
AmgR: Algebraic Multigrid Accelerated on ReRAM
Mingjia Fan1, Xiaotian Tian1, Yintao He2,3, Junxian Li1, Yiru Duan1,

Xiaozhe Hu5, Ying Wang2,3,4, Zhou Jin1 and Weifeng Liu1
1. Super Scientific Software Laboratory, China University of Petroleum-Beijing, 2. Institute of

Computing Technology, Chinese Academy of Sciences, 3. SKLP, Institute of Computing Technology,
CAS, 4. Research Center for Intelligent Computing Systems, 5. Tufts University, USA

Email: {mingjia.fan,xiaotian.tian,junxian.li,yiru.duan}@student.cup.edu.cn,
{heyintao19z,wangying2009}@ict.ac.cn, Xiaozhe.Hu@tufts.edu, {jinzhou,weifeng.liu}@cup.edu.cn

Abstract—Solving systems of linear equations is a fundamental
problem in scientific computing, which has been extensively
researched for decades. One of the most well-known solvers
is Algebraic Multigrid (AMG), which is widely used in high
performance computing due to its good scalability. But currently
accelerating AMG relies on the traditional von Neumann archi-
tecture of storage and computation separation, which leads to
a large data transmission overhead. In this work, we propose a
ReRAM-based processing-in-memory (PIM) architecture named
AmgR, which overcomes the limitations of the traditional von
Neumann architecture for AMG acceleration.

However, accelerating AMG on ReRAM is non-trivial, because
(1) AMG has many computing kernels of various types; (2)
there are irregular operations that cannot be directly performed
using matrix-vector multiplication suitable for ReRAM, i.e.,
aggregation operation; (3) ReRAM has poor write endurance,
and a lot of data during AMG acceleration needs to be rewritten
into ReRAM, resulting in high write cost. To address these issues,
firstly, we propose a flexible architecture, which can realize each
kernel of AMG and is reused by many kernels to improve
resource utilization. Secondly, we propose a dedicated unit to
realize the aggregation operation. Finally, we present a new
mapping strategy to greatly reduce the number of data handling
and writes. The experimental results show that the performance
of AmgR is improved by an average of one and two orders of
magnitude compared to HYPRE on the CPU and AmgX on the
GPU, respectively, while the energy consumption is reduced by
an average of two and three orders of magnitude.

Index Terms—AMG, Processing-in-memory, ReRAM, Linear
algebra

I. INTRODUCTION

Solving systems of linear equations is a core component
of many practical applications and one of the most common
problems in science and engineering, such as quantum me-
chanics, statistical analysis and machine learning [1]. There-
fore, improving the efficiency of solving linear equations has
become one of the key concerns, especially how to improve
the time and energy efficiency. But the efficiency of solving
linear equations is limited by computational complexity. The
Algebraic Multigrid (AMG) can solve linear equations effi-
ciently due to its better computational complexity and high

This work was supported by National Key R&D Program of China (Grant
No. 2021YFB0300600), the State Key Laboratory of Computer Architecture
(ICT,CAS) (Grant No. CARCH CARCHA202115), and the Key Program
of the National Natural Science Foundation of China (Grant No.62204265,
62234010, 61972415, 62222411).

scalability [2]. Thus, it has been widely used in numerical
simulation of practical problems in science and engineering.

Researchers have put a lot of effort into parallelizing and
optimizing AMG on CPU clusters [3] and using GPUs [4]
to accelerate it, achieving good performance improvements.
However, due to the limitations of CPU and GPU of the
traditional von Neumann architecture, the overhead of data
transmission between processor and memory is quite large,
which has become a bottleneck to accelerate AMG. In contrast,
processing-in-memory (PIM) [5] breaks through architectural
limitations to quickly read and access data. Resistive random
access memory (ReRAM), as an emerging non-volatile mem-
ory technology, is considered as a promising candidate for
PIM accelerators. Specifically, it can store data and perform in-
situ matrix-vector multiplication (MVM) in the analog domain.
Thus, the PIM architecture based on ReRAM provides a new
opportunity for accelerating AMG.

However, accelerating AMG on ReRAM poses certain chal-
lenges. Firstly, AMG is very complex and has many computing
kernels. It is divided into Setup phase (use four kernels to
construction of the grid hierarchy and the two important
components of AMG, interpolation and restriction operators)
and Solve phase (use the grid hierarchy and components
generated in the Setup phase to perform multiple grid loop
iterations to solve linear equations, with six kernels in one
iteration). If each kernel is implemented by a single hardware
unit, it is difficult to improve hardware utilization. In addition,
AMG has many irregular operations that cannot be directly
executed using MVM suitable for ReRAM, i.e., aggregation
operation. Finally, ReRAM has poor write endurance, and
AMG has many data movements and complex data depen-
dencies, which makes it hard to reduce the number of data
handling and writes. Therefore, there are still some difficulties
in implementing AMG on ReRAM.

To address challenges mentioned above, firstly, we propose
a flexible architecture AmgR containing multiple units, which
be reused by many kernels to improve resource utilization.
Secondly, we use analog content-addressable memory (CAM)
to design AGG unit for aggregation operation. Finally, based
on the frequency of operators uesd in the flow, we present a
new mapping strategy to reduce the number of data handling
and writes. And we compress operators to facilitate storage.
Specifically, our work has the following contributions:979-8-3503-2348-1/23/$31.00 © 2023 IEEE

(1) To the authors’ knowledge, this is the first ReRAM-
based PIM AMG accelerator, AmgR.

(2) We propose a flexible architecture, which can realize
each kernel of AMG and reused by many kernels.

(3) We design a dedicated unit to perform the aggregation
operation that is difficult to realize with ReRAM.

(4) We present a new mapping strategy to reduce the effect
of poor write endurance of ReRAM on AMG acceleration.

(5) AmgR achieves an average performance improvement
of one and two orders of magnitude compared to HYPRE and
AmgX, respectively, and energy consumption is reduced by
two and three orders of magnitude.

II. BACKGROUND
A. Algebraic Multigrid

Consider the linear equation Ax = b, where A is a matrix
with elements aij (A ∈ Rn×n), x is an unknown vector
to be calculated (x ∈ Rn), and b is the right hand side
of the equation (b ∈ Rn). Usually the set of unknowns
ω = {x1, x2, ...} is directly recorded as a grid. There are
Setup phase and Solve phase to solve the linear equation with
AMG, which have ten kernels.

Algorithm 1 Setup Phase

Input: A1 ← A, I(identity matrix), D−1(D is diagonal matrix of A)
Output: Al+1, Pl, Rl, Sl (l = 1, 2, ...)
for l = 1, 2, ...
1: Tl ← Aggregation(Al) {Aggregation Operation}
2: Sl ← I −D−1 ∗Al {Smoother}
3: Pl ← Sl ∗ Tl {Interpolation/Restriction Operator}
4: Rl ← PT

l
5: Al+1 ← Rl ∗Al ∗ Pl {Triple Matrix Multiplication}

The Setup phase focuses on the construction of the grid
hierarchy and two important components of the AMG, inter-
polation operator P and restriction operator R. Algorithm 1
shows the detailed process. First, the aggregation and Jacobi
operations are performed based on matrix A to construct
the tentative prolongator T and smoother S required for P ,
respectively (line 1-2). The aggregation operation involves
picking the top k maximums for each column of matrix A
(corresponding to a point on the adjacency graph) in turn, and
aggregating the k points with the largest weights on the edges
connected to that point to form a coarse point. Then, P is
calculated using S and T (line 3), and R is constructed from
the transpose of P (line 4). Finally, the coarse grid matrix is
calculated using R, A and P (line 5).

Algorithm 2 Solve Phase

Input: A1 ← A, b, x0, Sl, I,D
−1

Output: x
for l = 1, 2, ...
1: xl ← Sl ∗ x0 +D−1 ∗ b {Pre-smoothing}
2: rl ← b−Alxl {Residual Calculation}
3: rl+1 ← Rlrl {Restriction}
4: el+1 ← A−1

l+1 ∗ rl+1 {Solve}
5: xl ← xl + Plel+1 {Interpolation}
6: x′

l ← Sl ∗ xl +D−1 ∗ b {Post-smoothing}

The Solve phase uses the grid hierarchy, P and R con-
structed in the Setup phase to solve the linear equations. As

shown in Algorithm 2, the process begins with pre-smoothing
to obtain a more accurate initial solution (line 1), followed
by the calculation of residual r (line 2). Then, the residual is
restricted to the coarse grid using R (line 3), and the coarse
grid equation is solved (line 4). Next, the solution on the coarse
grid is interpolated back to the fine grid using P to obtain an
updated solution (line 5). Finally, post-smoothing is performed
to obtain a more accurate solution (line 6).

B. ReRAM-based PIM Designs

ReRAM is an emerging non-volatile memory with advan-
tages such as high density, fast read access and low leakage
power [6]. The crossbar arrays composed of ReRAM enable to
perform Multiply-Accumulate (MAC) operations and support
search operations through analog CAM.

Fig. 1: (a) MAC Crossbar. (b) Analog CAM [7].

ReRAM-based MAC Crossbar. Fig. 1(a) shows the crossbar
array structure of the ReRAM, which has the ability to perform
in-situ MVM operations. Connecting ReRAM cells to the same
row is called the wordline and to the same column is called the
bitline. Voltage is input from the wordline and current is output
from the bitline. The values of the matrix are programmed to
the conductance Gi,j (i and j denote the number of rows and
columns, respectively) in each ReRAM cell, and the vector
is input as a voltage. ReRAM cells connected to the same
wordline share the same input voltage Vi. According to Ohm’s
Law and Kirchhoff’s Current Law, the current flowing through
each ReRAM cell can be obtained as Ij =

∑
i Vi ∗Gi,j , and

the sum of the currents output by the ReRAM cells connected
to the same bitline is a result of MVM.

ReRAM-based analog CAM Crossbar. The analog CAM
supports search in a continuous analog interval [7]. The analog
CAM crossbar is shown in Fig. 1(b), the analog CAM searches
and stores analog data, where the input data can be continuous
values, the stored data is a continuous interval, and the lower
and upper bounds represent the acceptable range of matching.
If the input data is within this matching range, the match is
successful; otherwise, the match fails.

III. AMGR FRAMEWORK

In this section, we discuss the design details of the AmgR.
Firstly, we introduce the proposed architecture, which includes
reusable computing unit, aggregation unit and operational
amplifiers (OAs) unit. Secondly, we elaborate a new mapping
strategy to greatly reduce the impact of poor write endurance

ASPR
C

o
n

tr
o

ll
e

r

Global
Buffer

Controller

S
h

if
te

r
&

 A
d

d
e
r

Output Buffer

AGG
1

Input Buffer
AGG

Input
Buffer

CU

Controller

Index Register

 Flag Register

CU

CU CU

O
u

tp
u

t
B

u
ffe

r
AC

8

A
d

d
e
r2 SMC

SMC

D-1

S&H
ADC

D
A

C
M

U
X

MUX

5 103

...

...

PMC

PMC

xl

S&H
ADC

D
A

C
M

U
X

MUX

9

...

...

AC

CUa1

TG

a2

TG
a1_index

a2_index

...

...

AMC

AMC

b

S&H
ADC

D
A

C
M

U
X

MUX

2 4 6

...

D-1

u1 u2-u28

u1-u2 u3-u28

u2-u28 u1

u3-u28 u1-u2

...

Setup Data Flow

Solve Data Flow

RMC

S&H
ADC

D
A

C
M

U
X

MUX

7
RMC

...

... 1

2

3

4

Aggregation Operation

Smoother

Interpolation/Restriction Operator

Triple Matrix Multiplication

Pre-smoothing

Residual Calculation

Restriction

Solve

Interpolation

Post-smoothing

8

5

10

9

6

7

a1,1

an,n

a2,2..
.

-b1

- +

-b2

-bn

- +
- + ..

.

x1

x2

xn

a2,1

an,1

a1,2

an,2

a1,n

a2,n

CU:Comparison Unit

MUX:Multiplexer

AMC:MAC Crossbar(A)

SMC:MAC Crossbar(S)

PMC:MAC Crossbar(P)

RMC:MAC Crossbar(R)

....

....

4

 Value Register

Fig. 2: The AmgR Architecture.

of ReRAM on accelerating AMG. Finally, we present the data
flow in AMG based on the architecture and mapping strategy.

A. Architecture

One of the major challenges of implementing AMG on
ReRAM is the ten kernels that need to be executed. One
solution is to design a hardware unit specifically for each
kernel and connect the intermediate buffers in a pipeline
manner. In this way, we need to build ten hardware units,
and the hardware overhead is large when the matrix size is
slightly larger. But we find that computational patterns of
many kernels are similar. In this work, we take full advantage
of the similarity of computing patterns to design a flexible
architecture that can be reused by many kernels in AMG,
thereby reusing hardware and reducing unnecessary overhead.

In addition, we can observe that there are many operations
in AMG, which can be categorized into three types: 1)
aggregation operation, 2) multiplication of the inverse matrix
by a vector, 3) multiplication, addition and subtraction between
vectors and matrices. We can find that most of them involve
various operations related to matrices, but the grid coarsening
through aggregation operation does not involve any matrix
operations. In order to realize this kind of irregular operation,
we propose a dedicated unit.

The overall architecture is shown in Fig. 2, which includes
five components: AGG unit, ASPR unit, AC unit, Controller
and Global Buffer. The Global Buffer is used to provide the
matrix A, D−1, the RHS vector b and to accept the result x
calculated each time during the iteration, and the Controller is
used to control the whole data flow. Next, we will introduce
the three units in the architecture in detail.

1) AGG unit: This unit realizes the aggregation operation in
AMG. According to the weights of the undirected graph edges
shown in Fig. 3(a), the points connected by the top k edges
with larger weights are aggregated into a coarse point each
time, and eventually all the points in the graph are aggregated
into coarse points, as shown in Fig. 3(c). The core idea of
AMG is to solve linear equations in coarse and fine grid layers,
which are used to eliminate low-frequency and high-frequency

errors, respectively. The aggregation operation is to aggregate
fine points into coarse points, so that the coarse grid layer can
be constructed according to these aggregated coarse points. It
is clear that this operation is very important for AMG, but
its implementation on ReRAM is a huge challenge, which
is difficult to achieve with MAC crossbar. To achieve this
irregular operation, we effectively utilize CAM to propose a
dedicated unit, thus constructing the T based on the aggre-
gation operation. This unit consists of four comparison units
(CUs), Input Buffer, Output Buffer and three sets of Registers:
Index, Value and Flag. The lengths of three Registers are k,
k and n, respectively (k is the aggregation size, and n is the
matrix order). The Index and Value Registers are used to save
the index and value of the aggregated points, respectively. And
the Flag Register is used to flag whether a point has been
aggregated or not to prevent repeated aggregation.

The specific process is as follows. We need to operate on
the adjacency matrix depicted in Fig. 3(b) of the undirected
graph shown in Fig. 3(a). For each aggregation, the Index and
Value Registers are first initialized to 0. Then, we judge the
points that have not been aggregated in turn, selecting the k
points with the largest undirected edge weight. These selected
points be marked in the Flag Register, and their corresponding
indices and values are stored in the Index and Value Registers,
respectively. As shown in Fig. 3(b) step1, when k is 3, points
1, 2 and 3 after the first aggregation constitute the first coarse
point. And rows 1, 2 and 3 of the first column of the T are
set to 1, the remaining rows are set to 0. Next, the above-
mentioned aggregation operation is continued on the points
that are not aggregated, as shown in Fig. 3(b) step2, that is,
points 4, 5 and 8 collectively form the second coarse point.
And the entries corresponding to rows 4, 5, and 8 in the second
column of the T are set to 1, while the entries in all other rows
are set to 0. Finally, points 6 and 7 become the last aggregation,
that is, the last coarse point, as shown in Fig. 3(b) step3. In
this way, all points have been aggregated, as shown in Fig.
3(c), and the aggregation operation ends. At the same time,
the last column of the T is then similarly constructed.

step3step2step1

9

3

1

0

0

0

Index

0

0

Value 9 3 1

Flag

1 2 3

3

7

3

0

0

0

2

0

1

3

6

2

0

0

2

0

0

0

2

6

1

0

0

3

0

0

0

1

8

0

0

2

0

0

0

0

0

9

1

0

0

2

2

0

0

1

7

2

0

0

0

3

2

0

2

4

1 1 1 0 0 0 0 0

1

2

3

4

5

6

7

8

step1 step2 step3

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

Index

Value 6 1 3

Flag

4 5 8

1 1 1 1 1 0 0 1

Index

Value 9 1 0

Flag

6 7 0

1 1 1 1 1 1 1 1

(a) (b) (c)

solid filled box: points selected by each aggregation

dotted box: coarse points formed after each aggregation

solid transparent box: result after each aggregation

Value:undirected edge weight Index:aggregated point index
Flag :flag whether a point is aggregated or not

1
11

1 1

1

2

3 4

5

6

7 8

3

1

3

2
1

2

1

2
2

2

3

1

2

3 4

5

6

7 8

3

1

3

2
1

2
1

2
2

2

3

9

3

1

0

0

0

0

0

3

7

3

0

0

0

2

0

1

3

6

2

0

0

2

0

0

0

2

6

1

0

0

3

0

0

0

1

8

0

0

2

0

0

0

0

0

9

1

0

0

2

2

0

0

1

7

2

0

0

0

3

2

0

2

4

9

3

1

0

0

0

0

0

3

7

3

0

0

0

2

0

1

3

6

2

0

0

2

0

0

0

2

6

1

0

0

3

0

0

0

1

8

0

0

2

0

0

0

0

0

9

1

0

0

2

2

0

0

1

7

2

0

0

0

3

2

0

2

4

1

2

3 4

5

6

7 8

3

1

3

2
1

2

1

2
2

2

3

1

2

3 4

5

6

7 8

3

1

3

2
1

2
1

2
2

2

3

1

2

3 4

5

6

7 8

3

1

3

2
1

2
1

2
2

2

3
unaggregated points aggregated points

points selected by each aggregation

Fig. 3: Aggregation: Aggregate undirected graph in (a). The adjacency matrix (b) is operated by selecting k points with the
largest edge weight to aggregate into one coarse point at a time, until all points in the undirected graph are aggregated (c).

2) ASPR unit: This unit includes four MAC Crossbars,
Input Buffer, Output Buffer and Controller. In AMG, the func-
tions of constructing smoother S, interpolation operator P ,
restriction operator R, coarse grid matrix Ac, pre-smoothing,
calculating residual and restricting to coarse grid, interpolating
and correcting approximate solution of fine grid, and post-
smoothing can all be implemented by this unit. However,
performing these operations usually requires a large number
of data handling. Therefore, in order to reduce the number
of data handling and writes, we need to design a mapping
strategy that reuses hardware and data, and the details will be
mentioned in the following section.

3) AC unit: This unit consists of resistive crossbar and OAs.
In AMG, the fine grid layer can only be used to eliminate
high-frequency errors, but the operation of solving coarse grid
equations implemented by the AC unit can be used to eliminate
low-frequency errors. This operation involves solving the in-
verse of a matrix, which is an expensive operation. Inspired by
the work of [8], we leverage the circuit to solve this challenge
through the AC unit of Fig. 2. In the cross-point circuit, the
input voltages is b, each entry aij of matrix A is coded as
the analog conductance Gij of the resistive memory, and the
output voltages of the OAs provide the solution x = A−1b.

B. Mapping Methodology

Although we realize the reuse of unit functions with the
flexible architecture, the process of the AMG is still extremely
complicated. First, the matrix A is used to generate T , S, P ,
R and Ac in the Setup phase to construct the grid hierarchy.
In the Solve phase, the matrix A, vector b, and these operators
S, P , R, Ac generated in the Setup phase are used to perform
the V-cycle process, including pre-smoothing, calculating the
residual, restricting residual to the coarse grid, solving coarse
grid equation, interpolating and correcting the approximate
solution of the fine grid and post-smoothing. If the whole
AMG process is implemented step by step in pipelined form,
it will certainly bring huge overhead.

During the construction of the grid hierarchy, the first step
is to transport A in order to construct T and S. Then, we

transport S and T to construct P and R. Finally, we transport
R, A, and P to construct Ac. During the execution of the V-
cycle, S, x0, b and D−1 are transported to obtain approximate
solution x1. This is followed by the transport of A, x1, and b
to calculate residual r1, which is then transported with R to
calculate r2. Then e2 is calculated by transporting r2 with Ac.
The next step involves transporting x1, P , and e2 to update
x1, and finally transporting S, x1, b, and D−1 to construct the
final solution x. We can see that a lot of data is handled many
times, and executing the V-cycle requires multiple iterations.
Therefore, the pipelining entails significant handling costs.

In order to solve this problem, in this work, we propose a
new mapping strategy, which effectively exploits the feature
that operators are used with different frequencies in the flow.
We fix the A, S, P , and R on the four MAC crossbars of
ASPR unit, respectively. In order to further reduce overhead,
we also compress D−1 and fix b, D−1 to the MAC Crossbar.
In the Setup phase, T and S are constructed by transporting A,
then A, S, b and D−1 are fixed. P and R can be constructed
by transporting T , then P and R are fixed. Next, transporting
R gets Ac. In the Solve phase, in order to get x from x0, we
only need to transport some vectors. Specifically, x0 and b are
transported to calculate x1, which is then further transported
to calculate r1. Subsequently, r1 is transported to calculate r2,
which is further transported to calculate e2. Finally, e2 and x1

are transported to update x1, which is ultimately transported
to get x. As shown in Fig. 4, the numbers represent the
ten kernels in AMG, and the arrows represent data handling.
Obviously, we can see that the number of data handling and
writes is greatly reduced by using the mapping strategy.

C. Dataflow

Based on our flexible architecture and mapping strategy, we
will describe the dataflow of AMG on the AmgR architecture
from the Setup phase and Solve phase in this section.

(1) Setup phase: There are four steps in this phase. Firstly,
tentative prolongator T construction, matrix A is sent from
the Global Buffer to Input Buffer of the AGG unit. The data
in each column of matrix A is taken out from Input Buffer

Fig. 4: Mapping. (a) Data handling before using the mapping
strategy. (b) Data handling after using the mapping strategy.

in turn, and the top k values are selected by using CU. The
top k values and their indices are stored and marked with
Registers, and the results of Index Register are stored in the
Output Buffer. According to the data in the Output Buffer, the
T is constructed. Simultaneously, smoother S construction,
the matrix A and D−1 are written from the Global Buffer
to the AMC of the ASPR unit, and the diagonal position
elements of the intermediate result output from AMC are
added by 1 with the Adder, so as to construct S, and it
is written to SMC through Buffer. Then, interpolation and
restriction operators construction, the T is taken from the
AGG unit and is input to SMC to construct P and R, which are
written to PMC and RMC through Buffer, respectively. Finally,
coarse grid matrix Ac construction, the R is input into AMC
through Buffer to calculate Z = RA. The intermediate result
Z is input into PMC through Buffer to calculate Ac. The Ac
is then written to the AC unit through the Global Buffer.

(2) Solve phase: There are six steps in this phase. First,
pre-smoothing, we input x0 and b from Input Buffer to SMC
of ASPR unit to obtain the approximate solution x1. Then,
x1 is sent to AMC through Buffer and is written to the last
row of PMC. The x1 is multiplied by the matrix A on AMC,
and activate the row b, thus obtaining the residual r1. Next,
we send r1 to RMC through Buffer, that is, the residual is
restricted to the coarse grid. Its result r2 is then sent to
the AC unit through the Global Buffer to solve the coarse
grid equation. The result e2 is input to the PMC of ASPR
unit through the Global Buffer, and the row x1 is activated
to complete the interpolation and correct the fine grid
approximation solution, thus updating x1. Finally, the result
x1 is input into SMC and the D−1 row is activated, then the
post-smoothing is completed and the result x is obtained.

IV. EVALUATION

In this section, we evaluate our AmgR design. We first
introduce the experimental setup, and then give a comparison
of performance and energy consumption with HYPRE [9] on
CPU and AmgX [4] on GPU.

A. Experimental Setup

Benchmark. We select more than 800 matrices from the
SuiteSparse Matrix Collection [10] as benchmarks, which
come from different fields such as computational fluid dynam-
ics problem, power network problem, etc. As shown in Table
1, we list the information for six benchmarks among them.

TABLE I: BENCHMARK INFORMATION

Matrix #Rows #Nonzeros Field

1138 bus 1, 138 4, 054 Power Network
adder dcop 69 1, 813 11, 246 Circuit Simulation

bayer05 3, 268 20, 712 Chemical Process Simulation
bcsstk28 4, 410 219, 024 Structural Problem

ex15 6, 867 98, 671 Computational Fluid Dynamics
GT01R 7, 980 430, 909 Computational Fluid Dynamics

AmgR Configurations. There are ASPR unit, AGG unit
and AC unit. The ASPR unit consists of Controller, four MAC
crossbars, Buffer, etc. Each MAC crossbar is composed of
multiple crossbars of 128× 128 size, and the crossbars are
connected to peripheral circuits such as ADC, S&H, etc. The
AGG unit has four CUs, Registers, etc. Each CU consists of
CAM array, TG, etc. And the AC unit is composed of multiple
crossbars of 128× 128 size and OAs.

Methodology. Since there are no PIM accelerators that can
implement complex algorithms like AMG for comparison,
we compare HYPRE on the CPU and AmgX on the GPU,
which are the most widely used AMG software packages
on corresponding platforms. We run open-source HYPRE
2.22.1 on an AMD 2nd EPYC 7702, and open-source AmgX
2.2.0 on a NVIDIA Tesla A100. We adopt NeuroSim [11]
as the simulator for most of the hardware component models
(including ADC, MAC crossbar, DAC, etc.) and NVSim [12]
to model the ReRAM writing energy and latency in 32 nm
technology node.

B. Performance Results

We use AmgX’s performance as the baseline. Fig. 5 shows
the performance of more than 800 matrices from SuiteSparse
on different platforms (CPU, GPU and ReRAM). We find that
AmgR is improved by an average of one and two orders of
magnitude compared to HYPRE and AmgX, respectively.

0 1000 2000 3000 4000 5000 6000 7000 8000
Matrix order

100

101

102

103

104

No
rm

al
ize

d
Pe

rfo
rm

an
ce

AmgX
Hypre
AmgR

Fig. 5: Normalized performance of AmgR with respect to
HYPRE and AmgX.

We select six matrices (as shown in Table 1) from bench-
marks to do further performance demonstration. As shown
in Fig. 6, due to the different distribution and characteristics
of these matrices, there will be some differences in the
performance improvement. But overall, AmgR reduces the
overhead of memory access time compared to HYPRE and
AmgX, and finally achieves certain performance improvement.

1138_bus
adder_dcop_69

bayer05
bcsstk28 ex15 GT01R

1e-4

1e-3

1e-2

1e-1

1e+0

Ti
m

e\
S

AmgR
HYPRE
AmgX

Fig. 6: Time comparison with HYPRE and AmgX.

C. Energy Results

Fig. 7 shows the energy consumption of AmgR compared
with HYPRE and AmgX. Our accelerator reduces the energy
consumption by two and three orders of magnitude on average
compared with the HYPRE and AmgX. In addition, we select
six matrices from benchmarks (as shown in Table 1). As shown
in Fig. 8, we can know that AmgR has the lowest energy
consumption compared with HYPRE and AmgX regardless
of the size and characteristics of the matrices.

Fig. 7: Energy consumption comparison of AmgR over
HYPRE (top) and AmgX (bottom).

1138_bus
adder_dcop_69

bayer05
bcsstk28 ex15 GT01R

1e-3

1e-2

1e-1

1e+0

1e+1

1e+2

En
er

gy
\J

AmgR
HYPRE
AmgX

Fig. 8: Energy comparison with HYPRE and AmgX.

V. CONCLUSION

In this work, we propose AmgR, a flexible ReRAM-based
accelerator that can efficiently accelerate AMG. For AmgR,
we design multiple units to achieve various kernels of AMG.
And we also propose a new mapping strategy to reduce data
handling. The experimental results show that the performance
of AmgR is improved by an average of one and two orders of
magnitude compared to HYPRE on the CPU and AmgX on
the GPU, respectively, and the energy consumption is reduced
by an average of two and three orders of magnitude.

ACKNOWLEDGMENT

We deeply appreciate the invaluable comments from the
reviewers and the helpful discussion with Dr. Guohao Dai.
Zhou Jin and Weifeng Liu are the corresponding authors.

REFERENCES

[1] C. D. Meyer, Matrix analysis and applied linear algebra. SIAM, 2000.
[2] A. Brandt, S. MacCormick, and J. Ruge, “Algebraic multigrid (amg) for

automatic multigrid solution with application to geodetic computations,”
SIAM Journal on Scientific and Statistical Computing, 1983.

[3] U. M. Yang et al., “Boomeramg: A parallel algebraic multigrid solver
and preconditioner,” Applied Numerical Mathematics, 2002.

[4] M. Naumov, M. Arsaev, P. Castonguay, J. Cohen, J. Demouth, J. Eaton,
S. Layton, N. Markovskiy, I. Reguly, N. Sakharnykh et al., “Amgx:
A library for gpu accelerated algebraic multigrid and preconditioned
iterative methods,” SIAM Journal on Scientific Computing, 2015.

[5] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie,
“Prime: A novel processing-in-memory architecture for neural network
computation in reram-based main memory,” ACM SIGARCH Computer
Architecture News, 2016.

[6] T. Chou, W. Tang, J. Botimer, and Z. Zhang, “Cascade: Connecting
rrams to extend analog dataflow in an end-to-end in-memory processing
paradigm,” in MICRO, 2019.

[7] C. Li, C. E. Graves, X. Sheng, D. Miller, M. Foltin, G. Pedretti, and
J. P. Strachan, “Analog content-addressable memories with memristors,”
Nature communications, 2020.

[8] B. Feinberg, R. Wong, T. P. Xiao, C. H. Bennett, J. N. Rohan,
E. G. Boman, M. J. Marinella, S. Agarwal, and E. Ipek, “An analog
preconditioner for solving linear systems,” in HPCA, 2021.

[9] R. D. Falgout and U. M. Yang, “hypre: A library of high performance
preconditioners,” in Computational Science — ICCS 2002, 2002.

[10] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” TOMS, 2011.

[11] P.-Y. Chen, X. Peng, and S. Yu, “Neurosim: A circuit-level macro
model for benchmarking neuro-inspired architectures in online learning,”
TCAD, 2018.

[12] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “Nvsim: A circuit-level
performance, energy, and area model for emerging nonvolatile memory,”
TCAD, 2012.

