpg4 7.20 70.16 27 12.04 0.39 52.20 52 3.35 0.19 37.89x 2.05x 37.88 1.85x 1.38x 37 0.73x 1.41x 0.82 14.75x 4.10x
ibmpg5 10.09 76.92 25 15.15 0.59 128.19 48 3.43 0.24 42.04x 2.46x 98.27 0.78x 1.30x 21 1.19x 2.29x 0.89 17.06x 3.86x
ibmpg6 15.00 81.24 24 16.42 0.96 203.26 47 2.63 0.42 35.71x 2.29x 151.78 0.54x 1.34x 32 0.75x 1.47x 2.29 7.16x 1.15x
ibmpg7 13.32 58.76 28 16.99 0.97 130.44 19 2.54 0.38 35.05x 2.55x 86.34 0.68x 1.51x 17 1.65x 1.12x 1.21 14.02x 2.10x
ibmpg8 13.20 79.12 32 19.27 0.59 152.65 18 3.10 0.31 42.58x 1.90x 114.58 0.69x 1.33x 17 1.88x 1.06x 1.45 13.27x 2.13x
333SP 62.52 1156.34 168 69.12 3.35 6089.40 412 135.64 1.44 43.42x 2.33x 4145.52 0.28x 1.47x 307 0.55x 1.34x 107.82 0.64x 1.26x

M6 72.72 1169.63 175 85.22 4.17 2683.89 215 97.88 1.82 39.96x 2.29x 1561.18 0.75x 1.72x 162 1.08x 1.33x 83.17 1.02x 1.18x
AS365 83.16 628.20 145 126.57 4.46 532.55 243 95.36 1.97 42.21x 2.26x 503.34 1.25x 1.06x 169 0.86x 1.44x 74.92 1.69x 1.27x
NLR 92.52 1059.48 129 148.93 5.02 3410.83 225 115.78 2.17 42.64x 2.31x 2807.35 0.38x 1.21x 117 1.10x 1.92x 89.40 1.67x 1.30x

NACA0015 17.40 510.33 193 20.53 0.95 513.74 279 17.28 0.46 37.83x 2.07x 506.90 1.01x 1.01x 201 0.96x 1.39x 13.05 1.57x 1.32x
delaunay n19 4.37 584.96 193 7.72 0.30 425.50 152 4.66 0.17 25.71x 1.76x 402.34 1.45x 1.06x 142 1.36x 1.07x 3.48 2.22x 1.34x
delaunay n20 12.48 585.31 134 14.55 0.65 434.80 142 9.47 0.35 35.66x 1.86x 404.70 1.45x 1.07x 128 1.05x 1.11x 7.58 1.92x 1.25x
delaunay n21 23.28 574.37 173 24.83 1.39 453.65 154 18.49 0.72 32.33x 1.93x 418.46 1.37x 1.08x 135 1.28x 1.14x 14.95 1.66x 1.24x
delaunay n22 53.28 580.14 167 53.72 3.01 458.26 129 39.93 1.43 37.26x 2.10x 424.33 1.37x 1.08x 98 1.70x 1.32x 32.99 1.63x 1.21x
delaunay n23 110.52 591.98 174 104.81 6.46 473.06 137 80.04 3.02 36.60x 2.14x 435.33 1.36x 1.09x 112 1.55x 1.22x 65.09 1.61x 1.23x
delaunay n24 22.92 623.47 165 197.15 14.19 467.83 143 152.16 6.70 3.42x 2.12x 433.04 1.44x 1.08x 132 1.25x 1.08x 124.27 1.59x 1.22x
com-Youtube 27.48 542.56 123 266.58 0.73 2047.63 182 218.76 0.33 83.27x 2.21x 1657.59 0.33x 1.24x 142 0.87x 1.28x 204.59 1.30x 1.07x
com-DBLP 5.14 689.70 169 8.79 0.23 684.75 132 4.00 0.11 46.73x 2.09x 413.79 1.67x 1.65x 102 1.66x 1.29x 3.55 2.47x 1.13x

venturiLevel3 5.60 896.46 165 47.98 1.49 385.95 149 35.76 0.71 7.89x 2.10x 326.46 2.75x 1.18x 114 1.45x 1.31x 29.84 1.61x 1.20x

Average - - - - - - - - - 37.30x 2.13x - 1.12x 1.25x - 1.19x 1.35x - 5.16x 1.70x

GRASS. The result is similar to that in the comparison of
the relative condition number. The Ratio1 achieves an average
value of 1.19x, with a maximum of 1.88x observed on ibmpg8.
When compared with feGRASS, Ratio2 consistently exceeds
1, ranging from 1.06x to 2.29x. While GRASS is known
for its rigorous mathematical foundation, which ensures its
preconditioners’ superior performance, it falls behind the latter
two methods in terms of time consumption.

In terms of time consumption of solvers, The solver embed-
ded with our proposed algorithm exhibits a significant acceler-
ation compared to the other two methods. The average Ratio2
reaches 1.70x, while the average Ratio1 reaches 5.16x. From
the experimental results, it is evident that when considering
the time required for preconditioner generation throughout
the entire simulation process, our algorithm achieves the best
balance between time and effectiveness.

V. CONCLUSION

In this paper, we introduce a novel spectral graph sparsifica-
tion method aimed at generating high-quality preconditioners
for iterative solvers in power supply noise analysis. Our ap-
proach focuses on reducing time complexity and enhancing the
effectiveness of preconditioner generation through the introduc-
tion of spectral-aware weights, eigenvalue transformations and
fast computation method of effective resistance. Experimental
results demonstrate the superior performance of our approach,
with significant improvements observed in both computation
time and the relative condition number. The potential ap-
plications of this approach extend to diverse research areas,
including power grid simulation and beyond.
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