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Abstract—General sparse matrix-matrix multiplication (SpGEMM) is one of the most important mathematical library routines in a

number of applications. In recent years, several efficient SpGEMM algorithms have been proposed, however, most of them are based

on the compressed sparse row (CSR) format, and the possible performance gain from exploiting other formats has not been well

studied. And some specific algorithms are restricted to parameter tuning that has a significant impact on performance. So the particular

format, algorithm, and parameter that yield the best performance for SpGEMM remain undetermined. In this article, we conduct a

prospective study on format-specific parallel SpGEMM algorithms and analyze their pros and cons. We then propose a pattern-based

SpGEMM library, that provides a unified programming interface in the CSR format, analyses the pattern of two input matrices, and

automatically determines the best format, algorithm, and parameter for arbitrary matrix pairs. For this purpose, we build an algorithm

set that integrates three new designed algorithms with existing popular libraries, and design a hybrid deep learning model called

MatNet to quickly identify patterns of input matrices and accurately predict the best solution by using sparse features and density

representations. The evaluation shows that this library consistently outperforms the state-of-the-art library. We also demonstrate its

adaptability in an AMG solver and a BFS algorithm with 30 percent performance improvement.

Index Terms—SpGEMM, spare BLAS, sparse format, auto-tuning, neural network

Ç

1 INTRODUCTION

SPARSE matrix-matrix multiplication (SpGEMM) is an
essential sparse kernel in a number of applications. For

example, it often accounts for more than half of the cost of
the setup phase for restricting and interpolating matrices in
algebraic multigrid methods (AMG) [2]. Many graph proc-
essing operations, such as breadth-first search [3], Markov
clustering [4], graph contraction [3], subgraph extraction
[5], peer pressure clustering [6], and cycle detection [7], can
be expressed as SpGEMM. GraphBLAS [8] also defines
matrix-based graph algorithms. Efficient SpGEMM algo-
rithms are thus crucial for these applications to achieve
higher performance.

Currently, more than a dozen SpGEMM libraries have
been proposed and widely used, such as the Intel MKL [9],
vector-based sparse accumulator (SPA) [10], hash-based
method [11], heap-based method [12], cuSPARSE [13],
bhSPARSE [14], InCSR_SpGEMM [15], Fastspmm [16], and
CUSP [17] and NSPARSE [18] proposed by NVIDIA. We
define these libraries as libraries in the following expression.

However, these libraries are sensitive to sparse input matri-
ces and thus exhibit significant fluctuations in performance.
In Fig. 1a, we compare the performance of selected four
libraries by calculating A�AT on an Intel CPU (as in Sec-
tion 5.1). X-axis represents the matrix, and Y -axis repre-
sents the performance of SpGEMM. It is clear that different
algorithms deliver their best performance on different
matrices, and no single algorithm dominates on all data sets
in terms of performance. Such performance variance is also
reflected on a large set of inputs (Section 3.3). The funda-
mental reason accounting for the uncertain performance of
the existing solution is the difference of matrix pattern of
inputs, which determine the behavior of computation and
memory access. This problem transfers the burden of identi-
fying the optimal library onto application programmers and
poses special challenges for the automatic library selector.

On the contrary, Fig. 1b shows two sources of overhead:
the proportion of time spent on sparse accumulation and
memory access for the SPA SpGEMM algorithm. It is clear
that memory access takes up a significant amount of execu-
tion time. However, research in the area has largely ignored
the potential for improving performance by optimizing
memory access and has preferred instead to continue to
develop new sparse accumulation algorithms [5], [19] for
the compute part. To some extent, SpGEMM is similar to
sparse matrix-vector multiplication (SpMV) and sparse tri-
angular solve (SpTRSV) for irregular and indirect memory
access patterns [20]. Much of the research on SpMV and
SpTRSV has been dedicated to optimizing memory access
by excavating classic storage formats [21], [22], [23], [24],
[25] with promising results [26], [27]. Back to SpGEMM,
such classic storage formats, as DIA, COO, and ELL, can
reduce memory requirements or accelerate memory access
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on vector architectures and change the order of the calcula-
tion process, or can even reduce the number of sparse accu-
mulation operations. We define these storage formats as
formats in the following expression. The other motivation of
this work is to explore the influence of several classic stor-
age formats on SpGEMM.

The current SpGEMM libraries mainly rely on the com-
pressed sparse row (CSR) format and some variants. For
example, Indexed CSR (InCSR) [15] divides each row of the
sparse matrix into multiple sections of S elements, which
could reduce the size of each multiplication and thus
increase data locality. Fig. 1c shows the performance of A�
AT for “Bar” matrix when the parameter S changes from 1
to 12. It is obvious that the performance of matrix multipli-
cation varies with the change of parameter S. The perfor-
mance corresponding to the optimal parameter (S ¼ 3) is
29.3 percent higher than that of the default parameter
(S ¼ 8). In addition, another tunable parameter in block
CSR (BCSR) format for bmSPARSE algorithm [28] divides
the entire matrix into multiple blocks and can also affect the
performance greatly on GPU. Such parameters and the
mutual influence increase the complexity of manual tuning
and became a challenge.

In this paper, we design multiple SpGEMM algorithms
based on a variety of widely used sparse storage formats
and analyze the conditions leading to better performance.
Then we motivate this work by conducting a comprehen-
sive experiment to verify the performance improvement of
the diversification of the SpGEMM algorithm. Therefore, in
order to integrate three new algorithms with the existing
SpGEMM libraries and choose the optimal implementation
(algorithm and parameter), we propose a pattern-based
auto-tuning SpGEMM library, which classifies two input
matrices into the most appropriate category among the
assembled SpGEMM algorithm set and chooses the optimal
performance parameters by employing a novel deep learn-
ing-based tuner. We call the precision with which the model
can select the correct format with the best performance as

accuracy. To train this tuner, we thus build a large number
of matrix multiplication pairs by using all matrices from the
current version of SuiteSparse Matrix Collection and collect
the performance data of the SpGEMM algorithm set as the
output of the training data on a variety of architectures.

Moreover, in order to excavate the pattern of the input
matrix and make more accurate predictions, we explore
some matrix features as input of the training data, such as
the sparse features and density representation. And based
on the comparison of the effectiveness of different features,
we construct a hybrid neural network called MatNet, which
combines the Multilayer Perceptron Neural Network (MLP)
and Convolutional Neural Network (CNN) together. The
output of MatNet consists of two aspects: the most appro-
priate algorithm and the optimal parameter if needed, so
we use multitask-learning (MTL) to train this model. The
model topology allows information sharing when predict-
ing two dependent variables: the optimal algorithm and
parameter. Compared with traditional machine learning
and single-task neural network models, the hybrid neural
network MatNet improves the model accuracy. We train
these models on three platforms and found that MatNet is
the most suitable for solving this problem and can be easily
migrated to other architectures with nearly equivalent pre-
diction accuracy.

In addition, as a lightweight SpGEMM library, this
library provides a unified interface in the CSR format to
quickly predict the best implementation for two input
matrices, and the matrices are finally executed with possible
format conversion. We evaluate the library on three process-
ors (an Intel CPU, an AMD CPU, and an Nvidia GPU), and
show that it achieves significantly better performance that is
on average 3.89x and 21.14x faster than the Intel MKL on
dual Intel Xeon E5-2620 and dual AMD EPYC 7501, respec-
tively, with an accuracy of 93 percent, and 2.57x faster than
the NVIDIA cuSPARSE library on Tesla P100 with an accu-
racy of 91 percent. We also evaluate the adaptability of this
library in an Algebraic Multigrid (AMG) solver of sparse
solver Hypre [29] and a breadth-first search (BFS) of graph
analysis [30], and the results show about 30 percent perfor-
mance improvement.

The main contributions of this paper are as follows:

� We propose multiple SpGEMM algorithms based on
a variety of widely used sparse storage formats, and
redesign the sparse accumulation and memory
access methods that represent two main overheads
in the SpGEMM. We also analyze the advantages
and disadvantages of various format-specific algo-
rithms. By comparing it with current libraries by
running all matrices from the SuitSparse Matrix Col-
lection, significant performance gaps naturally lead
to the adoption of an auto-tuning model.

� We compare several existing auto-tuners based on
different abstractions of matrix patterns and merge
two highly advantageous patterns (sparse features
and density representation) as training input.

� We propose a hybrid neural network called MatNet
to select the best format, parameter, and algorithm
from a large algorithm set. In order to predict the
most appropriate implementation, we leverage

Fig. 1. Comparison of performance of different algorithms and their
overhead.
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multi-task learning to train this neural network. In
benchmarking more than 8,000 matrix multiplication
pairs, the predictive accuracy of MatNet is over 93
percent.

� We develop a pattern-based SpGEMM library with a
general interface based on the CSR format. Users can
thus transparently obtain the best performance. We
implement our library on three processors and yield
average speedups of 3.89x, 21.14x, and 2.57x. We
also deploy our library to two real-world applica-
tions and achieve about 30 percent performance
improvement.

The rest of this paper is organized as follows. Section 2 is
a brief introduction to multiple sparse storage formats and
the SpGEMM algorithm. In Section 3, based on DIA, COO,
and ELL formats, three SpGEMM algorithms are designed
for optimizing sparse accumulation and memory access
simultaneously for the first time, and the advantages and
disadvantages of various algorithms are analyzed. In Sec-
tion 4, we propose the overview of pattern-based library
and describe several components in detail, including pat-
tern selection and model design. We report and analyze the
experiment results in Section 5. Section 6 summarizes the
related work and Section 7 concludes this paper.

2 BACKGROUND

2.1 Sparse Matrix Storage Format

The sparse storage format defines the structure used to store
the distributions and values of a sparse matrix, with the
goal of balancing the reduction in storage space by storing
only non-zero elements and implementing efficient memory
access by placing the accessed data into a contiguous mem-
ory space. To achieve higher efficiency in sparse routines, at
least tens of formats have been developed since the 1970s.
In particular, most have been derived from the four classic
formats which are described below (refer to [31] for a more
detailed illustration). Fig. 2 shows an example of multiple
formats on matrix A.

� Coordinate (COO) Format: The coordinate format is
the most flexible and simplest format. Only non-zero

elements are stored, and the coordinates of each
non-zero element are given explicitly.

� Compressed Sparse Row (CSR) Format: The most
popular representation contains three arrays: the
beginning position of each row is stored in ”ptr”, and
the column indices and values of each non-zero ele-
ment are stored in ”col_ind” and ”data”, respectively.

� Diagonal (DIA) Format: Values of diagonals are
stored as columns in a dense matrix. Another
”offsets” array saves offsets from the main diagonal.

� ELLPACK (ELL) Format: It uses two matrices to pack
all non-zeros to the left with the same number of rows.
The first ”col_ind” matrix stores the column indices
and the second ”data”matrix stores the values.

� Indexed CRS (InCRS) Format: It is a variant of CSR to
improve the data locality. It stores information on the
number of non-zeros inside the sections and blocks.
InCRS divides each row into sections of S elements,
which are sub-divided into blocks of b elements.

� ELLPACK-R Format: It is a variant of ELL to further
improve the performance on GPUs. ELLPACK-R
consists of an additional integer array called rl,
which stores the actual length of each row, regard-
less of the number of the zero elements padded.

� Block Compressed Sparse Row (BCSR) Format:
BCSR stores fixed-size blocks contiguously, row by
row. The block size is a parameter for performance
tuning.

2.2 Parallel SpGEMM Method

Let matrix A have size m� n and B have size n� k. The
matrix product is C ¼ AB. The element in the ith row and
jth column in matrix C can be expressed as: cij ¼Pn�1

k¼0 aikbkj. The parallel SpGEMM method was proposed
by Gustavson [32] and improved on MATLAB by Gilbert
et al. [10]. This algorithm (Algorithm 1) in parallel multiplies
rows of A by the entire B matrix to calculate rows of C by
summing the product of all non-zero elements as the sparse
accumulation operation. Similarly, many GPU SpGEMM
algorithms improve the sparse accumulation operation for
accumulating partial results by using distributed memory
[5], a hash table [13], [18], or the ”expansion, sorting, and
compression” (ESC) method [17]. Some of these algorithms
are included in our algorithm set.

Algorithm 1. Row-Wise SpGEMM Algorithm for C ¼
A�B. We Use C/C++ Notation, i.e., C[i,j] Refers to the
ðiþ 1Þth Row and the ðjþ 1Þth Column Element in the
Matrix C

1: #parallelfor
2: for i ¼ 0 to C:row do
3: for j ¼ A:row ind½i� to A:row ind½iþ 1� do
4: ==accumulate partial results in row
5: C½i; j�  C½i; j� þA½i; j� �B½j; :�

3 SPGEMM ALGORITHM

In this section, three format-special SpGEMM algorithms, as
well as their advantages and disadvantages, are introduced

Fig. 2. An example of the seven sparse matrix formats, where the italics
represent small changes. The COO format adds a row offset array, the
DIA format adds a diagonal position array, and the ELL format adds an
array for counting NNZs per row. As an example, the parameter S and b
in InCRS format are 4 and 2, the block size in BCSR format are 2� 2. All
formats are sorted in row order.
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by using A�A0 as an example.1 We also analyze and
compare nine CPU algorithms and five GPU algorithms
by running all matrices from the SuiteSparse Matrix Collec-
tion such that the motivation for auto-tuning naturally
emerges.

3.1 SpGEMM in DIA, COO, and ELL Formats

Because the DIA format continuously stores diagonal ele-
ments, it appears impossible to multiply two diagonals
directly. To connect these diagonals, we first append a
”pos” array to the original DIA format to record the
order of each diagonal line, which can be used to quickly
and easily convert diagonal coordinates into real coordi-
nates. As shown in Fig. 3, the multiplication proceeds
generally as follows: Step 1: Each element of the diago-
nal line is first converted into real coordinates to obtain
the multiplied row number. For example in Fig. 3, three
diagonal coordinates (0,1, 1,1, and 2,1) are converted to
row coordinates (0,1, 1,2, and 2,3) and then look for the
multiplied columns (1, 2, and 3). We call this process
”coordinate transformation”. Step 2: The real coordinates
of the outputs are mapped to the corresponding diagonal
numbers, and the bitmap where the diagonal numbers
are located is marked as ”T”. Step 3: The memory of C
is allocated according to the number of ”T”s in the bit-
map, and the partial results are added to the correspond-
ing positions in the same manner as in the first step.

Algorithm 2. DIA Method

1: function DIA_MUL_DIA(A;B;C)
2: Malloc Dense BitMap½A:rowþB:col� 1� and Init by

false
3: for i 2 A:row do
4: for j 2 A:num diagonals do
5: A j iþA:offsets½j� ==Convert DIA to REAL
6: for k 2 B:num diagonals do
7: B j B iþB:offsets½k� ==Convert DIA

to REAL
8: out dia A:row�A iþB j� 1 ==Mapping
9: if BitMask½out dia� ¼¼ false then
10: C:output dia C:output diaþ 1
11: BitMask½out dia�  true
12: Malloc DIAðC:output diaÞ
13: #parallel for
14: for i 2 A:row do
15: for j 2 A:num diagonals do
16: A j iþA:offsets½j�
17: for k 2 B:num diagonals do
18: B j B iþB:offsets½k�
19: out dia A:row�A iþB j� 1
20: ½out i; out j�  ½A i;C:pos½out j� out iþ C:row�

1��
21: C:data½out i; out j�  C:data½out i; out j� þA:data

½i; j� �B:data½B i; k�

Compared with the need to store a large amount of row
information for CSR-based SpGEMM, Algorithm 2 signifi-
cantly reduces the overhead due to memory access for the
diagonal matrix and directly adds the intermediate results

Fig. 3. Flowchart of three format-specific algorithms and some examples of A� A0. The DIA method shows the processes of coordinate transforma-
tion and partial accumulation. The COO method divides matrices by k=1 and shows that the length of the dense vector is reduced to that of the previ-
ous quarter. The ELL method also uses a line as an example to demonstrate the fast symbol phase by BitMap and hash functions used in the
numeric phase.

1. A and A0 have the same structure and different values. The values
of A range from 1 to 7 and those of A0 are from a to g.
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to the target address without extra memory consumption.
Note that row-based thread scheduling takes a row as the
minimum unit such that it can achieve load balancing and
avoid write-write conflicts among threads. This ”lock-free
scheduling” method can avoid altogether the use of the
lock. We call this method the ”DIA method.”

The COO format separately stores non-zero elements of
the same row, because of which the flexible format can
more easily be split and merged. Algorithm 3 first divides
matrix A into k parts by row and matrix B into k parts by
column (k is two or four). Each partition of A and B are suc-
cessively computed for a part of C by the SPA method [10]
and all the partial results are finally merged. As shown in
Fig. 3, matrix A is first divided into four row matrices and
matrix A0 is divided into four column matrices. Taking two
partitions as an example, four threads perform the multipli-
cation calculation of each part respectively. Given that the
number of columns of matrix A0 is divided into a quarter of
those of the SPA algorithm, the memory consumption of
each thread is a quarter of that of the SPA algorithm.
Finally, the partial results between threads are merged into
the remelting result matrix. The most significant advantage
of this algorithm is that it greatly reduces the length of the
dense vector B col

k times over that of the SPA method and
improves the efficiency of the cache, but incurs additional
overhead in partitioning and merging the matrices. We call
this the ”COOmethod.”

Algorithm 3. COOMethod

1: function COO_MUL_COO(A;B;C)
2: Divide A to A1; . . . ; Ak by row
3: Divide B to B1; . . . ; Bk by column
4: form 2 k do
5: for n 2 k do
6: Malloc Dense Vector½B n:col� and Init by � 1
7: #parallel for
8: for i 2 Am:row do
9: for j 2 Am:ptr½i� to Am:ptr½iþ 1� do
10: for k 2 Bn:ptr½Am:cols½j� : Am:cols½j� þ 1� do
11: ifmask½Bn:cols½k�� 6¼ i then
12: mask½Bn:cols½k��  i
13: num nnz num nnzþ 1
14: Malloc CSRðCmnÞ
15: #parallel for
16: for i 2 Am:row do
17: for j 2 Am:ptr½i� to Am:ptr½iþ 1� do
18: for k 2 Bn:ptr½Am:cols½j� : Am:cols½j� þ 1� do
19: output Bn:cols½k�
20: Sums½output� þ¼ Am:data½j� �Bn:data½output�
21: Sparsify Sums to Cmn

22: Merge C11; . . . ; Ckk to C

The ELL format packages the original matrix into two
rectangular matrices of the same size by shifting all non-
zero elements to left for more efficient memory access.
Because each line of the ELL format contains the same non-
zero number, this format makes it possible to reduce the
overhead of the symbol phase of the SpGEMM algorithm.
In Step 1, we first equally assign matrix rows to threads and
use the Col ind of two matrices to compute the maximum
non-zero elements per row of C by a bitmap (an example of

the first row of A is given). For example in Fig. 3, one matrix
row and two matrix columns can determine the memory
consumption of the accumulated matrix rows (three non-
zero elements in figure) by BitMap multiplication [28]. In
Step 2, the memory of C is allocated by the maximum num-
ber of non-zero elements per row, and the newly allocated
memory is used as a hash table to store and accumulate the
intermediate results. All partial results are mapped to the
corresponding positions by calculating the hash values of
the column indices or keeping plus one whenever a collision
occurs. Finally, the disordered matrix C is sorted. Algorithm
4 has two main advantages: (1) Because the Col ind is
placed in contiguous memory space, the symbolic phase
can make full use of the SIMD instructions to speed-up the
efficiency of loading and assigning data. (2) In the numeric
phase, the memory space pre-allocated to C is used as a
hash table, which not only benefits the advantage of the
hash table as the sparse accumulator but also avoids mem-
ory consumption. We call this the ”ELL method.”

Algorithm 4. ELL Method

1: function ELL_MUL_ELL(A;B;C)
2: Malloc Dense BitMap½B:col� and Init by False
3: #parallel for
4: for k 2 A:row do
5: for i 2 A:nnz½k� do
6: for j 2 B:nnz½A col½k�B maxþ i�� do
7: ifMask½B:cols½i�B maxþ j�� 6¼ k then
8: Mask½B:cols½i�B maxþ j��  k
9: nnz row nnz rowþ 1
10: C:nnz row½i�  nnz row
11: C max MAXðC:nnz rowÞ
12: Malloc ELLðC:row� C:max nnz per rowÞ
13: #parallel for
14: for k 2 C:row do
15: for i 2 A:nnz½k� do
16: for j 2 B:nnz½A col½k�A maxþ i�� do
17: Output hash hashðB:cols½A:col½k; i�; j�Þ
18: C:cols½i; Output hash�  B:cols½A:col½k; i�; j�
19: C:data½i; Output hash� þ¼ A:data½k; i� �B:data½A:col
½k; i�; j�

20: Sort C:cols and C:data

3.2 Algorithm Set and Static Analysis

Thus far, we have constructed three format-specific algo-
rithms. By integrating them with currently available popu-
lar algorithm libraries, as shown in Table 1, nine SpGEMM
algorithms are developed for the CPU and six for the GPU.

For SpGEMM algorithms on CPU, except for the three
methods we designed, the MKL, SPA vector-based method,
hash-based method, heap-based method, and bhSPARSE
are designed based on the CSR format on CPU, and the
InCSR_SpGEMM is proposed for the InCSR format. Regard-
ing the types of matrices that various algorithms are good at
handling, MKL is a closed-source library, so its advantages
and disadvantages are difficult to analyze.

For the SPA vector-based method, it accumulates multiple
intermediate results into a dense accumulator. It may not be
suitable for high parallelism and large accumulator size due
to high memory requirements, but it does not require extra
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overhead for hashing, sorting, or merging operations, thus
this method is especially suitable for matrices with low
sparsity and a small number of columns.

For the hash-based method, it allocates a memory space
based on the upper bound estimation as the hash table and
uses the column indexes of the intermediate results as the
key. Hash table is used to reduce the memory consumption
of dense accumulator in the SPA vetcore-based method by
using hash function. Based on the characteristics of the hash
function, this algorithm performs well on these matrices
with randomly distributed non-zero elements.

For the heap-based method, the most time-consuming part
is sort-based merging, which sorts the intermediate results
according to the column indexes and then sums the values
with the same column indexes. Therefore, the algorithm
performs well on the matrix with a large number of rows,
mainly because the sorting overhead is evenly amortized.

For the bhSPARSE algorithm, it is a hybrid method for
result matrix pre-allocation. It divides all rows into multiple
groups according to the number of non-zeros and progres-
sively allocates space for the long rows, and therefore suit-
able for matrices where non-zero elements of each row are
not uniform.

For the InCSR_SpGEMM algorithm, it accesses memory
elements directly and reuses sharing data among a mesh by
grouping the non-zero elements of each row, thus leads a
huge speedup when the non-zero elements of the second
matrix are the block distribution. In particular, the
InCSR_SpGEMM algorithm requires two parameters to
determine the size of the section (S) and the number of
blocks within each section (b). Both two parameters affect
the efficiency of the memory access and become the main
factors that affect the performance of this algorithm.

For SpGEMM algorithms on GPU, the CUSP is based on
the COO format and uses the same algorithm as the SPA
vector-based method, therefore performs well on these
matrices with low sparsity and a small number of columns.

For the cuSPARSE and NSPARSE algorithm, they are
both based on the CSR format and the hash-based sparse
accumulator. The difference between these two algorithms
is the use of a different hash function. In particular, the

NSPARSE improves the BalancedHash [33] and reduces the
consumption of shared memory by partitioning the rows of
the input and output, respectively. Both of these two algo-
rithms can get decent performance on most matrices.

For the FastSpMM and bmSPARSE algorithm, the
FastSpMM uses ELLPACK-R to enhance performance by
storing the sparse matrix in a regular data structure. How-
ever, this algorithm may suffer when processing very irreg-
ular sparse matrices. The bmSPARSE is based on the BCSR
format and converts the original matrix to regular small
dense matrices for efficient data locality. Thus, the block
size is a decisive parameter for the bmSPARSE algorithm in
terms of performance.

Through theoretical analysis, we can see that these algo-
rithms have various advantages and disadvantages, and there
are overlaps between the advantages among algorithm sets.
For example, the matrix “3dtube” can not only satisfy the dis-
tribution of ELLPACK-R format for FastSpMM algorithm but
can also be arranged in blocks so that the InCSR_SpGEMM
and bmSPARSE have good performance. In addition, the
parameters of InCSR_SpGEMM and bmSPARSE algorithm
determine the way of non-zero element grouping and the
optimal choices vary greatly for different inputs.

To understand the performance potential of this algo-
rithm set and the best parameter settings, we build 8000+
matrix multiplication pairs by using all the matrices in the
SuiteSparse Matrix Collection and compare the perfor-
mance of these algorithms.

3.3 Performance Comparison

We compare the performance of various algorithms on
three architectures (as in Section 5.1). To achieve accurate
results and complete the task in a controllable time, the run
time is the average of 10 trials, and we restrict the memory
consumption of the new matrix format to no more than five
times the CSR format. Based on this memory restriction,
approximately 92.54, 18.37, 57.14, 43.25, 56.55, and 19.62
percent of the matrix pairs will work in COO, DIA, ELL,
InCSR, EllPACK-R, and BCSR format. The execution times
of all algorithms could be no longer than five times that of
the MKL or cuSPARSE, which also means that these matrix
pairs are not suitable for a specific format or algorithm. In
addition, for the InCSR_SpGEMM and bmSPARSE algo-
rithm, the choice of parameters for the parameter-adjustable
algorithm is also an important factor in terms of perfor-
mance. Therefore, we construct a variety of parameter com-
binations to cover the entire search space. For the
InCSR_SpGEMM algorithm, the parameter S and b can
range from 2 to 32, and the combinations are limited to the
criterion that S is greater than b. For the bmSPARSE algo-
rithm, we build various block size from 1� 1 size to 8� 8.
Finally, the performance data for various algorithms and
parameter combinations are collected.

As shown in Table 2, a general view of the experiments
clearly shows significant differences in performance with
varying inputs, formats, algorithms, and platforms. In addi-
tion, no single format and algorithm can constantly deliver
the best performance2 on all matrix pairs. Each format and

TABLE 1
Nine Algorithms for CPU and Six Algorithms for GPU

Platform Algorithm Parameter

CPU

Intel MKL mkl_sparse_sp2m (CSR) [9] N
DIA method (DIA) N
COOmethod (COO) N
ELL method (ELL) N
SPA vector based method (CSR) [10] N
Hash based method (CSR) [11] N
Heap based method (CSR) [12] N
bhSPARSE (CSR) [14] N
InCSR_SpGEMM (InCSR) [15] Y

GPU
CUSP v0.5.1 ESC method (COO) [17] N
cuSPARSE v8.0.61 (CSR) [13] N
NSPARSE (CSR) [18] N
FastSpMM (ELLPACK-R) [16] N
bhSPARSE (CSR) [14] N
bmSPARSE (BCSR) [28] Y

2. The best performance is the best out of the consider options.
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algorithm has its own advantages, and some new algo-
rithms can not be executed in a reasonable amount of time
or memory footprint on all data sets.

In the case of the Intel CPU, we mark MKL’s perfor-
mance as the baseline, which delivers the best performance
on only 16.21 percent of the matrix pairs. The DIA method
outperforms the baseline on 1,107 matrix pairs better than
baseline and yields the best performance on 474, e.g.,
dw256A � dwa512 and qpband � Trefethen_20000. These
matrices are almost composed of one or multiple diagonal
lines. The COO method outperforms the baseline on 255
matrix pairs and delivers the best results on all of them, e.g.,
human_gene2 � appu and msc10848 � crystk02. The non-
zero rate (�8 percent) and the number of columns of these
matrices are large. The ELL method exceeds the baseline on
2,879 matrix pairs and performs optimally on 1,443, e.g.,
G48 � G49 and ch7-9-b3 � ch7-9-b2. The vector-, hash-,
heap-based, bhSPARSE, and InCSR_SpGEMM methods
perform better than the baseline on 7,006 matrices, and on
4,694 matrix pairs yield the best performance among all
methods. For the AMD platform, using the same method to
sort the performance of the algorithms, the nine algorithms
perform best on 9.09, 3.23, 22.89, 5.65, 9.24, 9.50, 16.36, and
15.37 percent of the cases, respectively. In comparison,
AMD benefits more from the diversity of formats and algo-
rithms. For the GPU, the three algorithms (cuSPARSE,
NSPARSE, and bhSPARSE) are suitable for almost 85 per-
cent of the matrix pairs. NSPARSE shows advantages in
performance on large matrices, whereas the ESC algorithm
is effective only on a few matrix pairs.

For parameter selection, as shown in Table 3, the optimal
performance parameters are considerably different for vari-
ous input matrices. For kim1 � mario001, the best parame-
ter on Intel CPU is S ¼ 16 and b ¼ 2, but it is S ¼ 8 and
b ¼ 2 on AMD CPU. For the BCSR format, pwtk and mip1

are composed of block units of different sizes, so the optimal
block size is not the same.

3.4 Performance Analysis

The existing SpGEMM libraries do not yield the best perfor-
mance on all matrix pairs. On the Intel architecture, MKL
delivers the best performance on approximately 16.21 per-
cent of the dataset, and almost all matrix pairs can be exe-
cuted within a reasonable time. The improvement in
performance is highly correlated with data size, but the
overhead of the MKL framework is not expected, especially
for small matrix pairs. Our ”DIA method” modifies the
order of memory access, and reduces the number of sparse
accumulation operations and memory consumption when
the input matrix pairs satisfy a diagonal distribution. It thus
exhibits impressive performance with an average speedup
of 72.04x. The ”ELL method” is based on the most efficient
sparse format for memory access. It significantly improves
the efficiency of memory access and saves time in the sym-
bol phase with an average speedup of 9.92x. But this format
will still introduce overhead due to padding data for unbal-
anced row distribution in the matrix pairs. Thus, this
method works well for about 35 percent of the dataset. The
”COO method” is suitable for specific cases and some
matrix pairs still stand out. Furthermore, the vector-, hash-,

TABLE 2
Performance Statistics: ”Dominance” and ”Percentage” Represent the Number and Proportion of the Best and the Better than Base-

line for Various Algorithms

”Average Speedup” calculates the average speedup in cases where the best perform is attained on a specific algorithm, and ”Ideal Tool” uses the best performance
to obtain the global speedup on three platforms.

TABLE 3
Optimal Parameters of Randomly Selected Ten Matrix Pairs for

InCSR_SpGEMM and bmSPARSE Algorithm
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heap-based, bhSPARSE, and InCSR_SpGEMM methods run
on their ”best of all” matrix pairs to obtaining average
speedups of 1.31x, 6.37x, 6.21x, 3.73x, and 9.75x, respec-
tively. In contrast to Intel, AMD’s performance has the same
proportions, but its absolute performance is slightly lower
than Intel’s. In addition, because of the higher memory
bandwidth needed for the AMD architecture, the ”DIA”
and ”ELL” algorithms deliver better performance. On the
GPU platform, compared with the cuSPARSE library, the
”ESC”, NSPARSE, and bhSPARSE algorithm obtain average
speedups of 6.27x, 3.71x, and 3.24x, respectively on their
”best of all” cases.

Based on the optimal parameter that leads to the best
performance, the InCSR_SpGEMM algorithm performs well
for about 9.14 and 15.37 percent of the dataset and can
achieve average speedups of 9.75x and 12.18x on Intel CPU
and AMD CPU, respectively. The bmSPARSE algorithm can
get the best performance on 5.21 percent of the dataset with
an average speedup of 2.85x.

We ideally assume that there is an ”absolutely perfect”
tool that can accurately predict the best choice without any
overhead. It would achieve average speedups of 10.52x,
52.21x, and 3.11x for all matrix pairs on the three platforms.
Such performance improvements motivate us to design an
auto-tuning library.

4 OVERVIEW OF SPGEMM LIBRARY

In the previous section, our experimental results demon-
strate the enormous potential for leveraging various for-
mats, algorithms, and parameters on different platforms.
We thus develop a pattern-based SpGEMM library to select
the best solution on multiple architectures. The overview of
this SpGEMM library is shown in Fig. 4. This SpGEMM
library consists of two parts: training and prediction. The
training part can also be regarded as an offline part. It col-
lects the patterns and performance data of various matrix
pairs and trains the autotuning model. The prediction part
can also be regarded as an online part to extract the pattern
of the input matrix pair, execute the forward propagation of
the model to obtain the best algorithm and parameter, con-
vert the matrix pair to other formats if necessary, and finally
execute the corresponding SpGEMM calculation. It consid-
ers the impact on the performance of matrix patterns and
machine configurations for the SpGEMM kernel and is

evaluated by thousands of matrix pairs. To achieve this
goal, we need a learning model to combine a large number
of matrix patterns, algorithms, and machine configurations
to find the optimal matching solution. However, it is chal-
lenging for a general algorithm to find the most suitable
solution in a large search space. Therefore, we first convert
the auto-tuning problem into a feature and image classifica-
tion and a regression problem, compare one machine learn-
ing model and two neural network models and select an
outstanding hybrid neural network to achieve this goal.

Recognizing the best format, algorithm and parameter is
a complex task that requires a large amount of data for
training. We use all 2,726 matrices from the SuitSparse
Matrix Collection to build 8000+ matrix multiplication pairs,
and extract the matrix features and density representations
(Sections 4.1 and 4.2) as the input to the training data. We
then collect the execution times for various formats, algo-
rithms, and parameters as the output of the training data.
Thus, this method incorporates matrix patterns and algo-
rithms together to automatically generate a highly accurate
tuner. As shown in Fig. 5, this library is divided into two
parts: training and prediction. It first trains the outstanding
neural network model called MatNet (Section 4.3) by using
the collected training data, then the prediction part indicates
the probability of each algorithm and some required param-
eters to generate the best SpGEMM kernel. In addition, we
use a novel multitask-learning strategy that allows informa-
tion sharing when predicting multiple dependent variables
(such as, the optimal algorithm and performance parame-
ters) while including customized layers for each variable.
Compared with the traditional single-task training, this
multi-task learning strategy improves the model accuracy
while simplifying the training process.

Conveniently, the pattern-based SpGEMM library pro-
vides a unified interface based on the CSR format, which
leads to usability and portability. It can quickly replace
existing libraries with the new SpGEMM library. It also sup-
ports two usage methods to fit unique needs. The first is one
where the library automatically selects the optimal algo-
rithm and required parameters, whereas the other supports
the inspector-executor approach. This difference brings two
benefits. First, the developer can transparently benefit from
multiple formats and algorithms with adjustable parame-
ters. Second, the framework can save the best choice by
automatic tuner and reuse the known best solution on the

Fig. 4. Overview of the pattern-based SpGEMM library: The solid line indicates the collection and training phase, and the dotted line is the execution
flow of the user interface. The collection phase includes extracting two patterns of input and the execution times of all algorithms. The training phase
generates the MatNet model by the two-way strategy.
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same matrix to significantly reduce the overhead due to fea-
ture extraction and forward propagation of the neural net-
work. Extensibility is also an advantage of this library.
Given the inherent characteristics of the neural network, it
is open to the addition of new algorithms and training data
to improve performance and robustness.

We now introduce the three components of this library:
feature extraction, density representation, and the design of
the neural network for auto-tuner.

4.1 Feature Extraction

As an automatic input-tuning system, the library first con-
siders 13 fine-grained features related to the distribution
and characteristics of five formats for CPU and nine features
of four formats for GPU. Some of them intuitively affect the
performance of SpGEMM, e.g., the number and ratio of
non-zero elements. Other features reflect memory consump-
tion and algorithm performance resulting from the storage
structure. Table 4 summarizes all the sparse features used
for predicting the optimal SpGEMM algorithm. The first
eight features represent the most common structures,
including the number of rows and columns, and non-zero
elements, which suit all four formats. The ninth and 10th
describe diagonal features of the DIA format, including the
number of diagonals and the fill ratio of the added zero ele-
ments. The 12th expresses the fill ratio of the DIA, ELL,
InCSR, and BCSR format. The 13th feature represents the
coefficient of variation (CV) of the COO format used in [34]

to evaluate the diversity of the number of non-zero elements
per row.

4.2 Density Representation

Sparse matrices usually have high sparsity and different
sizes while the deployment of convolutional neural network
(CNN) generally requires fixed-size input data. This differ-
ence leads to two problems. The first is that sparse matrices
are usually very large, which causes a large inference over-
head for the neural network if complete matrices are used as
input. The second problem is that matrix pairs contain large
and different numbers of rows and columns, which need to
be transformed to the same size. For the image field, the gen-
eral approach is to shrink large pixels or enlarge small ones
to a fixed-size image. This method can also be used to con-
vert the sparse matrix into a small density representation
that can represent the coarse-grained patterns of the original
matrix with an acceptable size. The density representation as
the primary image input to the CNN represents a snapshot
matrix that abstracts most of the sparse patterns.

As shown in Fig. 6, we apply this method to map an 8� 8
matrix to a 4 � 4 matrix as an example. The original matrix
is divided into 4 � 4 blocks, and each block is counted by
non-zero elements that fill into the corresponding new
matrix. Then, the original 8 � 8 matrix and the 4 � 4 density
representation both contain several diagonals with some
irregular non-zero elements. Block count is related to non-
zero elements on the matrix, and normalization restricts
their number to within a reasonable range (0 � 255).

Fig. 6. Details of the two neural network methods, and visualization of some kernels of MatNet. 1) the first method consists of two types of neural net-
works, in which one is a CNN model (a) for predicting the optimal algorithm, and the other one is an MLP model (b) for predicting the necessary
parameter. 2) The second method combines the CNN model and the MLP model by multi-task learning and shares inter-layers for higher accuracy.

TABLE 4
Sparse Features and Description

Fig. 5. An example to convert 8 � 8 matrix to 4 � 4 density
representation.
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To ensure sufficient accuracy and acceptable overhead
for the neural network, we define 128 � 128 (by comparing
with the size of 64 � 64, 128 � 128, and 256 � 256, and
choosing the best one) as the size of the density representa-
tion and apply the scaling method to map the sparse matrix
to the density representation. Four matrices being sampled
in Fig. 6 also show the pattern of matrices. Note that any
sampling method (such as distance histogram representa-
tion [35]) may still lose potential features, which can affect
the choice of format and algorithm. An approach is thus is
needed to make full or systematic use of these data from dif-
ferent dimensions (fine- and coarse-grained) and comple-
ment the loss of accuracy caused by data abstraction
(feature extraction and scaling method).

4.3 The Design and Comparison of Neural Network
Models

The traditional neural network has delivered impressive
results in image classification [36], [37], [38]. For convolu-
tional neural network (CNN), several convolutional layers
and pooling layers are used in it to extract high-level fea-
tures [39], [40] to classify multidimensional data [41]. The
standard multilayer perceptron neural network (MLP) is a
multi-layer feed-forward network with input, multiple hid-
den, and output layers. It can be used to learn and store a
large number of mappings between the input and output
layers for regression tasks.

With regard to our problems, we found two completely
different patterns that could be used as inputs from Sec-
tions 4.1 and 4.2. And based on the powerful capability of
neural networks, we construct two kinds of methods. The
first method consists of two types of neural networks, in
which one (sub-graph (a) in Fig. 7) is a CNN using the den-
sity representation as input for predicting the optimal algo-
rithm, and the other one (sub-graph (b) in Fig. 7) is an MLP
using the sparse features as input for predicting the neces-
sary parameter in the parameter-adjustable algorithm (such
as, InCSR_SpGEMM and bmSPARSE). The second method

(sub-graph (c) in Fig. 7) combines the CNN and the MLP to
enhance the ability to classify algorithm and fit parameter
simultaneously and leverages the multi-task learning to pre-
dict two independent output (the optimal algorithm and
parameter) using one neural network model called MatNet.
As shown in Fig. 7, these models consist of two types of
input patterns, two of which are the density representations
of matrices A and B, and are marked as A_DR and B_DR,
respectively, and the others are sparse features of matrices
A and B and are marked as A_F and B_F, respectively. The
first method uses two inputs independently, and the hybrid
model MatNet leverages all the inputs simultaneously.

We then define the training data, which include features
(13 for CPU and nine for GPU), density representations (128
� 128), the probability of each algorithm, and the optimal
parameter for InCSR on CPU and BCSR on GPU. For exam-
ple, if the execution times of the five algorithms are
T1; T2; T3; T4, and T5, the probability of each algorithm can

be calculated as: Pi ¼ 1
Ti

1
T1þ 1

T2þ...þ 1
T5

, respectively (if a specific

algorithm cannot be executed in a reasonable time, then 1
Ti is

set to zero). Then, the ”best choice” corresponds to the algo-
rithm with the highest probability. And the optimal param-
eter corresponds to the one with the shortest execution
time, and the parameter is also set to zero if the optimal
algorithm does not require any parameters. Past work trains
learning models absolutely and can cause confusion
between algorithms that deliver similar performance. Thus,
the probability of the output fairly preserves differences
that are critical for selection.

By comparing the two types of output, we have two obser-
vations: 1) The two outputs are classification and regression
problems respectively, which have interference in training.
2) Because the parameters support the choice of format, the
two outputsmay have some potential relationships.

For the MatNet model, these unrelated input data thus
affect each other during the training phase, which affects
the accuracy of the network, so we adopt a two-way strategy
to eliminate interference. Therefore, the training of MatNet

Fig. 7. Loss and accuracy of the MatNet, and details of various formats and algorithms during the training phase.
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is divided into two separate stages. The first phase trains
two kinds of neural networks (CNN and MLP) indepen-
dently. The second phase maintains all parameters of the
previous training and merges all components to update the
parameters at the last level. In this way, the mutual influ-
ence of features and density representations can be signifi-
cantly reduced in the first phase, and all outputs can share
trained features to improve accuracy in the second phase.
With the gradual addition of more training information, the
accuracy of prediction can be improved step by step. More-
over, the CNN can produce a number of filters to discrimi-
nate local features by using the conv1 layer and holistic
characteristics by using the conv2/conv3 layer (some ker-
nels are visualized), and the MLP can aggregate sparse
features.

Then we compare the accuracy of these three neural net-
works in Section 5.2.2. We found that these two inputs, in
Sections 4.1 and 4.2, respectively, are not perfect and have
shortcomings. Features only capture the fine-grained pat-
terns of the matrix, whereas density representation abstracts
from coarse-grained patterns but ignores details. MatNet
explores a hybrid model and a separate learning strategy to
combine the two patterns, and then achieves the most effec-
tive prediction.

Another major advantage of the MatNet model is scal-
ability. With the same training method, the model can easily
be deployed on new platforms and new algorithms can be
added to it to improve diversity. Because the configurations
of the chosen platforms are completely different, the col-
lected training data and the ”best result” can vary signifi-
cantly from one platform to the other. With retraining,
MatNet can also achieve high accuracy on these platforms.

5 EVALUATION

In this section, we evaluate the speedup of the SpGEMM
library by running all matrices in the SuiteSparse Matrix
Collection on the three architectures and analyze the accu-
racy and overhead of MatNet.

5.1 Setup

Platform. We compare the performance of the proposed
SpGEMM library on three architectures, as shown in Table 4.

Two of them are x86 multicore processors and the other is a
manycore processor.

Baseline. The proposed SpGEMM library is compared
with several state-of-the-art SpGEMM libraries, such as
Intel MKL v19.0.0.117 and the hash-based method [11] for
CPU, and NVIDIA cuSPARSE v8.0.61 and NSPARSE [18]
for GPU. We enable the OpenMP threading model on both
CPU platforms with 28 threads on the dual Intel E5-2690 v4
and 64 threads on the dual AMD EPYC 7501 with the ”-O3”
option.

Dataset. A total of 2,726 matrices from the SuiteSparse
matrix collection are used to randomly construct 8,195
matrix pairs for evaluation, for a total of 220 GB in total. Of
this, 60 percent is used for training, 20 percent for valida-
tion, and 20 percent for testing. The matrices range in size
from 56 KB to 33 GB, and the number of non-zero elements
ranges from 4,000 to 2 billion. The dataset includes large
and actively growing sets of sparse matrices that arise in
practice.

Usage. All experiments in this paper are based on auto-
matic mode, in which each SpGEMM calculation contains
the overhead of the prediction of algorithm and parameter
as well as the overhead of necessary format conversion. The
execution time includes these overheads and one SpGEMM
execution time. Moreover, symmetry in the sparse matrices
is not used in our SpGEMM algorithm, although some
matrices in the benchmark suite are symmetric. The reason
is that when the matrix is relatively small, all memory
accesses can be placed in the cache, reducing memory con-
sumption is meaningless. When the matrix is particularly
large, the memory consumption is much larger than the
capacity of LLC or shared memory, so the performance can-
not be greatly improved. In addition, the introduction of the
symmetry of the matrix requires the conversion of column
numbers during SpGEMM calculation, which introduces
additional overhead. Therefore, this paper still only focuses
on the general sparse matrix-matrix multiplication.

5.2 Results of Training

Fig. 8 gives an overview of the loss and accuracy of MatNet
discussed in Section 4.3 for classifying matrix pairs into the
best format, algorithm, and parameter on three platforms.
Several aspects are compared below.

5.2.1 Comparison of Traditional Machine Learning

Model and Two Neural Networks

We used a widely used machine learning algorithm deci-
sion tree (CART approach [42]) to compare with two neural
network methods. The decision tree is constructed by fea-
tures of the two matrices. Table 6 shows the performance of
the four classifiers on two indicators, where pre. represents
precision and recall measures the number of correct results
returned. The result shows that MatNet greatly outperforms
the decision tree model and is always better than the CNN
and MLP model on the two indicators with an average pre-
cision of 91.50 percent and recall of 86.57 percent, whereas
the decision tree has a precision of 74.19 percent and recall
of 67.79 percent, the CNN and MLP model has a precision
of 86.24 percent and recall of 81.69 percent. So we choose
MatNet as the default classifier in this paper. In addition,

TABLE 5
Two CPUs and One GPU Used for Evaluation

Intel CPU AMD CPU NVIDIA
GPU

Core Xeon E5- 2690 v4 2
processors, 28 cores

@2.60 GHz

EPYC 7501 2
processors, 64

cores @2.00 GHz

Tesla P100
56 SMs
@1328
MHz

Caches L1: 32 KB � 14
L2: 256 KB � 14

L3: 35 MB

L1: 32 KB � 32
L2: 512 KB � 32

L3: 64 MB

L2: 4096 KB

Memory 128 GB DDR4-2133 2
� 4 channels

256 GB DDR4-
2666 2 � 8
channels

16 GB 1.4
Gbps
HBM2

Bandwidth 136.6 GB/s 341 GB/s 732 GB/s
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the results in terms of accuracy on the three platforms also
show that our MatNet is an effective cross-platform model.

5.2.2 Loss and Accuracy

The loss function (categorical_crossentropy) is used to indi-
cate how far prediction deviates from the target value. Dur-
ing the training phase, weights are updated based on this
quantity. Another indicator is accuracy, which monitors
how many cases are correctly predicted. While the network
is being trained, loss decreases, and accuracy increases.

The top half of Fig. 8 compares the losses and accuracies
for the training, validation, and testing data. For the Intel
platform, as the number of steps of iteration increases for
independent training (first phase), the loss of MatNet
decreases gradually. After 2,000 iterations, the network con-
verges to an almost 85 percent accuracy. We then merge the
two independent pieces of training and adjust the learning
rate (second phase). The loss continues to decline and accu-
racy increases slowly, and finally the training process stabil-
izes at 4,000 iterations. An accuracy of 93 percent is

achieved for the training set, and 91 and 90 percent for the
validation and testing sets, respectively. On the AMD plat-
form, the network demonstrates similar learning profi-
ciency, and the final accuracy values are 92, 90, and 89
percent. For the GPU platform, MatNet incurs a slightly
higher loss but has higher accuracy. The network converges
at close to 2,000 iterations. At this time, the intervention is
interpolated and training continues. After 3,000 steps, the
accuracy values are stable at 92, 90, and 87 percent.

The results show that MatNet quickly learned the charac-
teristics of the matrices and maintained continuous conver-
gence on the three platforms, which also indicates that the
density representation and features contain potential con-
nections to the best format and algorithm. In addition, the
two-stage training method combines the patterns learned
by the CNN and MLP model, and the accuracy of MatNet is
significantly improved. With the combination of the two
types of training data by using the two-way strategy, Mat-
Net is thus further upgraded.

5.2.3 Best Algorithm and Parameter

We provide details of the convergence for various formats
and algorithms in Fig. 8. It is clear that as the overall accu-
racy of the network gradually increases, various formats
and algorithms exhibit different tendencies of convergence.
The main reason for this is that these formats and algo-
rithms account for an unbalanced proportion of records for
the training data. For example, the Intel platform’s MKL
algorithm and the AMD platform’s ELL method first con-
verges to high precision by occupying the largest propor-
tion of the training data, and the GPU’s cuSPARSE and
NSPARSE algorithms exhibit similar rates of convergence
using similar numbers of records. Finally, all formats and
algorithms achieve accuracy higher than 90 percent.

To evaluate the predicted parameter, we define three
indicators to evaluate the difference between the predicted
value and the optimal value. Mean Squared Error(MSE)3 is
the average of the squares of the residuals, R-squared(R2)4

is used to measure of how far prediction deviates from
regression line, and Relative Mean Squared Error(RMSE)5

represents prediction accuracy. As shown in Table 7, the

Fig. 8. Performance and proportion of different formats and algorithms on the three architectures. MKL and hash-based method for CPU, and cuS-
PARSE and NSPARSE for GPU are state-of-the-art libraries.

TABLE 6
Comparison of Results of Prediction of the Two Machine Learn-

ing Classification Methods

3. MSE ¼ 1
m

P0
mðActual value� Predicted valueÞ2

4. R2 ¼ 1� SSRegression

SSTotal
(SS_Regression:Sum Squared Regression Error;

SS_Total:Sum Squared Total Error;)

5. RMSE ¼ 1
m

P0
m
ðActual value�Predicted valueÞ2

row number of matrix
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lower three parameters represents a higher accuracy, we
compare the indicators for a MLP neural network model.

By comparing two predicted block sizes from the MLP
and MatNet models, we found that the MatNet model
achieves better accuracy. The MatNet model leverages the
multi-task learning method, which uses not only the sparse
feature of the input matrices but also the filters trained by
the CNN model. So the MatNet method can accurately pre-
dict optimal parameters. Note that the accuracy of the pre-
dicted parameter on CPU is better than that on GPU. The
main reason is that there is more training data on CPU.

5.3 Speedups and Overhead

The results of the speedup of the proposed library are pre-
sented in Fig. 9. The predicted formats and algorithms are
generated by the MatNet model, and each execution of
SpGEMM includes the complete overhead incurred by fea-
ture extraction, prediction, and format conversion (if
needed). The x-axis represents the sequence of matrix pairs
we constructed with incremental non-zeros, and the y-axis
on the left side represents the GFLOPS of SpGEMM and the
y-axis on the right side calculates the proportion of various
optimization methods that deliver the best performance.
Compared with the MKL and cuSPARSE method, our algo-
rithm achieves average speedups of 3.89x, 21.14x, and 2.57x.
Furthermore, we test the speedups of our SpGEMM library
in comparison with state-of-the-art methods ([11] and [18]),
and they are 2.45x, 8.22x, and 1.94x on average. The perfor-
mance gain consists of several parts: (1) A variety of formats
significantly reduce the time needed for memory access for

the corresponding matrix pairs. (2) The three proposed
algorithms change the number of sparse accumulations or
reduce memory consumption. (3) Our framework also
makes full use of currently available algorithms.

Compared with the best speedup obtained with the
”ideal tool” mentioned in Section 3.4, our library can
achieve 94 percent of the performance improvement with-
out overhead and 37 percent with overhead on the same
dataset. The main reason for the reduction in speedups is
that the fixed time for predicting the best format and algo-
rithm is expensive, especially for small matrix pairs.

Overhead is still in our discussion. Note that after col-
lecting the training data, it takes approximately 34
minutes to train the complete MatNet for 4,900 records on
two NVIDIA P100 GPUs. In addition, SpGEMM using the
pattern-based framework features multiple stages: 1)
extracting the density representation and sparse features
of the two matrices; 2) predicting the best format and
algorithm by MatNet; 3) conversion into various formats
(if necessary); and 4) executing the corresponding matrix
multiplication kernel. In Fig. 10, a proportion chart shows
the average performance breakdown of 12 groups of
matrices with increasing sizes. The overhead of the first
and the third parts is proportional to the size of the
matrix pair, and the second part takes about 0.18 millisec-
onds per matrix pair. It is clear that the first three perfor-
mance overheads account for a smaller proportion of the
total time as the matrix pairs become larger. Most of the
extra overhead incurred by our library is below 20 per-
cent. We thus recommend not using our framework on
very small matrix pairs so that the overhead incurred by
the auto-tuner does not become another system bottle-
neck. In addition, the inspector-executor method divides
SpGEMM into two stages: analysis and execution. The
inspector inspects the matrix patterns and applies format
changes, and the executor calls the routine by reusing the
predicted results. As the number of computations
increases, these overheads are almost completely diluted
and the proportion of overhead is significantly reduced.

5.4 Performance Optimization for Real Applications

We deploy our library to two real-world applications and
the test results are as follows.

Algebraic Multigrid (AMG). Considering the problem of
correcting the equation Au ¼ f with a certain accuracy,

TABLE 7
Accuracy of MLP and MatNet on Three Statistical Indicators

Fig. 9. Performance breakdown of several groups of matrices of different sizes.
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where A is a large sparse matrix, u and f are dense vectors.
In particular, Galerkin products multiply three sparse
matrices in each level of an AMG hierarchy, where rectan-
gular matrix PT is a restriction operator, square matrix A is
initially the system matrix, and rectangular matrix P is a
prolongation operator.

The input problem is from the 2D 5-point, 2D 9-point, 3D
7-point Poisson problem. The two 2D problems have dimen-
sions 1024 � 1024 and generate system matrices of size
1048576 � 1048576. The two 3D problems have dimensions
101 � 101 � 101 and generate system matrices of size
1030301� 1030301. Table 8 show the best algorithm, parame-
ter, and speedup of Galerkin products PTAP in constructing
an AMG hierarchy for a smoothed aggregation precondi-
tioner. Our library selects the ELL format and ELL method
for the best performance because the matrix built by AMG
has the same non-zero elements in each row. Thuswe deliver
average speedups of 3.77x, 5.31x, and 3.22x on the SpGEMM
kernel and speedups of 1.32x, 1.35x, and 1.25x on the entire
AMG application by using automatic mode. The overhead of
format conversion andmodel inference account for 2 percent
of the total SpGEMMexecution time.

Breadth First Search (BFS). Many graph processing algo-
rithms perform multiple BFS to discover the potential of
internal connections, For example, Betweenness Centrality
measures the centrality and the shortest paths of an
unweighted graph. In linear algebraic terms, this algorithm
corresponds to multiplying a square sparse matrix with a
tall-skinny matrix. The square one represents the graph and
the tall-skinny one represents the stack of frontiers, each col-
umn representing one BFS frontier. In the memory-efficient
implementation of the Markov clustering algorithm [6], a
matrix is multiplied with a subset of its column, represent-
ing another use case of multiplying a square matrix with a
tall-skinny matrix.

In our evaluations, we choose three representative
graphs for SpGEMM BFS from the network repository and
generate the tall-skinny matrix by randomly selecting col-
umns from the graph itself. Table 9 shows the best algo-
rithm, parameter, and speedup for the BFS application. Our
library selects different algorithms for three graphs on three
platforms because the graphs have completely different pat-
terns and therefore require specific algorithms. Thus we
deliver average speedups of 3.58x, 4.49x, and 2.57x on the
entire BFS application by using automatic mode. The over-
head of format conversion and model inference account for
3 percent of the total execution time.

5.5 Usage

In this section, we open-source this pattern-based SpGEMM
library with a unified interface for the SPGEMM kernel and
provide a test case to compute A �B for validating the
results of the prediction of MatNet. The source code is avail-
able at https://github.com/zhen-xie/IA-SpGEMM.git. In addi-
tion, our model can be easily extended to more platforms
and algorithms by collecting more training records and
fine-tuning the MatNet model.

6 RELATED WORK

Sparse kernels have been widely used to improve higher effi-
ciency in a number of HPC applications [1], [43], [44], [45],
[45], [46], [47], [48], [49]. Various approaches have been pro-
posed to optimize data dependence and unbalanced sparse
computations. Venkat et al. [50], [51], [52], [53] developed
several techniques for dependence analysis and data trans-
formation optimization for sparse computations during the
compilation phase, Arash et al. [54] used a performance
model and a blocking mechanism to resolve the problem of
load imbalance. This paper focuses on the format, algo-
rithm, and auto-tuner for the SpGEMM kernel.

SpGEMM was parallelized and optimized on CPUs.
The most significant difference between these algorithms
is the method used for nonzero accumulation. As in the
COO algorithms used in this paper, the dense accumula-
tor [10], [55] is a general solution, whereas other methods
involve sorting a heap [12] or merging rows [56]. More-
over, a few GPU algorithms have been proposed, CUSP
[17] uses an expand-sort-compress (ESC) algorithm that
pre-allocates and collects all intermediate results, and
accumulates them through sort and compression opera-
tions. cuSPARSE [13], NSPARSE [18] and Kokkos [57]
uses a hash table to combine the intermediate results in
global memory. bhPARSE [58] first assigns rows into bins
by the size of the intermediate result and output, and
launches various kernels. The hybrid method [14], [59],
multiple-levels algorithm [12], and row merge algorithm
[60] can also show good performance on partial matrices.
These algorithms can be added to our framework to yield
better performance. In addition, our framework proposed
in this paper resolves the problem on a single node and,
in many cases, dominates the whole overhead. We would
like to see that the following work could integrate our
framework into distributed SpGEMM implementations
[5], [61], [62].

Selecting the best format and algorithm has received consid-
erable attention in recent years. The work closest to this

TABLE 8
Performance Improvement of Applying the SpGEMM Library to

AMG Application

(The best parameter being null means that the selected algorithm does not need
any parameters).

TABLE 9
Performance Improvement of Applying the SpGEMM Library to

BFS Application
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study is that by Zhao et al.[35], which for the first time used
a CNN to select the matrix format for SpMV and yielded an
accuracy of 93 percent. Several studies [63], [64], [65], [66]
have been devoted to the best storage formats through auto-
tuning methods or automatically disable the auto-tuning
when it is not likely to be beneficial, but some methods may
be limited owing to the learning ability of the models
applied. Moreover, choosing the best format can be seen as
a classification problem, and is similar to recognizing hand-
written digits, which was one of the first applications of
CNN. The LeNET-5 [67] was developed for this task. The
FFNN [68] is also widely used for the classification model.
Unlike SpMV auto-tuners, our algorithm needs to consider
the patterns of the two arbitrary matrices at the same time
and classify them into appropriate directories. We thus
introduced these two neural networks to automatic tuning
and designed a new convolutional neural network (MatNet)
to connect them for the SpGEMM. We found that sparse
kernels can benefit from the neural network method.
Extending neural networks to more sparse kernels can also
help reveal connections between optimization methods and
specific parameters.

7 CONCLUSION

In this work, we proposed a variety of SpGEMM algorithms
for DIA, COO, and ELL formats, and presented a pattern-
based SpGEMM library that can automatically determine
the best format, algorithm, and parameter for any sparse
matrix pairs. It gathers a set of SpGEMM algorithms that
naturally allow for the use of a deep learning model (Mat-
Net) to predict the best choice by using features and density
representation. The results show that our library yields bet-
ter performance than four other state-of-the-art libraries.
We also expect more sparse and input-sensitive algorithms
can be inspired by our method.
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[30] A. Azad, A. Buluç, and J. Gilbert, “Parallel triangle counting and
enumeration using matrix algebra,” in Proc. IEEE Int. Parallel Dis-
trib. Process. Symp. Workshop, 2015, pp. 804–811.

[31] Y. Saad, SPARSKIT: A Basic Tool Kit for Sparse Matrix Computations.
Scotts Valley, CA, USA: CreateSpace Independent Publishing
Platform, 1990.

[32] F. G. Gustavson, “Two fast algorithms for sparse matrices: Multi-
plication and permuted transposition,” ACM Trans. Math. Softw.,
vol. 4, no. 3, pp. 250–269, 1978.

[33] P. N. Q. Anh, R. Fan, and Y. Wen, “Balanced hashing and efficient
GPU sparse general matrix-matrix multiplication,” in Proc. Int.
Conf. Supercomputing, 2016, pp. 1–12.

[34] W. Abu-Sufah and A. A. Karim, “Auto-tuning of sparse matrix-
vector multiplication on graphics processors,” in Proc. Int. Super-
computing Conf., 2013, pp. 151–164.

[35] Y. Zhao, C. Liao, J. Li, and X. Shen, “Bridging the gap between deep
learning and sparse matrix format selection,” in Proc. 23rd ACM
SIGPLAN Symp. Princ. Pract. Parallel Program., 2018, pp. 94–108.

[36] J. Schmidhuber, “Deep learning in neural networks: An over-
view,” Neural Netw., vol. 61, pp. 85–117, 2015.

[37] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic
segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2014, pp. 580–587.

[38] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifi-
cation with deep convolutional neural networks,” in Proc. Advan-
ces Neural Inf. Process. Syst., 2012, pp. 1097–1105.

[39] M. D. Zeiler and R. Fergus, “Visualizing and understanding con-
volutional networks,” in Proc. Eur. Conf. Comput. Vis., 2014, pp.
818–833.

[40] D. Scherer, A. M€uller, and S. Behnke, “Evaluation of pooling oper-
ations in convolutional architectures for object recognition,” in
Proc. Int. Conf. Artif. Neural Netw., 2010, pp. 92–101.

[41] L. Wei, Y. Yang, R. M. Nishikawa, and Y. Jiang, “A study on sev-
eral machine-learning methods for classification of malignant and
benign clustered microcalcifications,” IEEE Trans. Med. Imag., vol.
24, no. 3, pp. 371–380, Mar. 2005.

[42] L. Breiman, J. Friedman, C. Stone, and R. Olshen, Classification and
Regression Trees. New York, NY, USA: Taylor & Francis, 1984.
[Online]. Available: https://books.google.com/books?id=JwQx-
WOmSyQC

[43] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky, “Sparse
convolutional neural networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2015, pp. 806–814.

[44] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proc. 14th Int. Conf. Artif. Intell. Statist., 2011, pp.
315–323.

[45] Z. Xie, W. Dong, J. Liu, H. Liu, and D. Li, “Tahoe: Tree structure-
aware high performance inference engine for decision tree ensem-
ble on GPU,” in Proc. 16th Eur. Conf. Comput. Syst., 2021, pp. 426–
440.

[46] Z. Xie, Z. Cao, Z. Wang, D. Zang, E. Shao, and N. Sun, “Modeling
traffic of big data platform for large scale datacenter networks,” in
Proc. IEEE 22nd Int. Conf. Parallel Distrib. Syst., 2016, pp. 224–231.

[47] W. Dong, J. Liu, Z. Xie, and D. Li, “Adaptive neural network-
based approximation to accelerate eulerian fluid simulation,” in
Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal., 2019,
pp. 1–22.

[48] W. Dong, Z. Xie, G. Kestor, and D. Li, “Smart-PGSim: Using neu-
ral network to accelerate AC-OPF power grid simulation,” 2020,
arXiv: 2008.11827.

[49] Z. Xie, W. Dong, J. Liu, I. Peng, Y. Ma, and D. Li, “MD-HM:
Memoization-based molecular dynamics simulations on big mem-
ory system,” in Proc. ACM Int. Conf. Supercomputing, 2021, pp.
215–226.

[50] A. Venkat et al., “Automating wavefront parallelization for sparse
matrix computations,” in Proc. Int. Conf. High Perform. Comput.,
Netw., Storage Anal., 2016, Art. no. 41.

[51] K. Ahmad, A. Venkat, and M. Hall, “Optimizing LOBPCG: Sparse
matrix loop and data transformations in action,” in Proc. Int. Work-
shop Lang. Compilers Parallel Comput., 2016, pp. 218–232.

[52] A. Venkat, M. Hall, and M. Strout, “Loop and data transforma-
tions for sparse matrix code,” ACM SIGPLAN Notices, vol. 50, no.
6, pp. 521–532, 2015.

[53] X. Zhang, G. Tan, S. Xue, J. Li, K. Zhou, and M. Chen,
“Understanding the GPU microarchitecture to achieve bare-metal
performance tuning,” ACM SIGPLAN Notices, vol. 52, no. 8, pp.
31–43, 2017.

[54] A. Ashari, N. Sedaghati, J. Eisenlohr, and P. Sadayappan, “A
model-driven blocking strategy for load balanced sparse matrix–
vector multiplication on GPUs,” J. Parallel Distrib. Comput., vol. 76,
pp. 3–15, 2015.

[55] M. M. A. Patwary et al., “Parallel efficient sparse matrix-matrix
multiplication on multicore platforms,” in Proc. Int. Conf. High Per-
form. Comput., 2015, pp. 48–57.

[56] K. Rupp, F. Rudolf, and J. Weinbub, “ViennaCL-A high level lin-
ear algebra library for GPUs and multi-core CPUs,” in Proc. Int.
Workshop GPUs Sci. Appl., 2010, pp. 51–56.

[57] M. Deveci, C. Trott, and S. Rajamanickam, “Multithreaded sparse
matrix-matrix multiplication for many-core and GPU
architectures,” Parallel Comput., vol. 78, pp. 33–46, 2018.

[58] W. Liu, “Parallel and scalable sparse basic linear algebra sub-
programs,” Ph.D. dissertation, Dept. Fac. Sci., Copenhagen Univ.
Copenhagen, Denmark, 2015.

[59] W. Liu and B. Vinter, “A framework for general sparse matrix-
matrix multiplication on GPUs and heterogeneous processors,” J.
Parallel Distrib. Comput., vol. 85, no. C, pp. 47–61, 2015.

[60] F. Gremse, A. Hofter, L. O. Schwen, F. Kiessling, and U. Nau-
mann, “GPU-accelerated sparse matrix-matrix multiplication by
iterative row merging,” SIAM J. Sci. Comput., vol. 37, no. 1, pp.
C54–C71, 2015.

[61] G. Ballard, A. Druinsky, N. Knight, and O. Schwartz, “Brief
announcement: Hypergraph partitioning for parallel sparse
matrix-matrix multiplication,” in Proc. 27th ACM Symp. Parallelism
Algorithms Architectures, 2015, pp. 86–88.

[62] G. Ballard, C. Siefert, and J. Hu, “Reducing communication costs
for sparse matrix multiplication within algebraic multigrid,”
SIAM J. Sci. Comput., vol. 38, no. 3, pp. C203–C231, 2016.

[63] N. Sedaghati, T. Mu, L.-N. Pouchet, S. Parthasarathy, and P.
Sadayappan, “Automatic selection of sparse matrix representation
on GPUs,” in Proc. 29th ACM Int. Conf. Supercomputing, 2015, pp.
99–108.

[64] J. Li, G. Tan, M. Chen, and N. Sun, “SMAT: An input adaptive
auto-tuner for sparse matrix-vector multiplication,” ACM SIG-
PLAN Notices, vol. 48, no. 6, pp. 117–126, 2013.

[65] J. W. Choi, A. Singh, and R. W. Vuduc, “Model-driven autotuning
of sparse matrix-vector multiply on GPUs,” ACM SIGPLAN Noti-
ces, vol. 45, no. 5, pp. 115–126, 2010.

[66] Y. Zhao, W. Zhou, X. Shen, and G. Yiu, “Overhead-conscious for-
mat selection for SpMV-based applications,” in Proc. IEEE Int. Par-
allel Distrib. Process. Symp., 2018, pp. 950–959.

[67] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no.
11, pp. 2278–2324, Nov. 1998.

[68] Y. LeCun, D. Touresky, G. Hinton, and T. Sejnowski, “A theoreti-
cal framework for back-propagation,” in Proc. Connectionist Models
Summer School, 1988, pp. 21–28.

Zhen Xie received the BS degree in computer
science from the Wuhan University of Technol-
ogy, China, in 2013, and the PhD degree in com-
puter science from the Institute of Computing
Technology, Chinese Academy of Sciences,
China, in 2019. He is currently a postdoctoral fel-
low at the University of California, Merced,
California. His research interests include parallel
algorithms and performance optimization, with a
recent focus on high performance computing for
machine learning.

174 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 1, JANUARY 2022

Authorized licensed use limited to: China University of Petroleum. Downloaded on July 19,2021 at 08:30:28 UTC from IEEE Xplore.  Restrictions apply. 

https://books.google.com/books?id=JwQx-WOmSyQC
https://books.google.com/books?id=JwQx-WOmSyQC


Guangming Tan (Member, IEEE) received the
BS degree in mathematics from Xiangtan Univer-
sity, China, in 2002, and the PhD degree in com-
puter science from the Institute of Computing
Technology, Chinese Academy of Sciences,
China, in 2008. He is a professor with the Key
Laboratory of Computer System and Architec-
ture, Institute of Computing Technology, Chinese
Academy of Science, China. His research inter-
ests include focus on parallel computing, domain-
specific architecture, and big data.

Weifeng Liu (Senior Member, IEEE) received
the BE and ME degrees in computer science,
both from the China University of Petroleum, Bei-
jing, China, in 2002 and 2006, respectively, and
the PhD degree from Niels Bohr Institute, Univer-
sity of Copenhagen, Denmark, in 2016. He is cur-
rently a full professor with the Department of
Computer Science and Technology, China Uni-
versity of Petroleum, Beijing, China. His research
interests include numerical linear algebra and
parallel computing, particularly in designing paral-

lel and scalable algorithms and data structures for sparse matrix compu-
tations on throughput-oriented architectures. He is a member of the
ACM and the SIAM.

Ninghui Sun (Member, IEEE) received the BS
degree from Peking University, China, in 1989,
and the MS and PhD degrees both in computer
science from the Institute of Computing Technol-
ogy, Chinese Academy of Sciences, China, in
1992 and 1999, respectively. He is a professor
with the Institute of Computing Technology, Chi-
nese Academy of Sciences, China. He is an aca-
demician of the Chinese Academy of Engineering.
His research interests include computer architec-
ture, operating system, and parallel algorithm.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

XIE ET AL.: PATTERN-BASED SPGEMM LIBRARY FOR MULTI-CORE AND MANY-CORE ARCHITECTURES 175

Authorized licensed use limited to: China University of Petroleum. Downloaded on July 19,2021 at 08:30:28 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


