
Accelerating Sparse LU Factorization with
Density-Aware Adaptive Matrix Multiplication for

Circuit Simulation
Tengcheng Wang, Wenhao Li, Haojie Pei, Yuying Sun, Zhou Jin and Weifeng Liu

Super Scientific Software Laboratory, China University of Petroleum-Beijing, China
Email: {tengcheng.wang, wenhao.li, haojie.pei, yuying.sun}@student.cpu.edu.cn,

{jinzhou, weifeng.liu}@cup.edu.cn

Abstract—Sparse LU factorization is considered to be one
of the most time-consuming components in circuit simulation,
particularly when dealing with circuits of considerable size in the
advanced process era. Sparse LU factorization can be expedited
by utilizing the supernode structure, which partitions the matrix
into dense sub-matrices, thereby improving computational per-
formance by utilizing level-3 Basic Linear Algebra Subprograms
(BLAS) General Matrix Multiplication (GEMM) operations. The
sparse and irregular structure of circuit matrices often impedes
the formation of supernodes or results in the formation of supern-
odes with many zero elements, which in turn poses challenges for
exploiting GEMM operations. In this paper, by fully utilizing the
density in sub-matrices and combining GEMM with the Dense-
Sparse Matrix Multiplication (SpMM), we propose a density-
aware adaptive matrix multiplication equipped with machine
learning techniques to optimize performance of the most-time
consuming matrix multiplication operator so as to accelerate the
sparse LU factorization. Numerical experiment results show that
among the 6 circuit matrices tested, the average performance
of matrix multiplication in our algorithm can be improved by
5.35x (up to 9.35x) compared to the performance of using GEMM
directly in Schur-complement updates. Compared with state-of-
the-art solver SuperLU DIST, our method shows a substantial
performance improvement.

Index Terms—sparse LU factorization, circuit simulation,
matrix multiplication, supernodal LU factorization, machine
learning, random forest

I. INTRODUCTION

Solving a set of sparse linear systems Ax = b takes up the
majority time of transistor-level SPICE-like circuit simulation,
as the underlying computation in most of analysis types [1]
(e.g., DC analysis, transient analysis and AC small signal anal-
ysis, etc.) is to solve the linear equations established from the
modified nodal analysis (MNA). Especially as semiconductor
continue to shrink and parasitic effects continue to grow, the
size of the matrix to be solved increases and becomes the
most time-consuming task in post-layout circuit simulation for
solving linear systems. In contrast to iterative solver, direct
solver, i.e., LU factorization, which usually shows reliable

This work was supported by National Key R&D Program of China (Grant
No. 2022YFB4400400, 2021YFB0300600), the Key Program of the Na-
tional Natural Science Foundation of China (Grant No.61972415, 62204265,
62234010), State Key Laboratory of Computer Architecture (ICT, CAS)
(Grant No. CARCHA202115).

accuracy and does not suffer from the challenges of choosing
a suitable preconditioner, is therefore commonly used in real-
world circuit simulations to solve linear systems in most
situations. Therefore, accelerating the sparse LU factorization
has become significantly important for the transistor-level
circuit simulation to help verification in complex large-scale
circuit design.

(a) ASIC 320k (b) memchip (c) Freescale1

(d) circuit5M dc (e) G2 circuit (f) transient

Fig. 1: The structure of the circuit sparse matrices.

Many studies have proposed optimization algorithms for
sparse LU factorization, such as the multi-frontal or supern-
odal methods, which have been applied to packages such as
MUMPS, UMFPACK and SuperLU [2]–[5]. The supernodal
LU factorization is one of the most successful methods, which
is to find or form sub-matrices with the similar dense structure
to better invoke the dense matrix multiplication in the level-
3 BLAS to achieve performance improvement. However, the
circuit matrix is an extremely special class of sparse matrix
with irregular non-zero element distribution characteristics, as
shown in Fig. 1. Due to this, when performing sparse LU
factorization of circuit matrix, it is often difficult to form
supernodes or the formed supernodes are always dense and
often have a certain sparsity, which makes the dense matrix
multiplication [6] method not obtain the best performance. On
this basis, in order to solve the problem that it is difficult to
achieve the selection of optimal matrix multiplication by a
single parameter or threshold, we further proposed an artificial
intelligence-based self-tuning strategy, which can select the
matrix multiplication operator with optimal performance for979-8-3503-2348-1/23/$31.00 © 2023 IEEE

each matrix multiplication operation in the solution process
by training and learning sparse matrix features.

In this paper, we propose a density-aware acceleration
strategy that introduces sparse matrix computation into the
sparse LU factorization to improve performance, as well as an
AI-based density-aware self-tuning strategy for selecting the
optimal matrix multiplication operator for each operation in
the factorization process. These strategies address performance
bottlenecks in supernodal LU factorization when solving irreg-
ular matrix with supernodes.

6 circuit matrices and 5 non-circuit matrices from the
SuiteSparse matrix Collection were selected for benchmarking.
We highlight the novelty of AI-assisted self-tuning density-
aware sparse LU factorization acceleration algorithm as fol-
lows.

• We propose a density-aware sparse LU factorization
acceleration method, leveraging sparse matrix multipli-
cation in the large amount of Schur-complement updates.

• Sampling method based on the sample proportion of
the unit matrix in total dataset improves the inference
accuracy and model generality.

• Our method shows an average 5.35x (maximum 9.35x)
speed-up on 6 benchmark circuit matrices and an aver-
age 2.62x (maximum 4.32x) speed-up on 5 non-circuit
matrices.

II. BACKGROUND

A. Sparse LU Factorization

Sparse LU factorization involves three steps: preprocessing,
symbolic factorization, and numeric factorization [7]. Prepro-
cessing involves the reordering of matrices to minimize the
number of fill-in elements [8]. Symbolic factorization aims to
identify the locations of these fill-in elements. However, the
most crucial and time-consuming step is numeric factorization,
which computes the final numerical results based on the
determined matrix structure. This step is particularly critical
for circuit simulation, where numeric factorization is often
performed multiple times, while symbolic factorization is
usually only performed once due to the uniform matrix pattern.

B. Supernodal LU Factorization

(a) Original supernodes (b) Supernodes after merging

Fig. 2: Supernodes and merging operation.

As shown in Fig. 2(a), the process of supernodal sparse LU
factorization involves the grouping of columns with identical
nonzero structure in L to form an unsymmetric supernode [4].
This is done to facilitate storage and computation by treating
these columns as dense sub-matrices. As shown in Fig. 2(b),
from (a) to (b), columns with different row structures (e.g.,
column 3 and column 4) are merged to form new supernodes,
thus filling in some additional zero elements.

Fig. 3: Supernode-based right-looking update.

Upon formation of supernodes, the sparse LU factorization
procedure follows four steps [9], [10]. The process represented
in Fig. 3, is conducted in accordance with the following
sequence, where K signifies the K-th iteration and N denotes
the number of matrix blocks on the diagonal:

• Factorize the diagonal block;
• Factorize the sub-matrices in L panel: L(K : N,K);
• Factorize the sub-matrices in U panel: U(K,K+1 : N);
• Perform the Schur-complement updates for all the tailing

sub-matrices by using A = A−L×U , where L represents
L(K : N,K) and U represents U(K,K + 1 : N).

III. PERFORMANCE BOTTLENECK ANALYSIS

Matrix multiplication takes the most proportion of
computation time. In the numeric factorization, there are a
large number of GEMM operations since we need to update
all the tailing matrices for Schur-complement updates in each
iteration. Taking the circuit matrices in Fig. 1 as the exam-
ple, the total number of GEMM can reach 21,361-666,804,
respectively. We verified the time proportion of GEMM in
numeric factorization, as shown in Fig. 4, up to 73.4% and
generally in the range of 40%-60%. This indicates that GEMM
has become one of the major performance bottlenecks. There-
fore, accelerating the large amounts of matrix multiplication
shows significant importance to improve the LU factorization
efficiency.

TABLE I: Circuit sparse matrix analysis.

Circuit Matrix N
Entries per row

Symmetrymax min average variation

ASIC 320k 321,821 203,800 1 8.2 502.95 100.00%
memchip 2,707,524 27 2 5.5 2.06 0.32%

Freescale1 3,428,755 27 1 5.5 2.07 7.67%
circuit5M 3,523,317 27 1 10.7 1356.61 55.99%
G2 circuit 150,102 4 1 2.9 0.52 0.0005%
transient 178,866 60423 1 5.4 147.2 68.99%

Irregular non-zero elements distribution pattern in cir-
cuit matrix may lead to certain sparsity in supernode

raj
at1

7
pre

2
cir

cu
it5

M
AS

IC_
32

0k
tra

ns
ien

t
mem

ch
ip

G2_
cir

cu
it

G3_
cir

cu
it

dc
3

ck
t_d

c_1
cir

cu
it5

M_d
c

ck
t_t

r_0
AS

IC_
32

0k
s

AS
IC_

68
0k

s

0

20

40

60

80

Pe
rc

en
ta

ge
 (%

)
28.2

55.3 57.3
47.6

33.3

66.5 69.2 71.0 73.4

40.1
48.5

40.1
48.0 49.0

Fig. 4: The time proportion of GEMM in numeric factoriza-
tion.

0 5 10 15
(a) circuit5M_dc_L

0.00

0.25

0.50

0.75

1.00

De
ns

ity

0 5 10
(b) dc2_L

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
(c) pre2_L

0.00

0.25

0.50

0.75

1.00

0 5 10 15
log10(m*k*n)

(d) circuit5M_dc_U

0.00

0.25

0.50

0.75

1.00

De
ns

ity

0 5 10
log10(m*k*n)

(e) dc2_U

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
log10(m*k*n)

(f) pre2_U

0.00

0.25

0.50

0.75

1.00

Fig. 5: Density analysis of sub-matrices in supernodal LU
factorization.

sub-matrices. Circuit matrices are a type of irregular sparse
matrices (Table I), which are often difficult for forming regular
supernodes and tend to have extra zero elements that cause
sparsity. The density of L-blocks (supernodes) and U-blocks
of the typical circuit matrices are shown in Fig. 5 (m and
k on the x-coordinate represent the number of rows and
columns of the matrix L, respectively, and n is the number of
columns of the matrix U), where the density of sub-matrix
blocks are irregular. The density of the sub-matrix blocks
suggests that GEMM may not always be the best method
for computation, hence the introduction of SpMM in suitable
scenarios shows great potential for further accelerating the
computational efficiency of LU factorization.

IV. DENSITY-AWARE MATRIX MULTIPLICATION

From the previous observation, it cames obviously that
sparse matrix multiplication may bring some performance
improvement opportunities especially on the supernodes which
are more sparse. Therefore, in this paper, we propose a
density-aware matrix multiplication acceleration algorithm us-
ing GEMM and SpMM, and thus bringing the possibility of
further accelerating LU factorization.

We analyze three cases for computing matrix multiplica-
tion time: using GEMM, using SpMM, and using the or-
acle combination of GEMM and SpMM in the supernodal
LU factorization. The “Oracle” showcases the potential for
performance improvement by selecting the optimal algorithm
between GEMM and SpMM for each matrix multiplication.
Table II shows the total time of matrix multiplication for 12
circuit matrices in the above three cases. The “Speedup1” and

“Speedup2” columns show that for different matrices, ‘Oracle’
has a performance improvement potential of 1.03x-10.24x and
1.13x-4.25x, respectively, compared to GEMM and SpMM.

TABLE II: Analysis of the performance improvement space
of matrix multiplication. The Speedup1 is Oracle vs GEMM.
The Speedup2 is Oracle vs SpMM.

Circuit matrix nnz (A) GEMM (s) SpMM (s) Oracle (s) Speedup1 Speedup2

ASIC 320k 1,931,828 3.5809 0.4543 0.3653 9.80x 1.24x
Freescale1 17,052,626 8.8363 35.9429 8.5388 1.03x 4.21x

ckt11752 dc 1 333,029 0.0279 0.0433 0.0225 1.24x 1.92x
pre2 5,834,044 57.2954 10.9046 7.2531 7.90x 1.50x
meg4 58,142 0.0037 0.0027 0.0022 1.68x 1.23x

G2 circuit 726,674 7.1145 26.0853 6.1415 1.16x 4.25x
Freescale2 14,313,235 2.3253 3.8100 1.9497 1.19x 1.95x
FullChip 26,621,983 510.416 480.202 344.1850 1.48x 1.40x

ASIC 320ks 1,316,085 2.9155 0.322 0.2846 10.24x 1.13x
ASIC 680ks 1,693,767 2.6196 1.3393 0.9320 2.81x 1.44x
circuit5M dc 14,865,409 7.5022 1.2420 1.0230 6.04x 1.21x

transient 961,368 0.5721 0.2710 0.2100 2.69x 1.29x

0.0 0.2 0.4 0.6 0.8 1.0
(a) circuit5M_dc_L

0

2

4

6

Ti
m

e
(lo

g 1
0
(u

s)
)

 ?
GEMM
SpMM

0.2 0.4 0.6 0.8 1.0
(b) G3_circuit_L

0

2

4

6
 ?

GEMM
SpMM

0.0 0.2 0.4 0.6 0.8 1.0
Density

(c) circuit5M_dc_U

0

2

4

6
Ti

m
e

(lo
g 1

0
(u

s)
)

 ?
GEMM
SpMM

0.2 0.4 0.6 0.8 1.0
Density

(d) G3_circuit_U

0

2

4

6
 ?

GEMM
SpMM

Fig. 6: Performance comparison between GEMM and SpMM
based on density.

It is clear that for different matrices, GEMM and SpMM
show superior performance in some cases, respectively. There-
fore, selecting the appropriate GEMM or SpMM for each
matrix multiplication is a crucial issue. Fig. 6 shows the possi-
bility of dividing the GEMM and SpMM thresholds by density,
with density as the x-coordinate and matrix multiplication time
as the y-coordinate. It is difficult to see the threshold division
from the figure, mainly because the matrix multiplication
performance depends not only on the consistency, but also
on other factors, such as matrix size, sparse structure, etc.

Fig. 7 shows the possibility of dividing the GEMM and
SpMM thresholds by matrix size, with log10(m∗k∗n) as the x-
coordinate and matrix multiplication time as the y-coordinate.
It can be seen that Fig. 7(a) has threshold value σ ≈ 7.3,
Fig. 7(b) has threshold value σ ≈ 9.7 and Fig. 7(c) has
threshold value σ ≈ 9.2 , but Fig. 7(d) do not. Therefore,
a single matrix feature cannot accurately determine whether
to use GEMM or SpMM. To select between GEMM or
SpMM, we require an adaptive strategy that combines multiple
features.

V. MACHINE LEARNING DRIVEN ADAPTIVE
ACCELERATION

As shown previously, it is difficult for some matrices
to intuitively distinguish which algorithm is more efficient

0 2 4 6 8 10 12
(a) ASIC_320k

0

1

2

3

4

5
Ti

m
e

(lo
g 1

0
(u

s)
)

 7.3GEMM
SpMM

0 2 4 6 8 10 12
(b) pre2

0

1

2

3

4

5
 9.7GEMM

SpMM

0 2 4 6 8 10 12
log10 (m*k*n)

(c) circuit5M_dc

0

1

2

3

4

5

Ti
m

e
(lo

g 1
0
(u

s)
)

 9.2GEMM
SpMM

0 2 4 6 8 10 12
log10 (m*k*n)
(d) transient

0

1

2

3

4

5
 ?GEMM

SpMM

Fig. 7: Performance comparison between GEMM and SpMM
based on matrix size.

through one single threshold. Thus, machine learning seems
to be a promising alternative to address this situation due to
its powerful pattern extraction ability, and we propose an AI
self-turning sparse LU factorization acceleration algorithm.

Our core idea is to automatically select the optimal algo-
rithm for the matrix multiplication by a well-trained classi-
fier. Primarily, feature definition and selection determine the
performance of trained model. In particular, proper feature
selection not only reduces computation of model inference,
but also improves accuracy of classification. In addition, once
feature definition and selection is completed, we shall test
these matrices with different matrix multiplication approaches
to get the full dataset including features and labels (which
one is the best matrix multiplication algorithm). In summary,
the key points of proposed algorithm roughly include the
feature selection, the sampling dataset and the technique for
classification.

Feature selection. We must select representative fea-
tures [11] from dataset. Each sample in the dataset includes
15 matrix features (F1 ∼ F15) of L and U matrices as
described in Fig. 8, and a classification label P. The label
P represents the best matrix multiplication method for this
sample. The following list summarizes a number of important
features which can capture the major characteristics of matrix.

(1) Density A/B. The density of matrix in L or U is
calculated by equation nnz

m×n , where nnz, m and n represent
the non-zero elements, the rows and the columns in matrix L
or U .

(2) Width A/B. The bandwidth of matrix L or U is the
distance between the farthest diagonal with a non-zero element
and the main diagonal respectively, which describes matrix
structure.

(3) stand colA/B. The standard deviation of non-zero ele-
ments in L and U columns represent their distribution.

Training dataset. The very first stage of any deep learning
or machine learning technique deployment is to decide the
training dataset. The inference accuracy and model generality
then largely depends on the quality of annotation and the
diversity of training data. Then, the sampling for training set
must be well done. Unlike traditional classification tasks, our

dataset is collected from circuit simulations with highly diverse
functions and scales, resulting in an unbalanced number of
samples contributed by different circuit matrices. To overcome
the above problem, each matrix must contribute a certain
number of samples to the training set. Therefore, we harness
a sampling method based on the sample proportion of the unit
matrix in full dataset. The number of samples generated by the
unit matrix that can be selected as the training set is shown in
follow equation:

#of training set =
|D|
|N |

|T |
|N |

(1)

where |D|, |T | and |N | represent numbers of unit matrix,
numbers of training set and whole dataset respectively.

Algorithm 1 Random Forest

Require: Training data D
Ensure: The ensemble of trees {Tb}B1

1: for i = 1 to B do
2: 1) Draw a bootstrap sample Z∗ of size N from D
3: 2) Grow a random forest tree Tb to the bootstrapped

data, by recursively repeating the following steps for
each terminal node of the tree, until the minimum node
size nmin is reached.

4: a) Select m variables at random from the p vari-
ables.

5: b) Pick the best variable/split-point among the m.
6: c) Split the node into daughter nodes.
7: end for

Technique for classification. The random forest as de-
scribed in Algorithm 1, a well-known and widely-used bagging
algorithm, is employed to complete AI self-tuning sparse
LU factorization acceleration task as shown in Fig. 8. Each
decision tree [12] in random forest is independent of each
other and is called weak classifier. The information divergence
is adopted to implement splitting of nodes in decision tree,
which shows the difference between the entropy of the set
to be classified and the conditional entropy of the selected
feature. As discussed previously, a number of decision trees
constitute a random forest, and these trees randomly select
samples for training. The result of the random forest, acting
as a classifier, is determined by the majority vote among
the decision trees. Therefore, it has great advantages over
other traditional machine learning algorithms as follows. 1) It
can handle higher-dimensional data without requiring feature
reduction. 2) Unbiased estimation is used for the generalization
error, and the model has strong generalization ability. 3) The
training speed is fast, and it is easy to parallelize.

The algorithm we propose, as described in Algorithm 2, in-
volves fitting the implicit classification function between input
dynamics (features) and outputs (labels) using a specific data-
driven random forest algorithm. The well-trained classifier can
predict the label of unseen data.

Fig. 8: AI self-tuning sparse LU factorization acceleration based on Random Forest algorithm.

Algorithm 2 AI self-tuning sparse LU factorization accelera-
tion algorithm.

1: for block K = 1 to N do
2: if me ∈ PROCC(K) then
3: Factorize block column L(K : N,K)
4: Send L(K : N,K) processes in my row who need it
5: else
6: Receive L(K : N,K) from one process in PROCc(K)
7: end if
8: if me ∈ PROCC(K) then
9: Factorize block row U(K : N + 1,K)

10: Send U(K : N + 1,K) processes in my row who need it
11: else
12: Receive U(K : N,K) from one process in PROCc(K)
13: end if
14: for J= K+1 to N do
15: for I= K+1 to N do
16: if me∈ PROCR(I) and me∈ PROCc(J) and

L(I,K) ̸= 0 and U(K,J) ̸= 0 then
17: Data Processing
18: Calculate features of L(I,K) and U(K,J) as X
19: P = f(X, θ), Well-trained random forest model
20: if P = 1 then
21: Update A(I, J) ← A(I, J) − L(I,K) ∗ U(K,J)

by GEMM
22: else
23: Update A(I, J) ← A(I, J) − L(I,K) ∗ U(K,J)

by SpMM
24: end if
25: end if
26: end for
27: end for
28: end for

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

We apply the ML-driven density-aware adaptive matrix
multiplication to the supernodal LU factorization solver (Su-
perLU DIST 8.0.0) and run tests on AMD EPYC 7702 CPU
2.0 GHz and 512 GB RAM. All datasets are generated
from circuit matrices downloaded from the SuiteSparse Matrix
Collection and are completely independent of the matrices

tested in this paper. The specific information of three datasets
(D1, D2, D3) are shown in Table III.

TABLE III: The distribution of dataset.

Dataset Total sample set(D1) Training set (D2) Testing set (D3)

GEMM 456,000 150,000 306,000
SpMM 383,000 150,000 233,000

For all the benchmarks, we record their numeric factoriza-
tion time and matrix multiplication time when using GEMM,
SpMM and density-aware adaptive, respectively.

B. Model Accuracy and Feature Importance Evaluation

We evaluate our trained model with Testing set (D3). The
confusion matrix is employed to evaluate the prediction ability
of the model. In Fig. 9(a), label “0” represents GEMM and
label “1” represents SpMM. We can see that in the sample
with better GEMM performance, GEMM and SpMM were
selected 301,746 and 4,284 times, respectively. Conversely,
in the sample with better SpMM performance, GEMM and
SpMM were selected 3,182 and 229,818 times, respectively,
indicating that our model has better overall accuracy.

0 1
Actual Label

0

1Pr
ed

ict
ed

 L
ab

el 301,746 4,284

3,182 229,818

0

25000

50000

75000

100000

125000

150000

175000

Num
ber of Sam

ples

(a) Confusion matrix

ACC PPV TPR F1-score97.7%
97.8%
97.9%
98.0%
98.1%
98.2%
98.3%
98.4%
98.5%
98.6%
98.7%

(b) Performance of the binary
classifiers

Fig. 9: Confusion matrix and performance of trained model.

As shown in the Fig. 9(b), where ACC represents the
percentage of correctly predicted results to the total samples,
PPV represents the percentage of samples that are actually
positive among all samples that are predicted to be positive,

TABLE IV: Performance evaluation on circuit matrices.

Matrix multiplication time (s) Numeric factorization time (s)
circuit matrix nnz GEMM SpMM Oracle AI Speedup

(AI vs GEMM)
Speedup

(AI vs SpMM) SuperLU Our work Speedup

ASIC 320k 1,931,828 3.5809 0.4543 0.3653 0.5045 7.10x 0.90x 7.5201 4.5770 1.64x
ASIC 320ks 1,316,085 2.9155 0.3223 0.2846 0.3117 9.35x 1.03x 6.0602 3.5947 1.69x
ASIC 680ks 1,693,767 2.6196 1.3393 0.9323 1.0085 2.60x 1.33x 5.3502 3.8139 1.40x
circuit5M dc 14,865,409 7.5022 1.2418 1.0231 2.0084 6.04x 0.62x 19.2301 14.5605 1.32x

pre2 5,834,044 57.2954 10.9046 7.2531 8.1021 7.07x 1.35x 103.5721 58.7290 1.76x
transient 961,368 0.5721 0.2709 0.2121 0.2532 2.26x 1.07x 1.7202 1.4517 1.18x
Average - - - - - 5.35x 1.05x - - 1.50x

TABLE V: Performance evaluation on non-circuit matrices.

Matrix multiplication time (s) Numeric factorization time (s)
non-circuit matrix nnz GEMM SpMM Oracle AI Speedup

(AI vs GEMM)
Speedup

(AI vs SpMM) SuperLU Our work Speedup

sinc12 283,992 9.7211 2.7060 2.0120 2.2491 4.32x 1.20x 14.7541 7.4277 2.04x
psmigr 3 543,160 16.3840 7.8951 5.8241 6.2611 2.62x 1.26x 28.4921 19.8387 1.54x
psmigr 2 540,022 30.8151 12.0731 8.6251 9.1721 3.36x 1.32x 45.9061 24.5057 2.08x

epb2 175,027 0.1291 0.10021 0.05631 0.07621 1.69x 1.31x 0.4351 0.3937 1.08x
benzene 242,669 8.1778 9.6211 6.2315 7.2724 1.13x 1.32x 17.6351 16.9551 1.04x
Average - - - - - 2.62x 1.28x - - 1.55x

TPR represents the percentage of samples that are predicted
to be positive among those that are actually positive, and F1-
score represents the weighted summed average of PPV and
TPR. The values of ACC, PPV, TPR and F1-Score all exceed
0.9, which indicates that our AI self-tuning model has strong
predictive ability.

C. Acceleration for Circuit Matrix

We compare the performance of the following three algo-
rithms, as shown in Table IV. The experimental results show
that in the matrix multiplication stage, AI has a maximum
speedup of 9.35x and an average speedup of 5.35x compared
to GEMM, and a maximum speedup of 1.35x and an average
speedup of 1.05x compared to SpMM. In the numeric factor-
ization stage, the maximum speedup is 1.76x and the average
speedup is 1.50x. GEMM is part of the numeric factorization
process, so the acceleration ratio of numerical factorization
will be lower than that of GEMM.

D. Acceleration for Other Irregular Sparse Matrix

Finally, we test 5 non-circuit irregular matrices, as shown
in Table V. The results show that in the matrix multiplication
stage, AI has a maximum speedup of 4.32x and an average
speedup of 2.62x compared to GEMM, and a maximum
speedup of 1.32x and an average speedup of 1.28x compared
to SpMM. In the numeric factorization stage, the maximum
speedup is 2.08x and the average speedup is 1.55x. In cases of
irregular matrices, SpMM may outperform GEMM, indicating
that this work can also be applied to irregular non-circuit
matrices.

VII. CONCLUSIONS

In this paper, we study the main performance bottleneck
and performance improvement opportunities of sparse LU
factorization for circuit matrix. We proposed a ML-driven
self-tuning algorithm to accelerate matrix multiplication. The

algorithm adaptively selects the appropriate GEMM or SpMM
algorithm for each matrix multiplication operation in the
Schur-complement updates, based on features such as the den-
sity, nnz and bandwidth of the matrix. Numerical experiments
show that the new method not only significantly accelerates the
solution performance of circuit matrices, but is also effective
for the irregular non-circuit matrices. It has good effectiveness
and universality.

ACKNOWLEDGMENT

We deeply appreciate the invaluable comments from the
reviewers. Zhou Jin and Weifeng Liu are the corresponding
authors of this paper.

REFERENCES

[1] F. N. Najm, Circuit simulation, 2010.
[2] P. Amestoy, I. S. Duff, J. Y. L’Excellent, and J. Koster, “Mumps: A

general purpose distributed memory sparse solver,” in PARA, 2000.
[3] T. A. Davis, Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern

multifrontal method, 2004.
[4] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. Liu,

“A supernodal approach to sparse partial pivoting,” SIMAX, 1999.
[5] I. S. Duff and J. K. Reid, “The multifrontal solution of indefinite sparse

symmetric linear,” TOMS, 1983.
[6] L. Bo, K. Per and V. L. Charles, “Gemm-based level 3 blas: high-

performance model implementations and performance evaluation bench-
mark,” TOMS, 1998.

[7] J. Zhao, Y. Wen, Y. Luo, Z. Jin, W. Liu, and Z. Zhou, “Sflu:
Synchronization-free sparse lu factorization for fast circuit simulation
on gpus,” in DAC, 2021.

[8] G. Cui, W. Yu, X. Li, Z. Zeng, and B. Gu, “Machine-learning-driven
matrix ordering for power grid analysis,” in DATE, 2019.

[9] P. Sao, X. S. Li, and R. Vuduc, “A communication-avoiding 3d algorithm
for sparse lu factorization on heterogeneous systems,” JPDC, 2019.

[10] X. S. Li and J. W. Demmel, “Superlu dist: A scalable distributed-
memory sparse direct solver for unsymmetric linear systems,” TOMS,
2003.

[11] B. Matthias, S. Olaf, J. Radim, H. Steve, and G. Kiran, “State-of-the-art
sparse direct solvers,” in Parallel Algorithms in Computational Science
and Engineering, 2020.

[12] A. J. Myles, R. N. Feudale, Y. Liu, N. A. Woody, and S. D. Brown,
“An introduction to decision tree modeling,” Journal of Chemometrics:
A Journal of the Chemometrics Society, 2004.

