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Abstract—Sparse matrix-vector multiplication (SpMV) is a
fundamental routine in computational science and engineering.
Its optimization methods on various homogeneous parallel pro-
cessors, such as CPUs and GPUs, received much attention.
Recently, asymmetric multicore processors (AMPs) have hetero-
geneous performance and efficient cores (e.g., P- and E-cores from
Intel and Apple, or Big.LITTLE cores from ARM), or cores with
different cache structures (e.g., cores with/without 3D V-Cache
from AMD) are becoming one of the mainstream in desktop
and workstation computers. However, there lacks heterogeneity-
aware research on accelerating SpMV on AMPs.

We in this paper propose a parallel algorithm called
heterogeneity-aware SpMV (HASpMV) for improving the per-
formance of SpMV on the latest 12th- and 13th-Gen AMPs from
Intel and Ryzen 9 AMPs from AMD. We first micro-benchmark
bandwidth and multi-/single-core SpMV to collect performance
characteristics and to motivate our algorithm design, and then
develop several optimization techniques to assign workloads
between the two types of cores for achieving significantly better
cache locality and load balancing. The experimental results show
that compared to the latest version of the Intel oneMKL library
and the open-source works CSR5 and merge-SpMV, HASpMV
achieves an average speedup of 2.61x, 2.31x, and 3.73x (up to
5.23x, 4.46x, and 8.23x) on the i9-12900KF processor. On the
i9-13900KF processor, HASpMV achieves an average speedup
of 3.17x, 1.52x, and 2.23x (up to 9.46x, 5.31x, and 4.49x).
Additionally, when comparing AMD Ryzen 9 7950X3D and
7950X AMPs, HASpMV brings an average speedup of 1.43x, 1.3x,
and 1.29x (up to 6.28x, 7.8x, and 10.8x) over AMD Optimizing
CPU Libraries (AOCL), CSR5, and merge-SpMV, respectively.

Index Terms—Sparse matrix-vector multiplication, Asymmet-
ric multicore processor, Heterogeneity-aware algorithm.

I. INTRODUCTION

Sparse matrix-vector multiplication (SpMV) is an operation
to multiply a sparse matrix A and a dense vector x and to
give a resulting dense vector y. It is one of the most time-
consuming routines in iterative sparse linear solvers (e.g.,

the conjugate gradient method [1]–[3]) and graph processing
frameworks (e.g., the GraphBLAS standard [4]–[6]). Besides,
SpMV is in the level-2 sparse basic linear algebra subprograms
(sparse BLAS) [7], [8], and has been widely studied on a
number of homogeneous parallel processors, e.g., CPUs [9]–
[11], GPUs [12]–[20], and long vector processors [21], [22].

Compared with the classic homogeneous processors, the
emerging asymmetric multicore processors (AMPs) consist
of at least two kinds of cores of distinct compute/memory
capacities and of the same ISA [23] or different ISAs [24].
ARM chips with Big.LITTLE cores, Apple and Intel chips
with performance and efficient cores (i.e., P- and E-cores),
as well as AMD chips including Core Chiplet Dies (CCDs)
with and without 3D V-Cache represent the modern AMPs
that utilize a single ISA, and are becoming mainstream in
the desktop and workstation computers due to overall better
performance and energy efficiency [25].

However, despite the potential advantages of using AMPs
for SpMV, to the best of our knowledge, there is no existing
SpMV methods can well exploit the two kinds of cores in
AMPs. The challenges are mainly from that the architecture
designs (e.g., frequency, the number of SIMD units and
cache hierarchies/capacities) of the two types of cores in
Intel and AMD AMPs. Two different cores of modern AMPs
will in general lead to task assignment and load balancing
problems [26], [27]. In addition, caching behavior and the
number of nonzeros of rows (i.e., row length distribution) in
sparse matrices can also be very irregular [13], [14], [16],
[28]. As a result, the irregularity from the two sides (i.e.,
processor-side and matrix-side) makes accelerating SpMV on
AMPs more difficult than on homogeneous processors.

To address the above challenges, we in this paper pro-
pose a parallel algorithm called heterogeneity-aware SpMV
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(HASpMV) for the latest AMPs from Intel and AMD. Firstly,
to understand performance characteristics of different cores,
we study the bandwidth and compute power of them through
running micro-benchmarks including the stream package [29]
and multi-/single-core SpMV. Secondly, to improve cache
locality and load balancing of SpMV, we develop a 2-level
partitioning scheme that divides a sparse matrix into two parts
for P- and E-cores of Intel, and CCD0 and CCD1 of AMD,
respectively, and further splits each part according to different
number of cores. Thirdly, to store the auxiliary information
required in running SpMV, we design a new sparse format
called heterogeneity-aware compressed sparse row (HACSR),
which is a minor variant of the standard CSR format and
provides very low format conversion cost.

In the experiments, we compare our HASpMV with four
baseline SpMV methods on Intel and AMD AMPs, i.e., the
latest Intel oneMKL library (compare only on Intel AMPs),
AMD Optimizing CPU Libraries (AOCL) (compare only on
AMD AMPs), the open-source work CSR5 [14] and merge-
SpMV [15]. Through benchmarking all 2888 sparse matrices
from the SuiteSparse Matrix Collection [30], our experimental
results show that HASpMV is significantly faster than the other
methods on different AMPs. Specifically, the experimental
results show that compared to the latest version of the Intel
oneMKL library and the open-source works CSR5 and merge-
SpMV, HASpMV achieves an average speedup of 2.61x,
2.31x, and 3.73x (up to 5.23x, 4.46x, and 8.23x) on the i9-
12900KF processor. On the i9-13900KF processor, HASpMV
achieves an average speedup of 3.17x, 1.52x, and 2.23x (up to
9.46x, 5.31x, and 4.49x). Additionally, when comparing AMD
Ryzen 9 7950X3D and 7950X AMPs, HASpMV brings an
average speedup of 1.43x, 1.3x, and 1.29x (up to 6.28x, 7.8x,
and 10.8x) over AMD Optimizing CPU Libraries (AOCL),
CSR5, and merge-SpMV, respectively.

This work makes the following contributions:

• We understand key performance behaviors of SpMV on
two kinds of different cores in Intel and AMD AMPs
through micro-benchmarking;

• We propose the HASpMV algorithm and the HACSR
sparse format for better cache locality and load balancing
in SpMV on AMPs;

• We achieve significant performance gain on 2888 ma-
trices over existing SpMV work on the latest Intel and
AMD AMPs.

II. BACKGROUND

A. Sparse Matrix-Vector Multiplication

SpMV refers to the multiplication of a sparse matrix and a
dense vector. Figure 1 shows a simple example, and Algorithm
1 presents the pseudocode for parallel SpMV in the CSR
format. As can be observed, despite the good parallelism of
SpMV (as multiplying rows is independent, as seen in line
1), the workload can become highly imbalanced when row
lengths are uneven (see line 3).

Fig. 1 An example of SpMV, where A is sparse, and x and y are dense.

Algorithm 1 A pseudocode of simple CSR SpMV .
1: for i = 0→ numRows in parallel do
2: y[i]← 0
3: for j = csrRowPtr[i]→ csrRowPtr[i + 1] do
4: y[i]← y[i] + csrV al[j] ∗ x[csrColIdx[j]]
5: end for
6: end for

B. Asymmetric Multicore Processor

At present, there are much research on parallel algo-
rithms [31]–[35], AMPs are becoming the mainstream pro-
cessors. AMPs typically include at least two types of cores
with different frequencies, cache capacities, numbers of cores
and SIMD units, and core-group settings. Figure 2 shows the
core composition and cache configuration of three AMPs: Intel
Core i9-12900KF, Intel Core i9-13900KF and AMD Ryzen 9
7950X3D, which are each composed of two sets of cores.

Fig. 2 The core composition and cache configuration of three AMPs.

The Intel Core i9-12900KF is composed of eight P-cores
and eight E-cores, while the Intel Core i9-13900KF is com-
posed of eight P-cores and 16 E-cores. The AMD Ryzen 9
7950X3D is composed of two CCDs: CCD0 with a stacked
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3D V-Cache of 64MB (working as part of L3 cache), and
CCD1 without the 3D V-Cache. Its homogeneous version,
AMD Ryzen 9 7950X, lacks the stacked 3D V-Cache in its
CCD0, meaning that the two CCDs are the same.

III. MICRO-BENCHMARKS AND MOTIVATIONS

In order to establish the foundation for our algorithm design,
it is crucial to understand the performance characteristics of
the two types of cores found in modern AMPs. To achieve
this, We conduct a series of micro-benchmarks using the three
AMPs, as illustrated in Figure 2. Further details about the
AMPs are presented in Table I (Before the section V). The
following provides an overview of our micro-benchmarking
process: (1) The stream triad test [29] to see the achievable
bandwidth of the three AMPs. On Intel AMPs, we test all P-
cores, all E-cores and all P- and E-cores. On AMD AMPs,
we test all cores of CCD0, all cores of CCD1 and all cores
of CCD0 and CCD1, (2) A simple parallel SpMV test using
Algorithm 1 to see the performance of the two kind of cores
alone and combined, and (3) A simple serial SpMV test to
see the correlation of row length and SpMV performance
differences of a single P- or E-core of Intel, and core of CCD0
or CCD1 of AMD.

A. Stream Triad Bandwidth Test

Because SpMV is a memory-bound operation [8], first to
understand memory access behavior of P- or/and E-cores of
Intel (CCD0 or/and CCD1 of AMD) will help our algorithm
design. We test the OpenMP version of the triad bandwidth in
the stream package with small intervals of the input vectors
on three AMPs. In Figure 3 we show the bandwidth under
the three composition ways of the two kinds of cores. As can
be seen, on both Intel AMPs, bandwidth of pure P-cores is
almost always higher than pure E-cores, and in most cases is
also higher than using all P- and E-cores (except the region
between ∼16 MB and ∼80 MB on i9-13900KF, which exceeds
the cache capacity of P-cores, but is within the overall on-
chip cache size). In particular, after the bandwidth drops to
the DRAM plateau (the two enlarged areas in Figure 3),
bandwidth of pure P-cores is still higher than P- plus E-
cores. For the AMD AMPs, CCD0 and CCD1 have roughly
the same bandwidth, However, with the increase of data size,
the bandwidth of CCD0 and CCD1 gradually increases from
lower than the CCDs’s bandwidth to higher than the CCDs’s
bandwidth, and finally the bandwidth of the three cases is in a
flat bandwidth state with the same value. It is worth noting that
compared to CCD1, the bandwidth of CCD0 starts to decline
when the data size is larger, due to the fact that CCD0 has a
larger L3 cache.

This fact gives us the first motivation: Since the perfor-
mance of the two kind of cores is different for the same data
size matrix, simply adding OpenMP pragmas to the for loops
and assigning the same amount of workload to cores may bring
load imbalance and slow down overall performance on AMPs.
Therefore, our algorithm need to assign the best amount of
workload to exploit the two types of cores.
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Fig. 3 Stream triad bandwidth test on the two Intel AMPs and one AMD AMP. The
y-axis is bandwidth in GB/s, and the x-axis in log10 scale is the total size of input and
output vectors.

B. Simple Parallel SpMV Performance Test

We then use the simple parallel CSR-format SpMV code
with all 2888 sparse matrices in the SuiteSparse Matrix
Collection [30] to test three sets of data on three AMPs. On the
Intel AMPs, we use all P - cores, all E - cores and all P- and
E- cores to test SpMV, and on AMD AMPs, use all cores of
CCD0, all cores of CCD1, all CCD0 and CCD1 cores to test
SpMV. Figure 4 shows the SpMV performance on the Intel
and AMD processors. It can be seen that in Intel AMPs pure
P-cores are still overall the fastest. However, in 278 and 739
cases out of the 2888 matrices, on i9-13900KF, pure E-cores
and P- plus E-cores can bring higher performance than pure
P-cores, respectively. This result may come from the fact that
the increase in the number of E-cores in the 13-Gen narrowed
the performance gap between P-cores and E-cores. In AMD
Ryzen 9 7950X3D, there are 1596 and 1519 cases out of the
2888 matrices showing that a single CCD0 and CCD1 bring
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higher performance than CCD0 plus CCD1, which may be
caused by the imbalance in task allocation.

This brings our second motivation: using both kinds of
cores hopefully achieve higher SpMV performance than pure
P-cores of Intel (or CCD0 of AMD) due to a variety of cache
behaviors. As a result, the task assignment in our algorithm
should not only balance the amount of work, but also consider
to achieve higher cache utilization of the workload.
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Fig. 4 Parallel SpMV performance of the 2888 SuiteSparse matrices on the three AMPs.
The y-axis is performance in GFlops, and the x-axis in log10 scale is the number of
nonzeros of the matrices.

C. Correlation of Row Length and SpMV Performance Test

(a) Intel Core i9-12900KF

(b) Intel Core i9-13900KF

(c) AMD Ryzen 9 7950X3D

Fig. 5 The correlation of the average row length of the 2888 matrices (x-axis in log10
scale) and relative SpMV performance of a single P- over E-core of Intel (CCD0- over
CCD1-core of AMD), and the y-axis represents as speedups. Performance of matrices
with the same average row lengths are averaged to make the figures clearer, so that the
number of dots is less than 2888. The lines drawn show linear regression of scatter dots.

On the basis of the above two micro-benchmarks, we further
investigate how to assign tasks to the cores. Because the basic
working unit of SpMV is row of the matrix A, and row length
(i.e., the number of nonzeros in a row) largely impacts the
amount of each workload and cache behavior of accessing the
vector x, we conduct a micro-benchmark to see the correlation
of SpMV performance provided by a single P- and E-core
(core of CCD0 and CCD1) and average row lengths of the
sparse matrices, Figure 5 demonstrates the correlation. As can
be seen, on i9-12900KF, a P-core gives ∼2x and up to ∼2.5x
performance over an E-core for matrices of short and medium-
size rows respectively, but this advantage quickly decreases
when the rows are getting longer (for very long rows, P and E-
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Fig. 6 An example of reordering an 8-by-8 sparse matrix. It reflects the transformation process from CSR to HACSR, in which hacsrRow, hacalIdx and hacsrVal are the
data structures of HACSR, and the process from matrix A to matrix A′ reflects the process of matrix reorder.

core have similar performance). In contrast, on i9-13900KF, P-
core is almost always 2x faster than an E-core, due to possibly
improved architecture design. As for 7950X3D, the difference
between the two cores is only reflected in the L3 Cache size,
so there is no obvious speedup.

This makes the third motivation of this work: only con-
sidering balancing and cache behavior in workload assignment
of the SpMV algorithm may be not enough, since the nature
order of the rows of a sparse matrix may not provide the best
performance on AMPs. So, it may be better to reorder rows
according their lengths, and to give rows of the ‘best’ lengths
to most suitable cores.

IV. METHODOLOGY

A. Overview

In this section, we will introduce the HACSR sparse for-
mat and delve into the details of the implementation of
our HASpMV algorithm. These developments are based on
the valuable insights and findings obtained from the micro-
benchmarks conducted in the previous section.

Our method takes into consideration the performance differ-
ence between the two cores of AMPs when handling long and
short rows in sparse matrix-vector multiplication. To optimize
performance, we first reorder the matrix to obtain the HACSR
format, which is a minor variant of the standard CSR format
(detailed in Section IV-B). Furthermore, in order to address
the challenge of matrix structure imbalance, we utilize the
cache line cost as the basis for matrix partitioning, rather than
simply partitioning based on the number of nonzeros (nnz).
This allows us to achieve better load balancing across the AMP
cores. We design a two-level matrix partitioning approach,
partitioning the matrix into two parts based on the bandwidth
test of the two types of cores in AMPs. Subsequently, we
assign an equal amount of tasks to each core within the same

group, effectively solving the challenge caused by processor
imbalance. All the aforementioned aspects are discussed in
detail in Section IV-C. Additionally, Section IV-D provides a
comprehensive description of the execution phase, including
the handling of conflicting rows and the incorporation of ad-
ditional performance improvement techniques. Through these
approaches, we aim to maximize the utilization of the AMP
cores and optimize the overall performance of SpMV. The
detailed explanations in the respective sections will provide a
comprehensive understanding of our method’s implementation
and its effectiveness in tackling the challenges posed by matrix
structure and processor imbalance.

B. HACSR format

We show the HACSR format in Figure 6, which is a
more suitable matrix compression format for AMPs. It first
determines a threshold to distinguish between long and short
rows, which the variable base in the figure. Then the matrix
is reordered according to the length of each row, so that
rows with length less than base are placed in the front part
of the matrix, and rows with length greater than base are
placed in the back part of the matrix. Reordering places
rows back from the first row and forward from the last row
according to the front row and tail row pointers (described
in Section IV-C), which results in HACSR in very short time.

C. Preprocessing Phase of HASpMV

The matrix reorder is described in detail in Algorithm 2,
where a new array hacsrRowPtr[] is used to store the
offset of the first nonzero in each row after reordering (only
suitable for Intel 12th Gen Core AMPs, so csrRowPtr is
used in the following algorithm statements). The front row
and tail row pointers are used to point the place of next row
during matrix reordering: If the length of one row(nnz num
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on line 3) is less than base, the row is placed at the position
pointed by front row (lines 5 through 9); otherwise, the row
is placed at the position pointed by tail row (lines 10 through
14). In HASpMV, only the row pointers are reordered, and no
additional operations are needed for the column indices and
values, so the matrix can be reordered in a very short time.

Algorithm 2 The process of reordering matrix in HASpMV
Require: csrRowPtr[ ], m
Ensure: hacsrRowPtr[ ], row begin nnz[ ]
1: front nnz ← 0, tail nnz ← nnz, front row ← 0, tail row ← m− 1
2: for i = 0→ m− 1 do
3: nnz num← csrRowPtr[i + 1]− csrRowPtr[i]
4: row len[i]← nnz num
5: if nnz num < base then
6: row begin nnz[front row]← csrRowPtr[i]
7: hacsrRowPtr[front row + 1]← front nnz + nnz num
8: front nnz ← front nnz + nnz num
9: front row ← front row + 1

10: else
11: row begin nnz[tail row]← csrRowPtr[i]
12: tail nnz ← tail nnz − nnz num
13: hacsrRowPtr[tail row]← tail nnz
14: tail row ← tail row − 1
15: end if
16: end for

To more accurately measure the amount of tasks, we take
the cost of cache line required for accessing vector x in SpMV
operation as the basis for allocating tasks. In Algorithm 3, we
provide an approximate cache line cost calculation method,
which calculates the cache line cost of each row and stores
it in the temporary variable cost x (lines 1 to 9). Then the
prefix sum operation is performed and the cost sum[] array
is used to record the total cache line cost before the current
row (including the current row). Meanwhile, the left part of
Figure 7 also presents the computation strategy of cache line
cost. In the figure, we set the cache line size to 16 bits for the
sake of presentation (in fact, it is 64 bits on the processors we
use), so the vector x is stored in four cache lines, and each
row of the 8×8 matrix A is also cut into four parts. The two
nonzeros in the same part will record the cost of only one
cache line.

To achieve better load balancing, we design a two-level
matrix partition method to assign appropriate workload for
each core. On the first level, we partition the matrix between
the heterogeneous cores. As shown in the left part of Figure 7,
we partition the matrix into two parts, one for P-cores (CCD0)
and one for E-cores (CCD1). On the second level, as shown in
the right of the figure, we partition the two parts of the matrix
equally to the two types of homogeneous cores, respectively.
Meanwhile, the calculation strategy of task load mentioned
in the previous paragraph was used in the whole process.
Algorithm 3 shows the detail of partitioning matrix A. Firstly,
a threshold costp is calculated based on P proportion (differ
in different processor) and COST (i.e., the cache line cost of
the whole matrix, which corresponds to cost sum[m− 1] in
Algorithm 3), and a binary search is performed to find the row
where the threshold is located (lines 1 to 2). Then the matrix
task size corresponding to each sum is calculated (line 3 to 4),
and then the number of starting and ending rows and nonzero
positions of each part are calculated (line 5 to 20). After

the above operations, we complete the matrix preprocessing
operation suitable for AMPs, and assign suitable tasks to each
core. In this phase, HASpMV address the double imbalance
challenge brought by heterogeneous architecture and sparse
matrix structure.

Algorithm 3 The method to calculate cache line costs in
HASpMV
Require: m,csrRowPtr[ ],csrColIdx[ ]
Ensure: cost sum[ ]
1: for i = 0→ m do
2: cost x← 0
3: ben← −1
4: for j = csrRowPtr[i]→ csrRowPtr[i + 1] do
5: if csrColIdx[j]/8 > ben then
6: cost x← cost x + 1
7: ben← csrColIdx[j]/8
8: end if
9: end for

10: cost sum[i]← cost sum[i] + cost x
11: cost sum[i + 1]← cost sum[i]
12: end for

Algorithm 4 The process of partitioning matrix in HASpMV
Require: COST ,csrRowPtr[ ],csrColIdx[ ],P proportion,m,nnz
Ensure: nnz l[ ].nnz r[ ],pl[ ],pr[ ]
1: costp← COST ∗ P proportion
2: row mid← binary search which row the costp is from 0 to m
3: gapp← ceil(costp/CORE NUM P )
4: gape← ceil((COST − costp)/CORE NUM E)
5: bound← 0
6: for i = 0→ CORE NUM P + CORE NUM E do
7: if i < CORE NUM P then
8: bound← bound + gapp
9: row ← binary search which row the bound is

from 0 to row mid
10: else
11: bound← bound + gape
12: row ← binary search which row the bound is

from row mid to m
13: end if
14: pr[i]← row
15: pl[i + 1]← row
16: nnz r[i] ← binary search the nnz

from csrColIdx[i] to csrColIdx[i]
17: nnz l[i]← nnz r[i]
18: end for
19: pr[CORE NUM P + CORE NUM E − 1]← m
20: nnz r[CORE NUM P + CORE NUM E − 1]← nnz

D. Execution Phase of HASpMV
In this part, HASpMV first binds each part of the task to

the corresponding core (by adjusting the OpenMP environment
variable ‘GOMP CPU AFFINITY ’). Note that splitting
the task can lead to multiple cores computing the same y[i],
as shown in red in the right part of Figure 7. HASpMV uses
an extra array extra y[] to store the tail conflict result of each
core and append it to the vector y at the end, as shown in the
formula in the bottom left corner of Figure 7. Moreover, we
describe this procedure in detail in Algorithm 5. HASpMV
parallelizes the partitioned parts, corresponding to one core
in each part. Since matrix is partitioned strictly by cache line
cost, for a core it may be allocated to only one row of nonzeros
(lines 5 to 8) or incomplete lines plus a full number of lines
(lines 9 to 14), and each core will only record the collision
data processed by the last line. And add it to the vector y at
the end (lines 15-17).
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Fig. 7 An example of dividing an 8-by-8 sparse matrix by cache line (take Intel AMPs as an example, assuming two P-cores and two E-cores are used). Nonzero digits represent
the number of the cache lines and where they are located. In the example, the cache line size is 16. The matrix is partitioned into two parts for P-cores and E-cores by the ratios
of 75% to 25% (size 12 and 4, respectively).

TABLE I
The specifications of the systems tested.

Processor 12th-Gen Intel 13th-Gen Intel AMD Ryzen 9 AMD Ryzen 9
Core i9-12900KF Core i9-13900KF 7950X 7950X3D

Core type P-core E-core P-core E-core CCD1 CCD2 CCD1 CCD2
number of cores 8 8 8 16 8 8 8 8
L1 data cache 8×48KB 8×32KB 8×48KB 16×32KB 8×32KB 8×32KB 8×32KB 8×32KB

L2 cache 8×1.25MB 2×2MB 8×2MB 4×4MB 8×1MB 8×1MB 8×1MB 8×1MB
L3 cache 30MB 36MB 1×32MB 1×32MB 32MB+64MB 1×32MB
DRAM DDR5 4800 MT/s DDR5 5600 MT/s DDR5 4800 MT/s DDR5 4800 MT/s

DRAM capacity 32 GB 32 GB 32 GB 32 GB
Base/Max Frequency 3.2/5.1 GHz 2.4/3.9 GHz 3.0/5.4 GHz 2.2/4.3 GHz 4.2/5.7 GHz 4.2/5.7 GHz

Operating system Ubuntu 22.10 Ubuntu 22.04
Compiler gcc 12.2.0 gcc 11.3.0

Vendor math library Intel oneMKL v2023.0 AOCL−Sparse version 4.0.0

Algorithm 5 A pseudocode for computational part of
HASpMV
Require: CORE P , CORE E, nnz l[ ], nnz r[ ], csrRowPtr[ ],

csrColIdx[ ], csrV al[ ], pl[ ], pr[ ], x[ ]
Ensure: y[ ]
1: Initialize extra y[ ] to be an array of size CORE P + CORE E initialized

with 0
2: Set number of threads for parallelization
3: #pragma omp parallel for
4: for id = 0 to CORE P + CORE E − 1 do
5: if pl[id] = pr[id] then
6: extra y[id] ← avx2 kernel(id, nnz l[id], nnz r[id],

csrColIdx, csrV al, x)
7: continue
8: end if
9: y[pl[id]] ← avx2 kernel(id, nnz l[id], csrRowPtr[pl[id] +

1], csrColIdx, csrV al, x)
10: for i = pl[id] + 1 to pr[id]− 1 do
11: y[i] ← avx2 kernel(id, csrRowPtr[i], csrRowPtr[i + 1],

csrColIdx, csrV al, x)
12: end for
13: extra y[id] ← avx2 kernel(id, csrRowPtr[pr[id]],

nnz r[id], csrColIdx, csrV al, x)
14: end for
15: for id = 0 to CORE P + CORE E − 1 do
16: y[pl[id]]← y[pl[id]] + extra y[id− 1]
17: end for

To further improve the algorithm performance, we also
utilize the AVX2 and loop unrolling technologies in the
implementation which is shown in Algorithm 6. Specifi-
cally, the AVX2 intrinsic mm256 loadu pd is used to load
four nonzero double values from the input array csrV al
into a 256-bit vector val. Meanwhile, the AVX2 intrinsic
mm256 set pd is used to set the four corresponding values

from the input array x to be operated on in the vector vec. The
AVX2 intrinsic mm256 fmadd pd is then used to perform
the multiplication between val and vec, and add the result to
the accumulator vector res. This process is repeated until all
the nonzero double values in the given range are processed.
Finally, a single horizontal addition using mm256 hadd pd
is used to complete the calculation, and the resulting scalar
value is returned. In the above operations, HASpMV can
avoid data collisions to ensure accuracy and further improve
performance. In the above operations, HASpMV can avoid
data conflicts to ensure accuracy and quickly calculate the
value of vector y.
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Algorithm 6 The AVX2 and loop unrolling technologies
function for HASpMV
1: function AVX2 KERNEL(id, begin, end, csrColIdx, csrV al, x)
2: Determine the core type according to id and determine the threshold Len
3: length← end− begin
4: if length < 4 then
5: sum← 0
6: for j = begin to end− 1 do
7: sum← sum + csrV al[j]× x[csrColIdx[j]]
8: end for
9: return sum

10: end if
11: remainder ← 0
12: resy ← 0
13: res← MM256 SETZERO PD
14: j ← begin
15: if length < Len then
16: remainder ← length%4
17: loop← length/4
18: for i = 0 to loop− 1 do
19: val← MM256 LOADU PD(&csrVal[j])
20: vec← MM256 SET PD(x[csrColIdx[j + 3]], x[csrColIdx[j +

2]], x[csrColIdx[j + 1]], x[csrColIdx[j]])
21: res← MM256 FMADD PD(val, vec, res)
22: j ← j + 4
23: end for
24: else
25: loop← length/8
26: remainder ← length%8
27: for i = 0 to loop− 1 do
28: val← MM256 LOADU PD(&csrVal[j])
29: vec← MM256 SET PD(x[csrColIdx[j + 3]], x[csrColIdx[j +

2]], x[csrColIdx[j + 1]], x[csrColIdx[j]])
30: res← MM256 FMADD PD(val, vec, res)
31: j ← j + 4
32: Repeat the previous four lines ▷ loop unrolling
33: end for
34: end if
35: res← MM256 HADD PD(res, res)
36: resy ← res[0] + res[2]
37: for jj = end− remainder to end− 1 do
38: resy ← resy + csrV al[jj]× x[csrColIdx[jj]]
39: end for
40: return resy
41: end function

V. EXPERIMENT

A. Experimental Setup

We conducted our tests on three different platforms, which
include the latest flagship Intel 12th- and 13th-Gen Core i9-
12900KF and i9-13900KF CPUs with P- and E-cores respec-
tively, as well as the latest AMD Ryzen 9 7950X3D CPU with
CCD0 and CCD1. The specifications of these platforms are
provided in Table I, while their block diagrams are illustrated
in Figure 2. Additionally, we also utilized an AMD Ryzen 9
7950X CPU, the details of which are also listed in Table I.

For the AMD Ryzen 9 7950X CPU, we set its frequency
to be the same as that of the AMD Ryzen 9 7950X3D.
The remaining settings were kept consistent between both
generations of processors, with the only difference being that
the L3 cache of CCD0 in the AMD Ryzen 9 7950X3D features
a 3D V-Cache, resulting in an additional capacity of 64MB
compared to the L3 cache of CCD1. Therefore, we conducted
a set of experiments to compare the performance of the AMD
Ryzen 9 7950X and the AMD Ryzen 9 7950X3D, considering
the AMD Ryzen 9 7950X as the homogeneous processor form
of the AMD Ryzen 9 7950X3D.

It is important to note that the installed Ubuntu 22.10
operating system supports a Linux version of Intel thread
director, which may provide better scheduling for OpenMP
programs on Intel AMPs, potentially leading to improved
performance.

In addition, we utilize the entire dataset from the SuiteS-
parse Matrix Collection [30], which consists of 2888 matri-
ces, as our primary dataset. Furthermore, to provide a more
comprehensive analysis, we select 22 representative matrices
from this collection, which are also partially used in existing
works [14], [16], [21]. These representative matrices are listed
in Table II. These matrices exhibit varying sizes (indicated by
the ’#rows’ and ’Nnz’ items) and sparse structures (indicated
by the ’Nnz per row’ item). They are widely used in diverse
fields and serve as good representatives for studying and eval-
uating the performance of different algorithms and techniques
in sparse matrix computations.

TABLE II
The 22 representative sparse matrices.

Name #rows Nnz Nnz per row
(min, avg, max)

consph 83K 6.0M 1, 72, 81
Ga41As41H72 268K 18.5M 18, 68, 702

conf5 4−8×8-10 49K 1.9M 39, 39, 39
webbase−1M 1M 3.1M 1, 3, 4.7K

cop20k A 121K 2.6M 0, 21, 81
in−2004 1.4M 16.9M 0, 12, 7.8K
pdb1HYS 36K 4.3M 18, 119, 204

ASIC 680k 683K 3.9M 1, 6, 395K
Si41Ge41H72 186K 15.0M 13, 80, 662

circuit5M 5.6M 59.5M 1, 10, 1.29M
rma10 47K 2.4M 4, 50, 145

FullChip 2.9M 26.6M 1, 9, 2.3M
mip1 66K 10.4M 4, 155, 66.4K

mac econ fwd500 207K 1.3M 1, 6, 44
cant 62K 4.0M 1, 64, 78
dc2 117K 766K 1, 7, 114K

shipsec1 141K 7.8M 24, 55, 102
n4c6−b7 163K 1.3M 8, 8, 8
Dubcova2 65K 1M 4, 15, 25
viscorocks 37.8K 1.1M 16, 30, 42
dawson5 51K 1M 1, 19, 33

G n pin pout 100K 1M 0, 10, 25

We compare our HASpMV with four other existing
SpMV implementations: (1) Compared only on Intel AMPs,
the inspector-executor functions mkl sparse set mv hint and
mkl sparse d mv in the newest vendor-supported Intel
oneMKL (oneAPI Math Kernel Library) version 2023.0, (2)
compared only on AMD AMPs, the AOCL-Sparse functions in
the newest vendor-supported AMD AOCL (AMD Optimizing
CPU Libraries version 4.0.0, (3) the AVX2 version of the
open-source CSR5-format SpMV [14], and (4) the open-
source Merge-SpMV method using a minor variant of the CSR
format [15]. Noted that all tests are in double precision.

B. SpMV Performance Comparison

We show the performance results of our HASpMV and other
SpMV works in Figure 8. The experimental results show that
compared to the latest version of the Intel oneMKL library
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and the open-source works CSR5 and merge-SpMV, HASpMV
achieves an average speedup of 2.61x, 2.31x, and 3.73x (up to
5.23x, 4.46x, and 8.23x) on the i9-12900KF processor. On the
i9-13900KF processor, HASpMV achieves an average speedup
of 3.17x, 1.52x, and 2.23x (up to 9.46x, 5.31x, and 4.49x).
Additionally, when comparing AMD Ryzen 9 7950X3D and
7950X AMPs, HASpMV brings an average speedup of 1.43x,
1.3x, and 1.29x (up to 6.28x, 7.8x, and 10.8x) over AMD
Optimizing CPU Libraries (AOCL), CSR5, and merge-SpMV,
respectively.
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Fig. 8 Performance comparison of oneMKL or AOCL, CSR5, Merge-SpMV and our
HASpMV algorithm.

For more detailed analyses, in figure 11, we demonstrate
the SpMV performance of the 22 representative matrices. As
can be seen, for the matrices with evenly distributed nonzeros,

such as ‘conf5 4−8×8−10’ having 39 nonzeros in each row,
our method can be 1.84x faster than the second fastest method
CSR5. This is because that HASpMV considers heterogeneity
of AMPs and achieve better load balancing at runtime. As for
the matrices with diverse caching costs of the rows, such as
the matrix ‘rma10’, our HASpMV is more than 2x faster than
CSR5 and Merge-SpMV. The reason is that the number of
cache lines accessed of each row is taken into consideration
in our task assignment policies. For the matrices with power-
law characteristics, such as ‘webbase-1M’ and ‘FullChip’,
our method still can obtain comparable performance over the
others, it is due to the fact that load balancing is also a
key optimization in CSR5 and Merge-SpMV, and the cache
behavior of the matrices brings relatively less impact.
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Fig. 9 Execution time of each core on i9-12900KF when matrix ‘rma10’ is partitioned
by row, by nnz and by cache line, respectively.
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Fig. 10 Comparison of the preprocessing time of the 22 matrices before running SpMV.
Note: For illustrative purposes, AOCL’s processing time of 250ms on subfigure (c)
represents a very large preprocessing time (over 10,000ms) rather than a real 250ms.

To detail the balance of our partitioning strategy, the exe-
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Fig. 11 Performance of the 22 representative matrices on i9-12900KF (top), i9-13900KF (middle) and AMD (bottom).

cution time of each core on i9-12900KF with two different
partitioning methods for matrix ‘rma10’ is shown in Figure 9.
It can be seen that with row partitioning, the execution time
between cores varies greatly and is not balanced, and the
partition according to nnz also has a certain gap in the load,
while our method stabilizes between 0.05 and 0.06ms with
cache line cost partitioning, and the load is very balanced.

C. Preprocessing Overhead Analysis

All the four SpMV methods need to analyze the sparsity
structure of the input matrix, and generate auxiliary arrays
if needed before calculation. We record and plot their pre-
processing costs in Figure 10. It can be observed that the
preprocessing time of HASpMV is almost always the lowest
on i9-13900KF and 7950X3D (In addition, in the preprocess-
ing of AOCL, its aoclsparse optimize function takes too
long to process some matrices, even more than 10,000ms. For
the convenience of presentation, we show them uniformly as
250ms, rather than the real 250ms) , and is in general lower
than the other methods on i9-12900KF (except for several
matrices with very uneven nonzero distribution, in such case
an reordering is needed). This advantage is mainly from that
we keep the CSR format unchanged and only add a little
information in HACSR for guiding the task assignment.

VI. RELATED WORK

There is much research optimized SpMV on homogeneous
parallel processors and mainly focused on the following direc-
tions: (1) Reducing memory footprint of sparse matrix. The
memory footprint of sparse matrices can be effectively reduced
by studying and using different compression techniques and
storage formats, as described in [9], [10], [17], [36]–[41].
(2) Increasing data locality of vector access. To reduce
data access overhead and improve computational performance,
researchers have explored ways to improve data locality for
vector access in works such as [9]–[11], [13], [16], [17],
[37]–[39], [42]–[56]. (3) Utilizing wide SIMD units. Many
works [13], [14], [21], [45], [50]–[52], [57]–[61] can show
that the use of SIMD units is an efficient way to optimize
the performance of the SpMV algorithm. (4) Improving
load balancing. To resolved the load imbalance problem,
researchers have proposed various load balancing strategies
including dynamic task allocation, adaptive scheduling, and
data partitioning methods in papers such as [14], [15], [28],
[45], [57], [60], [62]–[67]. (5) Selecting the best format
and algorithm via machine learning. In works such as [12],
[68]–[74], researchers have used machine learning techniques
to select the best sparse matrix format and algorithm. This
approach further improves SpMV performance by analyzing
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the characteristics of the input matrix and computational
resources to automatically determine the most suitable storage
format and computation method for the task.

Integrating heterogeneous cores into a single chip is getting
more and more attention in modern architecture design. Kumar
et al. demonstrated that single-ISA AMPs could deliver signifi-
cant energy benefits [23] and performance improvements [25].
Power et al. [24] proposed new cache coherence policies
for integrated CPU-GPU AMPs. On the system level, Yu
et al. [75] developed a heterogeneity-aware OS scheduler,
Chen et al. [76] designed energy-efficient task mapping and
resource management policies, and Niu et al. [26] developed
asymmetry-aware locking scheme. On the application side,
Balakrishnan et al. [77] discussed the performance impact
from AMPs, and Saez et al. [27] developed methods that can
migrate data-parallel OpenMP codes to fit AMPs.

In comparison, there lacks parallel algorithms, in partic-
ular irregular methods, designed for AMPs. Our another
recent work called HASpGEMM [32] optimized SpGEMM
on AMPs, and to our knowledge, HASpMV is the first par-
allel sparse matrix algorithm dedicated to utilizing single-ISA
AMPs for SpMV, and achieved significant better performance
over the work designed for homogeneous processors.

VII. CONCLUSION

We in this paper have proposed the HASpMV algorithm and
the HACSR sparse format for SpMV on modern AMPs. Our
approach understood key performance characteristics of P- and
E-cores of Intel (CCD0 and CCD1 of AMD) through micro-
benchmarking, and developed techniques for better cache lo-
cality and load balancing. The experiments on three latest Intel
and AMD AMPs showed significant speedups over existing
works.
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