
Vol.:(0123456789)1 3

CCF Transactions on High Performance Computing
https://doi.org/10.1007/s42514-023-00151-1

REGULAR PAPER

TileSpTRSV: a tiled algorithm for parallel sparse triangular solve
on GPUs

Zhengyang Lu1 · Weifeng Liu1

Received: 17 December 2022 / Accepted: 3 May 2023
© China Computer Federation (CCF) 2023

Abstract
Sparse triangular solve (SpTRSV) is one of the most important level-2 kernels in sparse basic linear algebra subprograms
(BLAS). Compared to another level-2 sparse BLAS kernel sparse matrix–vector multiplication (SpMV), SpTRSV is in
general more difficult to find high parallelism on many-core processors, such as GPUs. Nowadays, much work focuses on
reducing dependencies and synchronizations in the level-set and Sync-free algorithms for SpTRSV. However, there is less
work that can make good use of sparse spatial structure for SpTRSV on GPUs. In this paper, we propose a tiled algorithm
called TileSpTRSV for optimizing SpTRSV on GPUs through exploiting 2D spatial structure of sparse matrices. We design
two algorithm implementations, i.e., TileSpTRSV_level-set and TileSpTRSV_sync-free, for TileSpTRSV on
top of level-set and Sync-free algorithms, respectively. By testing 16 representative matrices on a latest NVIDIA GPU, the
experimental results show that TileSpTRSV_level-set gives on average 5.29× (up to 38.10×), 5.33× (up to 21.32×)
and 2.62× (up to 12.87×) speedups over cuSPARSE, Sync-free and Recblock algorithms on the 16 representative matrices,
respectively.

Keywords Sparse matrix · Sparse triangular solve · Tiled algorithm · GPU

1 Introduction

Sparse triangular solve (SpTRSV) is an operation that solves
the linear equation Lx = b (or Ux = b), where L (or U) is a
sparse lower (or upper) triangular matrix, x is a dense vector
to be solved and b is a dense right-hand side vector. SpTRSV
is an important building block of level-2 sparse basic linear
algebra subprograms (BLAS) (Liu 2015). It has a number
of applications in numerical computations, such as the solve
phase of sparse direct solvers (Davis 2006; Duff et al. 2017;
Li 2005; Zhao et al. 2021; Wang et al. 2023) and the precon-
ditioner of sparse iterative solvers (Anzt et al. 2015, 2016,
2018a, b).

Compared with other BLAS kernels such as sparse
matrix–vector multiplication (SpMV) (Liu and Vinter
2015b, c; Niu et al. 2021) and sparse matrix-matrix multipli-
cation (SpGEMM) (Liu and Vinter 2015a; Hou et al. 2017;
Liu et al. 2019; Xie et al. 2019; Niu et al. 2022), SpTRSV is

inherently sequential and generally cannot find satisfactory
parallelism on modern many-core processors, due to pos-
sible dependencies between the components.

Fortunately, though SpTRSV is difficult to process in par-
allel, much research has demonstrated that parallel SpTRSV
algorithms are possible. Anderson and Saad (1989) and Saltz
(1990) propose the level-set method which is a classical par-
allel algorithm for SpTRSV. They see the input matrix as a
graph and divide the components into many sets. The com-
ponents in each set can be calculated independently, and the
calculation between sets should be executed sequentially.
The algorithm to some extent resolves the parallel problem
of SpTRSV. But with the increase of the number of sets,
the level-set algorithm would use much time for global syn-
chronization on parallel processors. To address this prob-
lem, Liu et al. (2016, 2017) propose the synchronization-free
algorithm (or Sync-free for short). It replaces the barriers
with atomic operations on GPUs for further eliminating the
expensive cost of global synchronization.

In another direction of SpTRSV optimization, a number
of research focuses on the 2D layout and spatial structure of
input matrix. Lu et al. (2020) propose a recursive block algo-
rithm (or Recblock for short), which recursively divides the

 * Weifeng Liu
 weifeng.liu@cup.edu.cn

1 Super Scientific Software Laboratory, China University
of Petroleum-Beijing, Beijing, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-023-00151-1&domain=pdf

 Z. Lu, W. Liu

1 3

input matrix into multiple triangular and square sub-matri-
ces, and uses an adaptive method to automatically select
method for each block. In addition to that, for other BLAS
kernels, Niu et al. (2021, 2022) and Ji et al. (2022) exploit
tiled structure to implement TileSpMV, TileSpGEMM and
TileSpMSpV, for SpMV and SpGEMM and sparse matrix-
sparse vector multiplication (SpMSpV) respectively, and
achieve obviously better performance than existing algo-
rithms. This motivates us to enrich the group of tiled algo-
rithms for SpTRSV in sparse BLAS.

In this paper, we propose an efficient tiled algorithm
called TileSpTRSV for SpTRSV and implement two ver-
sions of TileSpTRSV: TileSpTRSV_level-set and
TileSpTRSV_sync-free. The two implementations
utilize different parallel SpTRSV algorithms and are built
on top of the level-set and Sync-free algorithms, respec-
tively. Although they have different calculation modes, the
two TileSpTRSV implementations share the same low level
storage structure.

TileSpTRSV divides the input matrix into a number of
regular sparse tiles of the same size (always 16-by-16) to
obtain better data locality and higher bandwidth utiliza-
tion. It treats each tile as a basic working unit. For each
off-diagonal tile, TileSpTRSV stores it in seven different for-
mats according to the internal structure of the tile. For each
diagonal tile, TileSpTRSV stores the tile with all nonzeros
distributed on the diagonal in the DIA format; otherwise, it
would be stored in the CSR format. After that, we use cor-
responding GPU kernels for processing different formats in
the calculation phase.

In our experiments, we use an NVIDIA GeForce RTX
4090 as our experimental platform, and select 16 representa-
tive matrices from the SuiteSparse Matrix Collection (Davis
and Hu 2011) as our dataset. The experimental results show

that our TileSpTRSV gives on average 5.29× (up to 38.10×),
5.33× (up to 21.32×) and 2.62x (up to 12.87×) speedups over
cuSPARSE, Sync-free (Liu et al. 2016, 2017) and Recblock
algorithms (Lu et al. 2020), respectively.

2 Background

2.1 Serial SpTRSV

Serial SpTRSV algorithm executes SpTRSV calculation
sequentially because of its inherently dependencies between
components. Figure 1 shows an example of serial SpTRSV
operation on a 6-by-6 sparse matrix. In Algorithm 1, the
off-diagonal value in the i-th row (val[j]) is multiplied by
the corresponding value of x (x[colidx[j]]), and the result
is updated to a temporary vector (tmp_sum). Finally, xi can
be updated by the step in line 6. It should be noted that the
process to solve the resulting vector x is sequential (from
x0 to xm−1).

Algorithm 1 A serial algorithm for CSR-SpTRSV.
1: function sptrsv-serial()
2: for i = 0 to m− 1 do
3: for j = rowptr[i] to rowptr[i+ 1]−2 do
4: tmp sum[i] ← tmp sum[i] + val[j] × x[colidx[j]]
5: end for
6: x[i] ← (b[i]-left sum[i])/val[row ptr[i+ 1]−1]
7: end for
8: end function

Fig. 1 An example of serial SpTRSV algorithm that solves a result-
ing vector x with a 6-by-6 sparse matrix and a dense right-hand side
vector b

TileSpTRSV: a tiled algorithm for parallel sparse triangular solve on GPUs

1 3

2.2 Level‑set parallel SpTRSV

Level-set algorithm is a classical parallel SpTRSV algorithm proposed by Anderson and Saad (1989) and Saltz (1990).

This algorithm can exploit possible parallelism in the input matrix. It sees the input matrix as a graph and divides it into

Algorithm 2 A simplified level-set algorithm for CSR-SpTRSV.
1: function preprocess-levelset()
2: for li = 0 to n− 1 do
3: if dependencies(li)= 0 then
4: level ptr[li]++
5: nlv++
6: end if
7: prefix-sum(level ptr, n+ 1)
8: end for
9: for li = 0 to nlv − 1 do

10: for i =level ptr[li] to level ptr[li+ 1]−1 do
11: insert(level item, i)
12: end for
13: end for
14: end function
15: function calculate-levelset()
16: for li = 0 to nlevel − 1 do
17: for i =level ptr[li] to level ptr[li+ 1]−1 in parallel do
18: for j = rowptr[level item[i]] to rowptr[level item[i]+1]−1 do
19: tmp sum[i] ← tmp sum[i] + val[j] × x[colidx[j]]
20: end for
21: x[i] ← (b[i]-tmp sum[i])/val[rowptr[i+ 1]−1]
22: end for
23: end for
24: end function

multiple sets which depend on each other, but the compo-
nents in each set can be calculated independently. Figure 2
shows the level form of an 8-by-8 matrix after its partition.
The calculation of higher-level components is dependent on
the computation results obtained from lower-level compo-
nents. For example, to calculate row5 in level2, we need the
results of row0 in level0 as well as row2 and row4 in level1.
Algorithm 2 shows the complete process to solve SpTRSV
with level-set algorithm. The preprocessing function (lines

1–14) shows the process to build corresponding data struc-
ture, and the calculation function (lines 15–24) solves
SpTRSV with the level-set algorithm.

2.3 Synchronization‑free parallel SpTRSV

Algorithm 3 A simplified Sync-free algorithm for CSC-SpTRSV.
1: function compute-in-degree(*row ptr, *col idx, n, nnz, *in degree)
2: for i = 0 to nnz − 1 in parallel do
3: atomic-incr(&in degree[col idx[i]])
4: end for
5: end function
6: function solve-sptrsv(*row ptr, *col idx, *val, *b, n, nnz, *in degree)
7: for i = 0 to n− 1 in parallel do
8: while in degree[i] �= 1 do
9: //busy wait

10: end while
11: x[i] ← (b[i]-left sum[i])/val[row ptr[i]]
12: for j = row ptr[i]+1 to row ptr[i+ 1]−1 in parallel do
13: atomic-add(&left sum[col idx[j]], val[j] × x[i])
14: atomic-decr(&in degree[col idx[j]])
15: end for
16: end for
17: end function

 Z. Lu, W. Liu

1 3

Synchronization-Free (Sync-free for short) is a parallel algo-
rithm proposed by Liu et al. (2016, 2017) for SpTRSV on
GPUs. The Sync-free algorithm uses fast atomic operations
instead of barriers in the level-set algorithm. This can reduce
the cost of generating level-sets and eliminate the cost of global
synchronization. Algorithm 3 shows a pseudocode of simpli-
fied Sync-free process, including preprocessing and calcula-
tion stages. The preprocessing function (lines 1–5) generates
the array in_degree with low overhead. The array records the
number of dependent entries of each nonzero element, which
means that these entries must be processed in advance; oth-
erwise, the corresponding entry cannot be calculated. In the
calculation function (lines 6–17), the algorithm assigns a GPU
working unit (a warp with 32 threads in CUDA) to process each
column i. Note that it first busy-waits until the corresponding
value of in_degree becomes ‘1’, indicating that the dependen-
cies are removed (lines 8–10). Then, it starts to compute xi (line
11) and notifies all the later entries that depend on xi through
atomic operations (lines 12–15). As we can see, the Sync-free
algorithm only needs to launch one GPU kernel. Compared to
the level-set algorithm, this algorithm can eliminate the con-
sumption of global synchronization. Algorithm 3 shows the

Sync-free algorithm in compressed sparse column (CSC) for-
mat, and a CSR version of the Sync-free algorithm is developed
by Dufrechou and Ezzatti (2018b).

3 TileSpTRSV

3.1 Overview

In the preprocessing phase, our TileSpTRSV algorithm first
divides the input matrix into multiple 16-by-16 sparse tiles
to enhance data locality. We then store the off-diagonal tiles
in seven different formats (CSR, COO, ELL, HYB, Dns,
DnsRow, and DnsCol) and store the diagonal tiles in either
the CSR or DIA format. Section 3.2 provides an introduction
to the two-level storage structure utilized by TileSpTRSV.

After partitioning the input matrix, a number of off-zero
sparse tiles are generated. In this work, we utilize a format
selection strategy to choose an appropriate format from the
eight available formats for these sparse tiles. We create a
selection tree that can select a suitable format for each tile.
Section 3.3 provides an introduction to our format selection
strategy for TileSpTRSV.

In the calculation phase, we utilize seven warp-level
SpMV kernels for seven distinct formats to process the off-
diagonal tiles. For the diagonal tiles, we develop thread-level
and warp-level SpTRSV kernels for the CSR format and one
thread-level kernel for the DIA format. Section 3.4 provides
a detailed introduction of these tile-level algorithms.

We implement two versions of TileSpTRSV, one of which
is TileSpTRSV_level-set, built on top of the level-
set algorithm. This algorithm can divide all off-zero sparse
tiles into multiple sets, and process the sparse tiles within the

Fig. 2 An example of an 8-by-8 sparse lower triangular matrix L and
its corresponding level-set form

Fig. 3 An example of a lower triangular matrix with dimensions of
16-by-16, stored in 10 sparse tiles of size 4-by-4. The tile structure
consists of three arrays, tileRowPtr, tileColIdx, and tileNnz, which
represent the offsets for the number of tiles in row-major order, tile
column indices, and the offsets for the number of nonzeros in sparse
tiles, respectively. The format array records the format of each sparse

tile. In accordance with the format selection strategy, the diagonal
tiles of the 10 tiles are stored in the CSR and DIA formats, while the
remaining six tiles are stored in different formats, including COO,
ELL, HYB, Dns, DnsRow, and DnsCol in this example. Each format
has several corresponding arrays which are used to store the informa-
tion of nonzeros

TileSpTRSV: a tiled algorithm for parallel sparse triangular solve on GPUs

1 3

same set in parallel. Section 3.5 provides a detailed introduc-
tion to this algorithm.

The other implementation of the TileSpTRSV algorithm
is called TileSpTRSV_sync-free, and is built on top
of the Sync-free algorithm. It uses fast atomic operations
to reduce global synchronization consumption. Section 3.6
introduces the execution process of this algorithm.

3.2 Two‑level storage structure

Our TileSpTRSV uses a 2-level storage structure to store the
information of the input sparse triangular matrix. Figure 3
shows an example where an input matrix is divided into 10
sparse tiles and stored in a two-level storage structure that con-
tains multiple arrays. To improve data locality, TileSpTRSV
divides the matrix into many sparse tiles of size 16-by-16, so
that one ‘unsigned char’ (8-bit data type) can store the position
information of nonzeros in one sparse tile. For clarity, we set the
tile size to 4-by-4 instead of 16-by-16 in Fig. 3. After partition-
ing, the first-level storage structure is generated.

In the first-level, the tile information is stored in the CSR
format, and three arrays (tileRowPtr, tileColIdx, and tileNnz)
are generated. tileRowPtr records the number of off-zero sparse
tiles in each row, tileColIdx records the tile column index of
each tile, and array tileNnz records the number of nonzeros in
each sparse tile. After that, TileSpTRSV uses a format selec-
tion strategy to select a suitable format for each tile. Section 3.3
explains the selection strategy in detail. When the format of
each tile has been selected, the second-level of the storage struc-
ture and the array format can be generated (array format records
the storage format of each sparse tile).

In the second-level, TileSpTRSV stores the internal infor-
mation of each sparse tile in different formats. In Fig. 3, we
list eight groups of arrays representing the information of the
eight formats, respectively. We use the same storage structure
for the seven formats (CSR, COO, ELL, HYB, Dns, DnsRow,
and DnsCol) as in TileSpMV (Niu et al. 2021). Taking the CSR
format as an example, it has three arrays (csrRowPtr, csrColIdx,
csrVal) to store the internal information of all CSR sparse tiles.
It should be noticed that we combine the information of the
standard CSR format of all sparse tiles in the CSR format, but

we do not record the last value of the row pointer array. It is
because the actual value of it may exceed 255, which is the
ceiling of one ‘unsigned char’. But we can get the value through
searching the array tileNnz. For the diagonal tiles where the
nonzeros are all concentrated on the diagonal, we store them in
the DIA format and only use one array diaVal to store the value
of nonzeros in the tiles. The orange tile in Fig. 3 is an example.

3.3 Format selection strategy

We design a format selection strategy for TileSpTRSV to select
appropriate format for each tile. For off-diagonal tiles, we use
the same selection method as proposed by TileSpMV (Niu et al.
2021), and these tiles can be stored in seven different formats:
CSR, COO, ELL, HYB, Dns, DnsRow, and DnsCol based on
the nonzeros count and sparse structure. For diagonal tiles, our
format selection strategy is as follows: (1) DIA format: We store
the off-zero sparse tiles where the nonzeros are concentrated
on the diagonal line in this format. It can reduce the space cost
compared to the CSR format. (2) CSR format: We uniformly
store the remaining sparse tiles in the CSR format.

3.4 Tile‑level algorithms

After the storage format of each tile has been determined, we
use different tile-level algorithms for tiles stored in different
formats. Note that we use the same seven tile-level algorithms
proposed by TileSpMV (Niu et al. 2021) for off-diagonal tiles
stored in seven different formats to perform SpMV operations,
so we will not discuss them in this paper. For tiles stored in DIA
format, we use a thread-level SpTRSV kernel to perform the
division operation directly since all nonzeros are distributed on
the diagonal. For diagonal tiles stored in the CSR format, we
design thread-level and warp-level kernels to execute different
SpTRSV algorithms. The two tile-level SpTRSV kernels will
be introduced as follows.

In the thread-level SpTRSV kernel, we use one thread to
perform a serial SpTRSV calculation for each diagonal tile.
Algorithm 4 shows the computation process of the thread-level
SpTRSV kernel.

Algorithm 4 A pseudocode of thread-level SpTRSV kernel.
1: ptr offset ← csrptr offset[blkid]
2: offset ← csr offset[blkid]
3: csrRowPtr tile ← &csrRowPtr[ptr offset]
4: csrVal tile ← &csrVal[offset]
5: csrColIdx tile ← &csrColIdx[offset]
6: for i = 0 to tile size− 1 do
7: for j = csrRowPtr tile[i] to csrRowPtr tile[i+ 1]−2 do
8: left sum[i]←left sum[i]+csrVal tile[j]×x[csrColIdx tile[j]]
9: end for

10: x[i] ← (b[i]-left sum[i])/val[csrRowPtr tile[i+ 1]−1]
11: end for

 Z. Lu, W. Liu

1 3

In the warp-level SpTRSV kernel, we use the Sync-free
algorithm for SpTRSV calculation. A 32-thread warp is
always assigned to process a tile with 16 columns, which
means that every two consecutive threads process one col-
umn. Before calculation, every diagonal tile would gener-
ate an array graphInDegree which records the nonzeros
of each row in a tile. In the calculation process, every two

consecutive threads of a warp correspond to one value of the
array graphInDegree, and only when the value equals ‘1’,
the threads can process the column and use atomic operation
to modify the array graphInDegree. Otherwise, the threads
would be blocked until the value of the array graphInDegree
becomes ‘1’. Algorithm 5 shows the execution process of the
warp-level SpTRSV kernel.

Fig. 4 An example is provided to illustrate the calculation process
of TileSpTRSV_level-set. In this algorithm, the tile infor-
mation is stored in the CSR format, which includes the tileRowPtr,
tileColIdx, and tileNnz arrays. a shows an input matrix L, while b
shows the result of the input matrix after reordering and partition-
ing. After partitioning, the six tiles are divided into three levels and

generate a group of data that includes the levelnum, levelPtr_tile , and
levelItem_tile . c shows the calculation process of TileSpTRSV_
level-set. The algorithm processes each level sequentially and
processes off-diagonal tiles (step 1) before diagonal tiles (step 2) in
the same level

TileSpTRSV: a tiled algorithm for parallel sparse triangular solve on GPUs

1 3

Algorithm 5 A pseudocode of warp-level SpTRSV kernel.
1: for ti = 0 to 31 in parallel do
2: vi ← ti%2
3: ri ← ti2
4: while graphindegree[ri] �= 1 do
5: //busy wait
6: end while
7: x[ri] ← (b[ri]-left sum[ri])/val[cscColPtr[ri]]
8: for j = cscColPtr[ri]+1+vi to cscColPtr[ri+ 1]−1 in parallel do
9: atomic-add(&left sum[cscRowIdx[j]], cscVal[j] × x[ri])

10: atomic-decr(&graphindegree[cscRowIdx[j]])
11: j ← j+2
12: end for
13: end for

Fig. 5 An example shows that the calculation process of TileSp-
TRSV_sync-free. In this algorithm, the tile-level information
is stored in the CSC format, which includes the arrays tileColPtr,
tileRowIdx, and tileNnz. a explains the first calculation step, while

b shows the second and third calculation steps. The graphinDegree
array records the number of sparse tiles in each tile row, and the cor-
responding value is updated immediately after processing each off-
diagonal tile

 Z. Lu, W. Liu

1 3

3.5 TileSpTRSV_level‑set

We first implement a tiled SpTRSV algorithm called Tile-
SpTRSV_level-set that is built on top of the level-set
algorithm. Given an input triangular sparse matrix, the
algorithm first sorts its components, i.e., rows and columns,
according to their level-set order. This ensures that com-
ponents in the same level-set are grouped together, leading
to better cache utilization. The algorithm then divides the
matrix into many sparse tiles of size 16-by-16 and uses the
2-level storage structure proposed in Sect. 3.2 to store tile
information.

Then it divides these sparse tiles into multiple sets using
the level-set algorithm and treats each tile as a component.
This generates three important data structures: levelPtr_tile ,
levelItem_tile , and nlevel, which are crucial for later com-
putations. We define the average tile row number in one
set as tile-level parallelism and design an adaptive SpTRSV
kernel selection strategy for TileSpTRSV_level-set.
This strategy can select either thread-level or warp-level
SpTRSV kernel for the CSR format based on tile-level par-
allelism. We use a threshold thre and require the GPU core
count to be eight times thre. For example, on an RTX 4090
with 16384 CUDA cores, thre should be set to 2048. If the
tile-level parallelism is less than thre, indicating unsatis-
factory parallelism, we use the warp-level SpTRSV kernel;
otherwise, we use the thread-level SpTRSV kernel. Figure 4
illustrates an example of TileSpTRSV_level-set with
the thread-level SpTRSV kernel.

For each set, we first assign one warp (32 threads) to per-
form SpMV operation for the off-diagonal tiles in one tile
row. Note that one warp can compute at most 16 tiles in one

tile row to ensure load balancing in this work. After complet-
ing the calculations of all off-diagonal tiles within the set, we
assign one thread to execute the SpTRSV operation for each
diagonal tile in parallel. Once all the diagonal tiles have been
processed, the calculations for this set are finished. Figure 4
shows an example of the partition and calculation process of
the TileSpTRSV_level-set algorithm.

Figure 4(a) shows an input matrix. Figure 4(b) shows
the matrix after reordering and partitioning according to
the TileSpTRSV_level-set algorithm, and Fig. 4(c)
shows the calculation steps of the algorithm. In Fig. 4(b),
all the yellow tiles (diagonal tiles) are stored in CSR or DIA
format, and the red tiles (off-diagonal tiles) are stored in a
suitable format based on the format selection strategy. As
we can see, the six off-diagonal sparse tiles are divided into
three levels, and our TileSpTRSV_level-set pro-
cesses them from level1 to level3 in sequence as shown in
Fig. 4(c). Since there are no off-diagonal tiles to do SpMV
operation in level1, TileSpTRSV_level-set can
directly use two threads to process tile0 and tile1 in paral-
lel. Each thread can execute a serial SpTRSV operation for
each tile. However, for level2, TileSpTRSV_level-set
will do SpMV for tile2 (off-diagonal tile) first and launch
one warp to execute the corresponding SpMV kernel. After
the calculation of tile2, the diagonal tile tile3 can be cal-
culated using one thread to execute the SpTRSV kernel.
Finally, in level3, all off-diagonal tiles (only tile4 here) can
be processed using the corresponding SpMV kernel. Then,
the diagonal tile (tile5) can be processed by a thread-level
SpTRSV kernel. The calculation process of level3 is similar
to level2. At this point, all calculations in the example are
completed.

Algorithm 6 A pseudocode of TileSpTRSV level-set algorithm.
1: function preprocess-tilesptrsv level-set()
2: for li = 0 to tilen− 1 do
3: for tilerow = 0 to tilen− 1 do
4: if dependencies tile(tilerow)= 0 then
5: levelptr tile[li]++
6: insert(levelitem tile, tilerow)
7: end if
8: end for
9: end for

10: prefix-sum(levelptr tile, tilen+ 1)
11: end function
12: function tilesptrsv level-set()
13: for li = 0 to nlevel − 1 do
14: spmv-tile-warplevel(levelptr tile, levelitem tile, tilePtr,

tileColIdx)
15: //global synchronization
16: sptrsv-tile-threadlevel(levelptr tile, levelitem tile, tilePtr,

tileColIdx)
17: end for
18: end function

TileSpTRSV: a tiled algorithm for parallel sparse triangular solve on GPUs

1 3

Algorithm 6 shows a pseudocode for the TileSpTRSV_
level-set algorithm, which includes preprocessing and
calculation phases. The preprocessing function (lines 1–11)
generates the auxiliary arrays levelPtr_tile and levelItem_tile .
The calculation function (lines 12–20) describes the solving
process. For each level, the algorithm calls a tile-level SpMV
kernel (line 14) to perform SpMV operations for the off-
diagonal tiles first. After global synchronization, it then calls
a tile-level SpTRSV kernel (line 18) to perform SpTRSV
operations for the diagonal tiles.

3.6 TileSpTRSV_sync‑free

We also implement another tiled SpTRSV algorithm called
TileSpTRSV_sync-free on top of the Sync-free
algorithm. This algorithm uses the same partition method
(dividing the input matrix into a number of sparse tiles)
and format selection strategy, but has a different calculation
mode compared to TileSpTRSV_level-set. Addition-
ally, the tile-level information needs to be converted to the
CSC format, which contains the tileColPtr, tileRowIdx, and
tileNnz arrays.

Figure 5 shows an example of the calculation process
using this algorithm. As shown in Fig. 5, there are six off-
diagonal sparse tiles after partitioning, and four diagonal
tiles (in yellow) are stored in the CSR or DIA format, while

the other two tiles (in red) are stored in another formats. In
this algorithm, there is an auxiliary array called graphinDe-
gree, which records the number of off-diagonal sparse tiles
in each tile row. For example, the matrix in Fig. 5(a) has only
one tile in both tilerow0 and tilerow1, and it has two tiles in
both tilerow2 and tilerow3. Therefore, the initial values of
graphinDegree in the example are ‘1’, ‘1’, ‘2’, ‘2’.

After we obtain the array graphinDegree, we assign
one warp for each tile column, and each warp constantly
accesses the corresponding value of graphinDegree until
the value becomes ‘1’. Then the warp can process the
tiles in the corresponding tile column. For example, in
Fig. 5(a), we assign four warps for the four tile columns
and use three steps to process the calculations. In step 1,
because the 0-th value and 1-st value in graphinDegree are
‘1’, warp0 and warp1 can process the tiles in tile column
0 (tile0 and tile2) and tile column 1 (tile1), respectively.
It should be noted that diagonal tiles, such as tile0 and
tile1, will perform SpTRSV operation using one thread of
the corresponding warp, whereas off-diagonal tile, such as
tile2, will be processed for SpMV operation using an entire
warp (32 threads). When the warp finishes the execution of
the off-diagonal tile, the i-th value of graphinDegree will
decrease by 1 (assuming the tile row index of the tile is
i). For example, in Fig. 5(a), when the execution of tile2
is complete, the third value of graphinDegree (‘2’) will
become ‘1’. After the execution of tile column 0 and tile
column 1, step 2 can begin, and warp2 will start to process
the tiles in tile column 2 because the corresponding value
of graphinDegree has become ‘1’, as shown in Fig. 5(b).
Then the 3-rd value of graphinDegree becomes ‘1’ due to
the completion of tile4. Therefore, warp3 will repeat the
process like the other warps have done and process the last
diagonal tile (tile5), in the step 3. At this point, all calcula-
tions in the example of Fig. 5 are completed.

Algorithm 7 A pseudocode of TileSpTRSV sync-free algorithm.
1: function preprocess-tilesptrsv sync-free()
2: for i = 0 to tilennz − 1 in parallel do
3: atomic-incr(&graphindegree[tileRowIdx[i]])
4: end for
5: end function
6: function tilesptrsv sync-free()
7: for i = 0 to tilen− 1 in parallel do
8: while graphindegree[i] �= 1 do
9: //busy wait

10: end while
11: sptrsv-tile-threadlevel(i, tilePtr, tileRowIdx)
12: spmv-tile-warplevel(i, tilePtr, tileRowIdx)
13: end for
14: end function

Table 1 The GPU and four algorithms evaluated

NVIDIA GPU Four algorithms

GeForce RTX 4090 (Ada Lovelace) (1) cuSPARSE
16384 CUDA cores @ 2595 MHz (2) Sync-free (Liu et al. 2017)
24GB, B/W 984 GB/s (3) Recblock (Lu et al. 2020)

(4) TileSpTRSV (this work)

 Z. Lu, W. Liu

1 3

Algorithm 7 shows a pseudocode of TileSpTRSV_
sync-free. The preprocessing function (lines 1–5)
generates the auxiliary array grapginDegree for solving
phase. After that, in the solving function (lines 6–14), the
programming will call tile-level SpTRSV kernel (line 11)
to process diagonal tile in each tile column first, then call
tile-level SpMV kernel (line 12) to process remaining off-
diagonal tiles.

4 Experimental results

4.1 Experimental setup

In our experiment, we use a modern NVIDIA GPU:
GeForce RTX 4090 as our experimental platform. The
GPU driver version is 520.56.06, and the CUDA version
is 11.8. The specification of the GPU is listed in Table 1.

We compare our TileSpTRSV with three existing
SpTRSV algorithms, i.e., kernel cusparseSpSV_solve in
cuSPARSE v2 of CUDA v11.8, Sync-free algorithm (Liu

et al. 2017) and recursive block algorithm (Lu et al. 2020)
on the 16 representative matrices (refer to Table 2).

4.2 Comparison of two implements for TileSpTRSV

Firstly, we compare the two implementations of TileSp-
TRSV on 16 representative matrices. Table 2 lists the infor-
mation of the tested matrices, where tile-level parallelism is
the average tile row number of one set in TileSpTRSV_
level-set algorithm. Figure 6 shows the comparison
result. As we can see, TileSpTRSV_level-set (red
bars) achieves higher performance compare to TileSp-
TRSV_sync-free (blue bars) on most matrices of the 16
matrices. The performance of TileSpTRSV_level-set
can be up to 4.31x faster than TileSpTRSV_sync-free
on matrix ‘boyd2’. Though on the matrices with lower tile-
level parallelism (like matrix ‘bloweybl’ and ‘blockqp1’),
TileSpTRSV_level-set can achieve better perfor-
mance than TileSpTRSV_sync-free, it indicates our
adaptive SpTRSV kernel selection strategy is effective to
improve performance while the tile-level parallelism is
unsatisfactory.

4.3 Performance comparison over existing SpTRSV
works

Figure 7 presents the performance comparison of our
TileSpTRSV_level-set algorithm with three other
SpTRSV algorithms on the 16 representative matrices. Our
algorithm achieves the best performance on 10 matrices
and the second-best performance on the remaining 6 matri-
ces. On average, it provides speedups of 5.29× , 5.33× , and
2.62× over cuSPARSE, Sync-free, and Recblock algorithms,
respectively, for these tested matrices. The best speedups are
observed on matrix ‘ins2’ (38.10×), ‘boyd2’ (21.32×), and
‘blockqp1’ (12.87×), respectively.

Our algorithm achieves satisfactory performance and
speedups on the ‘boyd2’ matrix, reaching 35.19 GFlops and
providing speedups of 3.75× , 21.3× , and 1.61× over cuS-
PARSE, Sync-free, and Recblock algorithms, respectively.
The high performance is due to the high tile-level parallelism
of 15K in this matrix, which allows our algorithm to obtain
high parallelism to improve performance. Additionally, there
are multiple off-diagonal sparse tiles in Dns, DnsRow, or
DnsCol format in ‘boyd2’, allowing our algorithm to exploit
more efficient SpMV kernels to process them. For example,
there are 11,654 off-diagonal tiles stored in DnsCol format in
it. Our algorithm generally has a performance advantage in
handling matrices with a large proportion of Dns or DnsRow/
DnsCol tiles. It also can achieve comparable performance to
the three algorithms on matrices with a moderate number of

Table 2 The matrix information of the 16 representative matrices

Matrix Plot n nnz Tile-level
parallelism

ins2

309K 1.5 M 2.4K

boyd2 466K 1 M 15K

blockqp1

60K 360K 0.1K

hangGlider_4

15K 86k 0.2K

a2nnsnsl

80K 231K 1.2K

road_usa

24 M 53 M 21K

bloweybl

30K 80K 0.6K

analytics

304K 1.2 M 1.5K

t3dl_e

20K 20K 1.3K

c-big

375K 1.3 M 11K

circuit5M

5.5 M 32 M 21K

hugebubbles-00000

18 M 45 M 21K

bcsstm39

47K 47K 2.9K

c-66b

50k 274k 1.6K

m3plates

11K 11K 0.7K

ASIC_680K

683K 1.5 M 1.1K

TileSpTRSV: a tiled algorithm for parallel sparse triangular solve on GPUs

1 3

Fig. 6 The performance comparison of the two implementations of TileSpTRSV on the 16 representative matrices

Fig. 7 The performance comparison of TileSpTRSV and the other three SpTRSV algorithms on the 16 representative matrices

 Z. Lu, W. Liu

1 3

CSR and COO tiles, such as the ‘bloweybl’ matrix with 3127
CSR tiles and 1872 COO tiles. It should be noticed that we
only use the COO or CSR format when the internal structure
of the tile is sparse enough and irregular which can help our
algorithm save more space compare to other works.

4.4 Space cost comparison

We evaluate the memory consumption of Sync-free,
Recblock and our TileSpTRSV, and Fig. 8 shows the space
cost of the data structure of input matrix on the 16 representa-
tive matrices. Note that the two implementations of TileSp-
TRSV have the same storage structure and same memory
consumption. As we can see, the memory consumption of our
TileSpTRSV is in general less than other two algorithms on
the 16 matrices. It is because that TileSpTRSV uses a 8-bit

‘unsigned char’ instead of a 32-bit ‘int’ to store the informa-
tion of one tile of 16-by-16 size. When the tiles are stored
in Dns, DnsRow, DnsCol and DIA formats, we only use one
array to store the value of nonzeros in the sparse tiles.

4.5 Preprocessing overhead

Figure 9 shows an execution time comparison of the pre-
processing and the single SpTRSV time on CPU. It should
be noticed that our two implementations of TileSpTRSV
have the same preprocessing phase, so that their execution
time of this phase is same. We can see that the preprocessing
time is less than 10× SpTRSV execution time on most matri-
ces of our dataset. Since we can do many times SpTRSV
iterations after one preprocessing operation, the cost of this
preprocessing is acceptable.

Fig. 8 The memory consump-
tion comparison of TileSpTRSV
and the other two existing
SpTRSV algorithms

Fig. 9 Comparison of pre-
processing time and a single
SpTRSV time of the 16 repre-
sentative matrices

TileSpTRSV: a tiled algorithm for parallel sparse triangular solve on GPUs

1 3

4.6 Performance of different precision

In our experiments plotted above (Figs. 6, 7, 8, and 9), the
experimental data are in double precision. We also test the
performance of TileSpTRSV_level-set and the other
three existing algorithms in float precision and compare with
that in double precision. The boxes ploted in Fig. 10 show
the comparison result. As can be seen, the ratio of double
and single precision performance of Sync-free is between
0.9 and 1.0, the ratio of RecBlock is between 0.7 and 0.8,
and that of our algorithm is between 0.8 and 0.9, while the
ratio of cuSPARSE is between 0.5 and 0.6. This demon-
strates that compared to the Sync-free algorithm, our algo-
rithm is a bit more sensitive to the floating-point value used,
but compared to the cuSPARSE and Recblock algorithms,
our algorithm is relatively insensitive to the operation of
floating-point values.

5 Related work

SpTRSV is a crucial building block of the sparse BLAS (Liu
2015). Most studies on parallel SpTRSV algorithms focus on
level-set, synchronization-free, color-set, and block methods.

To make SpTRSV parallelizable, Anderson and Saad
(1989) and Saltz (1990) propose a classical parallel SpTRSV
algorithm called the level-set algorithm. This algorithm
divides all components into a number of level-sets. The com-
ponents within each set can be solved in parallel, but the sets
should be processed sequentially due to their dependencies on
each other. Many studies focus on optimizing this algorithm
through obtaining better data locality and reducing the cost of
synchronization. Naumov (2011) implement the GPU version
of level-set and decrease the number of sets. Park et al. (2014)
reduce the dependencies in level-set algorithm. With the
development of GPU general computing, Li and Saad (2013)
reduce the number of level-sets and achieve better parallelism
by exploiting topological sorting. Xie et al. (2021) implement

level-set algorithm for SpTRSV on modern multi-GPU and
obtain the performance gain.

Although level-set algorithm on GPU can achieve great
parallelism and obtain performance gain, the cost of synchro-
nization between kernel calls is expensive. To address the
problem, Liu et al. (2016, 2017) propose synchronization-
free algorithm which uses fast atomic operation instead of
expensive cost of global synchronization and apply it to par-
allel multiply right-hand sides. In order to make the algo-
rithm available for the CSR format which is the most popular
sparse storage format, Dufrechou and Ezzatti (2018b, 2018a)
implement synchronization-free algorithm in the CSR format.
Su et al. (2020) exploit large-scale thread-level parallelism
for faster synchronization-free algorithm on modern GPUs.
Zhang et al. (2021) improve the performance of Sync-free
algorithm by fusing thread-level and warp-level techniques.

Schreiber and Tang (1982) first propose colour-set algo-
rithm which uses graph colouring to implement parallel
SpTRSV algorithm. In this algorithm, after the input matrix
has been coloured, the components in each colour-set can
be regarded as a diagonal block which means they can be
processed in parallel. Suchoski et al. (2012) implement the
GPU version of the algorithm. Naumov et al. (2015) demon-
strate the effectiveness of colour-set algorithm to accelerate
parallel SpTRSV on GPU. Besides, Kabir et al. (2015) use
graph colouring to optimize the performance of SpTRSV on
NUMA architectures. But it is well known that graph colour-
ing is an NP-completed problem. Its preprocessing overhead
in real-world applications is often unacceptable.

There are also some studies that use block algorithm to
accelerate parallel SpTRSV. Mayer (2009) first point out that
2D blocking should be able to accelerate SpTRSV. Wang
et al. (2018a, 2018b) propose a novel data layout called
Sparse Level Tile and design a Producer-Consumer pair-
ing method for structured problems on Sunway processors.
Vuduc et al. (2002) and Bradley (2016) develop blocking
schemes for SpTRSV. Lu et al. (2020) design a recursive
blocking algorithm and utilize a new data structure to store
the input matrix. Ahmad et al. (2021) accelerate parallel
SpTRSV calculations by dividing them into two SpTRSV
and one SpMV systems and employing different algorithms
for each SpTRSV system.

There are a number of studies on block/tile optimization
for other BLAS kernels. Buttari et al. (2007) design the BCSR
format for SpMV. On GPUs, Choi et al. (2010) use blocked
formats to model SpMV, and Yan et al. (2014) develop the
BCCOO format, which stores dense 2D blocks. Addition-
ally, Niu et al. (2021, 2022) propose a tiled SpMV algorithm
and a tiled SpGEMM algorithm called TileSpMV and Tile-
SpGEMM, respectively. Ji et al. (2022) further developed Tile-
SpMSpV for multiplying sparse matrix and sparse vector. Such
work motivates us to design the TileSpTRSV algorithm using

Fig. 10 Performance ratio of double precision to single precision in
box plots of running the four SpTRSV algorithms on the 16 matrices
on the RTX 4090

 Z. Lu, W. Liu

1 3

the tiled structure in this work for SpTRSV to obtain perfor-
mance gain and enrich tiled algorithms for sparse BLAS.

6 Conclusion

In this paper, we implement two versions of TileSpTRSV
algorithm, namely TileSpTRSV_level-set on top
of level-set algorithm, and TileSpTRSV_sync-free
on top of Sync-free algorithm, respectively, on NVIDIA
GPUs. We also design an adaptive SpTRSV kernel selection
strategy for TileSpTRSV_level-set to use different
SpTRSV algorithms according to the tile-level parallelism
of the input matrix. In the experiment, we select 16 rep-
resentative matrices from the SuiteSparse Matrix Collec-
tion and evaluate TileSpTRSV, cuSPARSE, Sync-free and
Recblock algorithms on a modern NVIDIA GPU: GeForce
RTX 4090. The experimental results show that our TileSp-
TRSV achieves on average of 5.29× (up to 38.10×), 5.33×
(up to 21.32×), and 2.62× (up to 12.87×) speedups over
cuSPARSE, Sync-free and Recblock algorithms on the 16
representative matrices, respectively.

Acknowledgements We deeply appreciate the invaluable comments
from all the reviewers. We are also so grateful to Hemeng Wang for the
help in the experimental test. Weifeng Liu is the corresponding author
of this paper. This research was supported by the National Natural Sci-
ence Foundation of China under Grant No. 61972415.

References

Ahmad, N., Yilmaz, B., Unat, D.: A split execution model for sptrsv.
IEEE Trans. Parallel Distrib. Syst. 32(11), 2809–2822 (2021)

Anderson, E., Saad, Y.: Solving sparse triangular linear systems on
parallel computers. Int. J. High Speed Comput. 1(1), 73–95 (1989)

Anzt, H., Chow, E., Dongarra, J.: Iterative sparse triangular solves for
preconditioning. In: Euro-Par ’15. p 650–661 (2015)

Anzt, H., Chow, E., Szyld, D.B., et al.: Domain overlap for itera-
tive sparse triangular solves on GPUs. Softw. Exascale Comput.
SPPEXA 2013–2015, 527–545 (2016)

Anzt, H., Chow, E., Dongarra, J.: ParILUT—a new parallel threshold
ILU factorization. SIAM J. Sci. Comput. 40(4), C503–C519
(2018a)

Anzt, H., Huckle, T., Brackle, J., et al.: Incomplete sparse approxi-
mate inverses for parallel preconditioning. Parallel Comput. 71,
1–22 (2018b)

Bradley, A.M.: A hybrid multithreaded direct sparse triangular
solver. In: SIAM CSC workshop ’16, pp 13–22 (2016)

Buttari, A., Eijkhout, V., Langou, J., et al.: Performance optimization
and modeling of blocked sparse kernels. Int. J. High Perform.
Comput. Appl. 21(4), 467–484 (2007)

Choi, J.W., Singh, A., Vuduc, R.W.: Model-driven autotuning of
sparse matrix-vector multiply on gpus. In: PPoPP ’10, pp 115–
126 (2010)

Davis, T.: Direct methods for sparse linear systems. Society for
Industrial and Applied Mathematics (2006)

Davis, T.A., Hu, Y.: The University of Florida sparse matrix collec-
tion. ACM Trans. Math. Softw. 38(1), 11–125 (2011)

Duff, I.S., Erisman, A.M., Reid, J.K.: Direct methods for sparse
matrices, 2nd edn. Oxford University Press, Inc, Oxford (2017)

Dufrechou, E., Ezzatti, P.: A new GPU algorithm to compute a level
set-based analysis for the parallel solution of sparse triangular
systems. In: IPDPS ’18, pp 920–929 (2018a)

Dufrechou, E., Ezzatti, P.: Solving sparse triangular linear systems
in modern GPUs: a synchronization-free algorithm. In: PDP
’18, pp 196–203 (2018b)

Hou, K., Liu, W., Wang, H., et al. Fast segmented sort on GPUs. In:
ICS ’17, pp 12:1–12:10 (2017)

Ji, H., Song, H., Lu, S., et al. Tilespmspv: a tiled algorithm for
sparse matrix-sparse vector multiplication on gpus. In: ICPP
’22 (2022)

Kabir, H., Booth, J.D., Aupy, G., et al.: STS-k: A multilevel sparse
triangular solution scheme for NUMA multicores. In: SC ’15,
pp 55:1–55:11 (2015)

Li, X.S.: An overview of SuperLU: algorithms, implementation, and
user interface. ACM Trans. Math. Softw. 31(3), 302–325 (2005)

Li, R., Saad, Y.: GPU-accelerated preconditioned iterative linear
solvers. J. Supercomput. 63(2), 443–466 (2013)

Liu, W.: Parallel and scalable sparse basic linear algebra subpro-
grams. PhD thesis, University of Copenhagen (2015)

Liu, W., Li, A., Hogg, J., et al.: A synchronization-free algorithm for
parallel sparse triangular solves. In: Euro-Par ’16, pp 617–630
(2016)

Liu, W., Vinter, B.: A framework for general sparse matrix-matrix
multiplication on GPUs and heterogeneous processors. J. Paral-
lel Distrib. Comput. 85(C), 47–61 (2015a)

Liu, W., Vinter, B.: CSR5: an efficient storage format for cross-
platform sparse matrix-vector multiplication. In: ICS ’15, pp
339–350 (2015b)

Liu, W., Vinter, B.: Speculative segmented sum for sparse matrix-
vector multiplication on heterogeneous processors. Parallel
Comput. 49(C), 179–193 (2015c)

Liu, W., Li, A., Hogg, J.D., et al.: Fast synchronization-free algo-
rithms for parallel sparse triangular solves with multiple right-
hand sides. Concurr. Comput. Pract. Exp. 29(21), e4244 (2017)

Liu, J., He, X., Liu, W., et al.: Register-aware optimizations for paral-
lel sparse matrix-matrix multiplication. Int. J. Parallel Program.
47, 403–417 (2019)

Lu, Z., Niu, Y., Liu, W.: Efficient block algorithms for parallel sparse
triangular solve. In: ICPP ’20, pp 1–11 (2020)

Mayer, J.: Parallel algorithms for solving linear systems with sparse
triangular matrices. Computing 86(4), 291–312 (2009)

Naumov, M.: Parallel solution of sparse triangular linear systems in the
preconditioned iterative methods on the GPU. Tech. rep, NVIDIA
(2011)

Naumov, M., Castonguay, P., Cohen, J.: Parallel graph coloring with
applications to the incomplete-LU factorization on the GPU.
Nvidia White Paper (2015)

Niu, Y., Lu, Z., Dong, M., et al.: Tilespmv: a tiled algorithm for sparse
matrix-vector multiplication on gpus. In: IPDPS ’21, IEEE, pp
68–78 (2021)

Niu, Y., Lu, Z., Ji, H., et al.: Tilespgemm: a tiled algorithm for parallel
sparse general matrix-matrix multiplication on gpus. In: PPoPP
’22, pp 90–106 (2022)

Park, J., Smelyanskiy, M., Sundaram, N., et al.: Sparsifying synchro-
nization for high-performance shared-memory sparse triangular
solver. In: ISC ’14, pp 124–140 (2014)

TileSpTRSV: a tiled algorithm for parallel sparse triangular solve on GPUs

1 3

Saltz, J.H.: Aggregation methods for solving sparse triangular systems
on multiprocessors. SIAM J. Sci. Stat. Comput. 11(1), 123–144
(1990)

Schreiber, R., Tang, W.P.: Vectorizing the conjugate gradient method.
In: Proceedings of the Symposium on CYBER 205 Applications
(1982)

Su, J., Zhang, F., Liu, W., et al.: CapelliniSpTRSV: a thread-level
synchronization-free sparse triangular solve on GPUs. In: ICPP
’20 (2020)

Suchoski, B., Severn, C., Shantharam, M., et al.: Adapting sparse tri-
angular solution to GPUs. In: ICPPW ’12, pp 140–148 (2012)

Vuduc, R., Kamil, S., Hsu, J., et al.: Automatic performance tuning and
analysis of sparse triangular solve. In: ICS ’02 Workshop (2002)

Wang, X., Liu, W., Xue, W., et al.: SwSpTRSV: a fast sparse triangular
solve with sparse level tile layout on sunway architectures. In:
PPoPP ’18, p 338-353 (2018a)

Wang, X., Xu, P., Xue, W., et al.: A fast sparse triangular solver
for structured-grid problems on sunway many-core processor
SW26010. In: ICPP ’18 (2018b)

Wang, T., Li, W., Pei, H., et al.: Accelerating sparse lu factorization
with density-aware adaptive matrix multiplication for circuit simu-
lation. In: DAC ’23 (2023)

Xie, Z., Tan, G., Liu, W., et al.: IA-SpGEMM: An input-aware auto-
tuning framework for parallel sparse matrix-matrix multiplication.
In: ICS ’19, pp 94–105 (2019)

Xie, C., Chen, J., Firoz, J., et al.: Fast and scalable sparse triangular
solver for multi-gpu based hpc architectures. In: ICPP ’21, pp
1–11 (2021)

Yan, S., Li, C., Zhang, Y., et al. (2014) yaspmv: yet another spmv
framework on gpus. In: PPoPP ’14, pp 107–118 (2021)

Zhang, F., Su, J., Liu, W., et al.: Yuenyeungsptrsv: a thread-level and
warp-level fusion synchronization-free sparse triangular solve.
IEEE Trans. Parallel Distrib. Syst. 32(9), 2321–2337 (2021)

Zhao, J., Wen, Y., Luo, Y., et al.: Sflu: Synchronization-free sparse lu
factorization for fast circuit simulation on gpus. In: DAC ’21, pp
37–42 (2021)

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

	TileSpTRSV: a tiled algorithm for parallel sparse triangular solve on GPUs
	Abstract
	1 Introduction
	2 Background
	2.1 Serial SpTRSV
	2.2 Level-set parallel SpTRSV
	2.3 Synchronization-free parallel SpTRSV

	3 TileSpTRSV
	3.1 Overview
	3.2 Two-level storage structure
	3.3 Format selection strategy
	3.4 Tile-level algorithms
	3.5 TileSpTRSV_level-set
	3.6 TileSpTRSV_sync-free

	4 Experimental results
	4.1 Experimental setup
	4.2 Comparison of two implements for TileSpTRSV
	4.3 Performance comparison over existing SpTRSV works
	4.4 Space cost comparison
	4.5 Preprocessing overhead
	4.6 Performance of different precision

	5 Related work
	6 Conclusion
	Acknowledgements
	References

