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ABSTRACT
Sparse matrix-vector multiplication (SpMV) plays a key role in

computational science and engineering, graph processing, and ma-
chine learning applications. Much work on SpMV was devoted to
resolving problems such as random access to the vector 𝑥 and un-
balanced load. However, we have experimentally found that the
computation of inner products still occupies much overhead in the
SpMV operation, which has been largely ignored in existing work.

In this paper, we propose DASP, a new algorithm using spe-
cific dense MMA units for accelerating the compute part of gen-
eral SpMV. We analyze the row-wise distribution of nonzeros and
group the rows into three categories containing long, medium, and
short rows, respectively. We then organize them into small blocks
of proper sizes to meet the requirement of MMA computation. For
the three categories, DASP offers different strategies to complete
SpMV by efficiently utilizing the MMA units.

The experimental results on two newest NVIDIA GPUs A100
and H800 show that our DASP in FP64 precision outperforms five
latest SpMV methods CSR5, TileSpMV, LSRB-CSR, cuSPARSE BSR
format and cuSPARSE CSR format by a factor of on average 1.46x,
2.09x, 3.29x, 2.08x and 1.52x (up to 12.64x, 17.48x, 90.59x, 283.92x
and 6.94x) on A100, respectively. As for SpMV in FP16 precision,
our DASP outperforms cuSPARSE by a factor of on average 1.70x
and 1.75x (up to 26.47x and 65.94x) on A100 and H800, respectively.

CCS CONCEPTS
• Mathematics of computing→ Mathematical software per-
formance; • Computing methodologies → Shared memory
algorithms; Vector / streaming algorithms.
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GPU, tensor core,matrixmultiply-accumulate, sparsematrix-vector
multiplication
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Figure 1: Bandwidth throughput of three double-precision
SpMV approaches, CSR5, cuSPARSE and DASP (this work),
running the largest 202matrices with no less than 107 nonze-
ros in the SuiteSparseMatrix Collection on anNVIDIAA100
GPU. The red and blue dash lines are theoretical and mea-
sured (STREAM-like Triad) peak bandwidths, respectively.
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1 INTRODUCTION
Sparse matrix operations are one of the most fundamental cor-

nerstones in computational science and engineering. Since the po-
sitions of the nonzeros of a sparse matrix can be very irregular,
compared to dense matrix computations, there are more problems,
such as poor memory locality and unbalanced load, to resolve [23,
33]. Sparse matrix-vector multiplication (SpMV) may be the most
studied kernel among sparse matrix operations. Much research has
focused on improving itsmemory access through vertical-slicing [37,
51] and 2D-tiling [76, 98] the nonzeros in a sparse matrix, and on
balancing workload by reconstructing a nearly even-sized basic
working unit [39, 64, 73].

However, even though such existingwork already demonstrated
promising improvements, the performance achieved is still unsatis-
factory. Figure 1 shows the bandwidth throughput (GB/s) of three
double-precision SpMV approaches, i.e., CSR5 [64] (probably the
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Figure 2: Execution time breakdown of running a standard
CSR SpMV algorithm on an NVIDIA A100 GPU.

most tested open-source baseline in existing SpMV work), cuS-
PARSE v12.0 (the newest vendor-supported library), andDASP (our
algorithm proposed in this paper) running on an NVIDIA A100
40GB PCIe GPU by using the largest 202 sparse matrices (with no
less than 10 million nonzeros) in the SuiteSparse Matrix Collec-
tion [24]. As can be seen, neither CSR5 nor cuSPARSE can bring
the bandwidth achieved to near peak bandwidth (measured with a
STREAM-like Triad test [72]).This indicates that SpMV algorithms
may still have room to improve.

To understand the performance behavior of SpMV, we further
breakdown the costs of the standardCSR SpMV (writtenwith CUDA
and run on the NVIDIA A100) into three parts: (1) RANDOM ACCESS
on the vector 𝑥 , (2) COMPUTE of inner products of nonzeros in𝐴 and
the corresponding components of𝑥 loaded, and (3) MISCELLANEOUS
only including reading andwriting arrays such as 𝑟𝑜𝑤_𝑝𝑜𝑖𝑛𝑡𝑒𝑟 and
𝑦, and plot the results of all the 2893 matrices from the SuiteSparse
Matrix Collection [24] in Figure 2. It can be seen that, although
SpMV is a well-known memory-bound kernel, its COMPUTE part
still occupies much overhead. However, to the best of our knowl-
edge, existing work largely ignored optimizing this part and leads
to the suboptimal performance (recall the gap between the band-
width achieved and the peak shown in Figures 1).

Fortunately, recent parallel processors, in particular GPUs, in-
clude dedicatedmatrix multiply-accumulate (MMA) units to signif-
icantly accelerate small dense generalmatrixmultiplication (GEMM).
NVIDIATensor Cores, AMDMatrix Cores, AppleMatrix Co-processors
(AMX), as well as Intel XeMatrix Extensions (XMX) and Advanced
Matrix Extensions (AMX) are representatives of such MMA units.
In addition to GEMM, in recent years, the performance of a number
of other fundamental algorithms, such as reduction and scan [22],
stencil [66], FFT [28, 56, 80], deep neural networks [55, 94], molec-
ular dynamics [34], block iterative solvers [11, 40], sparse matrix-
dense matrix multiplication (SpMM) [60, 87], has also been im-
proved through the use of MMA units.

However, exploiting the computational power of theMMAunits
for SpMV is not trivial.Themain reason is that, on one side, the dis-
tribution of nonzeros of the matrix in SpMV can be very irregular,
but on the other, the MMA units need strict regular data layout to
fully utilize the hardware. To address this problem, we in this paper
propose DASP, a new algorithm using specific dense MMA units

for accelerating general SpMV. We first analyze the row-wise dis-
tribution of nonzeros and group the rows into three categories to
contain long, medium, and short rows, respectively. Then we fur-
ther divide each long row into chunks of proper sizes to meet the
requirement of the MMA computation, and aggregate short rows
together to form the regular layout for MMA. For rows of medium
sizes, we further distinguish them into regular and irregular parts
and use different computational units accordingly. On top of the
MMA-friendly data structure, different CUDA kernels utilizing the
MMA units are developed for the three groups of rows.

We evaluateDASP by using all the 2893matrices from the SuiteS-
parse Matrix Collection [24] on two latest NVIDIA GPUs A100
(Ampere) and H800 (Hopper) with hardware-supported FP64 and
FP16 MMA units. Figure 1 demonstrates that by utilizing the MMA
units, our DASP algorithm produces a much higher overall perfor-
mance and brings the bandwidths of more matrices closer to the
measured peak. More complete experimental results listed in Sec-
tion 4 show that compared to five latest SpMVmethods in FP64 pre-
cision, our DASP is faster than CSR5 [64] on 2403 matrices, faster
than TileSpMV [76] on 2579 matrices, faster than LSRB-CSR [63]
on 2251matrices, faster than cuSPARSE v12.0 BSR format SpMVon
2340 matrices, and faster than cuSPARSE v12.0 CSR format SpMV
on 2344 matrices, and achieves on average (geometric mean) 1.46x,
2.09x, 3.29x, 2.08x and 1.52x (up to 12.64x, 17.48x, 90.59x, 283.92x
and 6.94x) speedups over them on A100, respectively. As for SpMV
in FP16 precision, our DASP is faster than cuSPARSE CSR format
SpMV on 2578 and 2576 matrices, and achieves on average 1.70x
and 1.75x (up to 26.47x and 65.95x) speedups over cuSPARSE on
A100 and H800, respectively.

This work makes the following contributions:
• We identify that the compute part could be a critical perfor-

mance bottleneck of SpMV, and MMA as a novel hardware
unit could bring higher performance;
• We propose the DASP algorithm that makes the irregular

data layout in sparse matrices regular for efficiently exploit-
ing the MMA units;
• Wedemonstrate that our approach bringsmostmatrices higher

performance than state-of-the-art SpMV work on the latest
NVIDIA Ampere and Hopper GPUs.

2 BACKGROUND
2.1 SpMV and its Performance Analysis

Figure 3: An example of SpMV that multiplies a 6-by-6
sparse matrix 𝐴 with a vector 𝑥 and gets a vector 𝑦.
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Algorithm 1 A pseudocode of parallel CSR SpMV.
1: for 𝑖 = 0 to𝑚 in parallel do
2: 𝑠𝑢𝑚 ← 0
3: for 𝑗 = 𝑅𝑜𝑤𝑃𝑡𝑟 [𝑖 ] to 𝑅𝑜𝑤𝑃𝑡𝑟 [𝑖 + 1] do
4: 𝑣𝑎𝑙𝑥 ← 𝑥 [𝐶𝑜𝑙𝐼𝑑𝑥 [ 𝑗 ] ] // RANDOM ACCESS 𝑥
5: 𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + 𝑣𝑎𝑙𝑥 × 𝑉𝑎𝑙 [ 𝑗 ] // COMPUTE
6: end for
7: 𝑦 [𝑖 ] ← 𝑠𝑢𝑚
8: end for

The SpMV operation multiplies a sparse matrix 𝐴 with a dense
vector 𝑥 to obtain a dense vector 𝑦 as the result. Figure 3 shows
a simple example of SpMV. The Compressed Sparse Row (CSR)
format is currently the most commonly used storage format for
the sparse matrix 𝐴 in this operation and the basis for the data
structure of this work. In the CSR format, the row coordinate infor-
mation of nonzeros is compressed, and it uses three dense arrays
to represent a matrix: (1) Val, stores the value of all nonzeros in
the matrix, the size is 𝑛𝑛𝑧𝐴, where 𝑛𝑛𝑧𝐴 represents the number of
nonzeros of matrix 𝐴. (2) ColIdx, which stores the column index
of the corresponding element in the array Val, the size is 𝑛𝑛𝑧𝐴. (3)
RowPtr, which stores thememory offset of the first element in each
row of the sparse matrix, that is, the subscript of Val. RowPtr[𝑖+1]-
RowPtr[𝑖] calculates the number of nonzeros in the 𝑖th row of the
matrix. Its size is 𝑟𝑜𝑤𝐴 + 1, where 𝑟𝑜𝑤𝐴 is the number of rows in
the matrix 𝐴.

There is no dependency between rows in the SpMV operation,
so it can easily implement row-to-row parallel execution. Algo-
rithm 1 shows a pseudocode of parallel SpMV using the CSR for-
mat. For each row of matrix𝐴, it first creates a variable 𝑠𝑢𝑚 as the
accumulator of that row, traverses each nonzero of that row, and
obtains the corresponding 𝑥 according to the column index of the
nonzero (line 4 in Algorithm 1). It then accumulates the product of
the 𝑥 and the current nonzero to the variable 𝑠𝑢𝑚 (line 5 in Algo-
rithm 1), and finally writes the value of the accumulator 𝑠𝑢𝑚 back
to 𝑦. Recall that we in Section 1 divided the SpMV operation into
three parts: RANDOM ACCESS, COMPUTE and MISCELLANEOUS, and
Figure 2 shows the proportion of the three parts in the SpMV execu-
tion time for all 2893 matrices. In addition to the RANDOM ACCESS
part, the overhead of the COMPUTE part also accounts for a large
portion, and the average proportions of RANDOM ACCESS, COMPUTE
and MISCELLANEOUS parts in the entire execution time of SpMV are
25.1%, 21.1% and 53.8%, respectively.

2.2 Specific MMA Units
In recent years, the rapid growth of artificial intelligence has

promptedmany processors to incorporate specializedmatrixmultiply-
accumulate units to improve the performance of their most time-
consuming arithmetic operations, such as dense GEMM and con-
volution. Examples of such units include NVIDIA Tensor Cores,
AMD Matrix Cores, etc.

Taking tensor core for example, it is an ASIC specifically de-
signed for small GEMM which can multiply two 4x4 matrices and
add the result to another 4x4 matrix in a single clock cycle. The
relevant instructions take the operands of 32 threads (a warp) to

Figure 4: The layout of the fragments held by different
threads of the FP64 precision mma_m8n8k4 instruction.

complete the GEMM operation in a tensor core. By the third gen-
eration of tensor core, it has been able to support integer, half, sin-
gle, and double precision floating point data types. NVIDIA pro-
vided a CUDA C++ Warp Matrix Multiply-Accumulate (WMMA)
API to program the tensor cores, but in order to support SpMV
operation more flexibly, we call the mma instructions provided in
PTX to complete the matrix multiply-accumulate operation. Fig-
ure 4 shows the layout of the fragments held by different threads
of the FP64 precision mma_m8n8k4 instruction, where the𝑀𝑀𝐴_𝑀 ,
𝑀𝑀𝐴_𝑁 and 𝑀𝑀𝐴_𝐾 are 8, 8 and 4, respectively. The warp that
calls this instruction will multiply an 8-by-4 matrix𝐴with a 4-by-8
matrix 𝐵 and get an 8-by-8 dense matrix 𝐶 . In this operation, the
three fragments that make up these three matrices are distributed
among the 32 threads of the warp. Listing 1 shows the correspond-
ing PTX codes of the instruction. In this paper, the COMPUTE part
in DASP is mostly done by calling the mma instructions.

Listing 1 The FP64 precision mma_m8n8k4 instruction.
1: % __device__ __forceinline__
2: void mma_m8n8k4(double *acc , double &frag_a ,
3: double &frag_b ){
4: asm volatile(
5: "mma.sync.aligned.m8n8k4.
6: row.col.f64.f64.f64.f64"
7: " { %0, %1 }, "
8: " { %2 }, "
9: " { %3 }, "

10: " { %0, %1 };"
11: : "+d"(acc[0]), "+d"(acc [1]):
12: "d"(frag_a), "d"(frag_b ));
13: }



SC ’23, November 12–17, 2023, Denver, CO, USA Lu and Liu

Figure 5: An example matrix 𝐴 of size 20-by-20 stored in several blocks of size 2-by-4 (assuming 𝑀𝑀𝐴_𝑀 = 2, 𝑀𝑀𝐴_𝐾 = 4).
The matrix 𝐴 is divided into three categories after rearrangement: long rows, medium rows, and short rows. The nonzeros in
each category are given several 2-by-4 blocks by some variation and supplementary zero elements, and the data related to all
elements in one category are stored by several arrays.

3 DASP
3.1 Overview

DASP is a new algorithm using specific dense MMA units for
accelerating general SpMV. It consists of two main components: a
new data structure that can be efficiently used for the compute pat-
tern of the MMA units, and the corresponding SpMV algorithms.

Due to the strict requirements of the MMA units on data lay-
out, we first need to convert the sparse matrix 𝐴 from the basic
CSR format to a blocked format of a certain size (determined by
the 𝑀𝑀𝐴_𝑀 , 𝑀𝑀𝐴_𝑁 and 𝑀𝑀𝐴_𝐾 corresponding to the mma
instructions), so that we can directly use the mma instructions for
computing in the GPU kernel. For the sparse matrix 𝐴, we clas-
sify it based on its row length and store the nonzeros of each part
using different formats. Section 3.2 will introduce the DASP data
structure in detail.

For nonzeros from different parts, we use different allocation
methods to distribute them to the MMA units for calculation.Then
by calling the CUDA shuffle instructions, we extract the results
we needed from the accumulator obtained by the mma instruction.
Finally, the results are written back to the vector𝑦. In GPU kernels,
we also employ optimization techniques such as cache bypass and
adaptive workload allocation, which will be introduced in Section
3.3.

3.2 Data Structure
Weanalyze the distribution of nonzeros in each rowof the sparse

matrix𝐴, and group all rows into three categories according to the
number of nonzeros in each row (i.e. 𝑅𝑜𝑤_𝑙𝑒𝑛):

• Long Rows: 𝑅𝑜𝑤_𝑙𝑒𝑛 > 𝑀𝐴𝑋_𝐿𝐸𝑁 ;
• Medium Rows: 4 < 𝑅𝑜𝑤_𝑙𝑒𝑛 ≤ 𝑀𝐴𝑋_𝐿𝐸𝑁 ;
• Short Rows: 𝑅𝑜𝑤_𝑙𝑒𝑛 ≤ 4.

The 𝑀𝐴𝑋_𝐿𝐸𝑁 is an adjustable parameter that represents the
maximum length of medium rows, here we set its value to 256 (this
is the value that is just right for the workload of a thread block, the

details will be described in Section 3.3). In the actual calculation,
the minimum layout supported by the mma instruction is m8n8k4
(𝑀𝑀𝐴_𝑀 = 8, 𝑀𝑀𝐴_𝑁 = 8, 𝑀𝑀𝐴_𝐾 = 4), so the block size in the
actual data structure is 8×4. Figure 5 shows an example matrix of
size 20-by-20. In this figure, we assume that the pattern supported
by the mma instruction is m2n2k4, so the nonzero block size in the
example is 2×4.

For the Long rows part, the nonzeros in each rowwill be divided
into several groups, and the number of nonzeros in each group
is 2 × 𝑀𝑀𝐴_𝑀 × 𝑀𝑀𝐴_𝐾 , that is, 64. If the number of nonze-
ros in a row is not sufficient to be a multiple of the group, it will
be padded with zero to reach a number of nonzeros that can be
evenly divided by the group size. Therefore, the data of the long
rows part are stored in three arrays: (1) longVal: stores the value
of the elements in the long rows, including the filled zero elements.
These zero elements are appended after the end of nonzeros in each
row, and the size of this array is 𝑛𝑛𝑧_𝑙𝑜𝑛𝑔_𝑛𝑒𝑤 . That is, the sum
of the number of nonzeros in the long rows part and the number
of filled zero elements; (2) longCid: stores the column index of the
corresponding element in the array longVal. The column index of
zero elements is set to 0, and the array size is 𝑛𝑛𝑧_𝑙𝑜𝑛𝑔_𝑛𝑒𝑤 ; (3)
groupPtr: stores the offset of the first group of each row, which
represents the position of the first group of each row in all groups,
and its size is 𝑟𝑜𝑤_𝑙𝑜𝑛𝑔 + 1 (𝑟𝑜𝑤_𝑙𝑜𝑛𝑔 is the total number of rows
in the long rows part). The yellow part in Figure 5 represents an
example of the long rows part, where it is assumed that each group
has 16 elements, so two long rows are divided into 2 groups.

For the medium rows part, all rows are sorted in a stable de-
scending order. After that, each 𝑀𝑀𝐴_𝑀 rows is regarded as a
row-block, and each row-block is divided into several blocks of size
𝑀𝑀𝐴_𝑀×𝑀𝑀𝐴_𝐾 according to 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . The 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is a cus-
tomized parameter that is set to 0.75 in DASP. When the number
of nonzeros in an 𝑀𝑀𝐴_𝑀 ×𝑀𝑀𝐴_𝐾 space exceeds 𝑀𝑀𝐴_𝑀 ×
𝑀𝑀𝐴_𝐾 ×𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , we recognize it as a block, and the empty po-
sitions are filled by zero elements, which we call these blocks the
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regular part of the medium rows; otherwise, the nonzeros that are
not considered blocks belong to the irregular part of the medium
rows. We store the elements of the regular part and the irregular
part separately, so the medium rows part uses six arrays to store
its related data: (1) regVal: stores the values of the elements in the
regular part, including the nonzeros in the original matrix and the
filled zero elements. This array uses intra-block row-major layout,
and its size is 𝑛𝑛𝑧_𝑟𝑒𝑔_𝑛𝑒𝑤 ; (2) regCid: stores the column index
of the corresponding elements in the array regVal, and its size is
𝑛𝑛𝑧_𝑟𝑒𝑔_𝑛𝑒𝑤 ; (3) rowblockPtr: stores the memory offset of the
first element belonging to the regular part in each row-block, and
its size is 𝑟𝑜𝑤𝑏𝑙𝑜𝑐𝑘_𝑛𝑢𝑚+1 ( 𝑟𝑜𝑤𝑏𝑙𝑜𝑐𝑘_𝑛𝑢𝑚 is the number of row-
blocks contained in the medium rows); (4) irregVal: stores the
value of the nonzeros in the irregular part, which size is 𝑛𝑛𝑧_𝑖𝑟𝑟𝑒𝑔;
(5) irregCid: stores the column index of the corresponding nonze-
ros in the array irregVal, and its size is 𝑛𝑛𝑧_𝑖𝑟𝑟𝑒𝑔; (6) irregPtr:
stores the memory offset of the first nonzero of each row in the
irregular part, and its size is 𝑟𝑜𝑤_𝑚𝑒𝑑𝑖𝑢𝑚 + 1 (𝑟𝑜𝑤_𝑚𝑒𝑑𝑖𝑢𝑚 is the
number of rows in the medium rows). The red part in Figure 5
shows the storage format of the medium rows.

For the short rows part, we adopt the strategy of piecing to
blocks to enhance the utilization of the MMA units. The rows of
𝑟𝑜𝑤_𝑙𝑒𝑛 = 1 and 𝑟𝑜𝑤_𝑙𝑒𝑛 = 3 are pieced together to obtain rows of
𝑟𝑜𝑤_𝑙𝑒𝑛 = 4, and the rows of 𝑟𝑜𝑤_𝑙𝑒𝑛 = 2 are pieced together to
get rows of 𝑟𝑜𝑤_𝑙𝑒𝑛 = 4. For rows of 𝑟𝑜𝑤_𝑙𝑒𝑛 = 3 remaining after
piecing with rows of 𝑟𝑜𝑤_𝑙𝑒𝑛 = 1 (not enough to form a block),
they are treated as rows of 𝑟𝑜𝑤_𝑙𝑒𝑛 = 4 by filling in one zero el-
ement. For the rows of 𝑟𝑜𝑤_𝑙𝑒𝑛 = 1 remaining after piecing with
rows of 𝑟𝑜𝑤_𝑙𝑒𝑛 = 3, we place them at the end of all short rows
elements. Therefore, all the data in the short rows part are divided
into four categories: 1&3 pieced rows, rows of 𝑟𝑜𝑤_𝑙𝑒𝑛 = 4 (includ-
ing those filled with a zero element), 2&2 pieced rows and the rows
of 𝑟𝑜𝑤_𝑙𝑒𝑛 = 1. The data related to the short rows part are stored
using two arrays: (1) shortVal: stores the value of all elements in
the short rows part, and the size of this array is 𝑛𝑛𝑧_𝑠ℎ𝑜𝑟𝑡_𝑛𝑒𝑤 ;
(2) shortCid: stores the column index of the corresponding ele-
ment in the array shortVal, the index of zero element is set to 0,
the size of this array is 𝑛𝑛𝑧_𝑠ℎ𝑜𝑟𝑡_𝑛𝑒𝑤 . As the row lengths of the
four categories in short rows are fixed, there is no need for redun-
dant arrays to store element memory offsets. The cool-toned part
of Figure 5 offers an example of the short rows part.

3.3 Algorithm Description
Our DASP offers different computation strategies for different

categories of rows, and we will introduce them in the following.
We adopt the bypass cache method in the following algorithms to
improve the hit rate of 𝑥 in the cache as much as possible.

3.3.1 Long Rows. As mentioned in the Section 3.2, each long row
will be divided into several groups of 2 ×𝑀𝑀𝐴_𝑀 ×𝑀𝑀𝐴_𝐾 el-
ements. Algorithm 2 shows the pseudocode of computation of the
long rows part. Before each call to the mma instruction, a block
(𝑀𝑀𝐴_𝑀 × 𝑀𝑀𝐴_𝐾 ) of data is temporarily stored in the 𝑓 𝑟𝑎𝑔𝐴
and 𝑓 𝑟𝑎𝑔𝑋 registers of each thread. Then the mma instruction is
called to make 32 threads in one warp work together to compute a
GEMM of size m8n8k4. Upon completing twoMMA computations,
eight meaningful results are produced and distributed among the

Algorithm 2 A pseudocode of warp-level Long-Rows SpMV.
1: for 𝑙𝑎𝑛𝑒𝑖𝑑 = 0 to 31 in parallel do
2: 𝑓 𝑟𝑎𝑔𝑌 [2], 𝑓 𝑟𝑎𝑔𝐴, 𝑓 𝑟𝑎𝑔𝑋 ← 0
3: 𝑖𝑑𝑥 = (3 & 𝑙𝑎𝑛𝑒𝑖𝑑 ) + (𝑙𝑎𝑒𝑛𝑖𝑑 >> 2)× MMA_K
4: for 𝑖 = 0 to 1 do
5: 𝑓 𝑟𝑎𝑔𝐴← longVal[𝑜 𝑓 𝑓 𝑠𝑒𝑡𝐴 + 𝑖𝑑𝑥 ]
6: 𝑓 𝑟𝑎𝑔𝑋 ← valX[longCid[𝑜 𝑓 𝑓 𝑠𝑒𝑡𝐴 + 𝑖𝑑𝑥 ] ]
7: mma_m8n8k4(𝑓 𝑟𝑎𝑔𝑌 , 𝑓 𝑟𝑎𝑔𝐴, 𝑓 𝑟𝑎𝑔𝑋 )
8: 𝑖𝑑𝑥 += MMA_M × MMA_K
9: end for

10: 𝑓 𝑟𝑎𝑔𝑌 [0] += __shfl_down_sync(0xffffffff, 𝑓 𝑟𝑎𝑔𝑌 [0], 9)
11: 𝑓 𝑟𝑎𝑔𝑌 [0] += __shfl_down_sync(0xffffffff, 𝑓 𝑟𝑎𝑔𝑌 [0], 18)
12: 𝑓 𝑟𝑎𝑔𝑌 [1] += __shfl_down_sync(0xffffffff, 𝑓 𝑟𝑎𝑔𝑌 [1], 9)
13: 𝑓 𝑟𝑎𝑔𝑌 [1] += __shfl_down_sync(0xffffffff, 𝑓 𝑟𝑎𝑔𝑌 [1], 18)
14: 𝑓 𝑟𝑎𝑔𝑌 [0] += __shfl_sync(0xffffffff, 𝑓 𝑟𝑎𝑔𝑌 [1], 4)
15: if 𝑙𝑎𝑛𝑒𝑖𝑑 == 0 then
16: warpVal[𝑤𝑎𝑟𝑝𝑖𝑑 ] ← 𝑓 𝑟𝑎𝑔𝑌 [0]
17: end if
18: 𝑡ℎ𝑟𝑒𝑎𝑑𝑉𝑎𝑙 ← 0
19: for 𝑖 = 𝑙𝑎𝑛𝑒𝑖𝑑 to 𝑟𝑜𝑤_𝑤𝑎𝑟𝑝_𝑙𝑒𝑛 step WARP_SIZE do
20: 𝑡ℎ𝑟𝑒𝑎𝑑𝑉𝑎𝑙 += warpVal[𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑊 + 𝑖 ]
21: end for
22: 𝑡ℎ𝑟𝑒𝑎𝑑𝑉𝑎𝑙 = warpReduceSum(𝑡ℎ𝑟𝑒𝑎𝑑𝑉𝑎𝑙 )
23: if 𝑙𝑎𝑛𝑒𝑖𝑑 == 0 then
24: valY[𝑤𝑎𝑟𝑝𝑖𝑑 ] ← 𝑡ℎ𝑟𝑒𝑎𝑑𝑉𝑎𝑙
25: end if
26: end for

Figure 6: An example of DASP algorithm for long rows. The
𝑅𝑜𝑤_𝑙𝑒𝑛 of this row is 256, and the calculation is completed
by four warps.

32 threads in the register 𝑓 𝑟𝑎𝑔𝑌 . The next step is to call the CUDA
Shuffle instructions to sum these 8 values and store the result in
the register of the first thread. The result is then written to the
pre-allocated global memory array warpVal. After all warps have
been calculated and their results written in warpVal, the final value
𝑦 is obtained by performing a warp-level summation of all values
in warpVal generated in one row. It is set that there are 4 warps
in a thread block, and each warp calculates 2 data blocks in the
long rows, so a thread block will calculate 256 elements in one
row. Therefore, the value of 𝑀𝐴𝑋_𝐿𝐸𝑁 is said to be exactly the
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workload of a thread block. Figure 6 illustrates the computation of
a long row with size 256.

Figure 7: An example of DASP algorithm for medium rows,
and it is a row-block which is divided to regular part with
three blocks and a irregular part.

Algorithm 3 A pseudocode of warp-level Medium-Rows SpMV.
1: for 𝑙𝑎𝑛𝑒𝑖𝑑 = 0 to 31 in parallel do
2: for 𝑖 = 0 to LOOP_NUM do
3: 𝑓 𝑟𝑎𝑔𝑌 [2], 𝑓 𝑟𝑎𝑔𝐴, 𝑓 𝑟𝑎𝑔𝑋, 𝑟𝑒𝑠 ← 0
4: 𝑖𝑑𝑥 = (3 & 𝑙𝑎𝑛𝑒𝑖𝑑 ) + (𝑙𝑎𝑒𝑛𝑖𝑑 >> 2)× MMA_K
5: 𝑏𝑖𝑑 = 𝑤𝑖𝑑× LOOP_NUM + 𝑖
6: 𝑙𝑒𝑛 = rowblockPtr[𝑏𝑖𝑑 + 1]−rowblockPtr[𝑏𝑖𝑑 ]
7: for 𝑗 = 0 to 𝑙𝑒𝑛 step MMA_K do
8: 𝑓 𝑟𝑎𝑔𝐴← regVal[𝑜 𝑓 𝑓 𝑠𝑒𝑡𝐴 + 𝑖𝑑𝑥 ]
9: 𝑓 𝑟𝑎𝑔𝑋 ← valX[regCid[𝑜 𝑓 𝑓 𝑠𝑒𝑡𝐴 + 𝑖𝑑𝑥 ] ]

10: mma_m8n8k4(𝑓 𝑟𝑎𝑔𝑌 , 𝑓 𝑟𝑎𝑔𝐴, 𝑓 𝑟𝑎𝑔𝑋 )
11: 𝑖𝑑𝑥 += MMA_M × MMA_K
12: end for
13: 𝑡𝑎𝑟𝑔𝑒𝑡 = ( (𝑙𝑎𝑛𝑒𝑖𝑑 − 𝑖 × 8) >> 1) × 9
14: 𝑓 𝑟𝑎𝑔𝑌 [0] = __shfl_sync(0xffffffff, 𝑓 𝑟𝑎𝑔𝑌 [0], 𝑡𝑎𝑟𝑔𝑒𝑡 )
15: 𝑓 𝑟𝑎𝑔𝑌 [1] = __shfl_sync(0xffffffff, 𝑓 𝑟𝑎𝑔𝑌 [1], 𝑡𝑎𝑟𝑔𝑒𝑡 + 4)
16: if (𝑙𝑎𝑛𝑒𝑖𝑑 >> 3) == 𝑖 then
17: 𝑟𝑒𝑠 = (1 & 𝑙𝑎𝑛𝑒𝑖𝑑 ) == 0 ? 𝑓 𝑟𝑎𝑔𝑌 [0] : 𝑓 𝑟𝑎𝑔𝑌 [1]
18: end if
19: end for
20: if (𝑙𝑎𝑛𝑒𝑖𝑑 >> 3) < LOOP_NUM then
21: 𝑐𝑢𝑟_𝑟𝑜𝑤 = 𝑤𝑖𝑑× LOOP_NUM × MMA_M + 𝑙𝑎𝑛𝑒𝑖𝑑
22: for 𝑖 =irregPtr[𝑐𝑢𝑟_𝑟𝑜𝑤 ] to irregPtr[𝑐𝑢𝑟_𝑟𝑜𝑤 + 1] do
23: 𝑟𝑒𝑠 += irregVal[𝑖 ]× valX[irregCid[𝑖 ] ]
24: end for
25: valY[𝑐𝑢𝑟_𝑟𝑜𝑤 ] ← 𝑟𝑒𝑠
26: end if
27: end for

3.3.2 MediumRows. Anewparameter𝐿𝑂𝑂𝑃_𝑁𝑈𝑀 is introduced
when performing the medium rows calculation, which indicates
the number of row-blocks to be calculated by awarp.When 𝑟𝑜𝑤_𝑚𝑒𝑑𝑖𝑢𝑚
is less than 59990, the value of𝐿𝑂𝑂𝑃_𝑁𝑈𝑀 is 1; when 𝑟𝑜𝑤_𝑚𝑒𝑑𝑖𝑢𝑚
is greater than or equal to 59990 and less than 400000, the value of

𝐿𝑂𝑂𝑃_𝑁𝑈𝑀 is 2; and the value of𝐿𝑂𝑂𝑃_𝑁𝑈𝑀 is 4when 𝑟𝑜𝑤_𝑚𝑒𝑑𝑖𝑢𝑚
is greater than or equal to 400000. Algorithm 3 shows the pseu-
docode of the medium rows’ calculation. Similarly, the data of the
corresponding block are loaded into the local register before the
calculation, and then the mma instruction is called to perform the
calculation. In general, a row-block will consist of multiple blocks,
so the number of loop calculations is controlled by the length of
the row block, and the products ofmultiple calculations of one row-
block are accumulated in the register 𝑓 𝑟𝑎𝑔𝑌 . After extracting the
value in the register 𝑓 𝑟𝑎𝑔𝑌 to the corresponding location of the reg-
ister 𝑟𝑒𝑠 by the CUDA Shuffle instructions, the calculation of the
regular part of the medium rows is basically completed. For the
elements in the irregular part, each thread is responsible for one
row in parallel, and the computation results are accumulated into
the corresponding register 𝑟𝑒𝑠 and finally written back to the ar-
ray valY together. Figure 7 shows the computation process of the
medium rows when 𝐿𝑂𝑂𝑃_𝑁𝑈𝑀 = 1. The row-block in the fig-
ure consists of three blocks, requiring the execution of three MMA
computations.

Algorithm 4 A pseudocode of warp-level Short-1&3-Rows SpMV.
1: for 𝑙𝑎𝑛𝑒𝑖𝑑 = 0 to 31 in parallel do
2: 𝑓 𝑟𝑎𝑔𝐴, 𝑓 𝑟𝑎𝑔𝑋, 𝑟𝑒𝑠 ← 0
3: 𝑖𝑑𝑥 = (3 & 𝑙𝑎𝑛𝑒𝑖𝑑 ) + (𝑙𝑎𝑒𝑛𝑖𝑑 >> 2)× MMA_K
4: for 𝑖 = 0 to 3 do
5: 𝑓 𝑟𝑎𝑔𝑌 [2] ← 0
6: 𝑐𝑖𝑑𝐴← shortCid[𝑜 𝑓 𝑓 𝑠𝑒𝑡𝐴 + 𝑖𝑑𝑥 ]
7: if 1 & 𝑖 == 0 then
8: 𝑓 𝑟𝑎𝑔𝐴← shortVal[𝑜 𝑓 𝑓 𝑠𝑒𝑡𝐴 + 𝑖𝑑𝑥 ]
9: 𝑓 𝑟𝑎𝑔𝑋 = 3 & 𝑙𝑎𝑛𝑒𝑖𝑑 == 0 ? valX[𝑐𝑖𝑑𝐴] : 0

10: else
11: 𝑓 𝑟𝑎𝑔𝑋 = 3 & 𝑙𝑎𝑛𝑒𝑖𝑑 == 0 ? 0 : valX[𝑐𝑖𝑑𝐴]
12: 𝑖𝑑𝑥 += MMA_M × MMA_K
13: end if
14: mma_m8n8k4(𝑓 𝑟𝑎𝑔𝑌 , 𝑓 𝑟𝑎𝑔𝐴, 𝑓 𝑟𝑎𝑔𝑋 )
15: 𝑡𝑎𝑟𝑔𝑒𝑡 = ( (𝑙𝑎𝑛𝑒𝑖𝑑 − 𝑖 × 8) >> 1) × 9
16: 𝑓 𝑟𝑎𝑔𝑌 [0] = __shfl_sync(0xffffffff, 𝑓 𝑟𝑎𝑔𝑌 [0], 𝑡𝑎𝑟𝑔𝑒𝑡 )
17: 𝑓 𝑟𝑎𝑔𝑌 [1] = __shfl_sync(0xffffffff, 𝑓 𝑟𝑎𝑔𝑌 [1], 𝑡𝑎𝑟𝑔𝑒𝑡 + 4)
18: if (𝑙𝑎𝑛𝑒𝑖𝑑 >> 3) == 𝑖 then
19: 𝑟𝑒𝑠 = (1 & 𝑙𝑎𝑛𝑒𝑖𝑑 ) == 0 ? 𝑓 𝑟𝑎𝑔𝑌 [0] : 𝑓 𝑟𝑎𝑔𝑌 [1]
20: end if
21: end for
22: valY[𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑌 + 𝑙𝑎𝑛𝑒𝑖𝑑 ] ← 𝑟𝑒𝑠
23: end for

3.3.3 Short Rows. Because the short rows part are further grouped
to four categories, they also correspond to four algorithms.

Algorithm 4 shows the pseudocode of the computation process
of short rows by 1&3 piecing together. To optimize the utilization
of compute resources and MMA units, one warp will call the mma
instruction four times to finish the calculation of two blocks. This
way, a warp can precisely compute 32 consecutive values of 𝑦. Be-
fore calling the mma instruction for the computation, the data of
the relevant blockmust be stored in the registers 𝑓 𝑟𝑎𝑔𝐴 and 𝑓 𝑟𝑎𝑔𝑋 .
However, instead of two complete loads of data and MMA compu-
tations, each block only needs to load the value of matrix 𝐴 once
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and the value of 𝑥 twice: the first time is to load the value of 𝑥 cor-
responding to the first column of each block (the rest empty posi-
tions in 𝑓 𝑟𝑎𝑔𝑌 are set to zero), and the second time is to load the
value of 𝑥 corresponding to the last three columns of each block.
The results of the MMA computation are distributed among the
32 threads in the register 𝑓 𝑟𝑎𝑔𝑌 . Using the CUDA Shuffle instruc-
tions, these results are stored in the register 𝑟𝑒𝑠 in order and then
written back to the array valY. Figure 8 shows the calculation of
1&3 pieced short rows within a warp. Similarly, the short rows by
2&2 piecing together take almost the same computation strategy.
When loading the value of 𝑥 in a block into the register 𝑓 𝑟𝑎𝑔𝑋 , the
first two columns are loaded first, followed by the last two columns.
The method of piecing together effectively reduces the data trans-
fer overhead and improves the efficiency of the MMA units.

Figure 8: An example of DASP algorithm for short rows by
1&3 piecing together.

For rows of 𝑟𝑜𝑤_𝑙𝑒𝑛 = 4 (including the rows made up of zero-
filled elements), a warp also calls the mma instruction four times,
and completes the computation of four blocks. Before each calcu-
lation, a whole block of data is loaded into registers 𝑓 𝑟𝑎𝑔𝐴 and
𝑓 𝑟𝑎𝑔𝑋 , and then the mma instruction is called to perform the cal-
culation. The eight meaningful products obtained from each MMA
computation are stored in the registers of eight consecutive threads
by the CUDA Shuffle instructions, and the result is written back
to the array valY immediately after all four calculations are com-
pleted.

For rows with only one nonzero, we use the basic compute unit
for calculation. Algorithm 5 shows the pseudocode of the compu-
tation process for such rows. For each row, a thread is assigned to
compute one row, and the result is written back to the valY corre-
sponding to that row.

Algorithm 5 A pseudocode of Short-1-Rows SpMV.
1: for tid = 0 to 𝑠ℎ𝑜𝑟𝑡_𝑟𝑜𝑤_1 in parrallel do
2: 𝑣𝑎𝑙𝑎 ← shortVal[𝑜 𝑓 𝑓 𝑠𝑒𝑡𝐴 + 𝑡𝑖𝑑 ]
3: 𝑣𝑎𝑙𝑥 ← valX[shortCid[𝑜 𝑓 𝑓 𝑠𝑒𝑡𝐴 + 𝑡𝑖𝑑 ] ]
4: valY[𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑌 + 𝑡𝑖𝑑 ] = 𝑣𝑎𝑙𝑎 × 𝑣𝑎𝑙𝑥
5: end for

4 EXPERIMENTAL RESULTS
4.1 Experimental Setup

Our experimental platform includes twoNVIDIAGPUs: anA100
(Ampere architecture) and anH800 (Hopper architecture).TheGPU
driver version is 525.85.12, and the CUDA version is 12.0.

Table 1: The two GPUs and four algorithms evaluated.

Two NVIDIA GPUs Four algorithms
(1) A100 (Ampere) PCIe, FP64 tensor cores (1) CSR5 [64]

with 19.5 TFlops, FP16 tensor cores (2) TileSpMV [76]
with 312 TFlops, 40 GB, B/W 1555 GB/s (3) LSRB-CSR [63]

(2) H800 (Hopper) PCIe, FP16 tensor cores (4) cuSPARSE-BSR
with 756 TFlops, 80 GB, B/W 2048 GB/s (5) cuSPARSE-CSR

(6) DASP (this work)

We evaluate DASP in both FP64 and FP16 precisions with hard-
ware support on the two GPUs. For DASP with FP64 double preci-
sion, we perform the tests on A100 and compare with the CSR5
algorithm proposed by Liu and Vinter [64], the TileSpMV algo-
rithm proposed by Niu et al. [76], the LSRB-CSR algorithm pro-
posed by Liu et al. [63], the routines cusparseSpMV() (using CSR
format) and cusparse?bsrmv() (using BSR format) in the latest
cuSPARSE v12.0. For DASP with FP16 half precision, we do exper-
iments on both A100 and H800 GPUs, and compare our work with
the routine cusparseSpMV() (using CSR format) cuSPARSE v12.0
(since all CSR5, TileSpMV, LSRB-CSR, and cusparse?bsrmv() do
not support half precision).The specifications of the two GPUs and
the six algorithms tested are listed in Table 1. Note that we do not
compare DASP with the latest SpMVwork AlphaSparse [27], since
it only supports single precision and takes way too much time for
testing (preprocessing even a single sparse matrix needs several
hours).

Our experimental dataset includes all 2893matrices in the SuiteS-
parse Matrix Collection [24]. We also list 21 representative matri-
ces widely tested in existing SpMV work [27, 64, 65, 73, 76, 95] in
Table 2 to analyze the performance of our DASP more deeply.

4.2 Performance Comparison over Existing
SpMV work

We compare our work DASP with CSR5, TileSpMV, LSRB-CSR,
cuSPARSE v12.0 using the BSR and CSR formats, where we set the
BSR block sizes to 2x2/4x4/8x8 and chose the best of the three set-
tings as the final performance of cuSPARSE BSR method. The per-
formance of these six methods on the A100 GPU for FP64 precision
is shown in Figure 10, and the performance of DASP and cuSPARSE
v12.0 using the CSR format for FP16 precision on the two GPUs is
shown in Figure 9.

For the comparison of FP64 precision performance, it can be
seen from the sub-figure on top of Figure 10 that ourmethod shows
the best performance on A100 GPU for the majority of matrices.
Specifically, compared to these four methods, our method is faster
than CSR5 on 2403 matrices, faster than TileSpMV on 2579 matri-
ces, faster than LSRB-CSR on 2251 matrices, faster than cuSPARSE
BSR on 2340 matrices, and faster than cuSPARSE CSR on 2344
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(a) Half precision DASP performance and speedups on NVIDIA A100 GPU
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(b) Half precision DASP performance and speedups on NVIDIA H800 GPU

Figure 9: The two sub-figures on top show performance (in GFlops) of the two SpMV methods on two GPUs with FP16 half
precision. The two sub-figures at the bottom show the speedups of our DASP over the cuSPARSE v12.0, respectively.
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Figure 10: The sub-figure on top shows performance (in
GFlops) of the six SpMV methods on an NVIDIA A100 GPU
in FP64 double precision. The five sub-figures at the bottom
show the speedups of our DASP over the CSR5, TileSpMV,
LSRB-CSR, cuSPARSE v12.0 BSR and CSR format routines,
respectively.

matrices, and achieves on average (geometric mean) 1.46x, 2.09x,
3.29x, 2.08x, and 1.52x (up to 12.64x, 17.48x, 90.59x, 283.92x, and
6.94x) speedups over them. The best speedups are in the matrices
‘rel19’, ‘kron_g500-logn20’, ‘mycielskian18’, ‘lp_osa_60’ and ‘wiki-
Talk’, respectively. The matrix ‘rel19’ has very short rows, so all
rows of this matrix belong to the short rows category in DASP,
and the zero element fill rate of this matrix is 0.85%, which means
that only a few numbers of zeros are filled to make up the suitable
size. The matrix ‘kron_g500-logn20’ lacks a particularly obvious
block structure, which can be unfriendly to the TileSpMV method.
The distribution of nonzeros in matrix ‘wiki-Talk’ is rather irreg-
ular, with the few rows occupying the most of nonzeros, and the
method for the long rows category in DASP copes with this situa-
tion precisely.

For the comparison of FP16 precision performance, our method
also shows the better performance on both A100 and H800 GPUs
for most matrices. Compared to cuSPARSE, our method is faster
than it on 2578 and 2576 matrices on A100 and H800 GPUs, re-
spectively. In addition, our method achieves on average 1.70x and
1.75x (up to 26.47x and 65.95x) speedups over the cuSPARSE on
A100 and H800, respectively. The best speedups are both in the
matrix ‘bibd_20_10’, a rectangular matrix, which has many nonze-
ros in each row, so all rows of this matrix belong to the long rows
category in DASP. Overall, our method has a notable advantage
for most matrices.

4.3 Effectiveness of Data Structure
To conduct a more detailed analysis, we list the FP64 and FP16

precision performance comparison of 21 representative matrices
(in Table 2) on A100 and H800 GPUs in Figure 11. Meanwhile,
the different categories and their corresponding methods in DASP
make it possible to have suitable task assignments to obtain good
performance for matrices of various patterns. To demonstrate the
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Figure 11: The sub-figure on top shows the performance comparison of performing double precision SpMV operation of the
21 representative matrices on NVIDIA A100 GPU. The bottom sub-figure shows the performance comparison of performing
half precision SpMV operation of the 21 representative matrices on NVIDIA A100 and NVIDIA H800 GPUs. The ‘0.00’ on the
bar areas indicate that the corresponding algorithm fails to perform its SpMV operation on the matrix.
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Figure 12: Two figures show the ratio of the number of rows
and nonzeros in different categories to the total number of
rows and nonzeros, respectively.

effectiveness of the DASP data structure, by analyzing 21 represen-
tative matrices, we plot the ratio of the number of rows in different
categories to the total rows, and the ratio of the number of nonze-
ros in different categories to the total nonzeros in Figure 12.

Combining Figures 11 and 12, it can be seen that most of the
matrices dominated by each category are able to have a more de-
sirable performance compared to the competitors. For matrices
where short rows account for most of all rows, such as the matrices

‘webbase-1M’, ‘ASIC_680k’ and ‘mc2depi’, the FP64 and FP16 preci-
sion performance of these matrices can completely outperform the
comparison methods on both GPUs. Taking ‘mc2depi’ for exam-
ple, all rows of this matrix belong to the short rows category, and
the FP64 precision performance of this matrix can achieve 2.29x,
4.54x, 3.42x, 4.60x and 1.97x speedups over CSR5, TileSpMV, LSRB-
CSR, cuSPARSE-BSR and cuSPARSE-CSR on A100 GPU; the FP16
precision performance of this matrix can attain 1.85x and 1.94x
speedups over cuSPARSE on A100 and H800 GPUs, respectively.
For matrices consisting almost entirely of the medium rows cate-
gory, such as the matrices ‘rma10’, ‘cant’, ‘cop20k_A’, ‘pdb1HYS’,
‘conf5_4-8x8-10’, ‘consph’, ‘shipsec1’ and ‘pwtk’, their FP64 and
FP16 precision performance can still be better than the other meth-
ods. Taking ‘cop20k_A’ for example, it consists of 99843 medium
rows and 21349 empty rows (rows without a nonzero), and its
FP64 precision performance achieves 1.53x, 3.63x, 3.08x and 5.75x
speedups over CSR5, TileSpMV, cuSPARSE-BSR and cuSPARSE-
CSR on A100 GPU; the FP16 precision performance of this ma-
trix can gain 3.65x and 2.58x speedups over cuSPARSE on A100
and H800 GPUs, respectively. For matrices consisting mainly of
long rows category, such as matrices ‘Si41Ge41H72’, ‘mip1’ and
‘Ga41As41H72’, even though the computation method correspond-
ing to the long row category will have more reduction operation
compared to the methods of the other two categories, it can still
show competitive performance on these matrices. These matrices
in Figure 12(a) appear to have very few rows in the long rows cat-
egory, but the lengths of long rows are usually very large, causing
these matrices to still be matrices with a large portion of long rows,
as shown in Figure 12(b).

Matrices which consist of at least two categories also do not suf-
fer from performance discounts due to method differences, such as
matrices ‘FullChip’, ‘circuit5M’ and ‘dc2’. Taking a larger matrix
‘circuit5M’ and a moderately sized matrix ‘dc2’ as examples: the
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Table 2: Information of the 21 representative matrices.

Matrix Plot Size 𝑛𝑛𝑧

pwtk 217K×217K 11.5M

FullChip 2.9M×2.9M 26.6M

mip1 66K×66K 10.4M

mc2depi 525K×525K 2M

webbase-1M 1M×1M 3.1M

circuit5M 5.5M×5.5M 59M

Si41Ge41H72 185K×185K 15M

Ga41As41H72 268K×268K 18.4M

in-2004 1.4M×1.4M 16.9M

eu-2005 862K×862K 19M

shipsec1 140K×140K 7.8M

mac_econ_fwd500 206K×206K 1.2M

scircuit 170K×170K 959K

pdb1HYS 36K×36K 4.3M

consph 83K×83K 6M

cant 62K×62K 4M

cop20k_A 121K×121K 2.6M

dc2 116K×116K 766K

rma10 46.8K×46.8K 2.3M

conf5_4-8x8-10 49K×49K 1.9M

ASIC_680k 682K×682K 3.8M

FP64 performance of ‘circuit5M’ achieves 1.02x, 2.63x and 1.39x
speedup over CSR5, LSRB-CSR and cuSPARSE on A100, and the
FP16 performance of this matrix gains 3.84x and 6.42x speedups
over cuSPARSE on A100 and H800, respectively; the FP64 perfor-
mance of ‘dc2’ gains 1.35x, 2.11x, 4.95x, 66.89x and 1.50x speedup
over CSR5, TileSpMV, LSRB-CSR, cuSPARSE-BSR and cuSPARSE-
CSR onA100GPU, and the FP16 performance of thismatrix achieves
4.72x and 5.60x speedups over cuSPARSE on A100 and H800, re-
spectively.

Therefore, DASP can efficiently exploit the MMA units to ac-
celerate SpMV by using different methods in the three categories.
Overall, DASP is a generalized SpMV method, this method does
not tend to compute matrices with a certain morphology and char-
acteristics, and almost arbitrary matrices can obtain excellent per-
formance using the DASPmethod.We also find that somematrices
show different performance on Ampere and Hopper architectures:
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Figure 13: Comparison of preprocessing costs (converting
the basic CSR format to a new data structure) of SpMVmeth-
ods.

for example, the performance of the matrix ‘Ga41As41H72’ using
the DASP method is better than cuSPARSE on the A100, while on
the H800, the performance is better using cuSPARSE.We speculate
that this difference is due to hardware vendors’ architectural up-
grades, or perhaps optimizations in the CUDA cores that result in
better performance for some matrices on the H800.

4.4 Preprocessing Overhead Comparison
We also compare the preprocessing costs for converting the CSR

format to our new data structure. Figure 13 shows the preprocess-
ing time of CSR5, TileSpMV, cuSPARSE v12.0 and our DASP. As
can be seen, the preprocessing of DASP is almost always faster
than that of TileSpMV and cuSPARSE, and faster than CSR5 (con-
verting the CSR data format in-place on GPU) when the number
of nonzeros in the matrix is less than about 104.5. Even though the
preprocessing time of DASP can be longer than CSR5 when the
matrix is large, it is deemed acceptable if more SpMV kernel calls
are needed in an iterative solver.

5 RELATEDWORK
There has been much work focusing on accelerating SpMV

through a variety of methods such as balancing workload [2, 4,
6, 8, 10, 21, 39, 61, 64, 73, 74, 84, 99, 100], exploiting data local-
ity [1, 3, 29–31, 48, 50, 51, 62, 67, 95, 96, 103–105, 107] and us-
ing machine learning for algorithm selection or format genera-
tion [9, 27, 58, 82, 88, 101, 102, 108, 109]. Anzt et al. [5] and Li et
al. [59] analyzed the performance and energy efficiency of SpMV.
Goumas et al. [38], Langr and Tvrdík [52], and Filippone et al. [33]
surveyed the research on SpMV. Among the studies, exploiting
block structures received much attention. Early work by Im et
al. [44, 45], Vuduc et al. [91–93] and Demmel et al. [25] utilized
CPU registers for optimizing very small blocks generated from
some problems, such as finite element methods. Buttari et al. [14],
Choi et al. [16] and Ashari et al. [7] studied the modeling of the
block SpMV methods. Buluç et al. [12, 13] designed the CSB for-
mat for utilizing both block layout and the cache locality. Mar-
tone [71] developed a recursive blocking method for SpMV. Yan
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et al. [98] stored dense blocks and tuned their sizes for higher per-
formance. Recently, Niu et al. [76] developed a 2D block method
and stored them in various sparse formats on GPUs, while this
2D block method was also applied in sparse matrix-sparse vector
multiplication [46], sparse triangular solve [68] and sparse matrix-
matrix multiplication (SpGEMM) [77]. Gao et al. [36] proposed a
hybrid compression format TaiChi for diagonal dominant binary
sparse matrices based on dividing one matrix into multiple dense
and sparse blocks. Although these efforts divided the sparse ma-
trix into small matrix blocks, they cannot be consumed directly
by the emerging MMA units originally designed for small dense
GEMM. Unlike the existing work, our DASP proposed in this pa-
per reconstructs a general sparse row-wise data layout to utilize
the specific MMA units, largely reduces the costs on the compute
side and brings obvious higher overall performance.

As the MMA units can bring modern processors much higher
computational power, their real performance andpotential prob-
lems were evaluated from various aspects. Martineau et al. [70]
conducted detailed benchmarks on the V100 GPUs. Choquette et
al. [17] introduced the architecture of the A100 GPUs and its inno-
vation compared to previous generations. Sun et al. [85] discussed
the throughput and latency of tensor core programming. Domke et
al. [26] identified the practical benefits for HPC and machine learn-
ing applications by having access to matrix engines. Chowdhury
et al. [18, 19] proposed a computational model called TCU to give
corresponding algorithms by capturing the main characteristics of
the tensor units. Tukanov et al. [90] showed that a large number
of hardware features of different matrix engines can be unified us-
ing delayed parting models. Markidis et al. [69] quantified the loss
of precision in GEMM and proposed a way to reduce this loss at
the expense of increasing the amount of computations. In addition,
GEMMwith different precision (e.g., half precision [97], mixed pre-
cision [75], and recovery precision [79]) can be greatly improved, if
the MMA units are used properly. Furthermore, tensor cores have
been better designed through architectural support for sparsity, du-
plicated memory accesses [49], redundant on-chip memory hierar-
chies [53], and working together with CUDA cores [41].

Besides GEMM and its use in machine learning and deep learn-
ing related operations [32, 35, 42, 43, 47, 49, 54, 55, 57, 83, 86, 94],
more algorithms can be accelerated by the MMA Units as
well. Several basic operators, such as scan and reduction [22], sten-
cil computation [66], and FFT [28, 56, 80], have been improved by
using tensor cores. When small dense or near-dense block struc-
tures can be found in sparse matrices, tensor cores can also give
benefits to tile-wise SpGEMM [106]. Also, when a dense matrix is
used for multiplying a sparse matrix, the key routine can be ac-
celerated through tensor cores by Chen et al. [15], Sun et al. [87]
and Li et al. [60]. In addition, tensor cores also have been used in
some other applications, e.g., linear solver [11, 40, 89], molecular
dynamics [34], quantum annealing simulation [20], epistasis detec-
tion [78], and compact fractals [81]. Compared to the above work
using tensor cores for non-GEMM problems, this paper demon-
strates that more irregular general SpMV (the input sparse matrix
is not necessarily with small dense blocks) could also be acceler-
ated by using regular specific MMA units.

6 CONCLUSION
We in this paper have proposed DASP, a new algorithm using

specific dense MMA units for accelerating general SpMV. We iden-
tified that the compute part could be a critical performance bot-
tleneck of SpMV and proposed MMA-friendly regular sparse data
structures for using the MMA units. The experimental results on
the latest NVIDIA Ampere and Hopper GPUs show that our DASP
brought significant speedups over state-of-the-art SpMV work.
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Appendix: Artifact Description/Artifact Evaluation

ARTIFACT DOI
https://doi.org/10.5281/zenodo.8084940

ARTIFACT IDENTIFICATION
DASP is a new algorithm using specific dense MMA units for ac-
celerating general SpMV operation. We analyze the row-wise dis-
tribution of nonzeros and group the rows into three categories
containing long, medium and short rows, respectively. We then
organize them into small blocks of proper sizes to meet the require-
ment of MMA computation. For the three categories, DASP offers
different strategies to complete SpMV by efficiently utilizing the
MMA units.

We ran DASP on NVIDIA A100 GPU and H800 GPU, and record
the execution time of an average of 1000 times. The GPU driver
version is 525.85.12, and the CUDA version is 12.0. This artifact
contains the proprecessing C code and the CUDA code for the
kernels proposed in DASP. Besides, it also contains the python script
for downloading matrices and the shell scripts for reproducing the
major experiments.

More details of the artifact are listed as below.

• Relevant hardware details: Intel Xeon Silver 4210 CPU,
NVIDIA A100 GPU and NVIDIA H800 GPU

• Operating systems and versions: CentOS Linux release
8.5.2111

• Compilers and versions: NVIDIA nvcc v12.0, GNU gcc v12.2
• Libraries and versions: NVIDIA cuSPARSE v12.0, CSR5 and
TileSpMV

• Key algorithms: parallel sparse matrix-vector multiplication
• Input datasets and versions: all matrices in the SuiteSparse
Matrix Collection

REPRODUCIBILITY OF EXPERIMENTS
• Installation and Compile (3 minutes)
Firstly, clone the DASP code to the local machine. Then, use
GNU make to build the executable:
Compile DASP of FP64 precision: $ make double
Compile DASP of FP16 precision: $ make half
After that, one will get two executable called spmv_double
and spmv_half. Note that one should configure the fileMake-
file according to the GPU that use. After that, in the folder
<DASP_dir>/test/, execute the following command to com-
pute the matrix ‘cop20k_A’:
$bash run_test.sh

• Matrices Downloading(35 hours or more)
In the folder <DASP_dir>/script/, execute the python
script:
$python3 matrix_download.py
Then, one will get all matrices in the folder <DASP_dir>/MM/.

• Large-scale Dataset Evaluation (10 hours)
Execute the shell scripts run_spmv.sh to get the pre-
processing time and the performance of this dataset

which are recorded in files a100_f64_record.csv and
a100_f16_record.csv in folder data/.
After that, execute the python scripts
script/f64_scatter.py, script/f16_scatter.py,
script/f64_bar.py and script/f16_bar.py and get the
performance figure in this paper.

ARTIFACT DEPENDENCIES
REQUIREMENTS
– Description of the hardware resources
GPU: NVIDIA A100 GPU(FP64 Tensor Core, FP16 Tensor
Core) and NVIDIA H800 GPU(FP64 Tensor Core). Overall,
the GPU being used should be one or two NVIDIA GPUs
with FP64 Tensor Core and FP16 Tensor Core.
CPU: Intel Xeon Silver 4210 CPU. Please use multicore
CPU.
Disk Space: at least 750GB (to store the experiment input
dataset).

– Description of the operating systems
Any Linux system that can support CUDA v12.0 or above
and GCC v12.0 or above.

– Software libraries
NVIDIA CUDA Toolkit v12.0 or above; GCC v12.0 or
above; Python 3.9.
Python libraries: Pandas, Matplotlib, Numpy, Scipy.

– Input dataset
Our experimental dataset includes all 2893 matrices in
the SuiteSparse Matrix Collection which is publicly avail-
able(https://sparse.tamu.edu/about). The SuiteSparse Ma-
trix Collection is so far the best collection that resolves the
sparse matrix test problems [Duff et al., Sparse Matrix Test
Problems, ACM TOMS, 1989]. SuiteSparse includes matri-
ces from 264 application domains, and has been cited more
than 4,300 times. Using matrices from SuiteSparse as input
dataset of DASP will make our work more understandable
and reproducible.

ARTIFACT INSTALLATION DEPLOYMENT
PROCESS

• Installation and compilation (3 minutes)
Download our artifacts from the link(https://doi.org/10.5281/
zenodo.8084940 ). Once downloaded locally, use the com-
mand to unzip it.
$unzip DASP.zip
DASP requires both NVCC version and GCC version 12.0
and above. If the default compiler version of the current
environment does not meet the requirements, users need to
manually change the compiler path in the DASP/Makefile
file:
line2: NVCC = /Your_CUDA_path/bin/nvcc
line4: GCC = /Your_GCC_path/bin/gcc

https://sparse.tamu.edu/about
https://doi.org/10.5281/zenodo.8084940
https://doi.org/10.5281/zenodo.8084940
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If you are using a machine other than the A100, change the
arch number at line6. After that, in the artifact directory
DASP/, compile the project.
$make
Then you can get the executable files spmv_double and
spmv_half.
Run the following commands:
$cd test
$bash run_test.sh
This test demonstrates that the artifacts are available and ver-
ifies the correctness of the results with the matrix ‘cop20k_A’
as the input data.

• Preparation for Dataset (35 hours or more)
Our experimental dataset includes all 2893 matrices in the
SuiteSparse Matrix Collection. These matrices need to be
downloaded locally via the script provided in the artifact.
This process will take approximately 35 hours (at a download
speed of 6MB/s, the total size is estimated to be 750GB) or
longer.
If users accept the simplified dataset, we have also prepared a
small-scale dataset of 309 matrices obtained by random sam-
pling from the SuiteSparse Matrix Collection. The download
of the simplified dataset will take approximately 2.5 hours
and this dataset is estimated to be 51GB in total size. Using
the simplified dataset requires some simple modifications to
scripts:
In matrix_download.py:
line8 matrix_list1.csv -> matrix_list2.csv
In run_spmv_all.sh:
line4 matrix_list1.csv -> matrix_list2.csv
(Optional) Users also can install and use ‘axel’ tool to down-
load matrices in parallel. In script/matrix_download.py, use
line 25 code and comment out code of line 26.
Dataset download command:
$python3 matrix_download.py
All matrices will be stored in the directory MM/. If you
changed the dataset path, you need to modify the MM_path
at line 3 in the script run_spmv_all.sh.

• Preparation for Comparative SpMV Methods
In this paper, for DASP with FP64 double precision,
we compared with the cuSPARSE(v12.0), the CSR5
(https://github.com/weifengliu-ssslab/Benchmark_SpMV_
using_CSR5) and the TileSpMV (https://github.com/
SuperScientificSoftwareLaboratory/TileSpMV). For DASP
with FP16 half precision, wen just compared with the
cuSPARSE(v12.0). The CSR5 and the TileSpMV code have
been included in the current artifact.
Compile the CSR5. You can change the compiler path at line
11 in CSR5 Makefile:
$cd spmv_code/CSR5_cuda/
$make
Then, compile the TileSpMV. Note the important information
we got from the authors of the TileSpMV: it requires that
it must be compiled with CUDA v11.1, otherwise many of
the matrices will be miscalculated leading to questionable
performance records. If the user does not have CUDA v11.1,
it is OK to compile directly with the current CUDA version,

but the final comparison with DASP will be invalid. You can
change the compiler path at line 11 in TileSpMV Makefile.
Compile command:
$cd ../TileSpMV/
$make

• Deployment (20 hours)
After the dataset and the other methods are ready, in the
directory script/, run this command:
$bash run.sh
This script includes tests of double-precision and half-
precision SpMV of the target dataset matrices, and will gen-
erate a result file and some performance plots similar to
those in the paper at the end of the tests.
The file result.txt in DASP/ is the performance analysis
results.
The a100_f64_scatter.pdf and the
a100_f16_scatter.pdf correspond to Figure10 and
Figure9(a) in the paper, respectively.
The a100_f64_bar.pdf and the a100_f16_bar.pdf corre-
spond to Figure11 in the paper.
The preprocessing_time.pdf corresponds to Figure 13 of
the paper.

https://github.com/weifengliu-ssslab/Benchmark_SpMV_using_CSR5
https://github.com/weifengliu-ssslab/Benchmark_SpMV_using_CSR5
https://github.com/SuperScientificSoftwareLaboratory/TileSpMV
https://github.com/SuperScientificSoftwareLaboratory/TileSpMV
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