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One of the greatest challenges in integrated circuit design is the repeated executions of computationally ex-
pensive SPICE simulations, particularly when highly complex chip testing/verification is involved. Recently,
pseudo-transient analysis (PTA) has shown to be one of the most promising continuation SPICE solvers. How-
ever, the PTA efficiency is highly influenced by the inserted pseudo-parameters. In this work, we proposed
BoA-PTA, a Bayesian optimization accelerated PTA that can substantially accelerate simulations and improve
convergence performance without introducing extra errors. Furthermore, our method does not require any
pre-computation data or offline training. The acceleration framework can either speed up ongoing, repeated
simulations (e.g., Monte-Carlo simulations) immediately or improve new simulations of completely different
circuits. BoA-PTA is equipped with cutting-edge machine learning techniques, such as deep learning, Gauss-
ian process, Bayesian optimization, non-stationary monotonic transformation, and variational inference via
reparameterization. We assess BoA-PTA in 43 benchmark circuits and real industrial circuits against other
SOTA methods and demonstrate an average of 1.5x (maximum 3.5x) for the benchmark circuits and up to
250x speedup for the industrial circuit designs over the original CEPTA without sacrificing any accuracy.
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1 INTRODUCTION

With increasing degrees of the integration of modern integrated circuits (ICs), the reliability of
a chip design is improved via a time-consuming verification process before it can be taped out [8].
The verification mainly verifies whether a designed IC is physically feasible and robust by such
as Monte Carlo analysis [2] and dynamic timing analysis [25], all of which require repeated ex-
ecutions of an expensive SPICE (simulation program with IC emphasis) simulation (due to the
large scale of an IC design) [24]. Moreover, exploring the large design space such as analog cir-
cuit synthesis [53] also relies on repeated SPICE simulations. This poses a great challenge, as the
verification can take up to 80% of the development time in an IC design [41].

Due to its recent fast development, machine learning and other statistical learning methods
have been utilized to resolve this challenge [11]. For instance, Bayesian optimization (BO) [53],
multi-fidelity modeling [52], and computing budget allocation [20] are proposed to accelerate re-
peated simulations. Despite being efficient, direct machine learning implementations rely on a
large amount of pre-computed data to work. Furthermore, almost all machine learning based meth-
ods provide no error bounds in any form, putting the verification process at great risk. Thus, ma-
chine learning methods are mainly used in academic research rather than industrial applications.

A “first principal” way to reduce the computational expense is to improve the SPICE efficiency. A
SPICE solves nonlinear algebraic equations or algebraic differential equations that are constructed
on a circuit based on Kirchhoff’s current law (KCL) and Kirchhoff’s voltage law (KVL) [9]. The
first step is to provide the solution of direct current (DC) analysis, which supports other detailed
analyses, such as transient analysis and small-signal analysis [38]. A general SPICE, such as the
widely used Ngspice, utilizes Newton-Raphson (NR) iteration and other continuation methods,
such as Gmin stepping [29] and source stepping [35], to solve the nonlinear equations due to their
fast convergence properties. These classic algorithms, however, may fail to converge when the
circuit scale is sufficiently large and especially with a strong nonlinearity design. In particular, NR
can fail if the initial guess is not close enough to the final solution; Gmin and source stepping [49]
can fail for positive feedback, high loop gain, or multiple solutions if bifurcation or ill-conditioned
matrix occurs [39]. The non-convergence is not unusual in practical simulations [49]. This chal-
lenge can be solved by homotopy methods, such as fixed point homotopy, Newton homotopy,
and nonlinear homotopy [37, 40, 46, 47]. Although these methods are proven to be global conver-
gent and can improve the convergence effectively, their implementation highly depends on the
device model, making them not that practical in real simulators. This challenge is well resolved
by pseudo-transient analysis (PTA) [28], which inserts constant pseudo capacitors and induc-
tors to original circuits and converts the original hard-to-solve nonlinear algebraic equations into
ordinary differential equations that are easier to solve. In commercial SPICE simulators, PTA is
commonly the last option when all other methods (including NR, Gmin, source stepping) fail to
converge, because the PTA-based methods are known to be robust to large-scale problems but of-
ten suffer from slow convergence, leading to a large number of iterations [29] due to oscillation
issues. Damped PTA (DPTA) [44] exploits a numerical integration method with artificially en-
larged damping effect to deal with the oscillation; ramping PTA (RPTA) [13] ramps up voltage
sources instead of inserting the pseudo-inductors to suppress fill-ins. Compound element PTA
(CEPTA) [50] has demonstrated a strong capability to eliminate oscillation while maintaining high
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efficiency. However, the inserted values and position, a.k.a, the the solver parameters, significantly
affect its efficiency and even its convergence performance. Meanwhile the solver parameters are
highly circuit dependent. As to our knowledge, until now, there has been no literature showing
effective (solver) parameter strategies for CEPTA acceleration.

To harness the power of modern machine learning and meanwhile retain accuracy reliability
of a SPICE simulation, we aim to equip the state-of-the-art SPICE solver, CEPTA, with machine
learning power. To this end, we propose BoA-PTA, a Bayesian optimization error-free Acceleration
framework for CEPTA (Figure 1). Specifically, we introduce a BO [7, 23, 31] to select PTA solver pa-
rameters as an optimization problem. To extend the applicability for different circuits, we utilize
a special netlist characterization and a deep neural network (DNN) for netlist feature extrac-
tion. To further improve BoA-PTA for the highly nonlinear optimization problem, we introduce a
Bayesian hierarchical warping Beta cumulative density function (BetaCDF), which overcomes
the stationary limitation of a general BO without complicating the geometry via a monotonic bijec-
tion transformation [33]. Parameters of the warping BetaCDF are integrated out using variational
inference combined with reparameterization trick [18] to avoid overfitting. Last, the optimization
constraint and scale are handled by a log-sigmoid transformation. We highlight the novelty of
BoA-PTA as follows:

(1) As far as the authors are aware, BoA-PTA is the first machine learning enhanced SPICE
solver.

(2) BoA-PTA provides error-free accelerations and improves convergence performance for the
CEPTA SPICE solver (and potentially other SPICE solvers).

(3) BoA-PTA requires no pre-computed data. It can accelerate ongoing repeated simulations or
improve new simulations of completely unseen circuits.

(4) BoA-PTA is equipped with cutting-edge machine learning techniques: deep learning for
netlist feature extractions, BetaCDF for non-stationary modeling, and variational inference
to avoid overfitting.

(5) BoA-PTA shows an average 1.5x (maximum 3.5x) speedup on 43 benchmark circuit simula-
tions and up to 250x speedup for practical circuit designs.

We implement our acceleration framework for CEPTA due to its urgent need for solver parame-
ter tuning. Nevertheless, our method is ready to combine with other SPICE solvers. As a very first
work of machine learning enhanced SPICE, it is our hope that this work can inspire interesting
machine learning enhanced EDA tools from different perspectives.

The rest of the article is organized as follows. In Section 2, we review the background of PTA
and BO. In Section 3, BoA-PTA is derived with motivations and details. In Section 4, we assess
BoA-PTA on 43 benchmark circuit simulations and four practical circuits for different tasks. We
conclude this work in Section 5.

2 BACKGROUND AND PRELIMINARIES
2.1 SPICE Simulations via PTA

DC analysis computes DC operating points by solving a series of equations that describe the cir-

cuits’ behavior as shown in (1), where the unknown vector v € R? denotes the node voltages

to the datum node, p € R denotes the internal current in the independent voltage sources, and
P+Q=L.

F(u) = 0,u= (v,p)’,F: RF - RE (1)

When the commonly used NR and practical continuation methods fail to converge in the cir-

cuit simulator (e.g., SPICE), the PTA is implemented as an alternative because it provides robust
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Fig. 1. The proposed BoA-PTA framework: the CEPTA solver is treated as a black-box function with the
netlist and the inserted parameters being the model inputs and the CEPTA required iterations to complete
the simulation as the outputs. The netlist features are extracted using a two-layer multiple-layer perceptron,
and the CEPTA inserted values are transformed using the Beta cumulative density function (BetaCDF) [33]
to address the non-stationary challenge. The GP-based [26] BO is conducted conditioning on a given netlist.
An illustration of how the sequential BO [7] works is shown on the right-hand side.
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Fig. 2. Inserted pseudo-elements ((a) GVL, (b, ¢) RVC) and their embedding positions in CEPTA ((a) to
independent voltage sources, (b) to independent current sources, (c) to MOS/BJT transistors, (d) function
of inserted time-variant resistor and conductance).

solutions to nonlinear algebraic equations formed by modified nodal analysis (MNA). PTA
works by inserting certain dynamic pseudo-elements into the original circuits. As shown in Fig-
ure 2, CEPTA inserts a GVL branch into an independent voltage source in serial (Figure 2(a)), an
RVC branch into an independent current source in parallel (Figure 2(b)), and transistors between
each node to ground (Figure 2(c)). The RVC branch is composed of a constant capacitor C connected
in serial with a time-variant resistor R(t), whereas the GVL branch is composed of a constant
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Fig. 3. Equivalent circuit for the branches RVC and GVL.

inductor L connected in parallel with a time-variant conductance G(¢). With the pseudo-elements
inserted, a new set of differential algebraic Equations (2) is formed. Solve it by a transient analysis
with an initial guess u, until convergence:

g(u(t), u(t),t) =0, (2)

where
R(t) = Roe!’™, G(t) = Gye'/". 3)
Ry and Gy is an initial resistor and conductance value and 7 is the time constant. When it gets
the steady-state, the inserted GVL branch can be considered as short, whereas the RVC branch

can be considered as open. The converged solution (when u(t) = 0) is the solution to the original
circuit.

2.2 Stamping

The insertion of compound elements brings additional nodes (e.g., node k in Figure 2) that require
extra computations. To avoid enlarging the order of the Jacobian matrix induced by additional
nodes, CEPTA can be implemented in an equivalent way, where the equivalent circuits are shown
as Figure 3. For the RVC branch, the relationship between current I-p and voltage V. (Figure 2) in
the continuous-time domain is

Icp = C+dV,/dt. ©
Applying the backward Euler formula to the differential part in (4), we have
n+l _ 1y n V. n+1_Vn+1 — (VI — V"
IQEzC*(VG hVC):C*(( cB R h) (V&g = VR™)

©)

at discrete time point t"*!. Therefore, we can obtain the following equivalent equation, which can
be considered as an equivalent inserted circuit as shown in Figure 3(a):

Ig‘gl = GCBquanl + ICBeqa (6)
where
GElBeq - hn+1/C + R(tn+1),
(7)
IcBeq = GeBeq (ISBR(t”) - Vc"B)~
Similarly, the equivalent equations for branch GVL at time point t"*! can be obtained by
Vggl = RCBquggl + VCBeq, (8)
where
REIBE — hn+1/L + Gn+1’
q
©)

VeBeq = Rebeg (—185 + G (V05 — E)) + E.
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Fig. 4. Simulation performance (the number of NR iterations) of CEPTA with different capacitor values for
seven different circuits.

In other words, to implement CEPTA in SPICE, the solver needs to stamp the these equiva-
lent resistances into the original MNA matrix as shown in Table 1 and Table 2 for RVC and GVL
branches, respectively, which are composed of pseudo capacitor value C, resistor R, inductor L,
and conductance G.

Despite CEPTA’s great success, its performance is highly influenced by the inserted pseudo-
elements—that is, the values of the inserted pseudo capacitor, inductor, and the initial values of
resistor and conductance. Figure 4 shows the simulation efficiency with different inserted capacitor
values for seven different circuit simulations, which are from the benchmark discussed later in
Section 4.2. It is thus important to quickly find a set of optimal inserted pseudo-elements that
accelerates the convergence and thus the repeated SPICE simulations. The circuit-dependent and
sensitive property make solver parameter tuning a still open challenge.

2.3 Problem Formulation

Consider a CEPTA solver g with solver parameters x € R* (indicating the value of inserted capac-
itor, inductor, resistor, and conductance) that operates on a netlist file denoted as & and generate
the steady state u = g(x, £). We are interested in reducing the number of iterations, denoted as
n(x, &) + ¢, for g(x, &). Here, ¢ captures the model inadequacy and randomness that are not fully
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captured by x and £ when we execute the CEPTA solver. We aim to seek a function
x"(£) = argminn(x, £), (10)
xeX

where x*(£) is the optimal CEPTA solver parameters for any given netlist £ and argmin_  7(x, &)
is the variable x in the feasible domain X that makes function (x, &) achieve the minimum value.

2.4 Bayesian Optimization

BO is an optimization framework generally for expensive black-box functions that are noisy or
noise-free [23]. Since the black-box function is expensive to evaluate, it is approximated by a prob-
abilistic surrogate model, which provides useful derivative information for the classic optimization
approaches. The surrogate model is a data-driven probabilistic regression that is calibrated to fit
the black-box function with available data. Since conducting the black-box function to collect data
is an expensive procedure, the surrogate model along with the goal of optimization is conducted
in a sequential manner. A candidate point that produces the largest uncertainty can be proposed,
which is known as exploration; in contrast, a candidate focusing on maximizing the prediction
is known as exploitation. The tradeoff between exploration and exploitation is handled by the
acquisition function, which should reflect our reference for the tradeoftf.

2.5 Gaussian Process

The Gaussian process (GP) is a common choice for the surrogate model of BO due to its model
capacity for complex black-box function and for uncertainty quantification, which naturally quan-
tifies the tradeoff. We briefly review GP in this section.

For the sake of clarity, let us consider a case where the circuit is fixed and its index £ is thus
omitted. Assume that we have observation y; = n(x;) +¢,i = 1,..., N for design points x;, where
y is the (determined) iteration number needed for convergence. In a GP model, we place a prior
distribution over n(x) indexed by x:

n(x)|0 ~ GP (m(x), k(x,x'|6)) , (11)

with mean and covariance functions:

mo(x) = E[n(x)],
k(x,x'10) = E[(n(x) — mo(x))(n(x") — mo(x"))],

in which E[-] is the expectation operator. The hyperparameters 0 are estimated during the learn-
ing process. The mean function can be assumed to be an identical constant, mq(x) = my, by virtue
of centering the data. Alternative choices are possible, such as a linear function of x, but rarely
adopted unless a priori information on the form of the function is available. The covariance func-
tion can take many forms, the most common being the automatic relevance determinant (ARD)
kernel:

(12)

k(x, x'10) = 0y exp (—(x — x') diag(6y. ..., 0)) (x — x')) , (13)

where [ is the input dimensionality and diag(6, . . . , 6;) is a diagonal matrix with diagonal elements
01, ...,0;, and the ARD Matern 5/2 kernel [32]:

k(x,x'|6) = 6, (1 +V5d? + gdz) exp (—@) , (14)

where d> = —(x — x’)Tdiag(0y,...,0;)(x — x’) is the effective distance that is also used in
Equation (13). The hyperparameters 671, ..., 07! are referred to as the square correlation lengths
controlling the contribution of each input dimension in both cases, whereas 0, manipulates the
overall magnitude. Denote all of the hyperparameters 8 = (6, . .., 0;)".
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For any fixed x, 7(x) is a random variable before we actually execute the simulation 5(x). A col-
lection of observations n(x;), i = 1, ..., N, however, is a partial realization of the random process
indexed by x, which is assumed GP prior in Equation (11). The main property of GPs is that the
joint distribution of (x;), i = 1, ..., N, is multivariate Gaussian. Assuming the model inadequacy
e ~ N(0,0?) is also a Gaussian, with the prior (11) and available data y = (y,...,yn)?, we can
derivative the model likelihood

L =2 p(ylx, 0) = f(r](x) +¢e)dn = N (ylmo1,K(8) + o*1)
n (15)
=2y mol) (K(O) + o) (y~ my1) — 10 [K(0) + o — X log(27),

where the covariance matrix K(6) = [Kj;], in which K;; = k(x;, xj10),i,j = 1,...,N; 1is a vector
with element 1, and I is the identity matrix. The hyperparameters 6 are normally obtained from
point estimates [16] by maximum likelihood estimate (MLE) of (15) w.r.t. 8. The joint distribution
of y and 5(x) also form a joint Gaussian distribution with mean value m(1 and covariance matrix

s | K(O) + o’1 ‘ k(x)
K@) = [ K (x) | k(xxI) + o

; (16)

in which k(x) = (k(x1, x10), ..., k(xxn, x]0))”. Conditioning on y provides the conditional predic-
tive distribution at x [26]:

7(x)1y,0 ~ N (u(x16), v(x, x'16)) ,
u(xl6) = mo1 + k(x)T (K@) + 1) (y—mo1), (17)

u(x16) = 0% + k(x, x18) — K" (x) (K(6) + o%1) " k(x).
The expected value E[n(x)] is given by 1(x|0) and the predictive variance by v(x|6).

2.6 Acquisition Function

For simplicity, let us consider the maximization of the black-box function without particular con-
straints. Based on the GP model posterior in (17), we can simply calculate the improvements for a
new input x as I(x) = max(fi(x) —y', 0), where y is the current optimal and #(x) is the predictive
posterior in (17). The expected improvement (EI) [14] over the probabilistic space is

EI(x) = Ej(x)~ N (u(x), o0 [max(7(x) — 7, 0)]
. x) -yt x)—yf (18)
= (u(®) -y (“(’—y) +o(x)p (“(’—y)

v(x) v(x)
where /(-) and ¢(-) are the probabilistic density function (PDF) and cumulative density function
(CDF) of a standard normal distribution, respectively. It is clear that the EI acquisition function (18)
favors regions with larger uncertainty or regions with larger predictive mean values and naturally
handles the tradeoff between exploitation and exploration. The candidates for the next iteration
are selected by

argmax EI(x), (19)
xeX

which is normally optimized with classic non-convex optimizations (e.g., L-BFGS-B) [54].
Rather than looking into the EL we can approach the optimal by exploring the areas with higher
uncertainty toward the maximum

argmax (y(x) + /J’%v(x)) , (20)
xeX
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where f reflects our preference of the tradeoff of exploration and exploitation. This is known as
the upper confidence bound (UCB) [34], which is simple and easy to implement yet powerful
and effective. However, the choice for f is nontrivial, which hinders its further applications.

Both EI and UCB acquisition functions try to extract the best from the current status. The max-
value entropy search (MES) acquisition function is introduced by Wang and Jegelka [42] to
take a further step to inquire at a location that produces maximum information gain (based on
information theory) about the black-box function optimal,

MES(x) = =By [h(y"1D U {x,7(x)})] - H(y"|D)
= B [H#(x)ly")] + H(#(x)),

where y* indicates the black-box function optimal, ) means the current dataset, and H(#j) =
- fp(ﬁ) log(p(7))dn is the entropy for p(#). The first term in (21) is generally achieved using
sampling method, whereas the second one has a closed-form solution. The readers are referred to
the work of Wang and Jegelka [42] for more details.

BO is an active research area, and there are many other acquisition functions, such as knowledge
gradient [30] and predictive entropy search [10]. Ensembles of multiple acquisition function are
also possible [21]. In this work, we focus on BO accelerated SPICE and test it with the classic EI,
UCB, and MES acquisition functions. However, our method is ready to combine with any other
acquisition functions or portfolio strategy.

(21)

3 PROPOSED BOA-PTA
3.1 Circuits Characterization via Deep Learning

The most challenging part of this work is the characterization of the circuit on which the SPICE
solver is executed. Recently, machine learning techniques have been implemented in the EDA com-
munity to accelerate the design/verification process [11]. Directly introducing a powerful model
such as deep learning that directly uses netlist as inputs is feasible in some cases [22]. However,
this approach is unlikely to address our problem because we do not have a large amount of data
nor great computational budget for model training. Even if we have, the overwhelming computa-
tional overhead required will make the approach impractical for real problems. Instead, we follow
the work of Zhang et al. [51] and use the seven key factors (the number of nodes, MNA equations,
capacitors, resistors, voltage sources, bipolar junction transistor, and MOS field-effect transistor)
to characterize a netlist as raw inputs for BoA-PTA. These features are denoted as a column in-
put £. A GP with a commonly used kernel e.g., (13) is unlikely to be able to capture the complex
correlations between different netlists. The DNN has been shown to be a powerful automatic fea-
ture extraction for various practical applications [19]. Thus, we further introduce deep learning
transform as automatic feature extraction for £ (i.e., ®(£)), before the GP surrogate:

o(£) = h(W'ol (&) + b)), (22)

ol (&) = h(W'™'0 7 (g) + '), (23)

where ®!(£) = £ and h(-) is an element-wise nonlinear transformation known as the active func-
tion in this scenario. This is a classic DNN structure known as the multiple-layer perceptron
(MLP), which is commonly used to process features in a deep model. In this work, we use the same
dimension of & to be the output dimension of ®(£). The extracted features are then passed to a
GP for further feature selections by an ARD kernel and for model predictions. The DNN with the
follow-up kernel together can be seen as a kernel that learns the complex correlations automati-
cally through DNN. For this reason, this approach is also known as deep kernel learning [43].
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3.2 Non-Stationary GP for CEPTA

The efficiency and effectiveness of BO is highly determined by the accuracy of the surrogate model;
for a GP model, its model capacity is largely influenced by choice of the kernel function. Con-
sider the function 5(x, &) for a fixed &, according to our experiments, n(x, &) is a highly nonlinear
function w.r.t. x, making the commonly used stationary ARD kernel ineffective for modeling such
a complex function.

Unlike the previous section where the complex correlations of € can be captured automatically
using a complex model such as DNN [51], latent space mapping [5], and GP [1], modeling of x
requires extra care because (1) despite the strong model capacity, introducing a complex model
is likely to introduce extra model parameters (particularly when a DNN is implemented), which
makes the model training difficult and potentially requires more data for the surrogate to perform
well, and (2) even worse, introducing another complex model can complicate the geometry, mak-
ing the optimization of the non-convex acquisition function w.r.t. x more difficult. Note that the
DNN we implement in Section 3.1 does not suffer from this issue because it is not involved in the
optimization of the acquisition function. We will show the details in later sections.

For modeling x, we believe that the rule of thumb is to follow Occam’s razor and introduce a
simple yet effective transformation for the solver parameter x. To this end, we follow the work of
Snoek et al. [33] and introduce a bijection BetaCDF,

B X4 uad—l(l _ u)ﬁd—l
wa(xa) = fo . (24)

where a4 and f; are the positive functional parameters, and B(ay, f4) is the normalization con-
stant. This transformation is monotonic (thus does not complicate the optimization geometry),
and it comes with only two extra parameters for each input dimension. To further reduce the
probability of overfitting with w;(x,4), we use a hierarchical Bayesian model by placing priors

log(aa) ~ N (udof) . log(Ba) ~ N (. o7)). (25)

for the BetaCDF. The introduced hyperparameters {ag, ﬁd}fg):l can be obtained via point estima-
tions. To avoid overfitting, Snoek et al. [33] integrate them out by using Markov chain Monte Carlo
slice sampling, which significantly increases the model training time and will make the accelera-
tion via BoA-PTA impractical because the BO itself consumes too many computational resources.

In this work, the reparameterization trick [18] is utilized to conduct a fast posterior inference
for {ay, ﬁd}dD:p which is later integrated out. We use a log-Gaussian variational posterior

log (q(y)) ~ N(py.2y), (26)

where y = [at1,...,ap, 1, .., ﬁD]T. This formulation allows us to capture the complex correla-
tion between any oy and S .

3.3 Handling Constraints and Scales

The CEPTA solver parameters are practically in the range of [1077, 107]. This poses two challenges.
First, it turns the unconstrained optimization into a constrained one that requires extra care. Sec-
ond, in its original space, [1077, 0] takes almost zero volume of the whole domain [1077,107]. This
makes an optimization either ignore the [1077,0] range completely or fail to search the whole
domain with a small searching step.

To resolve these issues simultaneously, we introduce a log-sigmoid transformation,

xq = (7 - sigmoid(z4))", (27)
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Fig. 5. Simulation performance (the number of NR iterations) with different capacitor values for HVREF
circuit design.

where sigmoid(zg) = 1/(1 + exp(zy)) is the sigmoid function. In this equation, the base-10 log-
arithm scales x4 such that the optimization focuses on the magnitude of x; rather the partic-
ular value, whereas the sigmoid function naturally bounds x4 to the range of [1077,107]. This
log-sigmoid transformation is applied to each x; independently. When the optimization of the ac-
quisition function is conducted, it is optimized w.r.t. z; instead of x4. Note that this log-sigmoid
transformation does not change the monotone of 5(x, £) nor affect the non-stationary transforma-
tion (24), which is designed to tweak the space X to resolve the non-stationary issue.

To illustrate the benefit of the log-sigmoid and the aforementioned BetaCDF transformation, we
show the GP fitting for modeling the capacitor vs. the number of NR iterations for the HVREEF cir-
cuit design using a vanilla GP, a GP with log-sigmoid transformation, and a GP with log-sigmoid
and BetaCDF transformation in Figure 5. Note that the x-axis is on a logarithmic scale for a com-
pact visualization, whereas the logarithmic scale is not naturally applied to the vanilla GP. It is clear
that the vanilla GP cannot capture the wide domain issue and creates unstable oscillated predic-
tions, which we frequently encountered during our experiments. The log-sigmoid transformation
can improve the problem in a wide domain but still generates unreliable predictions and uncer-
tainty estimations for large capacitor values. The log-sigmoid and BetaCDF together significantly
improve the fitting.

3.4 BoA-PTA Training and Updating

With the features extracted from the netlist through the DNN &, the GP likelihood £ is the same
as (15) but with a composite covariance kernel function

k ([w(x), 2(8)], [w(x'), ®(£")]). (28)

The challenge presents itself due to the posterior of y, which hinders the joint model likelihood
from taking a closed-form solution. Thus, we follow Bishop [4] and utilize Jensen’s inequality to
derive evidence low bound (ELBO) of the joint model log-likelihood given the observation set
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{xi’ §i3 yi}l{\ils

log f p(y.ylx, 0)dy > f q(y) logp(yly. x,0)dy — KL (q(p)lip(y)) £ L, (29)

where KL (q(p)lIp(y)) = f q(y) log %dy is the KL distance between ¢(y) of Equation (26) and
p(y) of Equation (25), which has a closed-form solution given our prior and variational posterior.
The details of the derivation are preserved in the appendix. However, the first term in Equation (29)
is not tractable, and thus we cannot easily derive the derivative w.r.t. to the model hyperparameters
and variational parameters. To resolve this issue, we take advantage of the latest development in
machine learning of the reparameterization trick, which is proven to be more robust than other

general black-box variational approaches. Specifically, we use the one-liner transformation,

yszexp(yy+e,~-L), s=1,...,S, (30)

where y_ denotes an iid. sampled of p, € is independently sampled from a standard normal
distribution € ~ N(0,I), and LLT = X, is the Cholesky decomposition of . The first term
in Equation (29) can then be approximated using the samples {y }le

S
1
[ 10gp(riy.x. 00y = 5 3 logpr1y, 5. 0). 6
s=1

This approximation allows us to write the joint likelihood £ in an analytical form and to derive
the exact derivative w.r.t. the model parameters. We can then maximize £ using any gradient-based
optimization method, such as Adam [17] and L-BFGS-B [54].

The DNN ® parameters W' and b’ are updated easily (because they do not affect by y) by using
the following gradient

L 10 9L, k90

= — s — 32
OW! S & Ok 0D GW! (2

where £ = log p(yly,, x, 0) is the log-likelihood with y , and k; is the kernel function with input
data augmented by the BetaCDF with parameter instance y .. The DNN parameter derivatives need

to be computed only once to save computation. Similarly, the derivative w.r.t. b is conducted in
the same way,

0L 10 0L Ok 90

- ==, 33
oyt S Oks 02 b (33)
For the variational posterior yp, the variational parameter derivatives are computed by
S
1 S kS N a
DL _1§h0L, ik w0, o
op, S Oks Ows Jy, dp,
and
s
0L 100L Ok dw Oy, o)

In practice, the surrogate model will be updated iteratively, whereas the reparameterization trick
is indeed an unbiased estimation with low variance, and we opt for the single-point estimation by
setting S = 1 to save computational resources as in the work of Kingma and Welling [18].
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ALGORITHM 1: BoA-PTA Cold Start

Input: Netlists [£,,...,&,] = E, number of epoch Nepoch
1: Execute CEPTA with default setting on any netlist &;
2: for j = 1to Nepoch do
3 fori=1toMdo

4 Update surrogate model M by maximizing (29)

5 Update and optimize acquisition function (18), (20), or (21) given &; and get candidate x
6 Execute CEPTA and collect iteration n(x, £;)

7. end for

8: end for

9: return Best record of {x*, n(x*, &;)} for i = 1,..., M; surrogate model M

3.5 Simplified Optimization of Acquisition Functions

Unlike a general BO process where all input parameters of the surrogate model are optimized
simultaneously, in our application, we always optimize the solver parameters x conditioned on
a given netlist £. This makes the optimization much easier and faster without repeated forward
and backward propagation through the DNN. Specifically, conditioned on a netlist £, the kernel
(28) can be decomposed as ki (w(x), w(x')) - ko(®(&), P(£’)), where k; is an ARD kernel for w(x)
and k, for (&) with their original hyperparameters, due to the separate structure of an ARD ker-
nel. This decomposition significantly simplifies the optimization of acquisition function because
ko(®(&), (£’)) need to be computed only once until a new target netlist £, is given.

3.6 BoA-PTA for Solver Parameter Optimization

Most surrogate model based acceleration techniques require pre-computed data for pseudo-
random inputs [45]. In contrast, BoA-PTA can be immediately deployed to explore the potential
improvements for a netlist set £ = [£,,...,&;]. We call this cold start, as the surrogate has yet
seen any observations for any netlists and solver parameters to make an accurate posterior predic-
tion. For this situation, we use a sequential iteration scheme to run BoA-PTA, which is described
in Algorithm 1.

It might seem unnecessary to run Algorithm 1 because it requires repeated executions of the
CEPTA solver and consumes extra computational resources. This process indeed provides little
value for the task of solving netlists = for once. However, BoA-PTA provides three significant
extended values. First, it explores the potential improvements for the considered netlists. Unlike a
random or grid search scheme, it provides a systematic and efficient way to continuously optimize
CEPTA for future usage. In practice, those optimal solver parameters can be reused when slight
modifications are made to the original netlist, which is a common situation in circuit optimization
or yield estimation. We will discuss this further for practical acceleration in Section 3.7. Second, for
some netlists, CEPTA does not converge with the default solver parameters. In this case, BoA-PTA
has the potential to seek solver parameters that leads to convergence. This is practically useful
for performance improvements for CEPTA. Third, the process is an effective and efficient way to
conduct offline training for the surrogate model to directly predict optimal solver parameters for
an unseen circuit/netlist in future usage.

3.7 BoA-PTA for Monte Carlo Acceleration

One of the most common situations for the repeated SPICE simulations is Monte Carlo analysis,
where many modest variations of a given netlist are simulated. Denote Q as a netlist sampler
that generates a netlist £ based on a pre-defined distribution. Here we propose a possible method
for BoA-PTA to accelerate such a Monte Carlo analysis in Algorithm 2. In this algorithm, we set
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y = 9,999 as the penalty for a non-convergence case, 2y as the threshold to halt the BO process,
and 20 epochs as a convergence threshold. This hyperparameter needs to be adjusted for different
situations and computational allowance. Note that the pre-trained model of Algorithm 1 can be
used for Algorithm 2 as a “warm start” that provides prior knowledge.

ALGORITHM 2: BoA-PTA Monte Carlo Acceleration
Input: Netlists sampler Q, number of samples Ny,
1: Sample a netlist £ from Q and execute 5(x, £)
2: Update the record of the best x* and the best iteration y*
3: for i = 2 to N do
4:  Sample a netlist £ from Q
5. if y* does not converge then
6: Update surrogate model M by maximizing (29)
7
8
9

Optimize acquisition function and get optimal x
Execute n(x, &)
: while Executing 5(x, £) do
10: if SPICE iteration reaches 2y* then

11: Stop the current execution

12: re-execute n(x*, £) and collect results

13: end if

14: end while

15: Update record of best parameters x* and iteration y*
16:  else

17: Execute n(x*, £) and collect results

18:  endif

19: end for

20: return Monte Carlo analysis for Q

3.8 Error Analysis and Computation Complexity

Unlike many verification/design acceleration solutions that are purely based on machine learning
techniques [11] introducing unquantified error and uncertainty, BoA-PTA introduces no extra er-
ror or uncertainty. Specifically, as long as the CEPTA converges, the error is bounded by the error
of PTA, which is (¢ < 107'?) by default. BoA-PTA is thus an error-free approach. When BoA-PTA
fails to improve CEPTA and leads to a non-convergence situation, it is fully aware of such an error
and can roll back to use the default setting.

Once the GP is trained, it takes only O(N) and O(N?) (N is number of observations) for the
computation of p(x) and v(x), respectively. The complexity of the DNN (depending on the network
structure) is approximately O(ZZL:1 MIZ), where M is the number of units in the hidden layer I. The
BetaCDF transformation computational cost is negligible.

For the training of a GP, the major computational cost is the matrix inversion (K+ ¢?I)~!, which
is O(N?®), and the DNN forward computation for all observations, which is O(N 21L=1 Mlz). We can
see that BoA-PTA scales poorly with N, which hinders its further applications. In such a case, a
variational sparse GP [36] can be implemented to resolve this issue, which is outside the scope of
this work; we thus leave it as future work.

For practical SPICE simulations that can take up to several hours, BoA-PTA brings almost zero
computational overhead until the number of samples grows very large. As discussed earlier, a
scalable GP is then required.

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 2, Article 27. Pub. date: December 2022.



BoA-PTA: A Bayesian Optimization Accelerated PTA Solver for SPICE Simulation 27:15
] . s8R0
" Aﬁilllll!;”XXX‘A
3 14 'S
® 5 ¥ e x Kk K K K
@ 131 ¢
Y ' eeoo0o0o000®
[ c e 0000
o 1.2 o ¢ °
8 °*
Q11 x MES e Random
< ° A El » GA
1.01 m UCB SMAC
5 10 15 20
Epoch

Fig. 6. Average speedup over 43 simulations for BoA-PTA with different acquisition functions (MES, El, and
UCB), GA, SMAC, and a random search scheme.

4 EXPERIMENTAL RESULTS
4.1

Most SPICE solvers have certain advantages on some particular circuits. To assess BoA-PTA
thoughtfully, we test it on the circuit simulator benchmark set known as CircuitSim93 [3], which
contains 43 classic circuits including BJT-, MOS2-, and MOS3-type circuits.

In this work, we have tested several features extracting DNNs, such as MLPs with two to five
hidden layers, each of which consists of {4, 8, 16} neurons with sigmoid or ReLU activation func-
tions. We did not find a significant performance difference, possibly due to the relatively small
size of the training data for this problem. We believe that a ReLU activation function is more suit-
able for classification, and a deeper network is harder to train. Thus, we opt for a simple MLP
architecture with two hidden layers containing 16 neurons to sustain enough model capacity. We
use L-BFGS-B [54] with five iterations for both the GP fitting optimization and the acquisition
optimization. We evaluate BoA-PTA with three acquisition functions (i.e., EI, MES, and UCB) with
common f = 0.1. The implementation of BoA-PTA is based on PyTorch and BoTorch.!

Benchmark Circuits and Experimental Setups

4.2 BoA-PTA Acceleration Efficiency

Since BoA-PTA is intended to reduce the number of iterations of CEPTA, the speedup against
CEPTA with default solver parameters is used as the performance metric. To further assess the ac-
celeration efficiency through the BO framework, we compare the speedup of CEPTA when using
genetic algorithm (GA), sequential model-based optimization for general algorithm con-
figuration (SMAC) [12], a SOTA baseline BO based on random forest, and a vanilla random search
method as a reference. GA is implemented based on Pymoo,” whereas SMAC is implemented on
SMAC.? The implementation details are given in the appendix for the sake of clarity. All optimiza-
tion methods are given the default parameters and a randomly generated parameter as initial data,
whereas the random search is not. We ran each method up to 20 epochs and recorded the aver-
age speedups over the 43 classic benchmark circuits for each epoch. Each method is repeated five
times with different random seeds and thus the initial data. After excluding the non-convergence
simulations, the average speedups over the 43 benchmark simulations for each epoch are shown
in Figure 6.

Thttps://pytorch.org;https://botorch.org.
Zhttps://pymoo.org.
Shttps://scikit-optimize.github.io.
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Table 3. Solver Iterations for Benchmark Circuits

NAME Properties Performance (NR Iterations) Speedup
bjt nodes eqn bjt mos2 mos3 ¢ r v |PPTA CEPTA MES EI UCB| Best
astabl 6 12 2 0 0 2 4 2 108 55 46 50 48 1.20
bias 12 55 13 0 0 0 5 4 | N/A® 839 239 581 355 3.51
bjtff 48 177 41 0 0 1 26 6 N/A 169 102 90 86 1.97
bjtinv 26 40 12 0 0 0 24 2 125 186 104 52 121 3.85
latch 19 65 14 0 0 0 10 4 153 130 86 84 88 1.55
loc 326 739 96 0 0 12276 5 N/A N/A N/A N/A N/A N/A
nagle 26 54 23 0 0 1 11 5 | 2,440 306 306 306 306 1.00
opampal 71 518 148 0 0 4 28 3| 2335 N/A 830 1,000 635 0®
optrans 270 1,860 528 0 0 19 148 6 N/A 2,206 1,561 2,118 2,283 1.41
rca 18 32 11 0 0 0 123 76 82 55 57 82 1.49
ring11 34 101 22 44 0 11 1 41 63 63 63 51 41 1.24
schmitecl 8 18 4 0 0 1 8 2 48 52 47 50 44 1.18
vreg 19 20 20 0 0 0 10 1 N/A 22 22 22 22 1.00
mos2 nodes eqn bjt mos2 mos3 ¢ r v |PPTA CEPTA MES EI UCB
ab_ac 25 28 0 31 0 22 1 3 | 3,568 90 82 79 84 1.14
ab_integ 28 32 0 31 0 24 3 4 | 4,644 499 460 477 472 1.08
ab_opamp 28 31 0 31 0 24 4 3 | 5765 150 130 126 126 1.19
cram 32 44 0 60 0 42 0 12 162 91 90 91 90 1.01
e1480 145 204 0 28 0 17 130 3 5,280 179 165 134 118 1.52
g1310 66 97 0 14 0 21 56 3 73 76 56 48 55 1.58
gmoé 7 20 0 5 0 0 0 3 N/A 69 44 46 45 1.57
hussamp 14 17 0 16 0 2 1 3 193 91 88 86 91 1.06
mosrect 6 10 0 4 0 0 2 2 828 65 54 58 59 1.20
mux8 30 42 0 64 0 29 0 12 177 122 90 93 100 1.36
nand 17 19 0 25 0 0 0 2 N/A 83 55 56 54 1.54
pump 3 4 0 1 0 2 1 1 N/A 22 22 22 22 1.00
reg0 15 16 0 0 0 13 30 1 22 22 22 22 22 1.00
ring 18 19 0 34 0 1 0 1 46 N/A N/A N/A N/A N/A
schmitfast 5 19 0 6 0 0 0 2 5,647 82 71 69 67 1.22
schmitslow 7 25 0 8 0 0 0 2 N/A 127 96 93 108 1.37
slowlatch 12 37 0 0 14 0 1 5 9,445 169 163 163 135 1.25
toronto 25 36 0 0 58 33 0 11| N/A 277 277 277 277 1.00
mos3 nodes eqn bjt mos2 mos3 ¢ r v | PPTA CEPTA MES EI UCB
arom 57 62 0 0 116 23 2 5 N/A N/A N/A N/A N/A N/A
b330 163 856 0 0 330 0 0 33| NA N/A N/A N/A N/A N/A
counter 93 96 0 0 220 0 0 3 22 22 22 22 22 1.00
gml 31 129 0 0 46 8 7 6 N/A 76 74 74 74 1.03
gm2 31 148 0 0 7 5 0 2 N/A 70 47 51 47 1.49
gm3 89 428 0 0 30 1 0 2 111 66 53 54 51 1.29
gm17 5 21 0 0 56 7 3 5 N/A 212 185 197 192 1.15
gm19 17 79 0 0 162 83 1 15| N/A N/A 256 2983 N/A o
jge 180 243 0 0 348 157 1 63| N/A 1215 829 841 801 1.52
mike2 11 38 0 0 12 1 0 5 103 189 78 80 57 3.32
rich3 51 56 0 0 106 12 2 5| N/A N/A N/A  N/A N/A N/A
todd3 13 43 0 0 13 0 1 6 9428 554 219 105 133 5.28

We can see that BoA-PTA outperforms other competitors with a large margin. In detail, BoA-
PTA with different acquisition functions shows similar performance; SMAC and GA show similar
performance to BoA-PTA at the beginning of low epochs. As the epoch grows, the difference is
enlarged. Note that GA improves speedup slowly, possibly because GA needs a large amount of

4Best speedup of BoA-PTA with MSE, EI, and UCB against CEPTA.
SN/A indicates that the SPICE solver does not converge.
%co indicates that BoA-PTA turns a non-convergence into convergence.
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Table 4. Solver Iterations for Benchmark Circuits Compared with
a Commercial Simulator

NAME | Spectre-ptran Spectre-dptran MES EI UCB
opampal 1,238 1,240 830 1,000 635

optrans 1,946 1,881 1,561 2,118 2,283
gm19 245 247 256 2,983 N/A

epochs to fully test its mutations and is thus not very efficient in this scenario, where we increase
the number of simulations slowly.

We show the detailed acceleration with 20 epochs for all benchmark simulations in Table 3. All
DPTA and RPTA results are worse than CEPTA and are not presented due to limited space. We
also highlight the best speedup of BoA-PTA by different acquisition functions. The first thing we
notice in Table 3 is that BoA-PTA outperforms the best PTA method CEPTA in all cases except for
pump and reg0, in which the performance is equal, indicating that no improvements can be made
by searching the solver parameter space. This clearly demonstrates that BoA-PTA improves the
CEPTA solver without degeneration. Another interesting thing to point out is that for the CEPTA
non-convergence cases of {opampal, optrans, gm19}, BoA-PTA makes them converge! This is par-
ticularly useful for PTA-based SPICE, as they often suffer from non-convergence issues. In general,
tuning a PTA solver to converge is extremely difficult because no gradient or space geometry infor-
mation can be inferred from the non-convergence data. Even with expert knowledge, this process
is time consuming and there is no guarantee for success. We also notice that the speedup for these
43 circuits has quite a large variance, indicating the difficulty in accelerating some circuits. This
does not weaken the practicality of BoA-PTA, especially when we are facing complex simulations
that can take a large number of iterations to converge.

We have also compared to Newton’s method, Gmin stepping, and the commonly used SPICE
solver, Ngspice, which uses Newton’s method as the first attempt and Gmin stepping when New-
ton’s method fails. One may notice that PTA-based methods are outperformed many times. This is
not surprising because homotopy and Newton methods are particularly good for small-scale sim-
ple circuits but scale poorly to large-scale real-world circuits due to non-convergence issues [48].
PTA-based methods are often used as the safeguard when most ordinary methods, such as homo-
topy methods, fail the DC analysis; they are known to be robust to large-scale problems but often
suffer from slow convergence issues, leading to a large number of iterations. BoA-PTA can improve
CEPTA so much that it can match or outperform Ngspice (e.g., in mike2). This is a remarkable ad-
vances for the PTA-based methods.

To also compare with the SOTA commercial PTA solver, we run Spectre, which implements
two PTA-type methods—ptran and dptran—for the benchmark circuits. As we cannot control the
behaviors of Spectre, we only compare the results where ptran and dptran are executed when NR
and Gmin fail. The results are shown in Table 4. We can see that BoA-PTA with an MES acquisition
outperforms Spectre for opampal and optrans and shows approximately good performance for
gm19. BoA-PTA with EI and UCB acquisition do not have as good performance, indicating the
importance of choosing a proper acquisition function.

To access the usability in real applications, we test the improvements over four classic ana-
log circuit designs, namely MOSInvchain15, Multiplier, Square root, and Suntraction, where MOS-
Invchain15 is a CMOS transistor inverter circuit, whereas the other three circuits are from a classic
automobile intake system [27], which are designed to be highly accurate under high-speed pro-
cessing calculations. Similarly, we are interested in the speedup performance within 20 epochs for
the testing circuits for BoA-PTA, GA, SMAC, and random search.
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Fig. 7. Schematic illustration of testing circuits.

The MOSInvchain15 is a 15-stage connected CMOS transistor inverter chain circuit that is a
typical ring oscillator with 30 MOS transistors and Vpp = 5V. Each stage consists of two com-
plementary MOS transistors: an NMOS and a PMOS. It has a very high loop gain with positive
feedback and is quite easy to oscillate by using the pseudo-transient analysis method. The cir-
cuit design of MOSInvchain15 is shown in Figure 7(a) and the performance in Figure 8(a). For the
MOSInvchain15, BoA-PTA with the UCB acquisition function can improve the performance up to
about 250x just with 10 iterations, whereas BoA-PTA with the EI acquisition function has a much
earlier improvement (e.g., 210x with only 4 iterations). In contrast, the random search, as well as
GA and SMAC, fails to improve any performance even with 20 iterations, which suggests that
BoA-PTA indeed is a powerful method for optimizing solver parameters.

The Multiplier is a highly accurate multiplying calculation circuit essentially used in an automo-
bile intake system. The circuit is a real design for the Toyota automobile’s control engine, which
is implemented by a high linear CMOS four-quadrant multiplier cell as shown in Figure 7(b). The
Multiplier circuit includes four voltages sources, five capacitors, 14 resistors, and 57 MOSFETs (33
NMOS and 24 PMOS). The improved performances are shown in Figure 8(b). It is clear that BoA-
PTA improves the performance significantly especially with the UCB and EI acquisition functions.
This result is slightly different from the others because the EI normally was outperformed by the
MES and UCB. However, this phenomenon is consistent with the BO literature that no acquisi-
tion is suitable for all problems. The random search method seems to work well in this case, as it
converges to a similar level of speedup eventually. However, we should point out that the random
search takes about 13 epochs to converge, whereas BoA-PTA with UCB takes about 2 epochs, indi-
cating an almost 7x higher efficiency. It is also noticeable that random search outperforms GA and
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Fig. 8. Speedup for four testing circuits using BoA-PTA with acquisition functions (MES, El, and UCB), GA,
SMAC, and a random search scheme.

SMAC with a high epoch, possibly due to local optimal issues particularly for a heuristic method
such as GA.

The Square root is a highly accurate root square calculation circuit also used in the automobile
intake system. The circuit includes the square part, operational amplifier, and source follower to
ensure the output of square root to always be correct even if the input signal enters the negative re-
gion. It has 76 devices including three voltage sources, 14 capacitors, 10 resistors, and 49 MOSFETs.
The circuit design of the Square root circuit is illustrated in Figure 7(c) and the improved perfor-
mance in Figure 8(c). In this experiment, BoA-PTA with MES acquisition outperforms the other
methods significantly with just 1 epoch. The UCB achieves similar performance with 9 epochs.
Despite the slower convergence rate, BoA-PTA with UCB keeps providing stable speedup as in
other experiments. The random search method, GA, and SMAC again fail this task by converging
to a much lower speedup improvement with 20 epochs.

The Suntraction circuit [27] is an analog circuit designed for high-speed and highly accurate
subtraction operation, which includes 31 devices composed of four voltages sources, seven resis-
tors, two capacitors, and 18 MOSFETs. The improved performance is shown in Figure 8(d). We
can see that BoA-PTA with the MES acquisition function converges to the best speedup, whereas
BoA-PTA with UCB and EI acquisition provide slightly worse performances, which are the same
as the one achieved by the random search method with 17 epochs. However, note that this perfor-
mance is achieved by BoA-PTA with UCB with 3 epochs and BoA-PTA with MES with 2 epochs.
Despite that the random search method converges to the same speedup level, it shows a signifi-
cantly slower convergence rate, which is fatal for improving SPICE performance. GA struggles to
improve performance despite that the first attempt with 1 epoch shows very good performance.
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Fig. 9. Speedup for unseen BJT-, MOS2-, and MOS3-type circuit simulations.

SMAC also shows high speedup at the beginning and improves itself slowly toward the possible
best performance. It is, however, consistently slower than BoA-PTA with MES and UCB.

Overall, for the four practical circuit designs, BoA-PTA, no matter which acquisition functions it
used, showed significant improvement in terms of convergence rate and consistency over random
search, GA, and SMAC. BoA-PTA with UCB provides the best overall performance—that is, a 250x
speedup for the MOSInvchain15 with just 10 epochs and about 80x to 160x speedup for the other
classic calculation circuit design with only 1 epoch. In contrast, the random search and GA either
fail to improve the performance or show a much slower convergence rate. SMAC is a potential
candidate acceleration framework. However, without a proper redesign of its surrogate model
for this particular problem, the vanilla SMAC shows inferior performance in terms of the final
improvement, converging speed, and robustness.

4.3 Optimal Predictions for Unseen Simulations

In this experiment, we pick the circuit with large potential for improvements among all types of
circuits (i.e., 7 ={bias, bjtff, bjtinv, gm2, gmé, jge, nand, schmitfast}) and use them as testing simula-
tions for BoA-PTA. Specifically, simulations that are not in 7~ are used as the training simulations
and used as input for Algorithm 1. At the end of each epoch, we use BoA-PTA to predict solver
parameters for 7 and evaluate their speedups. We emphasize that the evaluations of 7~ are never
updated to BoA-PTA. They are strictly treated as testing data. The results are shown in Figure 9.
In this case, we do not compare BoA-PTA with a random search optimization because there
is no way for it to predict the optimal solver parameters. This is indeed one of the main novel-
ties of BoA-PTA. As we can see in Figure 9, BoA-PTA can further improve the SPICE speedup
with an increasing number of epochs even the circuits have never been seen by the system. This
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Table 5. Monte Carlo Simulation Statistics

Circuit DPTA RPTA PPTA CEPTA MES EI UCB
#NC | 3,913 88 5,710 9 0 0 0
bias Mean | 9,993 722 5,644 913 346 359 484
STD | 29,980 4,342 8,395 51 191 465 2,964
#NC 0 0 0 0 0 0 0
bjtinv | Mean | 73.9 73.8  124.5 55.3 49.5 53.8 48.8
STD 14.4 14.8 10.4 3.3 123 139 103
#NC | 6,000 6,000 6,000 0 0 0 0
bjtff | Mean | N/A N/A  N/A 138 89 93 93
STD N/A N/A  N/A 0 135 200 4.8

essentially indicates that the DNN feature extractions indeed work with BoA-PTA as expected
such that knowledge from the training circuits can be transferred to the testing circuits. The BJT-
type and MOS3-type circuit simulations show a larger potential for improvements, whereas the
improvement for the MOS2-type circuit simulation is less significant. The EI acquisition shows
stable improvement with only three epochs for all three types of simulations in this experiment.
The MES, however, shows slower improvement.

4.4 Monte Carlo Accelerations

Last, we assess BoA-PTA in Monte Carlo accelerations as described in Algorithm 2. Similarly,
we use the BJT circuit with potential for improvements (i.e., bias, bjtinv, and bjtff) as testing
examples. Monte Carlo simulation is designed to analyze the statistical properties when all
registers in a circuit have independent {1%, 2%, 5%, 10%, 20%} variation of normal distribution (i.e.,
R = Roriginal * N (1, variation?)). For each variation set, each method is tested on the same 1,000
random sampled netlists to provide a fair comparison. Since BoA-PTA is error free as discussed, we
did not show the statistical results but focused on the runtime statistics. We first show the number
of non-convergence (#NC), the mean, and the standard deviation (STD) iterations for 6,000 total
simulations in Table 5. We can see clearly that BoA-PTA always converges and always provides
minimal iterations. Among different acquisition functions, BoA-PTA with MES consistently shows
the best performance, which is consistent with the observation in previous experiments. CEPTA
always has the lowest STD of iterations. We argue that what matters most is the total iterations,
not the deviation for the runtime. In addition, BoA-PTA can overcome a few non-converge simula-
tions in the bias circuits. The other PTA solvers are way worse than BoA-PTA and CEPTA, which
is consistent with previous results.

The average iterations number (over 6,000 simulations) is shown in Figure 10 without DPTA,
RPTA, and PPTA due to their high non-convergence rate. We can see that any acquisition function
can improve the standard CEPTA for a large margin using the BoA-PTA framework. BoA-PTA with
MES overall obtains the most stable and good performance with approximately 2x speedup over
CEPTA.

5 CONCLUSION

In this article, a BO SPICE acceleration is proposed, and it is demonstrated using BoA-PTA, a
combination with the CEPTA solver. By harnessing the advantages of modern machine learning
techniques, BoA-PTA demonstrates substantial improvement over the original CEPTA solver—up
to 3.5x speedup for 43 benchmark circuit simulations, up to 250x speedup for four practical circuit
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Fig. 10. Average number of iterations (over bias, bjtinv, and bjtff) for Monte Carlo simulations with different
variations.

designs, and up to 2x speedup for Monte Carlo simulations based on circuits from the 43 bench-
mark circuits. Further improvements of this work include a graph neural network that extracts
features directly from a netlist, scalable GP surrogate, and efficient BO via portfolio strategies. Di-
rect acceleration for CEPTA and other PTA-based methods may be explored by improving its step
scheme using local optimization [6] and reinforcement learning [15].

APPENDICES
A DERIVATION OF THE ELBO
We utilize Jensen’s inequality to derive an ELBO of the joint model log-likelihood given the obser-

vation set {x;, £;, yi}fil,

log f p(y.ylx, 0)dy

0
_logf (y) q()lfx la

p(y.ylx,0)
> f 4(y)log 2 oy (36)

- f 4(y) log p(y. ylx, 0)dy - f 4 log q()dy
= [ 4 ogploiy. x. 00y ~ KL (b)) 2

where KL (g(p)llp(y)) = f q(y) log q(wdy is the KL distance between ¢(y) of Equation (26) and
p(y) of Equation (25), which has a closed form solution given our prior and variational posterior.

B IMPLEMENTATION DETAILS OF GA AND SMAC

For GA, the solid multi-objective algorithm (NSGAZ2) function in the Pymoo library is utilized.
We use a uniform distribution for the sampling, a simulated binary crossover (SBX) with p = 0.9
and n = 15, and a polynomial mutation with = 20 for the configuration of GA. The rest of the
parameters use the default settings in Pymoo. For SMAC, the forest minimizing function of the
scikit-optimize library is used. Extra trees regressor is utilized as the surrogate model. We use EI
as the acquisition function, whereas the initial point generator is set to random with two initial
points. The rest of the parameters use the default parameters in SMAC.
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Table 6. Solver Iterations for Benchmark Circuits

NAME Performance (NR Iterations)

bjt Ngspice NR Gmin PPTA CEPTA MES EI UCB
astabl 10 10 35 108 55 46 50 48
bias 69 69 81 N/A4 839 239 581 355
bjtff 64 64 126 N/A 169 102 90 86
bjtinv N/A N/A  N/A 125 186 104 52 121
latch 13 13 47 153 130 86 84 88
loc 25 25 105 N/A N/A N/A  N/A N/A
nagle 7 7 38 2,440 306 306 306 306
opampal 8 8 40 2,335 N/A 830 1,000 635
optrans 163 N/A 178 N/A 2,206 1,561 2,118 2,283
rca 38 38 37 76 82 55 57 82
ringll 38 38 202 63 63 63 51 41
schmitecl 13 13 142 48 52 47 50 44
vreg 2,357 N/A 438 N/A 22 22 22 22
mos2 Ngspice NR Gmin PPTA CEPTA MES EI UCB
ab ac 19 19 52 3,568 90 82 79 84
ab integ 19 19 63 4,644 499 460 477 472
ab opamp 142 N/A 165 5,765 150 130 126 126
cram 10 10 38 162 91 90 91 90
e1480 9 9 35 5,280 179 165 134 118
g1310 N/A N/A N/A 73 76 56 48 55
gmé6 17 17 39 N/A 69 44 46 45
hussamp 15 15 45 193 91 88 86 91
mosrect 23 23 44 828 65 54 58 59
mux8 6 6 25 177 122 90 93 100
nand 3 3 25 N/A 83 55 56 54
pump 18 18 46 N/A 22 22 22 22
reg0 28 28 51 22 22 22 22 22
ring 89 89 62 46 N/A N/A N/A N/A
schmitfast 13 13 41 5,647 82 71 69 67
schmitslow 7 7 N/A N/A 127 96 93 108
slowlatch 9 9 58 9,445 169 163 163 135
toronto 37 37 37 N/A 277 277 277 277
mos3 Ngspice NR Gmin PPTA CEPTA MES EI UCB
arom N/A N/A  N/A N/A N/A N/A  N/A N/A
b330 16 16 28 N/A N/A N/A N/A N/A
counter 9 9 34 22 22 22 22 22
gml 9 9 39 N/A 76 74 74 74
gm2 50 50 58 N/A 70 47 51 47
gm3 34 34 60 111 66 53 54 51
gm17 9 9 34 N/A 212 185 197 192
gm19 11 11 28 N/A N/A 256 2,983 N/A
jge N/A N/A N/A N/A 1,215 829 841 801
mike2 180 N/A  N/A 103 189 78 80 57
rich3 36 36 29 N/A N/A N/A  N/A N/A
todd3 156 N/A 55 9,428 554 219 105 133

C COMPARISON TO NGSPICE

We have also compared to Newton’s method, Gmin stepping, and the commonly used SPICE solver,
Ngspice, which uses Newton’s method as the first attempt and Gmin stepping where Newton’s
method fails. The results are shown in Table 6. The experimental setup is the same as that in
Section 4.2. We can see that Ngspice, NR, and Gmin outperform BoA-PTA, and certainly CEPTA,
many times. This is an expected result because the PTA-based methods are known to be slow but

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 2, Article 27. Pub. date: December 2022.



27:24 W. W. Xing et al.

stable. They are designed to provide reliable DC analysis when ordinary methods fail; they serve as
a complement instead of a replacement for the ordinary and well-known methods. A side evidence
we can see is that Gmin is also not as good as the most fundamental NR. By formulating the DC
analysis from a different perspective, Gmin shows its advantage of convergence for particular
circuits at the price of higher iteration. Thus, Gmin is a very important complement to Ngspice as
its second-choice candidate when NR fails. The same philosophy applies to PTA-based methods,
which serve as backups where most of the ordinary methods fail. Because the PTA-based method
often suffers from slow convergence, improving the PTA-based methods using machine learning
is practical and useful (as we have shown in the practical MC experiment in Section 4.4).
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