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Abstract
Sparse triangular solve (SpTRSV) is one of the most important level-2 kernels in sparse basic linear algebra subprograms 
(BLAS). Compared to another level-2 sparse BLAS kernel sparse matrix–vector multiplication (SpMV), SpTRSV is in 
general more difficult to find high parallelism on many-core processors, such as GPUs. Nowadays, much work focuses on 
reducing dependencies and synchronizations in the level-set and Sync-free algorithms for SpTRSV. However, there is less 
work that can make good use of sparse spatial structure for SpTRSV on GPUs. In this paper, we propose a tiled algorithm 
called TileSpTRSV for optimizing SpTRSV on GPUs through exploiting 2D spatial structure of sparse matrices. We design 
two algorithm implementations, i.e., TileSpTRSV_level-set and TileSpTRSV_sync-free, for TileSpTRSV on 
top of level-set and Sync-free algorithms, respectively. By testing 16 representative matrices on a latest NVIDIA GPU, the 
experimental results show that TileSpTRSV_level-set gives on average 5.29× (up to 38.10× ), 5.33× (up to 21.32× ) 
and 2.62× (up to 12.87× ) speedups over cuSPARSE, Sync-free and Recblock algorithms on the 16 representative matrices, 
respectively.
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1 Introduction

Sparse triangular solve (SpTRSV) is an operation that solves 
the linear equation Lx = b (or Ux = b ), where L (or U) is a 
sparse lower (or upper) triangular matrix, x is a dense vector 
to be solved and b is a dense right-hand side vector. SpTRSV 
is an important building block of level-2 sparse basic linear 
algebra subprograms (BLAS) (Liu 2015). It has a number 
of applications in numerical computations, such as the solve 
phase of sparse direct solvers (Davis 2006; Duff et al. 2017; 
Li 2005; Zhao et al. 2021; Wang et al. 2023) and the precon-
ditioner of sparse iterative solvers (Anzt et al. 2015, 2016, 
2018a, b).

Compared with other BLAS kernels such as sparse 
matrix–vector multiplication (SpMV)  (Liu and Vinter 
2015b, c; Niu et al. 2021) and sparse matrix-matrix multipli-
cation (SpGEMM) (Liu and Vinter 2015a; Hou et al. 2017; 
Liu et al. 2019; Xie et al. 2019; Niu et al. 2022), SpTRSV is 

inherently sequential and generally cannot find satisfactory 
parallelism on modern many-core processors, due to pos-
sible dependencies between the components.

Fortunately, though SpTRSV is difficult to process in par-
allel, much research has demonstrated that parallel SpTRSV 
algorithms are possible. Anderson and Saad (1989) and Saltz 
(1990) propose the level-set method which is a classical par-
allel algorithm for SpTRSV. They see the input matrix as a 
graph and divide the components into many sets. The com-
ponents in each set can be calculated independently, and the 
calculation between sets should be executed sequentially. 
The algorithm to some extent resolves the parallel problem 
of SpTRSV. But with the increase of the number of sets, 
the level-set algorithm would use much time for global syn-
chronization on parallel processors. To address this prob-
lem, Liu et al. (2016, 2017) propose the synchronization-free 
algorithm (or Sync-free for short). It replaces the barriers 
with atomic operations on GPUs for further eliminating the 
expensive cost of global synchronization.

In another direction of SpTRSV optimization, a number 
of research focuses on the 2D layout and spatial structure of 
input matrix. Lu et al. (2020) propose a recursive block algo-
rithm (or Recblock for short), which recursively divides the 
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input matrix into multiple triangular and square sub-matri-
ces, and uses an adaptive method to automatically select 
method for each block. In addition to that, for other BLAS 
kernels, Niu et al. (2021, 2022) and Ji et al. (2022) exploit 
tiled structure to implement TileSpMV, TileSpGEMM and 
TileSpMSpV, for SpMV and SpGEMM and sparse matrix-
sparse vector multiplication (SpMSpV) respectively, and 
achieve obviously better performance than existing algo-
rithms. This motivates us to enrich the group of tiled algo-
rithms for SpTRSV in sparse BLAS.

In this paper, we propose an efficient tiled algorithm 
called TileSpTRSV for SpTRSV and implement two ver-
sions of TileSpTRSV: TileSpTRSV_level-set and 
TileSpTRSV_sync-free. The two implementations 
utilize different parallel SpTRSV algorithms and are built 
on top of the level-set and Sync-free algorithms, respec-
tively. Although they have different calculation modes, the 
two TileSpTRSV implementations share the same low level 
storage structure.

TileSpTRSV divides the input matrix into a number of 
regular sparse tiles of the same size (always 16-by-16) to 
obtain better data locality and higher bandwidth utiliza-
tion. It treats each tile as a basic working unit. For each 
off-diagonal tile, TileSpTRSV stores it in seven different for-
mats according to the internal structure of the tile. For each 
diagonal tile, TileSpTRSV stores the tile with all nonzeros 
distributed on the diagonal in the DIA format; otherwise, it 
would be stored in the CSR format. After that, we use cor-
responding GPU kernels for processing different formats in 
the calculation phase.

In our experiments, we use an NVIDIA GeForce RTX 
4090 as our experimental platform, and select 16 representa-
tive matrices from the SuiteSparse Matrix Collection (Davis 
and Hu 2011) as our dataset. The experimental results show 

that our TileSpTRSV gives on average 5.29× (up to 38.10× ), 
5.33× (up to 21.32× ) and 2.62x (up to 12.87× ) speedups over 
cuSPARSE, Sync-free (Liu et al. 2016, 2017) and Recblock 
algorithms (Lu et al. 2020), respectively.

2  Background

2.1  Serial SpTRSV

Serial SpTRSV algorithm executes SpTRSV calculation 
sequentially because of its inherently dependencies between 
components. Figure 1 shows an example of serial SpTRSV 
operation on a 6-by-6 sparse matrix. In Algorithm 1, the 
off-diagonal value in the i-th row (val[j]) is multiplied by 
the corresponding value of x (x[colidx[j]]), and the result 
is updated to a temporary vector ( tmp_sum ). Finally, xi can 
be updated by the step in line 6. It should be noted that the 
process to solve the resulting vector x is sequential (from 
x0 to xm−1).

Algorithm 1 A serial algorithm for CSR-SpTRSV.
1: function sptrsv-serial()
2: for i = 0 to m− 1 do
3: for j = rowptr[i] to rowptr[i+ 1]−2 do
4: tmp sum[i] ← tmp sum[i] + val[j] × x[colidx[j]]
5: end for
6: x[i] ← (b[i]-left sum[i])/val[row ptr[i+ 1]−1]
7: end for
8: end function

Fig. 1  An example of serial SpTRSV algorithm that solves a result-
ing vector x with a 6-by-6 sparse matrix and a dense right-hand side 
vector b 
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2.2  Level‑set parallel SpTRSV

Level-set algorithm is a classical parallel SpTRSV algorithm proposed by Anderson and Saad (1989) and Saltz (1990). 

This algorithm can exploit possible parallelism in the input matrix. It sees the input matrix as a graph and divides it into 

Algorithm 2 A simplified level-set algorithm for CSR-SpTRSV.
1: function preprocess-levelset()
2: for li = 0 to n− 1 do
3: if dependencies(li)= 0 then
4: level ptr[li]++
5: nlv++
6: end if
7: prefix-sum(level ptr, n+ 1)
8: end for
9: for li = 0 to nlv − 1 do

10: for i =level ptr[li] to level ptr[li+ 1]−1 do
11: insert(level item, i)
12: end for
13: end for
14: end function
15: function calculate-levelset()
16: for li = 0 to nlevel − 1 do
17: for i =level ptr[li] to level ptr[li+ 1]−1 in parallel do
18: for j = rowptr[level item[i]] to rowptr[level item[i]+1]−1 do
19: tmp sum[i] ← tmp sum[i] + val[j] × x[colidx[j]]
20: end for
21: x[i] ← (b[i]-tmp sum[i])/val[rowptr[i+ 1]−1]
22: end for
23: end for
24: end function

multiple sets which depend on each other, but the compo-
nents in each set can be calculated independently. Figure 2 
shows the level form of an 8-by-8 matrix after its partition. 
The calculation of higher-level components is dependent on 
the computation results obtained from lower-level compo-
nents. For example, to calculate row5 in level2, we need the 
results of row0 in level0 as well as row2 and row4 in level1. 
Algorithm 2 shows the complete process to solve SpTRSV 
with level-set algorithm. The preprocessing function (lines 

1–14) shows the process to build corresponding data struc-
ture, and the calculation function (lines 15–24) solves 
SpTRSV with the level-set algorithm.

2.3  Synchronization‑free parallel SpTRSV

Algorithm 3 A simplified Sync-free algorithm for CSC-SpTRSV.
1: function compute-in-degree(*row ptr, *col idx, n, nnz, *in degree)
2: for i = 0 to nnz − 1 in parallel do
3: atomic-incr(&in degree[col idx[i]])
4: end for
5: end function
6: function solve-sptrsv(*row ptr, *col idx, *val, *b, n, nnz, *in degree)
7: for i = 0 to n− 1 in parallel do
8: while in degree[i] �= 1 do
9: //busy wait

10: end while
11: x[i] ← (b[i]-left sum[i])/val[row ptr[i]]
12: for j = row ptr[i]+1 to row ptr[i+ 1]−1 in parallel do
13: atomic-add(&left sum[col idx[j]], val[j] × x[i])
14: atomic-decr(&in degree[col idx[j]])
15: end for
16: end for
17: end function



 Z. Lu, W. Liu 

1 3

Synchronization-Free (Sync-free for short) is a parallel algo-
rithm proposed by Liu et al. (2016, 2017) for SpTRSV on 
GPUs. The Sync-free algorithm uses fast atomic operations 
instead of barriers in the level-set algorithm. This can reduce 
the cost of generating level-sets and eliminate the cost of global 
synchronization. Algorithm 3 shows a pseudocode of simpli-
fied Sync-free process, including preprocessing and calcula-
tion stages. The preprocessing function (lines 1–5) generates 
the array in_degree with low overhead. The array records the 
number of dependent entries of each nonzero element, which 
means that these entries must be processed in advance; oth-
erwise, the corresponding entry cannot be calculated. In the 
calculation function (lines 6–17), the algorithm assigns a GPU 
working unit (a warp with 32 threads in CUDA) to process each 
column i. Note that it first busy-waits until the corresponding 
value of in_degree becomes ‘1’, indicating that the dependen-
cies are removed (lines 8–10). Then, it starts to compute xi (line 
11) and notifies all the later entries that depend on xi through 
atomic operations (lines 12–15). As we can see, the Sync-free 
algorithm only needs to launch one GPU kernel. Compared to 
the level-set algorithm, this algorithm can eliminate the con-
sumption of global synchronization. Algorithm 3 shows the 

Sync-free algorithm in compressed sparse column (CSC) for-
mat, and a CSR version of the Sync-free algorithm is developed 
by Dufrechou and Ezzatti (2018b).

3  TileSpTRSV

3.1  Overview

In the preprocessing phase, our TileSpTRSV algorithm first 
divides the input matrix into multiple 16-by-16 sparse tiles 
to enhance data locality. We then store the off-diagonal tiles 
in seven different formats (CSR, COO, ELL, HYB, Dns, 
DnsRow, and DnsCol) and store the diagonal tiles in either 
the CSR or DIA format. Section 3.2 provides an introduction 
to the two-level storage structure utilized by TileSpTRSV.

After partitioning the input matrix, a number of off-zero 
sparse tiles are generated. In this work, we utilize a format 
selection strategy to choose an appropriate format from the  
eight available formats for these sparse tiles. We create a 
selection tree that can select a suitable format for each tile. 
Section 3.3 provides an introduction to our format selection 
strategy for TileSpTRSV.

In the calculation phase, we utilize seven warp-level 
SpMV kernels for seven distinct formats to process the off-
diagonal tiles. For the diagonal tiles, we develop thread-level 
and warp-level SpTRSV kernels for the CSR format and one 
thread-level kernel for the DIA format. Section 3.4 provides 
a detailed introduction of these tile-level algorithms.

We implement two versions of TileSpTRSV, one of which 
is TileSpTRSV_level-set, built on top of the level-
set algorithm. This algorithm can divide all off-zero sparse 
tiles into multiple sets, and process the sparse tiles within the 

Fig. 2  An example of an 8-by-8 sparse lower triangular matrix L and 
its corresponding level-set form

Fig. 3  An example of a lower triangular matrix with dimensions of 
16-by-16, stored in 10 sparse tiles of size 4-by-4. The tile structure 
consists of three arrays, tileRowPtr, tileColIdx, and tileNnz, which 
represent the offsets for the number of tiles in row-major order, tile 
column indices, and the offsets for the number of nonzeros in sparse 
tiles, respectively. The format array records the format of each sparse 

tile. In accordance with the format selection strategy, the diagonal 
tiles of the 10 tiles are stored in the CSR and DIA formats, while the 
remaining six tiles are stored in different formats, including COO, 
ELL, HYB, Dns, DnsRow, and DnsCol in this example. Each format 
has several corresponding arrays which are used to store the informa-
tion of nonzeros
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same set in parallel. Section 3.5 provides a detailed introduc-
tion to this algorithm.

The other implementation of the TileSpTRSV algorithm 
is called TileSpTRSV_sync-free, and is built on top 
of the Sync-free algorithm. It uses fast atomic operations 
to reduce global synchronization consumption. Section 3.6 
introduces the execution process of this algorithm.

3.2  Two‑level storage structure

Our TileSpTRSV uses a 2-level storage structure to store the 
information of the input sparse triangular matrix. Figure 3 
shows an example where an input matrix is divided into 10 
sparse tiles and stored in a two-level storage structure that con-
tains multiple arrays. To improve data locality, TileSpTRSV 
divides the matrix into many sparse tiles of size 16-by-16, so 
that one ‘unsigned char’ (8-bit data type) can store the position 
information of nonzeros in one sparse tile. For clarity, we set the 
tile size to 4-by-4 instead of 16-by-16 in Fig. 3. After partition-
ing, the first-level storage structure is generated.

In the first-level, the tile information is stored in the CSR 
format, and three arrays (tileRowPtr, tileColIdx, and tileNnz) 
are generated. tileRowPtr records the number of off-zero sparse 
tiles in each row, tileColIdx records the tile column index of 
each tile, and array tileNnz records the number of nonzeros in 
each sparse tile. After that, TileSpTRSV uses a format selec-
tion strategy to select a suitable format for each tile. Section 3.3 
explains the selection strategy in detail. When the format of 
each tile has been selected, the second-level of the storage struc-
ture and the array format can be generated (array format records 
the storage format of each sparse tile).

In the second-level, TileSpTRSV stores the internal infor-
mation of each sparse tile in different formats. In Fig. 3, we 
list eight groups of arrays representing the information of the 
eight formats, respectively. We use the same storage structure 
for the seven formats (CSR, COO, ELL, HYB, Dns, DnsRow, 
and DnsCol) as in TileSpMV (Niu et al. 2021). Taking the CSR 
format as an example, it has three arrays (csrRowPtr, csrColIdx, 
csrVal) to store the internal information of all CSR sparse tiles. 
It should be noticed that we combine the information of the 
standard CSR format of all sparse tiles in the CSR format, but 

we do not record the last value of the row pointer array. It is 
because the actual value of it may exceed 255, which is the 
ceiling of one ‘unsigned char’. But we can get the value through 
searching the array tileNnz. For the diagonal tiles where the 
nonzeros are all concentrated on the diagonal, we store them in 
the DIA format and only use one array diaVal to store the value 
of nonzeros in the tiles. The orange tile in Fig. 3 is an example.

3.3  Format selection strategy

We design a format selection strategy for TileSpTRSV to select 
appropriate format for each tile. For off-diagonal tiles, we use 
the same selection method as proposed by TileSpMV (Niu et al. 
2021), and these tiles can be stored in seven different formats: 
CSR, COO, ELL, HYB, Dns, DnsRow, and DnsCol based on 
the nonzeros count and sparse structure. For diagonal tiles, our 
format selection strategy is as follows: (1) DIA format: We store 
the off-zero sparse tiles where the nonzeros are concentrated 
on the diagonal line in this format. It can reduce the space cost 
compared to the CSR format. (2) CSR format: We uniformly 
store the remaining sparse tiles in the CSR format.

3.4  Tile‑level algorithms

After the storage format of each tile has been determined, we 
use different tile-level algorithms for tiles stored in different 
formats. Note that we use the same seven tile-level algorithms 
proposed by TileSpMV (Niu et al. 2021) for off-diagonal tiles 
stored in seven different formats to perform SpMV operations, 
so we will not discuss them in this paper. For tiles stored in DIA 
format, we use a thread-level SpTRSV kernel to perform the 
division operation directly since all nonzeros are distributed on 
the diagonal. For diagonal tiles stored in the CSR format, we 
design thread-level and warp-level kernels to execute different 
SpTRSV algorithms. The two tile-level SpTRSV kernels will 
be introduced as follows.

In the thread-level SpTRSV kernel, we use one thread to 
perform a serial SpTRSV calculation for each diagonal tile. 
Algorithm 4 shows the computation process of the thread-level 
SpTRSV kernel.

Algorithm 4 A pseudocode of thread-level SpTRSV kernel.
1: ptr offset ← csrptr offset[blkid]
2: offset ← csr offset[blkid]
3: csrRowPtr tile ← &csrRowPtr[ptr offset]
4: csrVal tile ← &csrVal[offset]
5: csrColIdx tile ← &csrColIdx[offset]
6: for i = 0 to tile size− 1 do
7: for j = csrRowPtr tile[i] to csrRowPtr tile[i+ 1]−2 do
8: left sum[i]←left sum[i]+csrVal tile[j]×x[csrColIdx tile[j]]
9: end for

10: x[i] ← (b[i]-left sum[i])/val[csrRowPtr tile[i+ 1]−1]
11: end for
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In the warp-level SpTRSV kernel, we use the Sync-free 
algorithm for SpTRSV calculation. A 32-thread warp is 
always assigned to process a tile with 16 columns, which 
means that every two consecutive threads process one col-
umn. Before calculation, every diagonal tile would gener-
ate an array graphInDegree which records the nonzeros 
of each row in a tile. In the calculation process, every two 

consecutive threads of a warp correspond to one value of the 
array graphInDegree, and only when the value equals ‘1’, 
the threads can process the column and use atomic operation 
to modify the array graphInDegree. Otherwise, the threads 
would be blocked until the value of the array graphInDegree 
becomes ‘1’. Algorithm 5 shows the execution process of the 
warp-level SpTRSV kernel.

Fig. 4  An example is provided to illustrate the calculation process 
of TileSpTRSV_level-set. In this algorithm, the tile infor-
mation is stored in the CSR format, which includes the tileRowPtr, 
tileColIdx, and tileNnz arrays. a  shows an input matrix L, while b 
shows the result of the input matrix after reordering and partition-
ing. After partitioning, the six tiles are divided into three levels and 

generate a group of data that includes the levelnum, levelPtr_tile , and 
levelItem_tile . c  shows the calculation process of TileSpTRSV_
level-set. The algorithm processes each level sequentially and 
processes off-diagonal tiles (step 1) before diagonal tiles (step 2) in 
the same level
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Algorithm 5 A pseudocode of warp-level SpTRSV kernel.
1: for ti = 0 to 31 in parallel do
2: vi ← ti%2
3: ri ← ti2
4: while graphindegree[ri] �= 1 do
5: //busy wait
6: end while
7: x[ri] ← (b[ri]-left sum[ri])/val[cscColPtr[ri]]
8: for j = cscColPtr[ri]+1+vi to cscColPtr[ri+ 1]−1 in parallel do
9: atomic-add(&left sum[cscRowIdx[j]], cscVal[j] × x[ri])

10: atomic-decr(&graphindegree[cscRowIdx[j]])
11: j ← j+2
12: end for
13: end for

Fig. 5  An example shows that the calculation process of TileSp-
TRSV_sync-free. In this algorithm, the tile-level information 
is stored in the CSC format, which includes the arrays tileColPtr, 
tileRowIdx, and tileNnz. a explains the first calculation step, while 

b shows the second and third calculation steps. The graphinDegree 
array records the number of sparse tiles in each tile row, and the cor-
responding value is updated immediately after processing each off-
diagonal tile
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3.5  TileSpTRSV_level‑set

We first implement a tiled SpTRSV algorithm called Tile-
SpTRSV_level-set that is built on top of the level-set 
algorithm. Given an input triangular sparse matrix, the 
algorithm first sorts its components, i.e., rows and columns, 
according to their level-set order. This ensures that com-
ponents in the same level-set are grouped together, leading 
to better cache utilization. The algorithm then divides the 
matrix into many sparse tiles of size 16-by-16 and uses the 
2-level storage structure proposed in Sect. 3.2 to store tile 
information.

Then it divides these sparse tiles into multiple sets using 
the level-set algorithm and treats each tile as a component. 
This generates three important data structures: levelPtr_tile , 
levelItem_tile , and nlevel, which are crucial for later com-
putations. We define the average tile row number in one 
set as tile-level parallelism and design an adaptive SpTRSV 
kernel selection strategy for TileSpTRSV_level-set. 
This strategy can select either thread-level or warp-level 
SpTRSV kernel for the CSR format based on tile-level par-
allelism. We use a threshold thre and require the GPU core 
count to be eight times thre. For example, on an RTX 4090 
with 16384 CUDA cores, thre should be set to 2048. If the 
tile-level parallelism is less than thre, indicating unsatis-
factory parallelism, we use the warp-level SpTRSV kernel; 
otherwise, we use the thread-level SpTRSV kernel. Figure 4 
illustrates an example of TileSpTRSV_level-set with 
the thread-level SpTRSV kernel.

For each set, we first assign one warp (32 threads) to per-
form SpMV operation for the off-diagonal tiles in one tile 
row. Note that one warp can compute at most 16 tiles in one 

tile row to ensure load balancing in this work. After complet-
ing the calculations of all off-diagonal tiles within the set, we 
assign one thread to execute the SpTRSV operation for each 
diagonal tile in parallel. Once all the diagonal tiles have been 
processed, the calculations for this set are finished. Figure 4 
shows an example of the partition and calculation process of 
the TileSpTRSV_level-set algorithm.

Figure 4(a) shows an input matrix. Figure 4(b) shows 
the matrix after reordering and partitioning according to 
the TileSpTRSV_level-set algorithm, and Fig. 4(c) 
shows the calculation steps of the algorithm. In Fig. 4(b), 
all the yellow tiles (diagonal tiles) are stored in CSR or DIA 
format, and the red tiles (off-diagonal tiles) are stored in a 
suitable format based on the format selection strategy. As 
we can see, the six off-diagonal sparse tiles are divided into 
three levels, and our TileSpTRSV_level-set pro-
cesses them from level1 to level3 in sequence as shown in 
Fig. 4(c). Since there are no off-diagonal tiles to do SpMV 
operation in level1, TileSpTRSV_level-set can 
directly use two threads to process tile0 and tile1 in paral-
lel. Each thread can execute a serial SpTRSV operation for 
each tile. However, for level2, TileSpTRSV_level-set 
will do SpMV for tile2 (off-diagonal tile) first and launch 
one warp to execute the corresponding SpMV kernel. After 
the calculation of tile2, the diagonal tile tile3 can be cal-
culated using one thread to execute the SpTRSV kernel. 
Finally, in level3, all off-diagonal tiles (only tile4 here) can 
be processed using the corresponding SpMV kernel. Then, 
the diagonal tile (tile5) can be processed by a thread-level 
SpTRSV kernel. The calculation process of level3 is similar 
to level2. At this point, all calculations in the example are 
completed.

Algorithm 6 A pseudocode of TileSpTRSV level-set algorithm.
1: function preprocess-tilesptrsv level-set()
2: for li = 0 to tilen− 1 do
3: for tilerow = 0 to tilen− 1 do
4: if dependencies tile(tilerow)= 0 then
5: levelptr tile[li]++
6: insert(levelitem tile, tilerow)
7: end if
8: end for
9: end for

10: prefix-sum(levelptr tile, tilen+ 1)
11: end function
12: function tilesptrsv level-set()
13: for li = 0 to nlevel − 1 do
14: spmv-tile-warplevel(levelptr tile, levelitem tile, tilePtr,

tileColIdx)
15: //global synchronization
16: sptrsv-tile-threadlevel(levelptr tile, levelitem tile, tilePtr,

tileColIdx)
17: end for
18: end function
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Algorithm 6 shows a pseudocode for the TileSpTRSV_
level-set algorithm, which includes preprocessing and 
calculation phases. The preprocessing function (lines 1–11) 
generates the auxiliary arrays levelPtr_tile and levelItem_tile . 
The calculation function (lines 12–20) describes the solving 
process. For each level, the algorithm calls a tile-level SpMV 
kernel (line 14) to perform SpMV operations for the off-
diagonal tiles first. After global synchronization, it then calls 
a tile-level SpTRSV kernel (line 18) to perform SpTRSV 
operations for the diagonal tiles.

3.6  TileSpTRSV_sync‑free

We also implement another tiled SpTRSV algorithm called 
TileSpTRSV_sync-free on top of the Sync-free 
algorithm. This algorithm uses the same partition method 
(dividing the input matrix into a number of sparse tiles) 
and format selection strategy, but has a different calculation 
mode compared to TileSpTRSV_level-set. Addition-
ally, the tile-level information needs to be converted to the 
CSC format, which contains the tileColPtr, tileRowIdx, and 
tileNnz arrays.

Figure 5 shows an example of the calculation process 
using this algorithm. As shown in Fig. 5, there are six off-
diagonal sparse tiles after partitioning, and four diagonal 
tiles (in yellow) are stored in the CSR or DIA format, while 

the other two tiles (in red) are stored in another formats. In 
this algorithm, there is an auxiliary array called graphinDe-
gree, which records the number of off-diagonal sparse tiles 
in each tile row. For example, the matrix in Fig. 5(a) has only 
one tile in both tilerow0 and tilerow1, and it has two tiles in 
both tilerow2 and tilerow3. Therefore, the initial values of 
graphinDegree in the example are ‘1’, ‘1’, ‘2’, ‘2’.

After we obtain the array graphinDegree, we assign 
one warp for each tile column, and each warp constantly 
accesses the corresponding value of graphinDegree until 
the value becomes ‘1’. Then  the warp can process the 
tiles in the corresponding tile column. For example, in 
Fig. 5(a), we assign four warps for the four tile columns 
and use three steps to process the calculations. In step 1, 
because the 0-th value and 1-st value in graphinDegree are 
‘1’, warp0 and warp1 can process the tiles in tile column 
0 (tile0 and tile2) and tile column 1 (tile1), respectively. 
It should be noted that diagonal tiles, such as tile0 and 
tile1, will perform SpTRSV operation using one thread of 
the corresponding warp, whereas off-diagonal tile, such as 
tile2, will be processed for SpMV operation using an entire 
warp (32 threads). When the warp finishes the execution of 
the off-diagonal tile, the i-th value of graphinDegree will 
decrease by 1 (assuming the tile row index of the tile is 
i). For example, in Fig. 5(a), when the execution of tile2 
is complete, the third value of graphinDegree (‘2’) will 
become ‘1’. After the execution of tile column 0 and tile 
column 1, step 2 can begin, and warp2 will start to process 
the tiles in tile column 2 because the corresponding value 
of graphinDegree has become ‘1’, as shown in Fig. 5(b). 
Then the 3-rd value of graphinDegree becomes ‘1’ due to 
the completion of tile4. Therefore, warp3 will repeat the 
process like the other warps have done and process the last 
diagonal tile (tile5), in the step 3. At this point, all calcula-
tions in the example of Fig. 5 are completed.

Algorithm 7 A pseudocode of TileSpTRSV sync-free algorithm.
1: function preprocess-tilesptrsv sync-free()
2: for i = 0 to tilennz − 1 in parallel do
3: atomic-incr(&graphindegree[tileRowIdx[i]])
4: end for
5: end function
6: function tilesptrsv sync-free()
7: for i = 0 to tilen− 1 in parallel do
8: while graphindegree[i] �= 1 do
9: //busy wait

10: end while
11: sptrsv-tile-threadlevel(i, tilePtr, tileRowIdx)
12: spmv-tile-warplevel(i, tilePtr, tileRowIdx)
13: end for
14: end function

Table 1  The GPU and four algorithms evaluated

NVIDIA GPU Four algorithms

GeForce RTX 4090 (Ada Lovelace) (1) cuSPARSE
16384 CUDA cores @ 2595 MHz (2) Sync-free (Liu et al. 2017)
24GB, B/W 984 GB/s (3) Recblock (Lu et al. 2020)

(4) TileSpTRSV (this work)
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Algorithm 7 shows a pseudocode of TileSpTRSV_
sync-free. The preprocessing function (lines 1–5) 
generates the auxiliary array grapginDegree for solving 
phase. After that, in the solving function (lines 6–14), the 
programming will call tile-level SpTRSV kernel (line 11) 
to process diagonal tile in each tile column first, then call 
tile-level SpMV kernel (line 12) to process remaining off-
diagonal tiles.

4  Experimental results

4.1  Experimental setup

In our experiment, we use a modern NVIDIA GPU: 
GeForce RTX 4090 as our experimental platform. The 
GPU driver version is 520.56.06, and the CUDA version 
is 11.8. The specification of the GPU is listed in Table 1.

We compare our TileSpTRSV with three existing 
SpTRSV algorithms, i.e., kernel cusparseSpSV_solve in 
cuSPARSE v2 of CUDA v11.8, Sync-free algorithm (Liu 

et al. 2017) and recursive block algorithm (Lu et al. 2020) 
on the 16 representative matrices (refer to Table 2).

4.2  Comparison of two implements for TileSpTRSV

Firstly, we compare the two implementations of TileSp-
TRSV on 16 representative matrices. Table 2 lists the infor-
mation of the tested matrices, where tile-level parallelism is 
the average tile row number of one set in TileSpTRSV_
level-set algorithm. Figure 6 shows the comparison 
result. As we can see, TileSpTRSV_level-set (red 
bars) achieves higher performance compare to TileSp-
TRSV_sync-free (blue bars) on most matrices of the 16 
matrices. The performance of TileSpTRSV_level-set 
can be up to 4.31x faster than TileSpTRSV_sync-free 
on matrix ‘boyd2’. Though on the matrices with lower tile-
level parallelism (like matrix ‘bloweybl’ and ‘blockqp1’), 
TileSpTRSV_level-set can achieve better perfor-
mance than TileSpTRSV_sync-free, it indicates our 
adaptive SpTRSV kernel selection strategy is effective to 
improve performance while the tile-level parallelism is 
unsatisfactory.

4.3  Performance comparison over existing SpTRSV 
works

Figure  7 presents the performance comparison of our 
TileSpTRSV_level-set algorithm with three other 
SpTRSV algorithms on the 16 representative matrices. Our 
algorithm achieves the best performance on 10 matrices 
and the second-best performance on the remaining 6 matri-
ces. On average, it provides speedups of 5.29× , 5.33× , and 
2.62× over cuSPARSE, Sync-free, and Recblock algorithms, 
respectively, for these tested matrices. The best speedups are 
observed on matrix ‘ins2’ (38.10× ), ‘boyd2’ (21.32× ), and 
‘blockqp1’ (12.87× ), respectively.

Our algorithm achieves satisfactory performance and 
speedups on the ‘boyd2’ matrix, reaching 35.19 GFlops and 
providing speedups of 3.75× , 21.3× , and 1.61× over cuS-
PARSE, Sync-free, and Recblock algorithms, respectively. 
The high performance is due to the high tile-level parallelism 
of 15K in this matrix, which allows our algorithm to obtain 
high parallelism to improve performance. Additionally, there 
are multiple off-diagonal sparse tiles in Dns, DnsRow, or 
DnsCol format in ‘boyd2’, allowing our algorithm to exploit 
more efficient SpMV kernels to process them. For example, 
there are 11,654 off-diagonal tiles stored in DnsCol format in 
it. Our algorithm generally has a performance advantage in 
handling matrices with a large proportion of Dns or DnsRow/
DnsCol tiles. It also can achieve comparable performance to 
the three algorithms on matrices with a moderate number of 

Table 2  The matrix information of the 16 representative matrices

Matrix Plot n nnz Tile-level
parallelism

ins2
 

309K 1.5 M 2.4K

boyd2  466K 1 M 15K

blockqp1
 

60K 360K 0.1K

hangGlider_4
 

15K 86k 0.2K

a2nnsnsl
 

80K 231K 1.2K

road_usa
 

24 M 53 M 21K

bloweybl
 

30K 80K 0.6K

analytics
 

304K 1.2 M 1.5K

t3dl_e
 

20K 20K 1.3K

c-big
 

375K 1.3 M 11K

circuit5M
 

5.5 M 32 M 21K

hugebubbles-00000
 

18 M 45 M 21K

bcsstm39
 

47K 47K 2.9K

c-66b
 

50k 274k 1.6K

m3plates
 

11K 11K 0.7K

ASIC_680K
 

683K 1.5 M 1.1K
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Fig. 6  The performance comparison of the two implementations of TileSpTRSV on the 16 representative matrices

Fig. 7  The performance comparison of TileSpTRSV and the other three SpTRSV algorithms on the 16 representative matrices
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CSR and COO tiles, such as the ‘bloweybl’ matrix with 3127 
CSR tiles and 1872 COO tiles. It should be noticed that we 
only use the COO or CSR format when the internal structure 
of the tile is sparse enough and irregular which can help our 
algorithm save more space compare to other works.

4.4  Space cost comparison

We evaluate the memory consumption of Sync-free, 
Recblock and our TileSpTRSV, and Fig. 8 shows the space 
cost of the data structure of input matrix on the 16 representa-
tive matrices. Note that the two implementations of TileSp-
TRSV have the same storage structure and same memory 
consumption. As we can see, the memory consumption of our 
TileSpTRSV is in general less than other two algorithms on 
the 16 matrices. It is because that TileSpTRSV uses a 8-bit 

‘unsigned char’ instead of a 32-bit ‘int’ to store the informa-
tion of one tile of 16-by-16 size. When the tiles are stored 
in Dns, DnsRow, DnsCol and DIA formats, we only use one 
array to store the value of nonzeros in the sparse tiles.

4.5  Preprocessing overhead

Figure 9 shows an execution time comparison of the pre-
processing and the single SpTRSV time on CPU. It should 
be noticed that our two implementations of TileSpTRSV 
have the same preprocessing phase, so that their execution 
time of this phase is same. We can see that the preprocessing 
time is less than 10× SpTRSV execution time on most matri-
ces of our dataset. Since we can do many times SpTRSV 
iterations after one preprocessing operation, the cost of this 
preprocessing is acceptable.

Fig. 8  The memory consump-
tion comparison of TileSpTRSV 
and the other two existing 
SpTRSV algorithms

Fig. 9  Comparison of pre-
processing time and a single 
SpTRSV time of the 16 repre-
sentative matrices
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4.6  Performance of different precision

In our experiments plotted above (Figs. 6, 7, 8, and 9), the 
experimental data are in double precision. We also test the 
performance of TileSpTRSV_level-set and the other 
three existing algorithms in float precision and compare with 
that in double precision. The boxes ploted in Fig. 10 show 
the comparison result. As can be seen, the ratio of double 
and single precision performance of Sync-free is between 
0.9 and 1.0, the ratio of RecBlock is between 0.7 and 0.8, 
and that of our algorithm is between 0.8 and 0.9, while the 
ratio of cuSPARSE is between 0.5 and 0.6. This demon-
strates that compared to the Sync-free algorithm, our algo-
rithm is a bit more sensitive to the floating-point value used, 
but compared to the cuSPARSE and Recblock algorithms, 
our algorithm is relatively insensitive to the operation of 
floating-point values.

5  Related work

SpTRSV is a crucial building block of the sparse BLAS (Liu 
2015). Most studies on parallel SpTRSV algorithms focus on 
level-set, synchronization-free, color-set, and block methods.

To make SpTRSV parallelizable, Anderson and Saad 
(1989) and Saltz (1990) propose a classical parallel SpTRSV 
algorithm called the level-set algorithm. This algorithm 
divides all components into a number of level-sets. The com-
ponents within each set can be solved in parallel, but the sets 
should be processed sequentially due to their dependencies on 
each other. Many studies focus on optimizing this algorithm 
through obtaining better data locality and reducing the cost of 
synchronization. Naumov (2011) implement the GPU version 
of level-set and decrease the number of sets. Park et al. (2014) 
reduce the dependencies in level-set algorithm. With the 
development of GPU general computing, Li and Saad (2013) 
reduce the number of level-sets and achieve better parallelism 
by exploiting topological sorting. Xie et al. (2021) implement 

level-set algorithm for SpTRSV on modern multi-GPU and 
obtain the performance gain.

Although level-set algorithm on GPU can achieve great 
parallelism and obtain performance gain, the cost of synchro-
nization between kernel calls is expensive. To address the 
problem, Liu et al. (2016, 2017) propose synchronization-
free algorithm which uses fast atomic operation instead of 
expensive cost of global synchronization and apply it to par-
allel multiply right-hand sides. In order to make the algo-
rithm available for the CSR format which is the most popular 
sparse storage format, Dufrechou and Ezzatti (2018b, 2018a) 
implement synchronization-free algorithm in the CSR format. 
Su et al. (2020) exploit large-scale thread-level parallelism 
for faster synchronization-free algorithm on modern GPUs. 
Zhang et al. (2021)  improve the performance of Sync-free 
algorithm by fusing thread-level and warp-level techniques.

Schreiber and Tang (1982) first propose colour-set algo-
rithm which uses graph colouring to implement parallel 
SpTRSV algorithm. In this algorithm, after the input matrix 
has been coloured, the components in each colour-set can 
be regarded as a diagonal block which means they can be 
processed in parallel. Suchoski et al. (2012) implement the 
GPU version of the algorithm. Naumov et al. (2015) demon-
strate the effectiveness of colour-set algorithm to accelerate 
parallel SpTRSV on GPU. Besides, Kabir et al. (2015) use 
graph colouring to optimize the performance of SpTRSV on 
NUMA architectures. But it is well known that graph colour-
ing is an NP-completed problem. Its preprocessing overhead 
in real-world applications is often unacceptable.

There are also some studies that use block algorithm to 
accelerate parallel SpTRSV. Mayer (2009) first point out that 
2D blocking should be able to accelerate SpTRSV. Wang 
et al. (2018a, 2018b) propose a novel data layout called 
Sparse Level Tile and design a Producer-Consumer pair-
ing method for structured problems on Sunway processors. 
Vuduc et al. (2002) and Bradley (2016) develop blocking 
schemes for SpTRSV. Lu et al. (2020) design a recursive 
blocking algorithm and utilize a new data structure to store 
the input matrix. Ahmad et al. (2021) accelerate parallel 
SpTRSV calculations by dividing them into two SpTRSV 
and one SpMV systems and employing different algorithms 
for each SpTRSV system.

There are a number of studies on block/tile optimization 
for other BLAS kernels. Buttari et al. (2007) design the BCSR 
format for SpMV. On GPUs, Choi et al. (2010) use blocked 
formats to model SpMV, and Yan et al. (2014) develop the 
BCCOO format, which stores dense 2D blocks. Addition-
ally, Niu et al. (2021, 2022) propose a tiled SpMV algorithm 
and a tiled SpGEMM algorithm called TileSpMV and Tile-
SpGEMM, respectively. Ji et al. (2022) further developed Tile-
SpMSpV for multiplying sparse matrix and sparse vector. Such 
work motivates us to design the TileSpTRSV algorithm using 

Fig. 10  Performance ratio of double precision to single precision in 
box plots of running the four SpTRSV algorithms on the 16 matrices 
on the RTX 4090
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the tiled structure in this work for SpTRSV to obtain perfor-
mance gain and enrich tiled algorithms for sparse BLAS.

6  Conclusion

In this paper, we implement two versions of TileSpTRSV 
algorithm, namely TileSpTRSV_level-set on top 
of level-set algorithm, and TileSpTRSV_sync-free 
on top of Sync-free algorithm, respectively, on NVIDIA 
GPUs. We also design an adaptive SpTRSV kernel selection 
strategy for TileSpTRSV_level-set to use different 
SpTRSV algorithms according to the tile-level parallelism 
of the input matrix. In the experiment, we select 16 rep-
resentative matrices from the SuiteSparse Matrix Collec-
tion and evaluate TileSpTRSV, cuSPARSE, Sync-free and 
Recblock algorithms on a modern NVIDIA GPU: GeForce 
RTX 4090. The experimental results show that our TileSp-
TRSV achieves on average of 5.29× (up to 38.10× ), 5.33× 
(up to 21.32× ), and 2.62× (up to 12.87× ) speedups over 
cuSPARSE, Sync-free and Recblock algorithms on the 16 
representative matrices, respectively.
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