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Figure 1: Themajor procedures of sparse LU factorisation. (a), (b) and (c) illustrate the original matrix, its reordered form, and
the matrix after symbolic factorisation (yellow triangles represent the fill-ins), respectively. (d) shows numeric factorisation
with a four-process compute layout by using the classic supernodal method, and the crosses mean the extra fill-ins when
computing Schur complement (dense GEMM). (e) shows numeric factorisation in PanguLUwith a four-process compute layout
by using the regular 2D block-cyclic method proposed in this paper. Note that no extra fill-ins are needed, since our work calls
sparse kernels instead of dense ones.
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ABSTRACT
Sparse direct solvers play a vital role in large-scale high perfor-
mance computing in science and engineering. Existing distributed
sparse direct methods employ multifrontal/supernodal patterns to
aggregate columns of nearly identical forms and to exploit dense
basic linear algebra subprograms (BLAS) for computation. How-
ever, such a data layout may bring more unevenness when the
structure of the input matrix is not ideal, and using dense BLAS
may waste many floating-point operations on zero fill-ins.
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In this paper, we propose a new sparse direct solver called Pan-
guLU. Unlike the multifrontal/supernodal layout, our work relies
on simpler regular 2D blocking and stores the blocks in their sparse
forms to avoid any extra fill-ins. Based on the sparse patterns of the
blocks, a variety of block-wise sparse BLASmethods are developed
and selected for higher efficiency on local GPUs. Tomake PanguLU
more scalable, we also adjust the mapping of blocks to processes
for overall more balancedworkload, and propose a synchronisation-
free communication strategy considering the dependencies among
different sub-tasks to reduce overall latency overhead.

Experiments on two distributed heterogeneous platforms con-
sisting of 128NVIDIAA100GPUs and 128AMDMI50GPUs demon-
strate that PanguLU achieves up to 11.70x and 17.97x speedups
over the latest SuperLU_DIST, and scales up to 47.51x and 74.84x
on the 128 A100 and MI50 GPUs over a single GPU, respectively.
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• Mathematics of computing → Solvers; Mathematical soft-
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1 INTRODUCTION
The purpose of the sparse solver is to calculate the solution vector
𝑥 for a linear system𝐴𝑥 = 𝑏 [18, 27, 30], where𝐴 is a sparse matrix
and 𝑏 is a dense vector. Direct methods often first use LU factori-
sation 𝐴 = 𝐿𝑈 to obtain two triangular matrices 𝐿 and 𝑈 , and
complete the solution after two triangular solves. Unlike dense LU
factorisation, a typical sparse LU factorisation is divided into three
phases to accommodate the sparse matrix: (1) reordering, (2) sym-
bolic factorisation, and (3) numeric factorisation. The purpose of
the reordering phase is to reduce fill-in nonzeros and maintain nu-
merical stability. Then, the symbolic factorisation is to determine
the structure of the matrices 𝐿 and𝑈 . Finally, the numeric factori-
sation performs floating-point operations.

The numeric factorisation phase normally contains a large num-
ber of floating-point operations [18, 30], thus many direct solvers
in recent years have taken the parallelism of the numeric factorisa-
tion phase as the main optimisation orientation on single-threaded
processors [23], multi-threaded processors [15, 17, 79], heteroge-
neous processors [49, 52, 61, 81] and distributedmemory systems [8,
55, 73]. But there are several problemswith these solvers. KLU [23],
NICSLU [15], UMFPACK [17] and FLU [79] run on share memory
CPUs and do not effectively use the computing power of hetero-
geneous processors (e.g. GPUs). GLU [49, 52, 61] and SFLU [81]
are still only available for a single GPU, which cannot take advan-
tage of the computing power of multiple GPUs in large-scale su-
percomputers. MUMPS [8], SuperLU_DIST [55] and PARDISO [73]

support the computation on both shared and distributed memory
systems. In addition, the latest versions of SuperLU_DIST have
also been improved for distributed CPU-MIC and CPU-GPU sys-
tems [66–69]. These solvers use multifrontal or supernodal meth-
ods to aggregate dense columns for using dense BLAS, resulting in
good scalability and performance for matrices with many similar
column structures. However, it may cause performance problems
with irregular matrices on distributed memory systems. Either too
few similar columns are aggregated (resulting in insufficient scal-
ability), or too many zero fill-ins are used to gather more similar
columns (resulting in lower computational efficiency).

In this paper, we propose PanguLU, a novel direct solver for
distributed heterogeneous systems. Unlike the multifrontal or su-
pernodal methods, PanguLU uses regular two-dimensional blocks
for the layout and intra-block sparse sub-matrices as the basic unit
to build a new distributed sparse LU factorisation algorithm. Since
the stored matrix blocks are sparse, we take advantage of sparse
BLAS for computation to avoid unnecessary fill-ins and optimise
the sparse properties to make the computation more efficient.

To exploit large-scale supercomputers with heterogeneous pro-
cessors [1], we need to address the following three key challenges:
(1) how to balance workload on distributed processes for higher
scalability, (2) how to take advantage of heterogeneous accelera-
tors by designing appropriate parallel algorithms based on sparse
matrix structures, and (3) how to reduce synchronisation cost be-
tween processes with irregularly sparse structured dependencies.

Firstly, tomake PanguLUmore scalable, we devised a static block
mapping scheme to balance the load. This approach calculates the
corresponding weight of each task, and tasks with high weights
are migrated to less loaded processes in time slice order to balance
the workload of each process. Secondly, we introduce a dedicated
sparse BLAS design and develop 17 sparse kernels with different
parallel methods. In addition, we also design a decision tree ap-
proach to select a faster sparse kernel based on the structure of
the sparse matrix. Finally, we focus on the dependencies between
different sub-tasks and design a synchronisation-free scheduling
strategy. This strategy uses a synchronisation-free array that al-
lows each process in the distributed system to compute as many
executable sparse kernels as possible and ensures the correctness
of the sparse LU factorisation.This has the advantage of improving
performance by reducing the synchronisation overhead.

We evaluate 16 representative sparse matrices from the SuiteS-
parseMatrix Collection [22] on two distributed heterogeneous plat-
forms, one with 128 NVIDIA A100 GPUs and the other with 128
AMDMI50GPUs. Compared to SuperLU_DIST 8.1.2, the geometric
mean speedups of PanguLU in numeric factorisation are 2.53x and
2.79x on the NVIDIA and the AMD GPU platforms, with speedups
ranging from 1.10x - 11.70x and 1.12x - 17.97x, respectively. We
also demonstrate that PanguLU can scale up to 47.51x and 74.84x
on the two GPU platforms, respectively. Then we analyse the per-
formance advantage of PanguLU in numeric factorisation with Su-
perLU_DIST, the kernel time speeds up by an average of 6.54x on a
single GPU and the synchronisation time speeds up by an average
of 2.20x on 128 GPUs.We also test the optimisations resulting from
the sparse kernel selection and the synchronisation-free schedul-
ing strategy in PanguLU, which achieve speedups of 2.3x - 5.4x
(3.8x on average) over the baseline version. Finally, we compare
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Figure 2: An example of block LU factorisation. The diagonal blocks perform LU factorisation to generate triangular blocks.
The upper and lower triangular blocks perform triangular solve to update the other blocks in the same column and row. The
updated blocks resulting from the triangular solve perform Schur complement to update the corresponding tail blocks.

the preprocessing and symbolic factorisation of PanguLU and Su-
perLU_DIST, achieving an average speedup of 1.61x and 4.45x and
a maximum speedup of 3.16x and 6.80x, respectively.

This work makes the following contributions:
• We propose a regular two-dimensional blocking layout in
sparse LU factorisation and adjust the block to process map-
ping for a more balanced workload.

• We design 17 sparse kernels and amatrix structure-based se-
lection method to improve computational efficiency on het-
erogeneous processors.

• We develop a synchronisation-free communication strategy
on distributed systems to reduce the synchronisation over-
head of LU factorisation.

• We achieve significant speedups over SuperLU_DIST in var-
ious phases of LU factorisation and prove that PanguLU scales
well on heterogeneous distributed systems.

2 BACKGROUND
2.1 Dense LU and its Block Algorithm
LU factorisation is a popular matrix decomposition method that
factorises a matrix 𝐴 into lower and upper triangular matrices 𝐿
and𝑈 . The pseudocode in Algorithm 1 demonstrates the dense LU
factorisation of a square matrix 𝐴.

Algorithm 1 An algorithm for dense LU factorisation
1: for 𝑘 = 0 : 𝑛 − 1 do
2: 𝑢𝑘𝑘 = 𝑎𝑘𝑘
3: for 𝑖 = 𝑘 + 1 : 𝑛 − 1 do
4: 𝑙𝑖𝑘 = 𝑎𝑖𝑘 / 𝑢𝑘𝑘
5: 𝑢𝑘𝑖 = 𝑎𝑘𝑖
6: for 𝑗 = 𝑘 + 1 : 𝑛 − 1 do
7: 𝑎𝑖 𝑗 = 𝑎𝑖 𝑗 − 𝑙𝑖𝑘 × 𝑢𝑘 𝑗
8: end for
9: end for
10: end for

To improve performance, a block LU factorisation algorithm [11]
was proposed by exploiting the spatial location of the data. Figure 2
depicts block LU factorisation for a 9 × 9 matrix. It follows the
fixed-size block-wise approach in which each block is processed
independently of others. The diagonal blocks are executed sequen-
tially from the upper left corner to the lower right corner of the
matrix. Blocks of the same colour can be processed simultaneously
to leverage parallelism. Such as, once block 𝐴11 has completed the
LU factorisation, triangular blocks𝑈11 and 𝐿11 can simultaneously
perform triangular solve with𝐴21,𝐴31,𝐴12 and𝐴13. Then the four

blocks can perform the Schur complement at the same time to up-
date𝐴22,𝐴23,𝐴32 and𝐴33. Next the diagonal block is computed in
a similar way until the last diagonal block is processed, marking
the completion of the block LU factorisation. It is clear that block
LU factorisation involves numerous computations with complex
dependencies, which significantly impact parallel performance.

2.2 Sparse LU and its Multifrontal / Supernodal
Algorithms

Sparse LU factorisation is generally considered superior to dense
LU factorisation for solving large-scale sparse linear systems. This
preference is due to the redundant computational steps caused by
zero element computation in dense LU factorisation of sparse ma-
trices. Sparse LU factorisation can be divided into three phases:
reordering, symbolic factorisation and numeric factorisation. Fig-
ure 1 shows an example of sparse LU factorisation with details.

Certain row and column reordering methods [24, 25] are typi-
cally used to minimise nonzero fill-ins before the symbolic factori-
sation phase, as demonstrated in Figure 1(b). In the symbolic phase
illustrated in Figure 1(c), additional nonzero fill-ins are introduced
to determine the sparsity pattern of the triangular matrices 𝐿 and
𝑈 , and to allocate space for the numeric phase in advance. Finally,
in the numeric phase, the necessary floating-point operations are
performed to determine the values in 𝐿 and 𝑈 . Numeric factorisa-
tion often takes a long time due to the complexity and extensive
nature of the floating-point operations. Furthermore, uneven data
access patterns can arise from the sparsity and uneven distribution
of the matrix, which worsens computational time.

The multifrontal [36] method is proposed based on the right-
looking sparse LU factorisation. This method reorganises sparse
matrices into a sequence of partial factorisation of smaller dense
matrices. The elimination tree [25, 57, 72] is used to identify the
rows and columns of thematrix involved in each factorisation step.
It is usually constructed according to the following rule: Consider
each diagonal element as a node, and a node 𝑘 is a child of a node 𝑗
in the elimination tree if the factorisation of the diagonal element
𝑗 follows the diagonal element 𝑘 . Unlike the multifrontal method,
the supernodal [24] method merges a number of similar row struc-
ture columns to form supernodes. As shown in Figure 1(d), the
layout of the supernodal method includes crosses representing the
additional zero fill-ins introduced during the supernode formation
process. In addition, the supernodalmethod of identifying columns
with similar row structures can be challenging due to the identifi-
cation of the unevenness in matrix structures.
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3 MOTIVATION
3.1 Uneven Block Sizes
Many studies have proposed optimisation algorithms for sparse
LU factorisation, such as the supernodal method, which groups
columnswith the same nonzero pattern together and compute them
as dense blocks. Figure 3 illustrates the significantly different su-
pernode sizes of two typical matrices, the number of rows of su-
pernode for G3_circuit and audikw_1 are concentrated in [4, 64)
and [32, 512), respectively, and the number of columns is concen-
trated in [1, 32) and [2, 32), respectively. It can be seen that the
matrix blocks generated by the supernodes can be very irregular,
which affects the computational and storage efficiency, and the ir-
regular structure makes it difficult to optimise the performance at
the kernel level.
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Figure 3: Uneven-size distribution of supernode blocks. The
x-axis and y-axis are the row and column sizes of the su-
pernodes, and the value of the heatmap colour represents
the number of supernode blocks within a certain interval.

3.2 Redundant Zero Fill-ins
Multifrontal and supernodal algorithms divide the matrix into un-
even dense blocks to be computed with level-3 BLAS routines,
which may cause two problems. Firstly, as shown in Figure 1(d),
redundant zero fill-ins can occur when forming dense blocks that
adds extra floating-point operations. Secondly, the local sparsity
of the matrix cannot be exploited during GEMM calculations on
dense blocks, leading to possible performance degradation. In Fig-
ure 4, the density of block matrices involved in GEMM operations
demonstrate great differences, ASIC_680k is concentrated at [0,10)%
while audikw_1 is concentrated at [90,100)%, CoupCons3D has an
overall even distribution but a significant portion is less than 50%.
As a result, there is a chance that sparse BLAS is faster compared
to dense BLAS.
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Figure 4: Density distribution ofmatrices involved inGEMM
(𝐶 = 𝐴𝐵) in SuperLU_DIST, where the x-axis represents the
density, or the proportion of nonzeros in thematrix, and the
y-axis shows the ratio of the number of matrices for each
density range to the total number of matrices.

3.3 High Synchronisation Costs
SuperLU_DIST uses the level-set method to generate an elimina-
tion tree with tree nodes as the minimum scheduling unit. The tree
nodes consist of multiple dense BLAS operations and there are de-
pendencies between each level that need to be synchronised on
completion, resulting in additional synchronisation overhead. In
Figure 5, we show the synchronisation cost ratio of SuperLU_DIST
(on 64 NVIDIA A100 GPUs, from 1 to 64 process) on six matrices
from different applications. As shown, the cost of synchronisation
gradually increases as the number of processes increases, and at
64 processes, it can account for up to 60% of the total computa-
tion time. Therefore, for some matrices with a high synchronisa-
tion time ratio, we can consider reducing the synchronisation cost
to explore the optimisation space.

0

10

20

30

40

50

60

70

Sy
nc
hr
on

isa
tio

n 
/ N

um
er
ic 

Fa
ct
or
isa

tio
n 
(%

)
Si87H76 

(Theoretical/Quantum 
Chemistry )

ASIC_680k 
(Circuit 

Simulation)

nlpkkt80 
(Optimization)

CoupCons3D 
(Structural)

dielFilterV3real 
(Electromagnetics)

ecology1 
(2D/3D)

1-process
2-process
4-process
8-process
16-process
32-process
64-process

Figure 5: Ratio of synchronisation time to numeric factori-
sation time in multiple processes.The x-axis is multiple ma-
trices with 1, 2, 4, 8, 16, 32 and 64 processes, and the y-axis
is the ratio.

4 PANGULU
4.1 Overview
In this paper, we propose a new sparse direct solver on distributed
heterogeneous systems called PanguLU, which includes five steps:
reordering, symbolic factorisation, preprocessing, numeric factori-
sation and triangular solve. (1) In the reordering, PanguLU uses
the MC64 [32, 33] algorithm to maintain the numerical stability,
and METIS [50] to reduce the nonzero fill-ins during the symbolic
factorisation. (2) The symbolic factorisation in PanguLU uses sym-
metric pruning [41] to reduce the computational complexity and
improve performance over unsymmetric pruning [40]. (3) The pre-
processing divides the matrix into sub-matrix blocks and sends
them to each process. The block size is calculated from the matrix
order and the density of the matrix after symbolic factorisation to
balance the computation and communication. Then each process
constructs its own two-layer sparse structure. (4) The numeric fac-
torisation contains a large number of floating-point operations to
determine the numerical values of 𝐿 and 𝑈 . (5) Finally, PanguLU
uses triangular solve to solve Ly = b and Ux = y for the final solu-
tion x, where x, y and b are vectors and b is known.

To enable PanguLU to better exploit the computational power
of heterogeneous distributed systems, we propose a new sparse LU
numeric factorisation algorithm. It consists of three major compo-
nents to eliminate the drawbacks of the existingwork: (1) A regular
2D sparse block structure, (2) Adaptive sparse BLAS kernels, and
(3) A synchronisation-free scheduling strategy. The three compo-
nents of the LU numeric factorisation are described in detail in the
following.



PanguLU: A Scalable Regular Two-Dimensional Block-Cyclic Sparse Direct Solver on Distributed Heterogeneous Systems SC ’23, November 12–17, 2023, Denver, CO, USA

(a) First layer sparse 
storage format

1
2

9

13
16

12

U11

L11

GETRF

(b) Second layer sparse 
storage format 

0 2 4

blk_Value

P07

1 5 3 5 1 3 5

1 86 213 14 16

blk_RowIndex

blk_ColumnPointer

0 1 3 6

1 2 3 1 2

(c) LU factorisation of five time slices before and after load balancing.

Weights 
calculated 2

weight=4

Time slice one
Time slice three

1 2

3 5

76 8

15

9 12

16

11

1413

4

10

P0 P0

P0

P0P0P0

P0 P1

P1

P3P3

P3P2P2 P2

P2

Time slice two

16
weight=14

16
weight=20

1

6

3

2

13

14

8

9

10

11

15

5

12

4

16

7

4

1

2

2

1

5

7
8

4

20

7

0

2

4

3

1

4

7

6

14

14

12

15
22

34

30

57

total 
weights

total 
weights

3

3
54

Time slice four

16
15 16

11 12

6
87

15 16
14

11 12
10

Time slice five

1
2

9

13
16

12

U11

Time slice one
Time slice three

Time slice two

3
54

Time slice four

16
15 16

11 12

6
87

15 16
14

11 12
10

Time slice five

1

6

3

2

13

14

8

9

10

11

15

5

12

4

16

7

4

1

2

2

1

5

7
8

4

20

7

0

2

4

3

1

4

7

6

14

14

12

15
30

26

35

52

L11

GESSM TSTRF SSSSM

9
weight=1

ColumnPointer

RowIndex

Value

(d) Sub-matrix block dependency graph 
before and after load balancing.

Figure 6: Data layout and mapping. (a) and (b) are the sparse storage formats of the first and second layers, respectively. In
the figure, sub-matrix blocks are allocated according to the two-dimensional process grid under four processes, with different
colours representing different processes. The upper and lower subplots of (c), respectively, represent the five time slices of LU
factorisation before and after load balancing, with examples of kernel weight calculations included at the top. (d) represents
the matrix block dependency graph and the weights of each process before and after load balancing.

Firstly, PanguLU splits the original matrix into several blocks
of equal size and stores them by using the Compressed Sparse Col-
umn (CSC) format. To balance the computational load between pro-
cesses, we develop a mapping method to redistribute the compu-
tational load in Section 4.2. Secondly, in the numeric factorisation
of PanguLU, since the matrix blocks are sparse, we develop four
dedicated sparse kernels: general triangular factorisation (GETRF),
sparse lower triangular solve (GESSM), sparse upper triangular
solve (TSTRF), and Schur complement with sparse-sparse matrix
multiplication (SSSSM)[3]. The performance of sparse BLAS can
vary widely for sparse blocks with different structures and differ-
ent methods. Therefore, we design adaptive sparse BLAS to speed
up the computation by selecting the appropriate algorithm accord-
ing to the structure of the input sparsematrices, as described in Sec-
tion 4.3. Finally, to better reduce synchronisation overhead on dis-
tributed systems, PanguLU proposes a synchronisation-free sched-
uling strategy. This strategy uses sparse kernels as the smallest
scheduling unit. A synchronisation-free array is used to perform
scheduling and maintain correctness. Each process executes the
highest priority sparse kernel first in Section 4.4.

4.2 Data Layout and Mapping
PanguLU uses regular two-dimensional blocking with equal block
sizes, which are distributed to each process according to a two-
dimensional process grid. Each process uses a two-layer sparse
structure to store the matrix. At the block level, we use a block-
based CSC format to compress nonzero blocks. Within each block,
sub-matrix blocks are also stored by using the CSC format.

The sparse structure of the first layer is shown in Figure 6(a).The
sub-matrix blocks result from the regular two-dimensional block-
ing method, and the grey blocks, numbered consecutively, denote
sub-matrix blocks containing nonzeros. The empty blocks are rep-
resented by blank spaces.Thenon-empty blocks are allocated across

four processes within a two-dimensional process grid, with each
one being identified by a unique colour. Each process only stores
the essential sub-matrix blocks for computation and employs po-
sition informations of sub-matrix blocks in the original matrix to
facilitate communication. This work uses three auxiliary arrays,
blk_ColumnPointer, blk_RowIndex and blk_Value, to store the po-
sitions of the sub-matrix blocks. They store the prefix sum of the
nonzero sub-matrix blocks within each column, the row index of
each nonzero sub-matrix block after matrix blocking, and its sub-
matrix block pointer, respectively.

The sparse structure of the second layer is shown in Figure 6(b).
The nonzeros within a sub-matrix block are stored with the CSC
format to compress, and we can see the storage result for the sixth
sub-matrix block. From the above Section, the four main kernels
are used for the sub-matrix blocks to compute. GETRF factorises
the input matrix 𝐴 into a lower triangular matrix 𝐿 and an upper
triangular matrix 𝑈 ; GESSM and TSTRF perform the lower or up-
per triangular solve; and SSSSM performs the Schur complement
operation. The weight of the corresponding task can be obtained
by calculating the FLOPs of the kernel.

It is worth noting that this two-layer sparse structure has no
significant additional overhead, as we only need three additional
arrays to represent and access the block-level sparse structure ef-
ficiently. In addition, PanguLU allocates the required memory for
the sub-matrix blocks owned by each process during preprocess-
ing and also allocates space for the matrices L and U required for
the computation, in order to minimise memory consumption by
reusing the space.

Based on the two-layer sparse structure, we implement a static
load balancing strategy, which is a preprocessing before the nu-
meric factorisation to balance the load by calculating the weight of
the different processes on each time slice, where each weight cor-
responds to a task.The Figures 6(c) and 6(d) show five time slices of
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LU numeric factorisation under multiprocess and the dependency
graph of sub-matrix blocks, respectively, where the coloured sub-
matrix blocks represent those to be calculated and the number next
to the kernel icon indicates the weight of the particular calculation.
For example, in the first time slice, sub-matrix blocks 1, 2, 9, 12, 13
and 16 need to be calculated, where sub-matrix block 1 performs
GETRF, sub-matrix blocks 2, 9 and 13 perform GESSM or TSTRF,
and sub-matrix blocks 12 and 16 perform SSSSM, and the depen-
dencies between these sub-matrix blocks are shown in the depen-
dency graph. The whole LU factorisation is completed by running
in the time slice order.

The upper and lower subplots of Figures 6(c) and 6(d), respec-
tively, represent the sub-matrix block distributions before and af-
ter load balancing. We perform fine-grained load balancing on the
first layer structure, based on the total weight of each process and
the weight of each process on the different time slices considered.
In the second time slice, we balance the load between the process
1 with the highest total weight and the process 2 with the small-
est number of tasks. We accomplish this by swapping all tasks as-
signed to these two processes in this time slice, resulting in a visu-
alisation of sub-matrix block 4’s GESSM migrating from process 2
to process 1, as seen in the lower subplots of Figures 6(c) and 6(d).

This load balancing causes the weight of process 1 to increase by
4, while the weight of process 2 decreases by the same amount, due
to the GESSM weight of sub-matrix block 4. Similarly, in the third
time slice, we perform load balancing, changing the total compu-
tational weight of each process. As shown in the figure, the total
weight of each process is counted for comparison, and the result
shows that the load in this example has reached a certain level of
balance. Such a static strategy is completed by preprocessing, and
the main overhead is the calculation of weights, which has a small
time overhead compared to numeric factorisation.

4.3 Sparse Kernels and Algorithm Selection
The performance of sparse kernels is critical for numeric factorisa-
tion and is affected by a variety of factors such as the density, struc-
ture and size of the matrix. Therefore, optimizing sparse kernels
and selecting a better algorithm for each case becomes an essential
task to achieve overall performance gains. To this end, we imple-
ment 17 sparse kernels in PanguLU (three GETRF, five GESSM, five
TSTRF and four SSSSM, as shown in Table 1), and then construct
sparse kernels algorithm selection strategies according to a large
amount of performance data, so as to select the kernel with better
performance.

In Table 1, “C_V𝑖” and “G_V𝑖” denote CPU and GPU versions of
the kernel, respectively. The “Addressing Method” indicates how
the calculation value is located and updated, where “Direct” indi-
cates direct data update in a dense space, “Bin-search” indicates
that data update by searching in a sparse space, and “Merge” rep-
resents that data update by logically merging two sets of sparse
spaces. In addition, the “Dense Mapping” corresponds to “Direct”
and represents that the sparse structure ismapped to a dense space,
and the computation traverses the sparse structure through dense
space addressing assignments, where SSSSM maps only the result
matrix 𝐶 to dense space.

Kernel Version
Addressing Parallelising Dense
Method Method Mapping

GETRF
C_V1 Direct Row ✓

G_V1 Bin-search Un-sync SFLU -
G_V2 Direct Un-sync SFLU ✓

TSTRF/
GESSM

C_V1 Merge Column -
C_V2 Direct Column ✓

G_V1 Bin-search Warp-level column -

G_V2 Bin-search
Un-sync warp-level

row
-

G_V3 Direct Warp-level column ✓

SSSSM

C_V1 Direct
Approximate equal load

column block
✓

C_V2 Bin-search Adaptive split-bin type -
G_V1 Bin-search Adaptive multi-level -
G_V2 Direct Warp-level column ✓

Table 1: Details of sparse BLAS kernels in PanguLU.
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Figure 7: Performance comparison of sparse BLAS kernels.

We demonstrate the performance of all these sparse kernels in
PanguLU running the matrices shown in Table 3, which produces
4,550 sub-matrices for GETRF, 18,786 sub-matrices for bothGESSM
and TSTRF, and 86,982 sub-matrices for SSSSM (details of the ex-
perimental platform are given in Section 5.1).The results are shown
in Figure 7, demonstrating various trends of performance variation
for these sparse kernels. These kernels vary in performance, and
none of them can always maintain the best performance, but when
these kernels are combined in an appropriate way based on matrix
characteristics, the overall performance can be greatly improved.
Drawing from a vast pool of data and with a keen focus on select-
ing a more appropriate sparse kernel for each matrix block, we de-
velop four decision trees to guide our algorithm selection process.
These decision trees are illustrated in Figure 8. For GETRF, GESSM
and TSTRF, which belong to panel factorisation, necessitaty the se-
lection of the most appropriate algorithm primarily based on the
number of nonzeros (nnz) present in the matrix. For SSSSM, it is
primarily based on the FLOPs involved in the computation.
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Figure 8:The decision trees constructed for the four kernels.

4.4 Synchronisation-Free Scheduling
In this section, we introduce the synchronisation-free scheduling
strategy proposed by PanguLU. It uses sparse kernels as the mini-
mum scheduling unit to optimise the efficiency of parallelismwithin
a distributed system. We achieve fine-grained process scheduling
by transferring the values of the synchronisation-free array be-
tween processes, so that as many processes as possible are in a
working state.The synchronisation-free scheduling strategy of this
work is designed to reduce redundant synchronisation overhead
other than the implicit synchronisation in the Schur complement
caused by the data dependency of the LU synchronisation, i.e. the
synchronisation between the tree nodes, in order to achieve higher
parallelism. This strategy consists of two main parts.

The first part is the construction of a synchronisation-free array.
Several kernels can be executed for a sub-matrix block, including
GETRF, GESSM, TSTRF and SSSSM, of which SSSSM may be exe-
cuted multiple times. The working state of the process responsible
for a sub-matrix block is influenced by the state of other related
sub-matrix blocks. We construct a synchronisation-free array to
record the remaining workload of each sub-matrix block with a
value equal to the number of times that sub-matrix block still needs
to execute GESSM, TSTRF or SSSSM, with the value subtracted by
1 for each execution. Note that due to the special nature of the di-
agonal matrix, when the diagonal sub-matrix block corresponds
to a value of 0 for the array data, the GETRF operation needs to
be executed, and the value is subtracted by 1 upon completion. If
the value of the array corresponding to the diagonal sub-matrix
block is -1, the TSTRF dependency of the corresponding row sub-
matrix block and the GESSM dependency of the corresponding col-
umn will be broken. If the value of the array of the non-diagonal
sub-matrix block is 0, the SSSSM dependency of its correspond-
ing row or column sub-matrix blocks will be broken. The process
corresponding to the sub-matrix block whose dependency is bro-
ken adds the corresponding kernel to the computation queue. As

Figure 9: An example of synchronisation-free array prepro-
cessing process. (a) shows the dependencies of eachkernel in
the numeric factorisation, where the different icons in the
circles indicate four different kernels and the arrows indi-
cate the dependencies. Different colours in (b) indicate the
process on which each sub-matrix block resides. (c) shows
the synchronisation-free array corresponding to sub-matrix
blocks in (b).

shown in Figure 9, the direction of the arrow represents the depen-
dency between the sub-matrix blocks, the number indicates the
remaining workload of the sub-matrix blocks, and the colour of
the number indicates the process to which it belongs. The work-
load here represents the number of times that sub-matrix block still
needs to execute GESSM, TSTRF or SSSSM. GETRF is performed
for sub-matrix block 1 without arrows and a value of 0 on the ar-
ray. For sub-matrix block 16 with three arrows, the variable on the
synchronisation-free array is 3.

The second part is to update the synchronisation-free array and
manage the calculation and communication of the processes, as
shown in Figure 10.

Step 1. Each process starts by marking the kernels with a vari-
able 0 in the synchronisation-free array as executable and adding
the kernels to the task queue. The process then checks if an exe-
cutable kernel is currently available. If so, it will start the calcula-
tion of the sparse kernel. Otherwise, it waits for other processes to
send the required sub-matrix block.

Step 2. The process begins to calculate the executable kernel.
If there are multiple executable kernels, they are selected in or-
der of priority. After the calculation, the process updates its own
synchronisation-free array and sends the sub-matrix block to the
other required process. In Figure 10, (2a) indicates the calculation
of the kernel, (2b) indicates the updating of the synchronisation-
free array on this process and the addition of new kernels, and (2c)
indicates the sending of the sub-matrix block to other processes.

Step 3. The process will wait for the sub-matrix block from
other processes. When it receive the sub-matrix block from other
processes, the new executable kernels can be added, and then the
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Figure 10: An example of our synchronisation-free algo-
rithm, where the icons in the circles in (a) correspond to the
operations in (b) labeled as (1), (2a), (2b), (2c), (3a), (3b). Each
process stores a synchronisation-free array and a task queue
containing kernels. Kernels are added to the queue once
they have been freed from dependencies. The process uses
its own synchronisation-free array and sends sub-matrix
block to corresponding processes upon completion of the
kernel.

synchronisation-free array can be updated. As shown in Figure 10,
(3a) indicates that the process is waiting for the sub-matrix block
from other processes, and (3b) indicates that the process is receiv-
ing the sub-matrix block from other processes, releasing the exe-
cutable kernel and updating the synchronisation-free array.

The synchronisation-free strategy proposed by PanguLU can re-
duce the synchronisation cost to some extent. In the computation,
each process always selects the most critical of the tasks to be com-
puted to perform the computation, making the computation of the
tasks on the critical path as fast as possible, so that more processes
are in the state of computation.

5 EXPERIMENTAL RESULTS
5.1 Experimental Setup
We conduct experiments on two different 32-node 128-GPU dis-
tributed clusters, one with NVIDIA A100 GPUs and the other with
AMDMI50 GPUs. Hardware information for both platforms is pro-
vided in Table 2. NVIDIA GPU platform uses CUDA 11.3.0 and
driver 510.85.02. AMD GPU platform uses the ROCm-4.3.1. For
both platforms, we compile SuperLU_DIST and PanguLUwith gcc-
9.3.0, OpenMPI-4.1.2, and cmake-3.23.1. We employ four MPI pro-
cesses per node, each individual process independently occupying
an NVIDIA A100 or an AMD MI50 GPU. Our experiments in Sec-
tions 5.2, 5.4, 5.5 and 5.6 are based on the A100GPU platform, while
the experiments in Section 5.3 are based on both the A100 GPU and
MI50 GPU platforms. Regarding the data set, we use 16 represen-
tative sparse matrices from the SuiteSparse Matrix Collection [22]
in various domains, and most of the test matrices are selected from
those commonly used in SuperLU_DIST papers [67, 69]. Details of
the matrices are shown in Table 3.

NVIDIA GPU Platform AMD GPU Platform
4 * NVIDIA A100 GPUs 4 * AMD MI50 GPUs

with 40 GB, B/W 1555GB/s with 16 GB, B/W 1024GB/s
2 * Intel Xeon 8180 CPUs @ 2.5 GHz 1 * AMD Epyc 7601 CPU @ 2.2 GHz

512GB DDR4 128GB DDR4
Table 2: Information of the two test platforms.

Matrix n(𝐴) nnz(𝐴) SuperLU PanguLU PanguLU
nnz(𝐿 +𝑈 ) nnz(𝐿 +𝑈 ) FLOPs

(105) (106) (108) (108) (1011)
apache2 7.15 4.82 3.19 2.61 3.46

ASIC_680k 6.83 2.64 1.51 1.18 7.68
audikw_1 9.44 77.65 25.39 24.74 117.65
cage12 1.30 2.03 5.83 5.70 42.30

CoupCons3D 4.17 17.28 5.26 4.99 9.05
dielFilterV3real 11.03 89.31 11.33 10.77 20.08

ecology1 10.00 5.00 1.31 0.72 0.30
G3_circuit 15.85 7.66 2.83 1.81 0.91

Ga41As41H72 2.68 18.49 46.11 45.74 813.72
Hook_1498 14.98 59.37 30.59 29.44 163.27
inline_1 5.04 36.82 3.59 3.28 2.52
ldoor 9.52 42.49 3.23 2.80 1.45

nlpkkt80 10.62 28.19 38.52 33.92 329.49
Serena 13.91 64.13 55.33 54.31 598.51
Si87H76 2.40 10.66 39.42 39.08 662.30
SiO2 1.55 11.28 20.69 20.47 267.25

Table 3: The matrices tested in this paper. The matrix order,
the number of nonzeros before and after SuperLU_DIST’s
symbolic factorisation, the number of nonzeros before and
after PanguLU’s symbolic factorisation, as well as the total
number of floating-point operations in PanguLU’s numeric
factorisation are listed.

5.2 Symbolic Factorisation Time
We first compare the symbolic factorisation time of SuperLU_DIST
and PanguLU. Both solvers use a serial symbolic factorisation algo-
rithm. The difference is that SuperLU_DIST uses a combination of
pruning and supernodes for symbolic factorisation, whereas Pan-
guLU symmetrises thematrix and uses symmetric pruning to speed
up the symbolic factorisation. Compared to SuperLU_DIST, Pan-
guLU is on geometric mean 4.45x faster, with a maximum of 6.80x
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in the cage12 matrix. In particular, on some structured matrices
such as audikw_1 and nlpkkt80, PanguLUhas a significant speedup,
with improvements of 3.51x and 4.59x, respectively. We also note
that although symmetric pruning introduces additional fill-ins, es-
pecially for highly non-symmetric matrices, our method achieves
an average reduction in fill-ins of about 11% on the test matrices
compared to SuperLU_DIST, demonstrating a lower number of fill-
ins in Table 3.

5.3 Scalability of Numeric Factorisation
The performance of SuperLU_DIST and PanguLU in numeric fac-
torisation is evaluated in experiments using 1, 2, 4, 8, 16, 32, 64
and 128 A100 GPUs and MI50 GPUs. Figure 12 shows the experi-
mental results. Compared to SuperLU_DIST, PanguLU achieves an
average speedup of 2.53x and 2.79x on the NVIDIA GPU platform
and the AMD GPU platform, with speedups ranging from 1.10x -
11.70x and 1.12x - 17.97x, respectively.

In addition, PanguLU achieves a performance advantage of 1.10x
and 1.12x on the NVIDIA and AMD GPU platforms respectively
for structured audikw_1 matrices, which are well handled by Su-
perLU_DIST. In particular, PanguLU achieves significant perfor-
mance advantages for irregular matrices such as ASIC_680k with
speedups of up to 11.70x and 17.97x on the two GPU platforms,
respectively.

This experiment also demonstrates the good scalability of Pan-
guLU on distributed heterogeneous systems. For example, PanguLU
achieves good performance on the Ga41As41H72 matrix as the
number of GPUs increases. Compared to a single GPU, PanguLU
can scale to 47.51x and 74.84x on 128 A100 GPUs and 128 MPI50
GPUs, respectively. But the scalability of SuperLU_DIST and Pan-
guLU decreases with 128 GPUs for a few matrices, such as the
apache2 and the ecology1. This reduction is mainly due to the in-
crease in communication costs, despite the faster computation by
using more GPUs.

5.4 Kernel Time on a Single GPU
We compare the kernel time of SuperLU_DIST and PanguLU on
a single A100 GPU. Table 4 shows that PanguLU has a geomet-
ric mean of 6.54x compared to SuperLU_DIST in the whole com-
putation kernel. Both SuperLU_DIST and PanguLU perform panel
factorisation based on the original blocks, and the performance dif-
ference is mainly due to the computational method. In the Schur
complement, SuperLU_DIST needs to gather the sub-matrix blocks
together, perform the matrix multiplication, scatter them to the
corresponding positions, and perform the subtraction. However,
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Figure 11: Symbolic factorisation time comparison of Su-
perLU_DIST and PanguLU.

PanguLU performs the Schur complement directly on the origi-
nal matrix blocks, greatly reducing data movement overhead. In
addition, PanguLU uses sparse kernels for computation, while Su-
perLU_DIST uses dense kernels. Therefore, when dealing with ir-
regular matrices such as ASIC_680k, the benefit of sparse compu-
tation in PanguLU is very obvious, resulting in a more significant
speedup.

Matrix
Panel Fact. Time (s) Schur Time (s) All Time (s)

SuperLU PanguLU SuperLU PanguLU SuperLU PanguLU Speedup

apache2 9.4 6.32 27.36 3.86 36.76 10.18 3.61x

ASIC_680k 3.39 3.21 982.36 17.8 985.76 21.01 46.92x

audikw_1 103.44 47.94 764.83 159.35 868.27 207.29 4.19x

cage12 15.8 13 3570.76 70.65 3586.56 83.65 42.88x

CoupCons3D 15.69 11.11 55.55 8.5 71.24 19.61 3.63x

dielFilterV3real 41.62 24.63 127.92 25.27 169.54 49.9 3.40x

ecology1 2.26 1.8 2.88 0.57 5.14 2.37 2.17x

G3_circuit 5.69 4.98 14.71 1.35 20.4 6.34 3.22x

Ga41As41H72 979.85 80.91 21893.96 1275.41 22873.81 1356.32 16.86x

Hook_1498 117.77 66.3 1208.79 230.17 1326.56 296.47 4.47x

inline_1 10.15 6.15 19.66 2.04 29.82 8.19 3.64x

ldoor 7.2 4.55 13.87 1.05 21.07 5.59 3.77x

nlpkkt80 173.69 80.48 1816.94 537.19 1990.63 617.68 3.22x

Serena 238.6 115.98 3551.09 899.36 3789.69 1015.35 3.73x

Si87H76 152.21 74.88 17245.73 1034.96 17397.94 1109.84 15.68x

SiO2 77.78 38.57 9762.91 410.6 9840.69 449.17 21.91x

Geometric Mean - - - 6.54x

Table 4: Kernel time comparison of SuperLU_DIST and Pan-
guLU for 16 test matrices on an A100 GPU.

5.5 Synchronisation Cost on 128 GPUs
We also compare the synchronisation time of SuperLU_DIST and
PanguLU on 128 A100 GPUs. PanguLU uses the synchronisation-
free scheduling strategy to reduce the synchronisation overhead,
and the experimental results (Figure 13) show that it is effective for
mostmatrices ,with an average of 2.20x compared to SuperLU_DIST.
Besides, for structured matrices such as the Hook_1498 and the au-
dikw_1, SuperLU_DIST can more easily form supernodes to make
the computation more regular, and the synchronisation overhead
is equal to that of PanguLU.

5.6 Effects of Different Optimisations
In Sections 4.3 and 4.4 we describe the two optimisations used in
PanguLU in order to improve performance, the sparse kernel se-
lection and the synchronisation-free scheduling strategy. Here, we
analyse the effect of our optimisations through experiments. Fig-
ure 14 shows a performance comparison of the three versions of
PanguLU on 128 A100 GPUs. Compared to the baseline version,
PanguLU achieves speedups ranging from 1.0x to 2.2x (1.7x on
average) by selecting more efficient kernels based on the matrix
structure. For the cage12 and Hook_1498 matrices, the sparse ker-
nel selection is very effective and speeds up by a factor of 2.2x
and 2.1x, respectively. In particular, the ASIC_680k matrix has a
speedup of 1.0x. Due to the inherent sparsity and irregular dis-
tribution of this matrix, high computational performance can be
achieved with the base sparse kernel. We also test the performance
of PanguLU on 128 A100 GPUs using both the sparse kernel selec-
tion and the synchronisation-free scheduling strategy. Eventually,
PanguLU achieves speedups ranging from 2.3x to 5.4x (3.8x on av-
erage) over the baseline version.
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Figure 12: Performance comparison between SuperLU_DIST and PanguLU on 128 A100 GPUs and 128 MI50 GPUs platforms.
The red lines and blue lines indicate the performance of SuperLU_DIST and PanguLU, respectively, while the solid lines and
dotted lines indicate the performance on the A100 GPU and MI50 GPU platforms, respectively.
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Figure 13: Synchronisation time comparison of Su-
perLU_DIST and PanguLU on 128 A100 GPUs.

apa... ASI... aud... cag... Cou... die... eco... G3_... Ga4... Hoo... inl... ldo... nlp... Ser... Si8... SiO...
0

1

2

3

4

5

6

7

Sp
ee

du
p

Baseline Kernel selection Kernel selection & Synchronisation-free

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
01.

5

1.
0

2.
1 2.
2

2.
0 2.
1

1.
2 1.
4 1.

7 2.
1

1.
7

1.
7 1.
9 2.
0

1.
7

1.
7

3.
1

5.
4

5.
3

5.
0

3.
4 3.
6

2.
3 2.

7

4.
5

4.
1

2.
9

2.
8

4.
6

4.
6 4.
7

4.
5

Figure 14: Relative performance improvement of using the
sparse kernel selection and the synchronisation-free sched-
uling strategy on 128 A100 GPUs.

apa... ASI... aud... cag... Cou... die... eco... G3_... Ga4... Hoo... inl... ldo... nlp... Ser... Si8... SiO...
0

10

20

30

40

Pr
ep

ro
ce

ss
 T

im
e 

(s
) SuperLU_DIST PanguLU

12
.2

8.
1

26
.5

6.
4 7.
6

21
.3

9.
7

23
.2

21
.7

28
.5

14
.4

13
.1

31
.1

23
.6

18
.2

11
.6

5.
6

4.
3

15
.4

4.
3 7.

2 10
.5

3.
5 7.

3

19
.6 24

.5

6.
0

5.
8

21
.3 25

.8

20
.5

9.
0

Figure 15: Preprocessing time comparison of SuperLU_DIST
and PanguLU on 128 A100 GPUs.

5.7 Preprocessing Cost
Finally, to fully demonstrate the overall performance of our work,
we also compared the preprocessing time of SuperLU_DIST and
PanguLU, and the results are shown in Figure 15. Compared with
SuperLU_DIST, PanguLU has faster preprocessing stage for most
of the test matrices, on average by a factor of 1.61x and up to a fac-
tor of 3.16x. In particular, for sparse matrices such as G3_circuit
and inline_1, PanguLU’s preprocessing speed is improved by 3.16x
and 2.40x, respectively. However, for the Serena and Si87H76 ma-
trices, PanguLU is slightly slower than SuperLU_DIST due to the
matrix structure and the higher overhead of converting the 2D
block layout, with speedups of 0.91x and 0.89x, respectively.
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6 RELATEDWORK
Muchwork has been done over the past decades to accelerate sparse
direct solvers. For example, maintaining the numerical stability
of the LU factorisation by pivoting [24, 31, 35, 37, 38, 54], reduc-
ing the amount of computations of the sparse LU factorisation
by reordering [5, 6, 19, 20, 51], accelerating symbolic factorisa-
tion [40, 41, 44, 45], improving the parallelism of the numeric fac-
torisation [14, 16, 29, 56, 63, 64, 70, 76], and achieving a higher
performance of the sparse triangular solve [12, 26, 58–60]. How-
ever, the parallelism of the sparse direct solvers still has room to
improve, mainly due to the following three challenges.

The first challenge for sparse direct solvers is how to main-
tain the sparse properties of the sparse LU factorisation and
fully exploit the scalability of modern supercomputers. Duff
and Reid [36] proposed the multifrontal methods, and Demmel et
al. [24] and Li et al. [53, 55] developed the supernodal method.
These methods require the input matrices to be transformed into
a relatively regular pattern by collecting similar columns, combin-
ing them into a dense sub-matrix and using dense BLAS for the
calculation. Much work [4, 10, 21, 28, 39, 42, 43, 77, 80] has been
optimised on the basis of these twomethods because they have the
advantage of not only preserving the sparse properties, but also ef-
fectively improving the scalability when dealing with regular ma-
trices. Furthermore, Gupta [47, 48] achieved better load balancing
by stealing tasks using a task parallelism engine. Amestoy et al. [7]
utilised dynamic task scheduling based on amultifrontal algorithm
to achieve load balancing in a distributed system. Duff et al. [34]
exploited a combination of new load balancing and communica-
tion minimisation techniques to improve scalability. Sao et al. [65–
67] proposed a communication-avoiding 3D algorithm to balance
the load of the supernodes and to make the solver more scalable.
However, multifrontal and supernodal methods rely heavily on the
matrix structure, which can lead to suboptimal performance on ir-
regular matrices. In this paper, PanguLU proposes a new idea for
distributed solver design, using a simpler regular 2D blocking ap-
proach to exploit the sparse properties of matrices and balancing
load by mapping computational tasks to less busy processes.

The second challenge is how to make better use of heteroge-
neous processors to speed up sparse LU factorisation. Ren et
al. [62] optimised work partitioning based on GPU architecture to
accelerate LU factorisation, and Chen et al. [13] combined the char-
acteristics of task-level and data-level parallelism on GPU to opti-
mise sparse LU factorisation for circuit simulation. He et al. [49],
Lee et al. [52], Peng and Tan [61] developed GLU, which performs
sparse LU factorisation using a level-set approach on GPU. How-
ever, this approach often requires a lot of time for synchronisation
between kernel calls. To reduce the synchronisation costs, Zhao et
al. [81] developed SFLU, which uses a synchronisation-free algo-
rithm to improve the parallelism on GPU. However, these optimi-
sations are based on a single GPU for optimisation in LU factori-
sation, which is usually memory constrained. For this reason, Xia
et al. [78] proposed an end-to-end approach to address memory
limitations on a single GPU. With the development of large-scale
supercomputers, this has motivated much work to scale the LU
factorisation to distributed heterogeneous systems, such as Gaihre
et al. [44], who exploit the high throughput of GPUs to accelerate

symbolic factorisation. Sao et al. [69] developed the ability to aggre-
gate small dense BLAS operations into larger ones to utilise GPU.
Tian et al. [75] optimise computational kernels for better parallel
efficiency and cache utilisation on the hierarchy of the Sunway
many-core architecture. All of these studies design better parallel
approaches based on heterogeneous architectures. Compared with
them, we design a block-wise sparse BLAS with 17 sparse kernels
and a decision tree approach that selects sparse kernels based on
the matrix structure to improve parallel efficiency on GPUs.

The third challenge is how to reduce the synchronisation
overhead in large-scale distributed systems. Communication
costs have been one of the main bottlenecks on the performance of
distributed solvers. Existing distributed solvers use many methods
to reduce communication costs. Such as, Amestoy et al. [9] used
a dynamic scheduling strategy that utilised asynchronous commu-
nication, effectively avoiding communication costs by overlapping
communication and computation in MUMPS. Schenk et al. [71]
designed a dynamic two-level scheduling scheme to reduce cache
conflicts and interprocessor communication costs in PARDISO. In
SuperLU_DIST, Sao et al. [68] proposed anHALO algorithm to hide
communication costs in distributed Xeon Phi systems. In addition,
Agullo et al. [2] and Tan et al. [74] used a pipelined approach to
overlap computation and communication to improve the perfor-
mance of distributed solvers. Grigori et al. [46] proposed CALU,
a communication-avoiding LU factorisation algorithm that avoids
communication costs as much as possible. However, little work
has focused on effectively reducing the synchronisation overhead
of LU factorisation in distributed systems. In this work, we propose
the synchronisation-free scheduling strategy that allows each pro-
cess to compute as much as possible and reduces the synchronisa-
tion overhead to improve the performance of distributed solvers.

7 CONCLUSION
In this paper, we have proposed PanguLU, a scalable regular 2D
block-cyclic sparse direct solver on distributed heterogeneous plat-
forms. In PanguLU, a mapping approach was designed for load bal-
ancing, a variety of block-wise sparse BLASmethods were selected
for higher efficiency on GPU, and a synchronisation-free commu-
nication strategy was developed to reduce the overall latency cost.
Our experimental results showed that PanguLU achieved up to
11.70x and 17.97x speedups over the latest SuperLU_DISTwith 128
NVIDIA A100 GPUs and 128 AMD MI50 GPUs, and brought up to
47.51x and 74.84x speedups over a single GPU, respectively.
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Appendix: Artifact Description/Artifact Evaluation

ARTIFACT DOI
https://doi.org/10.5281/zenodo.8252752

ARTIFACT IDENTIFICATION
PanguLU is an open source package for solving the linear system
𝐴𝑥 = 𝑏. The package uses a sparse matrix block LU factorisation
algorithm, which partitions the sparse matrix into multiple sparse
matrix blocks and then uses the sparse basic linear algebra subpro-
grams to execute between the sparse matrix blocks. The algorithm
can run accurately and efficiently on heterogeneous distributed
platforms.

We have evaluated PanguLU on a 32-node distributed GPU clus-
ter. Each node contains two Kunpeng 920 7265 CPUs and four
NVIDIA A100 GPUs. Four MPI processes are used on each node,
with each process independently occupying one NVIDIA A100 GPU.
We used GPUs for acceleration in all experiments as described in
the paper. To facilitate the reproduction of our experiments, this
artifact includes the source code, dataset, all test scripts and test
data.

More details about the artefacts are given below:

• Relevant Hardware Details: 32-node distributed GPU
cluster. Each node contains two Kunpeng 920 7265 CPUs
and four NVIDIA A100 GPUs. The nodes are interconnected
through Cisco CX-6 NICs and four 100G ports to switches.

• Operating Systems and Versions: CentOS 7
• Compilers and Versions: gcc 9.3.0
• Libraries and Versions: OpenMPI-4.1.2; CUDA-11.3.0;
• Input Datasets and Versions: 16 square matrices in the
SuiteSparse Matrix Collection.

• Key Algorithms: Sparse LU factorisation.
• Publicly available?: Yes

Author-Created or Modified Artifacts:
Persistent ID:
https://doi.org/10.5281/zenodo.8252752
Artifact name: PanguLU

REPRODUCIBILITY OF EXPERIMENTS
• Download
First, the artifact can be delivered in this link:
https://doi.org/10.5281/zenodo.8252752
Second, at the time of writing, PanguLU only supports input
files in matrix market format (*.mtx). The matrix list (the
dataset we used in our experiments) is included in our pack-
age. These matrices are publicly available in the SuiteSparse
Matrix Collection.
We can run the python script matrix16.py in the <Pan-
guLU_dir>/matrix folder to retrieve these matrices au-
tomatically. These matrices will be stored in the <Pan-
guLU_dir>/matrix folder.
The whole process is possible to take up to half an hour
depending on the network conditions.

• Installing and Compiling
Next we need to compile the artifact. This artifact requires
the GNU GCC 9.3.0, OpenMPI-4.1.2 and CUDA-11.3.0 compi-
lation environments, which have been compiled and running
on CentOS 7 and GPU driver 510.85.02. It is also expected to
compile and run successfully on other Linux distributions.
We configure the appropriate environment by entering it in
make.inc and use GNU make to compile and build the exe-
cutable file. See the README for more detailed instructions.
Installation and compilation will take about 10 minutes.

• Experiments
There are five shell scripts and five python scripts in the
<PanguLU_dir>/script folder to reproduce the performances
and figures in our paper. Figure 7, Figure 11, Figure 12, Figure
13 and Figure 14 can be repeated by running figureX.sh in
script to obtain the corresponding performance and plotting
the corresponding figure with figureX.py. All performances
and figures will be saved in the <PanguLU_dir>/data folder
and <PanguLU_dir>/figure folder after all scripts have been
completed, which will take about four days in total.

ARTIFACT DEPENDENCIES REQUIREMENTS
• Hardware resources required and utilized: The solver needs
to be built on a heterogeneous distributed platform, and the
algorithm will use GPUs for computing, so a distributed clus-
ter of NVIDIA A100 GPUs must be used, with each process
occupying a single GPU. The hardware for our experiments
is a 32-node distributed GPU cluster. Each node contains two
Kunpeng 920 7265 CPUs and four NVIDIA A100 GPUs. The
nodes are interconnected through Cisco CX-6 NICs and four
100G ports to switches.

• Operating systems: CentOS 7.
• Software libraries: GCC 9.3.0; OpenMPI-4.1.2; CUDA-
11.3.0; metis-5.0.2.

• Input dataset: 16 squarematrices from the SuiteSparseMatrix
Collection, the dataset needed to execute the code, which
are freely and openly available to the public for research
purposes. The motivation for selecting the dataset for the
experiments was: the most of our test matrices were selected
from those commonly used in SuperLU_DIST papers, and the
rest of the matrices were from the same, using these matrices
for testing ensures a fair and representative experiment.

• Any other dependencies or requirements: The test requires a
total of 128 GPUs, 4 GPUs and two Kunpeng 920 7265 CPUs
on each node. The nodes are interconnected through Cisco
CX-6 NICs and four 100G ports to switches. Carefully, we
employ four MPI processes per node, with each individual
process independently occupying an A100 GPU. The test
requires the installation of the running system CentOS 7, as
well as the installation of dependent packages. These include
GCC 9.3.0, OpenMPI-4.1.2, CUDA-11.3.0 and metis-5.0.2.
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• Install and compile the libraries and the code:
You can download the latest version from the link below:
https://doi.org/10.5281/zenodo.8252752
Second, at the time of writing, PanguLU only supports input
files in matrix market format (*.mtx). The matrix list (the
dataset we used in our experiments) is included in our pack-
age. These matrices are publicly available in the SuiteSparse
Matrix Collection.
Step 1. You need to place the zip package we provided in
a shared directory on a distributed system and then run
matrix16.py in matrix/ to download the matrix.
Step 2. We need to compile the artifact. This artifact requires
the GNU GCC 9.3.0, OpenMPI-4.1.2 and CUDA-11.3.0 compi-
lation environments, which have been compiled and running
on CentOS 7 and GPU driver 510.85.02. It is also expected to
compile and run successfully on other Linux distributions.
We configure the appropriate environment by entering it in
make.inc and use GNU make to compile and build the exe-
cutable file. See the README for more detailed instructions.
We provide a new.sh to install the 64-bit METIS package we
provided, our own program and the code needed to draw
the figure.
Installation and compilation will take about 10 minutes.
Step 3. You need to modify run.sh located in the script folder,
we provide two ways to run in run.sh:
(1) mpirun -np [NP] <PanguLU_dir>/test/𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙_𝑓 𝑖𝑙𝑒 −
𝐹 < 𝑃𝑎𝑛𝑔𝑢𝐿𝑈 _𝑑𝑖𝑟 > /𝑚𝑎𝑡𝑟𝑖𝑥/Smatrix_name
With this command we do not specify the node to be used
in the distributed system, you can add a host file to specify
the location where the MPI program is assigned, depending
on how your distributed system runs, e.g:
mpirun -np [NP] -hostfile host
<PanguLU_dir>/test/𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙_𝑓 𝑖𝑙𝑒 − 𝐹 < 𝑃𝑎𝑛𝑔𝑢𝐿𝑈 _𝑑𝑖𝑟 >

/𝑚𝑎𝑡𝑟𝑖𝑥/Smatrix_name
where the host file is used to specify the node used in the
distributed system.

• process description to deploy the code:
In the <PanguLU/dir>/script folder there are 5 shell scripts
and 5 python scripts to reproduce the performance and fig-
ures in our paper. The actual performance of figures 7, 11,
12, 13 and 14 can be reproduced by running figureX.sh in the
scripts to obtain the corresponding performance.
Step 4. In our experimental replication, there are five main
scripts in the script, they correspond to figure7, figure11, fig-
ure12, figure13, and figure14 in the thesis. here is the specific
time for testing: figure7.sh (3 minutes), figure7_origin.sh (3
days), figure11.sh (30 minutes), figure12.sh (3 hours), fig-
ure12_origin.sh (16 hours), figure13.sh (30 minutes), fig-
ure14.sh (1 hour and 30 minutes).
In order to reduce the exact amount of time needed for the
tests, we have reduced the tests for figure7 and added a new
script figure7.sh, which allows you to reproduce the data
from our figure7 experiments with figure7_origin.sh.

In addition, since MPI programs run very slowly at low
process levels, we have also shortened the tests in figure12.sh
by reducing the number of tests at 1, 2, and 4 processes, so
that you can reproduce the performance more quickly.
When all the scripts have been completed, all the perfor-
mance and figures are saved in the <PanguLU_dir>/data
folder. We also provide the corresponding drawing script
figureX.py to draw the corresponding figures, which will be
saved in the <PanguLU_dir>/figure folder when the drawing
is finished.
It is particularly important to note that the output data from
figureX.sh is only stored in the <PanguLU_dir>/data folder.
All the output files can be obtained from config-
ureX_getedata.py file in the <PanguLU_dir>/script folder
and stored in <PanguLU_dir>/data folder. We provide the
complete script figureX.sh in <PanguLU_dir>/script folder
to help you with the following operations: run the code, get
the data, get the figure.
Step 5. We also provide an all_figures.sh in <Pan-
guLU_dir>/script to plot all the figures in our paper directly.
You can run it with the command : " bash all_figures.sh "
and get figure7, figure11, figure12, figure13 and figure14 in
<PanguLU_dir>/figure folder.
Note that this script uses different data to the data you used
to run the code in step 4. It only uses data from our tests,
whereas step 4 only used data from your system tests. We
are just providing a reference for how to plot the figures in
our paper.
Step 6. We provide an all.sh to run all matrix16.py, new.sh,
figure7.sh, figure11.sh, figure12.sh, figure13.sh, figure14.sh .
Note that you must check that run.sh in <Pan-
guLU_dir>/script is able to send the process to the
distributed system for execution before running all the
duplicate new experiments, otherwise unknown errors may
occur.

OTHER NOTES
In particular, it is important to note that using mpirun for MPI
programmes may have specific MPI parameters for each machine,
and we have included them in . /script/run.sh file, it may not be
suitable for yourmachine, in particular, you need to add the -hostfile
parameter to specify the number of MPIs to be sent to different
nodes in the distributed cluster.

be aware that if a node has X A100 Nvidia GPUs then you need
to map X processes to that node to do the calculations. For example,
if a node has 4 A100 Nvidia GPUs, 4 processes need to be mapped
to a single node.
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