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Abstract—Sparse Matrix-Vector Multiplication (SpMV) is a
fundamental operation in a number of scientific and engineer-
ing problems. When the sparse matrices processed are large
enough, distributed memory systems should be used to accelerate
SpMV. At present, the optimization techniques for distributed
SpMV mainly focus on reordering through graph or hypergraph
partitioning. However, although the reordering could reduce
the amount of communications in general, there are still load
balancing challenges in computations and communications on
distributed platforms that are not well addressed.

In this paper, we propose two strategies to optimize SpMV
on distributed clusters: (1) resizing the number of row blocks
on the nodes for balancing the amount of computations, and (2)
adjusting the column number of the diagonal blocks for balancing
tasks and reducing communications among compute nodes.
The experimental results show that compared with the classic
distributed SpMV implementation and its variant reordered with
graph partitioning, our algorithm achieves on average 77.20x and
5.18x (up to 460.52x and 27.50x) speedups, respectively. Also,
our method bring on average 19.56x (up to 48.49x) speedup
over a recently proposed hybrid distributed SpMV algorithm.
In addition, our algorithm achieves obviously better scalability
over these existing distributed SpMV methods.

Index Terms—Distributed memory system, sparse matrix-
vector multiplication, load balancing

I. INTRODUCTION

Sparse matrix-vector multiplication (SpMV) multiplies a
sparse matrix A with a dense vector x to get a resulting dense
vector y. It is one of the most fundamental routines of many
applications in computational science and engineering, and
may be the most studied kernel in sparse basic linear algebra
subprograms (BLAS) [1].

On shared memory systems like multi-core CPUs and many-
core GPUs, accelerating SpMV received much attention, and
a number of techniques such as vectorization [2]–[4], block-
ing [5]–[7], load balancing [8]–[10] and auto-tuning [11]–
[13], have been proposed. Despite their effectiveness, when the
input matrix A is large enough, a distributed memory system
has to be used, and then the techniques for shared memory
machines could not be directly migrated to communication-
centric distributed computing pattern.

In distributed SpMV, each compute node of a cluster locally
stores a part of A and x, and generates a part of y. When the
components of x are not in the local storage, communications
will occur, the requests of loading x from the other nodes
will be sent, and the corresponding components of x will
be received. Thereafter, the local SpMV computations will be
completed.

As can be analyzed, the performance of distributed SpMV
is generally limited by the overheads of communications and
local SpMV computations. Furthermore, since the distribution
of the nonzeros of sparse matrices can be very irregular, the
communication pattern will easily bring a large amount of
communications between nodes, and lead to poor scalability.
To address the performance challenges, researchers proposed
a number of techniques to optimize distributed SpMV, includ-
ing various matrix partitioning algorithms [14]–[17], tuning
schemes for distributed characteristics [18], and computation
and communication overlap [19], [20].

However, despite the above efforts, it is worth noting that
distributed SpMV still faces challenges on load imbalance, and
the problem can not be resolved merely through row/column
reordering using graph partitioning [21], [22]. Firstly, when the
matrix is divided and stored in each node, the irregularity and
diversity of the distribution of nonzeros on sparse matrices
generally lead to imbalanced computations. However, graph
partitioning will not change the number of nonzeros in each
row or column, and thus the pattern of the sparsity is not nat-
urally ready for balanced computations and communications.
Secondly, it should be noticed that each node can store a row
block, but the amount of local computations (i.e., the number
of nonzeros covered by the columns of diagonal block) is not
directly given by matrix partitioning, which is another risk
leading to load imbalance. In particular, when the number of
nodes increases, the performance of distributed SpMV may
largely degrade due to the computation and communication
imbalance.

To address the above mentioned challenges of distributed
SpMV, we in this paper propose an optimization algorithm
named DistSpMV_Balanced for distributed SpMV. The
main target of this algorithm is to balance the computations
and communications between compute nodes, and thus to
improve the performance and scalability of distributed SpMV.
Firstly, a reordering through graph partitioning is still used for
providing a basic nonzero distribution to reduce the network
traffic. Secondly, the size of diagonal sub-matrix (i.e., its num-
ber of rows and columns) stored locally is analyzed according
to computations and communications, and then corresponding
numbers of rows and columns are decided. Thirdly, a two-
level parallelism of MPI+OpenMP is exploited for better fine-
grained cache locality within core-groups of nodes.

In our experiments on a 256-core CPU cluster, our
DistSpMV_Balanced algoritm proposed is compared with



three distributed SpMV methods: (1) one called DistSpMV
on top of naı̈ve nonzero distribution, (2) the second one
called DistSpMV_Reordered running on the matrix pre-
processed through the graph partitioning tool METIS devel-
oped by Karypis and Kumar [21], and (3) the third one called
DistSpMV_hybrid developed by Page and Kogge [23]. By
using 20 representative matrices from the SuiteSparse Matrix
Collection (previously known as the University of Florida
Sparse Matrix Collection) [24] as the benchmark suite, the
experimental results show that our DistSpMV_Balanced
achieves on average 77.20x, 5.18x and 19.56x (up to
460.52x, 27.50x, and 48.49x) speedups over DistSpMV,
DistSpMV_Reordered and DistSpMV_hybrid, respec-
tively. The performance data on various number of pro-
cesses/threads also demonstrate that our method has obvious
better scalability.

This work makes the following contributions:
• We identify that matrix reordering techniques are not ad-

equate to achieve good computation and communication
balancing, and thus more schemes are required.

• We design an algorithm called DistSpMV_Balanced
that reorganizes the distribution of sparse matrix on com-
pute nodes for balanced computation and communication.

• We evaluate the new algorithm by using 20 representative
sparse matrices on a 256-core cluster, and bring signifi-
cant speedups over existing work.

II. BACKGROUND AND MOTIVATION

A. SpMV

The SpMV operation multiplies a sparse matrix A with a
dense vector x to produce a dense vector y. Figure 1 shows
a simple example of SpMV. In this case, yi is calculated by
taking the dot product of Ai (row i of A) with the vector x.
It is easy to see that there are no dependencies between rows
throughout the execution. Therefore, SpMV can be paralleized
through dividing the matrix into many row blocks on modern
processors such as CPUs and GPUs.

Fig. 1: An example of SpMV that multiplies a 6-by-6 sparse
matrix with a dense vector and gets a dense vector.

B. Distributed SpMV

In distributed SpMV, part of the matrix A and two vectors
x and y are allocated in the corresponding compute nodes of
a cluster. A variety of division methods can generate different

sub-matrices and sub-vectors, and communications between
the nodes occur when running SpMV in the distributed en-
vironment. After receiving the components of x required,
each process can calculate SpMV in parallel, and finally the
resulting vector y is generated and communicated if needed.
The following procedure lists the steps:

1) Send sub-matrices and sub-vectors to each process.
2) Processes communicate with each other, each sending xj

to the process that has the nonzero element Aij . As shown
in Figure 2, there are four processes in total. According
to the principle of equalization, each process calculates
four lines respectively, and each node is assigned a
corresponding vector. As can be seen, node3 needs to
receive C0 from node 0, C4 and C5 from node1, C8,
C9, C10 and C11 from node2, and node3 receives seven
pieces of information in total. Similarly, node0 needs
to receive C4 and C6 from node1, and C13 and C14
from node3, node1 needs to receive C0, C1, and C2
from node0, C8, and C9 from node2, and C12, C13,
and C15 from node3. Finally, node0 receives a total of
four messages, node1 receives eight messages, and node2
receives six messages.

3) yi*+=Aij times xj in the process, where yi* is the
intermediate result.

4) Send intermediate result yi* to the final yi process.
5) Add the yi* received to get the final result yi.

C. Motivation

The scalability of Distributed SpMV could be affected
by various factors. Now we analyze the example shown in
Figure 2, which is a sparse matrix already got reordered
through graph partitioning. We thus can see that the diagonal
blocks contains the most nonzeros. However, although it is
well preprocessed, the problem of imbalanced load still exists.

First of all, as shown in Figure 2, distributed SpMV op-
eration generally requires a lot of communications between
various processes, which is one of the limiting factors of
distributed SpMV. Secondly, as explained in Section II-B,
the four nodes need to receive four, eight, six, and seven
pieces of messages (i.e., components of x) respectively. It can
be seen that the problem of imbalanced communication load
is restricting the performance of distributed SpMV. Thirdly,
the diversity of the sparsity patterns of matrices may lead to
imbalanced calculation after the matrix is divided into each
node. Although Figure 2 has been reorganized after graph
partitioning, the computational loads of each node are 16,
17, 18 and 19, respectively, and thus lead to imbalanced
computations. Finally, with the expansion of node size, the
communication volume and time of distributed SpMV will
increase significantly as well.

This has led to further optimization requirement of dis-
tributed SpMV for computation and communication balancing.
In the next section, our DistSpMV_Balanced algorithm
and how we address these challenges will be explained in
detail.
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Fig. 2: A 16×16 matrix and a vector of length 16 are evenly distributed on a four-node cluster for distributed computation of
SpMV, where each sub-matrix is labeled with the column number of the non-zero element, and the non-zero element without
the label is the local non-zero element, which can be computed with the sub-vector on that node, while the non-zero element
with the label needs to communicate with the node containing the corresponding vector The non-zero element with the label
needs to communicate with the node containing the corresponding vector to obtain the vector needed for the computation.
Here we draw the communication situation with node 3 as an example, node 3 needs to get the 0th element of the vector from
node 0, the 4th and 5th elements of the vector from node 1, and the 8th, 9th, 10th and 11th elements of the vector from node
2, which requires 7 times of communication.

III. METHODOLOGY

A. Overview

In order to describe our DistSpMV_Balanced algorithm
for optimizing distributed SpMV with more details, the data
structure and the meanings of some variables used in our
algorithm are introduced in Section III-B. In Section III-C, a
16×16 matrix as an example is taken to describe in detail our
DistSpMV_Balanced optimization strategy for distributed
SpMV. Firstly, in the preprocessing stage, graph partitioning
is used to divide the graph corresponding to the sparse matrix,
and the partition results are used to reorder the matrix. At this
time, the nonzero elements are concentrated on the diagonal
block as much as possible to reduce the communication
volume. Secondly, we adjust the number of columns of the
diagonal block, and expand the number of nonzero elements
in the diagonal block again to reduce the communication
volume between the computing nodes. Then, we split the
matrix into a local matrix and a remote matrix. For the remote
matrix, the number of row blocks are adjusted to balance the
computation. Finally, the MPI+OpenMP hybrid programming
pattern is used to achieve two levels of parallelism and
to optimize the distributed SpMV with computational load
balancing between processes and threads. Detailed steps in
DistSpMV_Balanced algorithm above are described in
Section III-C.

B. Data Structure

We first define p as the number of processes. The large
matrix need to be divided into p local and p remote matrices.

All matrices are stored in the CSR format. The CSR format
consists of three arrays: (1) array rowptr stores the row offset
of the matrix, (2) array colidx stores the column index of
each nonzero element of the matrix, and (3) array val stores
the value of each nonzero element of the matrix. There are
also three integers and an array: (1) rownum is row number,
(2) colnum is column number, (3) nnznum is number of
nonzero elements, and (4) array nodeid stores the process
id that this nonzero element need to receive.

In the preprocessing process, six arrays are needed when
the original matrix is being divided the local matrix and the
remote matrix: (1) array subrowadd of size p+1 records the
row number at the beginning of the diagonal matrix, (2) array
left_bound of size p records the column number at the
beginning of the diagonal matrix, (3) array right_bound of
size p records the column number at the end of the diagonal
matrix, (4) the size of array rowptr_start is the number of
rows in the matrix and records the left-most nonzero element
included by the local matrix in each row; (5) the size of array
rowptr_end is the number of rows in the matrix and records
the right-most nonzero element included by the local matrix
in each row. (6) The array nnznum is of size p, and records
the number of nonzero entries contained in each local matrix.

Each process calculates the communication information
needed in the SpMV procedure, including one integer and
four arrays: (1) infocount is the number of messages, (2) array
sendid records the id of the process that sent the message,
(3) array recvid records the id of the process that received
the message, (4) array index records the position of the
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Fig. 3: An example of the DistSpMV_Balanced algorithm. The sample 16×16 sparse matrix is divided into four processes
and every process has four threads. First, the graph partitioning tool METIS is used to divide the corresponding graph of the
matrix, and then the original matrix and vector are reordered according to the partition results. Second, we count the nonzero
elements of the four diagonal blocks, take the maximum value as the threshold lower bound to adjust the number of columns
of diagonal blocks, and move the right boundary of each diagonal block backward until the nonzero element in the block is
greater than or equal to lower bound or move to the right boundary of the original matrix. The local matrix is evenly divided
according to rows and the local vector is divided according to the position of nonzero element. At the same time, the number of
rows of the remote matrix is adjusted to realize communication and calculate load balancing. Third, MPI parallelism between
nodes and OpenMP parallelism within nodes are used for communication and computation. Finally, the calculated value of
each process is recovered and sorted to get the final result.

message in the vector, (5) The size of the array flag is the
number of columns of the matrix, which records whether the
elements at each position of the vector have been passed, and
if they have been passed, they do not need to be passed again

That is all about the data structure. In the next sub-
section, DistSpMV_Balanced Algorithm will be described
in depth.

C. Algorithm Description

Figure 3 shows a sparse matrix of size 16×16 divided into
four nodes. Distributed SpMV of four threads in each node

is used as an example to show the specific process of the
DistSpMV_Balanced Algorithm.

In the first step, it should be noticed that the communica-
tion size in the distributed SpMV may restrict the scalability
and performance of the algorithm. As the number of processes
increases, the communication volume in the algorithm will
keep increasing, and the communication time will become
the performance bottleneck of the algorithm after reaching a
certain level. In the algorithm, at first, the graph partitioning
tool METIS is used to divide the corresponding graphs of
the matrices, and then reorder the original matrices according



Algorithm 1 Calculating local matrix boundary

Input: subrowadd,rowptr_start,rowptr_end
Output: left_bound,right_bound

1: for each i ∈ [0, p− 1] do
2: while right_bound[i] + 1 < matrix.colnum

and nnznum[i]< lower bound do
3: right← matrix.colnum
4: for each j ∈ [subrowadd[i],subrowadd[i+1]]

do
5: begidx←sourcematrix.rowptr[j+1]
6: next← rowptr_end[j]+1
7: if next < begidx then
8: next idx = sourcematrix.colidx[next]

9: if next idx < right then
10: right = next id
11: end if
12: end if
13: end for
14: right_bound[i] = right
15: for each j ∈ [subrowadd[i],subrowadd[i+1]]

do
16: begidx←sourcematrix.rowptr[j+1]
17: next← rowptr_end[j]+1
18: if next < begidx then
19: next idx = sourcematrix.colidx[next]

20: if next idx = right then
21: rowptr_end[j] = next idx
22: nnznum[i] ++
23: end if
24: end if
25: end for
26: end while
27: end for

to the result of the partitioning to achieve load balancing
and reduce the communication. Compared with the matrix
before reordering, the number of non-zero elements within
the four diagonal blocks of the reordered matrix increases and
the number of non-zero elements in the non-diagonal blocks
decreases. This means that the number of vectors that need
to be communicated by each node becomes reduced, and the
communication time as well as the program running time will
be reduced also. At the same time, the vector is reordered
according to the division results to ensure the correctness of
the calculation results.

(a) to (b) of Figure 3 show an example of dividing the
graph corresponding to the sparse matrix and using the result
to reorder the matrix. Figure 3(a) is the original matrix, and
Figure 3(b) is the matrix after the graph partitioning and matrix
rearrangement. Some nonzero elements of the matrix move
toward the diagonal block. In Figure 3(a), the number of non-
diagonal block nonzero elements is 28, but in Figure 3(b), the
number of non-diagonal block nonzero elements is reduced

to 17, which reduces the amount of communication volume
between nodes.

Algorithm 2 Getting communication information

Input: Remote_matrix,Left_bound,Right_bound
Output: Comm

1: Flag ← 0
2: for each nz ∈ Remote matrix do
3: r ← nz.rowidx
4: if nz.colidx /∈ [ Left_bound[r],Right_bound[r]]

and Flag[nz.colidx] = 0 then
5: Flag[nz.colidx] = 1
6: Length = ⌊Colnum/p⌋
7: need = nz.colidx/Length
8: if need = p then
9: need = p− 1

10: end if
11: Cur ← Comm[need]
12: Cur.recvid[Cur.infocount] = i
13: Cur.sendid[Cur.infocount] = need
14: Cur.index[Cur.infocount] = nz.colidx
15: Cur.infocount ++
16: end if
17: end for

In the second step, as shown in step 2 of the description
process of the Figure 3, the matrix is divided into local
matrix and remote matrix. The local matrix does not need to
communicate with each other. Therefore, we will try our best
to divide non-zero elements into the local matrix to further
reduce the amount of communication volume. Meanwhile, in
order to achieve communication load balancing, we will make
the following operations:

1. Count the number of nonzero elements of each diag-
onal block, and use the maximum value as the threshold
lower bound. As shown in (e) in Figure 3, the fourth diagonal
block in (d) has a maximum of eight nonzero elements, so the
value of lower bound is selected as eight in the example.

2. Adjust the number of columns for each diagonal
block based on lower bound. Move the right boundary
right bound of each diagonal block to the right until the
number of nonzero elements is greater than or equal to
lower bound or until the right boundary of the large matrix is
reached. In the Figure 3, the red nonzero elements are added
to the local matrix. To achieve this, we employ a scanline
algorithm, as shown in Algorithm 1, which maintains the
left-most nonzero and right-most nonzero column numbers
rowptr start and rowptr end for each row in the diagonal
block, and the left-most and right-most column numbers
left bound and right bound for the diagonal block. For each
diagonal block, we follow these steps to move right bound:

a) If the matrix is not swept to the last column or the number
of non-zero entries is less than lower bound, perform b
and c; otherwise, exit the loop.

b) Find the non-zero element next to rowptr end for
each row and set the minimum column id to the new



right bound.
c) Update the rowptr end and number of non-zero bits in

each row.
3. Divide the large matrix into local matrix and remote

matrix according to whether the nonzero element is included
in the extended diagonal block, as shown in (e) in Figure 3.

4. Divide the local matrix into four local matrices according
to the row equalization strategy, and at the same time, the local
vectors required for partitioning are corresponding, as shown
in (f) of Figure 3. For example, there are nonzero elements
in columns 0 to 6 of P0, so the corresponding local vector is
rows 0 to 6 of the original vector.

Algorithm 3 Communication between nodes

Input: sub_Comm, x
Output: Comm

1: for each message ∈ sub_Comm do
2: Id← message.recvid
3: Index← message.index
4: Count← send_Cnt[Id]
5: vec_Val[Id][Count] = x[Index]
6: send_Cnt[Id] ++
7: end for
8: MPI Alltoall(send Cnt,recv Cnt)
9: for each i ∈ [0, p− 1] do

10: if i ̸= ProcessId then
11: MPI Isend(vec_Val[i], send_Cnt[i])
12: end if
13: end for
14: for each i ∈ [0, p− 1] do
15: if i ̸= ProcessId then
16: MPI Recv(recv_Val[i], recv_Cnt[i])
17: end if
18: end for
19: pos← 0
20: for each colidx, nodeid ∈ sub Remote matrix do
21: val← recv_Val[nodeid][pos[nodeid]]
22: if x[colidx] = 0 then
23: x[colidx] = val
24: pos[nodeid] ++
25: end if
26: end for

5. The number of rows in the remote matrix is divided
according to the nonzero element equalization strategy to
achieve communication load balancing and reduce commu-
nication volume, as shown in Figure 3 (g).

After that, we count the communication information be-
tween each process. As shown in the Algorithm 2. Finally,
we send each local matrix, remote matrix, vector and commu-
nication information to the four processes.

In the third step, each process of the distributed SpMV
needs to communicate with other processes to exchange vector
values with each other. Some processes communicate within
the same node and some communicate across nodes, but the
communication mode using MPI alone cannot take advantage

of shared memory well for processes within the same node.
Therefore, we use OpenMP within a node to fully use the
shared memory. In summary, a two-level parallel mode using
MPI parallelism between nodes and OpenMP parallelism
within nodes is used.

In each process, local matrices can calculate SpMV using
local vectors, while remote matrices need to get the corre-
sponding vectors from other processes. So each process needs
to send and receive vector information to and from each other.
In step 2, the information that needs to be sent has been
passed to each process. As shown in the Algorithm 3, We
use MPI Alltoall to get the number of messages that each
process needs to receive based on the number of messages
that need to be sent, while sending and receiving the values
of the required vectors. After that, we iterate through all the
non-zero elements of the remote matrix and expand the local
vector.

Then, we divide the number of nonzero elements equally
and allocate them to each thread so that each thread computes
the same number of nonzero elements as possible to achieve
computation equalization, as shown in Algorithm 4.

Algorithm 4 Computation balancing

Input: nnznum, nthreads
Output: y

1: stridennz = ⌈nnznum/nthreads⌉
2: for each tid ∈ [0, nthreads] in paraller do
3: boundary = tid ∗ stridennz
4: if boundary > nnznum then
5: boundary = nnznum
6: end if
7: iter[tid] = binary search right(boundary)
8: end for
9: for each tid ∈ [0, nthreads] in paraller do

10: for each u ∈ [iter[tid],iter[tid+1]− 1] do
11: y[u] = 0
12: for each colidx, val ∈ sub matrix do
13: y[u] += val ∗ x[colidx]
14: end for
15: end for
16: end for

In the last step, we combine the vectors computed by each
process, and use the MPI Bcast function to send the number
of rows subm and the number of rows prefix and submadd
of the sub-vectors to the individual processes, then gather the
sub-vectors using MPI Gatherv. Finally, restore the result
vector y in the order of rearrangement, as shown in Figure 3
(j).

IV. EXPERIMENT RESULTS

A. Experimental Setup and Dataset

DistSpMV_Balanced algorithm is tested on a cluster
equipped with eight nodes, and each one has one AMD
32-core EPYC 7551 CPU and 128GB DRAM, the nodes
are connected with 200Gb InfiniBand network. We use the



SuiteSparse Matrix Collection (previously known as the Uni-
versity of Florida Sparse Matrix Collection) [24] as our
dataset. 20 representative matrices are selected to illustrate
the performance of DistSpMV_Balanced algorithm. These
matrix structures are shown in Table I. In order to prove the
generality of algorithm optimization, the 20 sparse matrices
include the first four regular matrices with non-zero elements
mainly concentrated in the diagonal and the last 16 irregular
matrices with random distribution of non-zero elements.

Three algorithms, DistSpMV, DistSpMV_Reordered,
and DistSpMV_Balanced, are tested on the platform. We
set the number of processes to 1, 2, 4, 8, 16, 32, and 64, with
four threads for each process. We run each SpMV 50 times
and report the average execution time.

TABLE I: The 20 representative matrices tested.

Matrix Plot Size nnz

cant 62.4K×62.4K 4M

bone010 986.7K×986.7K 47.8M

rajat31 4.6M×4.6M 20.3M

ecology1 1M×1M 4.9M

asia osm 11.9M×11.9M 25.4M

ldoor 852.2K×952.2K 42.4M

nlpkkt80 1M×1M 28.1M

dielFilterV2real 1.1M×1.1M 48.5M

rgg n 2 21 s0 2M×2M 28.9M

road central 14M×14M 33.8M

inline 1 503.7K×503.7K 36.8M

hugebubbles00000 18.3×18.3M 54.9M

germany osm 11.5M×11.5M 24.7M

italy osm 6.6M×6.6M 14M

adaptive 6.8M×6.8M 27.2M

vas stokes 1M 1M×1M 34.7M

AS365 3.7M×3.7M 22.7M

M6 3.5M×3.5M 21M

NLR 4.1M×4.1M 24.9M

audikw 1 943.6K×943.6K 77.6M

B. Performance Comparison of Three Algorithms

Figure 4 shows the performance comparison of the 20 repre-
sentative matrices DistSpMV, DistSpMV_Reordered and
our optimization algorithm DistSpMV_Balanced, respec-
tively. The DistSpMV_Balanced optimization results in
an average speedup of 77.20x compared with DistSpMV.

Compared with DistSpMV_Balanced, an average speedup
ratio of 5.18x is obtained, with the best observed speedup
of 8.94x (found in matrix ‘cant’). Also, both the regular and
the irregular matrices gain significant acceleration. With the
expansion of the number of processes, the performance of most
matrices has been improved. Although the performance of the
other four matrices (‘nlpkkt80’, ‘vas stokes 1M’, ‘Ecology1’,
‘cant’) has decreased, the overall performance compared with
the other two algorithms still greatly improved. Among them,
matrix ‘cant’ obtains the maximum performance acceleration
ratio.

Specifically, two representative matrices ‘road central’ and
‘inline 1’ are selected to analyze our implementation for
reducing communication volume and realizing computational
load balancing.

Firstly, the communication volume between the two matri-
ces in eight processes under three algorithms are counted, and
the communication heap maps are drawn as shown in (a) and
(b) of Figure 5. The horizontal and vertical coordinates of the
graph are the process numbers respectively. The DistSpMV
algorithm of the two matrices has a very imbalanced commu-
nication load and a large amount of communication, which
causes a large communication volume and leads to poor per-
formance of distributed SpMV. The intermediate thermal map
of (a) and (b) is the communication heap map of each process
of the DistSpMV_Reordered algorithm after being divided
by the graph. Compared with the DistSpMV algorithm, the
traffic of all processes has been greatly reduced. Finally, after
adjusting the number of columns by DistSpMV_Balanced
algorithm and placing nonzero elements on the local matrix
as much as possible, the traffic between the eight processes is
shown in the last heat map of (a) and (b). The further light-
ening of the colors compared with DistSpMV_Reordered
thermal maps indicates a further decrease in traffic. In (c),
we further compared DistSpMV_Reordered with our
DistSpMV_Balanced algorithm. The two line charts on
the left of (c) compare the traffic of each process, which
are more intuitive than the heat map. For the most part,
our algorithm has less inter-process communication volumes
than the DistSpMV_Reordered algorithm. The compar-
ison of the middle two figures in Figure (c) shows that
DistSpMV_Balanced requires more local computations,
which again indicates that the DistSpMV_Balanced algo-
rithm reduces the number of nonzero elements in the remote
matrix, which reduces the communication volume.

Secondly, for communication load balancing and calculation
balancing, the calculation amount of nonzero element of the
remote matrix in each process is counted. The two right-most
line drawings in Figure 5 (c) compare the calculation amount
of the remote matrix of the two algorithms. Our optimization
strategy includes adjusting the number of rows of the remote
matrix to achieve the nonzero number load balancing of the
remote matrix for each node and the calculation balance of the
remote matrix, so as to achieve the communication load bal-
ancing. Therefore, the DistSpMV_Balanced remote matrix
of the balanced algorithm is close to a straight line on the line
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Fig. 4: The performance and scalability (each sub-figure represents running a sparse matrix on different number of processes) of
the three methods DistSpMV, DistSpMV_Reordered and DistSpMV_Balanced. The x axis is the number of processes
(each process has four threads), the y axis is the performance in GFlops.
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(a) From left to right is three heat maps of the traffic between various 
processes in DistSpMV, DistSpMV_Reordered, and DistSpMV_Balanced 
for matrix road_central 

(b) From left to right is three heat maps of the traffic between various 
processes in  DistSpMV, DistSpMV_Reordered, and DistSpMV_Balanced 
for matrix inline_1

(c)From left to right, the communication volume of each process, the computation volume of local matrix and the 
computation volume of remote matrix in METIS and our work are compared

Fig. 5: Heatmaps of communication of each process of ‘road central’ and ‘inline 1’, two representative matrices executed by
running eight processes under the three algorithms. And we compare the traffic, local matrix computation, and remote matrix
computation of the two matrices under DistSpMV_Reordered and DistSpMV_Balanced algorithms.
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Fig. 6: Performance comparison between
DistSpMV_Balanced and DistSpMV _Hybrid with
256 cores (64 processes ×4threads).

chart. It shows the effectiveness of our strategy in achieving
communication and computation balancing.

C. Comparison with Existing Work DistSpMV_Hybrid

The performance data of 20 matrices under
DistSpMV_Balanced and Hybrid_SpMV algorithms are
shown in Figure 6. We compare performance under the same
conditions of 64 processes with four threads per process.
As can be seen from Figure 6, DistSpMV_Balanced
has achieved significant performance improvement compared
with DistSpMV_Hybrid. Statistically, we achieved an
average acceleration ratio of 19.56x (up to 48.49x). The
performance of all matrices has been greatly improved. For
‘bone010’, ‘ldoor’ and other matrices, DistSpMV_Hybrid
degradation is very obvious, while DistSpMV_Balanced
still has a good performance, which shows the effectiveness
of DistSpMV_Balanced algorithm.

D. Preprocessing Overhead

The preprocessing overhead is an important metric of
distributed SpMV. We test the 20 matrices and record
the preprocessing overhead of DistSpMV_Reordered and
DistSpMV_Balanced algorithms in 64 processes (under
256 threads), as shown in Figure 7. the nonzero element
distribution diversity of different matrices leads to different
preprocessing time cost, and the cost changes of the two algo-
rithms are roughly the same. At the same time, overall, our op-
timization on top of the graph partitioning does not cost much
additional overhead. Among these 20 matrices, the maximum
preprocessing cost is 1.31x that of DistSpMV_Reordered
algorithm (at matrix ‘cant’), and the minimum preprocessing
cost is only 1.05x (at matrix ‘italy osm’ ).

V. RELATED WORK

Much research has been conducted for SpMV on shared
memory systems. A number of studies were focusing on
designing formats for faster SpMV. Kreutzer et al. [3] and
Gómez et al. [4] developed ELL-like sparse formats for utiliz-
ing longer vector units in modern processors. Kourtis et al. [2],
Greathouse and Daga [8], Liu and Vinter [9], and Merrill and
Garland [10] developed variants of the CSR format. Im et
al. [5], Vuduc et al. [6] and Niu et al. [7] studied blocking
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Fig. 7: The preprocessing cost of 20 matrices under
DistSpMV_Reordered and DistSpMV_Balanced algo-
rithms. It can be seen that our method only brings negligible
extra cost over reordering.

formats for better data locality. Several studies optimized and
evaluated SpMV on heterogeneous processors [25], [26].As
for auto-tuning methods, Li et al. [11] proposed a machine
learning framework called SMAT for auto-tuning SpMV. Zhao
et al. [12] used computer vision and deep learning for selecting
formats, and Du et al. [13] recently designed AlphaSparse for
automatically generating sparse formats for SpMV. However,
unfortunately, none of those highly optimized shared memory
methods could be directly migrated to distributed platforms.
In contrast, we in this work focus on scalability of distributed
SpMV. Furthermore, our findings and techniques may bring
new performance tuning opportunities for SpMV in a single
node, since emerging larger chiplet-based processors [27] are
likely encountering more NUMA effects [28], which needs
some distributed thinking to optimize.

As for SpMV on distributed memory systems, developing
graph and hypergraph partitioning approaches is the major di-
rection [22]. Specifically, Hendrickson and Kolda [29] proved
that the performance of parallel SpMV depends on the parti-
tioning, and proposed several effective approaches. Aykanat et
al. [30] transformed the matrix decomposition problem into the
idea of dividing diagonal blocks for data locality. Nicol [14]
proposed that the sparse matrix partitioning can be divided
into one- and two-dimensional patterns. In order to better
adapt SpMV algorithm to large-scale systems, Hendrickson
et al. [31] proposed a 2D algorithm, and Kayaaslan et al. [32]
developed a 1.5D method, and Çatalyürek et al. [33], [34]
proposed several effective improvements in distributed SpMV.
Uçar and Aykanat [35] and Li et al. [19] discussed how compu-
tations and communications can overlap. Acer et al. [36], [37]
designed methods for lowering latency. For higher scalability,
Boman et al. [38] and Bienz et al. [39] proposed a node-
aware parallel SpMV algorithms. Devine et al. [40] discussed
the use of hypregraph partitioning in scientific computing.
Recently, Buluç et al. [41] and Çatalyürek et al. [22] surveyed
the progress in this area. Compared to only using graph or
hypergraph partitioning, we in this paper further reorganized
the distribution of nonzeros for balancing computations and
communications, and show obvious speedups over SpMV only
using matrix partitioning.



VI. CONCLUSION

In this paper, we have proposed an algorithm called
DistSpMV_Balanced that uses optimization strategies to
balancing computations and communications of SpMV on dis-
tributed clusters. By testing 20 representative sparse matrices,
our method is on average 77.20x and 5.18x (up to 460.52x and
27.50x) faster than classic distributed SpMV implementation
and its variant reordered with graph partitioning. Compared
with a recent hybrid distributed SpMV algorithm, our method
bring on average 19.56x (up to 48.49x) speedup.
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vector multiply,” SIAM Journal on Scientific Computing, vol. 40, no. 1,
pp. C25–C46, 2018.

[33] U. Catalyurek and C. Aykanat, “Hypergraph-partitioning-based decom-
position for parallel sparse-matrix vector multiplication,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 10, no. 7, pp. 673–693,
1999.
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