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Abstract
Sparse general matrix-matrix multiplication (SpGEMM) is

one of the most fundamental building blocks in sparse linear

solvers, graph processing frameworks and machine learn-

ing applications. The existing parallel approaches for shared

memory SpGEMM mostly use the row-row style with possi-

bly good parallelism. However, because of the irregularity in

sparsity structures, the existing row-row methods often suf-

fer from three problems: (1) load imbalance, (2) high global

space complexity and unsatisfactory data locality, and (3)

sparse accumulator selection.

We in this paper propose a tiled parallel SpGEMM algo-

rithm named TileSpGEMM. Our algorithm sparsifies the

tiled method in dense general matrix-matrix multiplication

(GEMM), and saves each non-empty tile in a sparse form. Its

first advantage is that the basic working unit is now a fixed-

size sparse tile containing a small number of nonzeros, but

not a row possibly very long. Thus the load imbalance issue

can be naturally alleviated. Secondly, the temporary space

needed for each tile is small and can always be in on-chip

scratchpad memory. Thus there is no need to allocate an

off-chip space for a large amount of intermediate products,

and the data locality can be much better. Thirdly, because

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9204-4/22/04. . . $15.00

https://doi.org/10.1145/3503221.3508431

the computations are restricted within a single tile, it is rela-

tively easier to select a fast sparse accumulator for a sparse

tile. Our experimental results on two newest NVIDIA GPUs

show that our TileSpGEMM outperforms four state-of-the-

art SpGEMM methods cuSPARSE, bhSPARSE, NSPARSE and

spECK in 139, 138, 127 and 94 out of all 142 square matrices

executing no less than one billion flops for an SpGEMM op-

eration, and delivers up to 2.78x, 145.35x, 97.86x and 3.70x

speedups, respectively.

CCS Concepts: • Mathematics of computing→ Solvers;
Mathematical software performance; •Computingmethod-
ologies→ Shared memory algorithms; Vector / stream-
ing algorithms.

Keywords: Sparse matrix, SpGEMM, tiled algorithm, GPU

1 Introduction
Sparse general matrix-matrix multiplication (SpGEMM) op-

erationmultiplies two sparsematrices𝐴 and𝐵, and gives a re-

sulting sparse matrix𝐶 . As a key kernel in the level-3 sparse

basic linear algebra subprograms (Sparse BLAS) [44, 45],

Combinatorial BLAS [8, 20, 26] and GraphBLAS [36, 68],

SpGEMM has a wide range of applications in sparse lin-

ear solvers (e.g., algebraic multigrid methods [9, 13, 47–

49]), graph processing frameworks [16] (e.g., breath first

search [6] and triangular counting [35, 107, 114]), machine

learning scenarios (e.g., Markov clustering [7, 97] and pruned

deep neural networks [18, 37, 46]) and others (e.g., data-

base [40] and genome assembly [56]).

Because the two input and one output matrices are all

sparse, parallelizing SpGEMM is in general more complex

than other sparse kernels such as sparse matrix-vector multi-

plication (SpMV) [15, 28, 52, 81, 83, 89, 90, 94, 115, 120, 121]

and sparsematrix-multiple vectormultiplication (SpMM) [58,

90

https://doi.org/10.1145/3503221.3508431
https://www.acm.org/publications/policies/artifact-review-and-badging-current#reproduced
https://www.acm.org/publications/policies/artifact-review-and-badging-current#available
https://www.acm.org/publications/policies/artifact-review-and-badging-current#reusable


PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Niu et al.

61, 72, 112], and thus in recent years has received much at-

tention on a variety of modern parallel platforms such as

GPUs [3, 4, 14, 24, 29, 32, 34, 42, 43, 53–55, 66, 74, 75, 79, 80,

92, 93, 96, 106, 109, 110, 117], Xeon Phi [1, 2, 39, 42, 43, 93],

domain specific architectures [95, 103, 119], and distributed

clusters [10, 12, 13, 22, 23, 62, 63, 108].

Currently, most existing SpGEMM methods on parallel

processors use the Gustavson’s row-row method [57] as a

base. Such approaches in parallel generate the sparse rows

of the resulting matrix𝐶 by merging sparse rows of 𝐵 scaled

by the nonzeros in the corresponding sparse rows of𝐴. How-

ever, although the row-row methods can often bring ade-

quate parallelism, they are hard to resolve three challenging

problems: (1) how to address the load balancing problem

through a variety of inspecting and binning approaches [3,

80, 92, 93, 96, 106], (2) how to find a good temporary space

size to allocate an intermediate matrix for calculating the re-

sulting matrix with good data locality [74, 80, 92, 93, 96], and

(3) how to design more efficient sparse accumulator by using

dense row [51, 96], heap [4, 80], hash [3, 42, 43, 92, 93, 96],

sort [14, 34, 60, 74] and merge [32, 53, 54, 66, 80] for rows of

different lengths and sparsity structures.

Even though the three problems have been intensively

studied in the recent SpGEMM work, it should be noticed

that the hardware resources of modern parallel processors

such as GPUs are still largely underused. The reasons are

from three aspects: (1) it is hard to efficiently deal with very

long rows with thousands of or more nonzeros that not only

bring load imbalance but also require much larger space than

the capacity of the on-chip scratchpadmemory, (2) the size of

the temporary space allocated for storing the intermediate

products depends on the total number of operations and

an initial guess of the size of the final 𝐶 . In many cases,

the intermediate space can be quite large and thus takes

much global memory space and long execution time, and (3)

the row-based sparse accumulators in the row-row methods

cannot exploit 2D spatial structure of matrices, thusmay only

bring limited data locality. As a result, the existing row-row

approaches often deliver unsatisfactory performance.

To better use hardware resources of modern GPUs, we in

this paper propose a novel method called TileSpGEMM. In

short, TileSpGEMM can be seen as a sparse version of the

widely used tiled algorithms in dense general matrix-matrix

multiplication (GEMM). Its basic working unit is a sparse tile

with a well bounded size (e.g., a 16-by-16 sparse tile contains

no more than 256 nonzeros) and can be stored in on-chip

scratchpad memory, but not a sparse row of diverse lengths.

Thus the above three performance issues in the classic row-

row SpGEMM methods can be better resolved: (1) the load

imbalance problem caused by uneven row lengths can be

largely alleviated, (2) global memory space for storing inter-

mediate products is not required, and (3) sparse accumulator

with better data locality is easier to design.

To make the tiled formulation more efficient on modern

GPUs, we design a tiled sparse format containing mask infor-

mation and adaptive nonzero structure in the CSR-style, an

adaptive sparse accumulator that optimizes a variety of input

sparse tile structures, as well as a three-stage optimization

framework for computing tile layout, symbolic and numeric

SpGEMM.

By testing all 142 square sparse matrices using no less

than one billion floating point operations for both 𝐶 = 𝐴2

and 𝐶 = 𝐴𝐴𝑇
operations from the SuiteSparse Matrix Col-

lection [38] on two latest NVIDIA RTX 3060 and 3090 Am-

pere GPUs, our TileSpGEMM algorithm significantly outper-

forms four existing methods: NVIDIA cuSPARSE v11.4 [31],

bhSPARSE [80, 82], NSPARSE [93], and spECK [96]. The

experimental results show that our method is faster than

them on 139, 138, 127 and 94 matrices and achieves up to

2.78x, 145.35x, 97.86x and 3.70x speedups over them, respec-

tively. Compared with the tSparse library [118] using half

precision dense tile-wise multiplication on GPU tensor cores,

our TileSpGEMM obtains on average 1.98x and up to 4.04x

speedups. Also, our experiments show that our tiled sparse

format in general takes less space, compared to the standard

CSR format.

This work makes the following contributions:

• We avoid three major performance issues of classic

row-row SpGEMM.

• We propose TileSpGEMM including a sparse tile data

structure and corresponding SpGEMM algorithm.

• Wedevelop optimization techniques for the TileSpGEMM

on modern GPUs.

• Weachieve significant speedups over existing SpGEMM

work on large matrices of various structures.

2 Background
2.1 SpGEMM and Its Row-Row Algorithm
The SpGEMM operation computes 𝐶 = 𝐴𝐵, where 𝐴, 𝐵

and 𝐶 are all sparse matrices. Figure 1 gives an example

of multiplying 𝐴 of eight nonzeros and 𝐵 of ten nonzeros

and getting 𝐶 of 11 nonzeros.
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Figure 1. An example of computing 𝐶 = 𝐴𝐵.

Currently, most parallel SpGEMM algorithms use Gus-

tavson’s row-row formulation [57] shown in Algorithm 1.

Such methods exploit the fact that calculating the rows of 𝐶

91



TileSpGEMM PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

are independent of each other and thus can be parallelized

(line 1 in Algorithm 1). Then each nonzero 𝑎𝑖 𝑗 in the row

𝑎𝑖∗ (line 4) is used to scale the nonzeros 𝑏 𝑗𝑘 in the row 𝑏 𝑗∗
(line 6) and insert (lines 8-9) or add (line 11) the intermediate

products onto the nonzero 𝑐𝑖𝑘 in the row 𝑐𝑖∗.

Algorithm 1 A row-row SpGEMM pseudocode for 𝐶 = 𝐴𝐵.

1: for each 𝑎𝑖∗ in 𝐴 in parallel do ⊲ Perf. issue #1. load imbalance among
rows

2: predict 𝑠𝑖𝑧𝑒 of 𝑐𝑖∗ ⊲ Perf. issue. #2. space allocation of
intermediate products

3: malloc 𝑐𝑖∗
4: for each nonzero entry 𝑎𝑖 𝑗 in 𝑎𝑖∗ do
5: for each nonzero entry 𝑏 𝑗𝑘 in 𝑏 𝑗∗ do
6: 𝑣𝑎𝑙𝑢𝑒 ← 𝑎𝑖 𝑗𝑏 𝑗𝑘

7: if 𝑐𝑖𝑘 ∉ 𝑐𝑖∗ then ⊲ Perf. issue #3. sparse accumulator design
8: insert 𝑐𝑖𝑘 to 𝑐𝑖∗
9: 𝑐𝑖𝑘 ← 𝑣𝑎𝑙𝑢𝑒

10: else
11: 𝑐𝑖𝑘 ← 𝑐𝑖𝑘 + 𝑣𝑎𝑙𝑢𝑒
12: end if
13: end for
14: end for
15: end for

2.2 Performance Issues of Row-Row SpGEMM
In spite of the good parallelism of the row-row algorithms,

there are still three major performance issues (lines 1, 2-3

and 7-12 highlighted in Algorithm 1, respectively).

The first performance issue (line 1) is that the amount of

computations for the rows of𝐶 can be very imbalanced, thus

it is hard to saturate massively parallel GPUs when a small

number of long rows dominate runtime in the row-row style.

The second performance issue (lines 2-3) is that the size

of 𝐶 is unknown in advance and requires a space for storing

a possibly large amount of intermediate products, thus it is

hard to allocate a proper size at runtime.

The third performance issue (lines 7-12) is that the row-

row method inserts nonzeros to random positions in the

rows of 𝐶 of unpredictable sparsity, thus it is hard to design

a sparse accumulator to efficiently accumulate new entries.

2.3 Motivation of This Work
To resolve the above three issues, tens of SpGEMM algo-

rithms have been proposed in recent years [1–4, 10, 12–

14, 22–24, 29, 32, 34, 39, 42, 43, 53–55, 74, 79, 80, 92, 93, 95,

96, 106, 109, 110, 117, 119]. However, unfortunately, those

problems are inherent in the row-row style, meaning that

even very smartly designed methods cannot break through

the restrictions as long as the row-row computation is still

the fundamental pattern. We can take running𝐶 = 𝐴2
on the

‘webbase-1M’ matrix of 1,000,005 order listed in Table 2 as an

example. It is a classic power-low matrix that easily brings

imbalanced computations. Specifically, among the 1,000,005

rows, three need more than 100,000 floating points opera-

tions, and 190 need more than 10,000 operations, while the

majority of the remaining 999,812 rows only need less than

100 operations. Such imbalanced amount of computations

in general lead to underuse of GPU cores when row-row

SpGEMM methods are called, since the small amount of

rows will dominate the runtime. Furthermore, a large space

need to be allocated to store the intermediate products when

calculating these rows. At the same time, it is hard to de-

sign an efficient accumulator for the long rows, since they

in general cannot be fully saved in small on-chip memory.

This fact motivates us to resolve the challenges from the

bottom and to explore a novel way for parallel SpGEMM.

We in this work select an actually more classic tiled method,

which is almost always used in dense GEMM. The difference

between our tiled SpGEMM and tiled GEMM are that we

only store non-empty tiles in 𝐴, 𝐵 and 𝐶 , and the tiles are

all in sparse form. Because now a sparse tile of fixed size

(16-by-16 in this work) is set as the basic working unit and

can be stored in fast on-chip memory, it is easier to deal

with load imbalance (issue 1), intermediate space allocation

(issue 2) and random insertion (issue 3). The experimental

results in Figure 7 also prove that our TileSpGEMMobviously

outperformed the row-row methods. By resolving the above

three challenges, running 𝐶 = 𝐴2
on ‘webbase-1M’ with our

TileSpGEMM is 2.17x, 7.26x, 3.11x and 1.96x faster than with

the row-row style methods cuSPARSE, bhSPARSE, NSPARSE

and spECK, respectively.

Despite the advantages and clarity of the tiling pattern,

making TileSpGEMM efficient is non-trivial and requires

addressing three new problems: (1) how to store the most

effective information of the sparse tiles, (2) how to efficiently

gather sparse tiles needed from 𝐴 and 𝐵 to compute the

tiles in 𝐶 , and (3) how to design adaptive tile-wise sparse

accumulator. The next section will introduce our methods.

3 TileSpGEMM
3.1 Overview
The TileSpGEMMwork consists of a sparse tile data structure

and a tiled SpGEMM algorithm using the data structure.

Compared to the standard CSR format using row as the

basic working unit, the key feature of the TileSpGEMM is

that the input and output sparse matrices are all stored as

a number of non-empty sparse tiles of the same size, and

the sparse tile now becomes the basic working unit in Tile-

SpGEMM. The tile size is always set to 16-by-16 in this work

(convenient to utilize 8-bit unsigned char data type for local

indices), indicating that each tile contains no more than 256

nonzeros. For each sparse tile, we store its nonzeros in the

CSR style plus row indices and bit masks. Section 3.2 will

introduce the sparse tile data structure.

On top of the sparse tile data structure, the TileSpGEMM

algorithm includes three steps: (1) finding the possibly non-

empty tiles in 𝐶 , (2) determining the number of nonzeros

and the row pointer array of each tile in 𝐶 , and allocating
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Figure 2. An example matrix 𝐴 of size 16-by-16 stored in six sparse tiles of size 4-by-4. The tile structure includes three arrays

tilePtr, tileColIdx and tileNnz representing the memory offsets of tiles, tile column indices and the offsets for the number

of nonzeros in sparse tiles. Meanwhile, each sparse tile consists of five arrays: rowPtr, rowIdx, colIdx, val and mask.

memory for 𝐶 , and (3) calculating the row indices, column

indices and values of the nonzeros in each tile of 𝐶 . Besides,

several optimization techniques, such as binary search for set

intersection, bit mask operations for symbolic SpGEMM, and

an adaptivemethod for selecting sparse or dense accumulator

in on-chip memory, are also developed to improve efficiency.

Section 3.3 will detail our three-step TileSpGEMM algorithm.

3.2 Sparse Tile Data Structure
The sparse tile data structure stores two levels of tile informa-

tion. The higher level stores the tile structure of the matrix

and consists of three arrays: (1) tilePtr of size 𝑡𝑖𝑙𝑒𝑚𝐴 + 1,
where 𝑡𝑖𝑙𝑒𝑚𝐴 is the number of tile rows of thematrix, used to

store memory offsets of the tiles in tile rows, (2) tileColidx
of size 𝑛𝑢𝑚𝑡𝑖𝑙𝑒𝐴, where 𝑛𝑢𝑚𝑡𝑖𝑙𝑒𝐴 is the number of sparse

tiles, used to store tile column indices, and (3) tileNnz of

size 𝑛𝑢𝑚𝑡𝑖𝑙𝑒𝐴 + 1, used to save the memory offsets for the

numbers of nonzeros in the sparse tiles.

On the lower level, the nonzeros in each tile are stored in

the CSR style plus row indices and bit masks. We create four

arrays to store them: (1) val: stores values of all the nonze-
ros in tile order of size 𝑛𝑛𝑧𝐴, where 𝑛𝑛𝑧𝐴 is the number of

nonzeros in𝐴, (2) rowIdx and colIdx: with the size of 𝑛𝑛𝑧𝐴

as well, stores the row and column indices of each nonzero

in the tile. Note that our tile size is always set to 16-by-16 for

maximize space utilization, since the row or column index

in one tile only needs four bits and can be together stored

within an 8-bit unsigned char, (3) row pointer array rowPtr
saves 16 memory offsets for the nonzeros in the tile, which

is different to the normal CSR row pointer array including

16+1 entries. The reason of only using 16 entries is that we

want to limit the value in the pointer array to 0–255, which

can also be saved in an 8-bit unsigned char. Even though

we do not store the 17th entry of the standard pointer array,

the value can be extracted from subtracting the last item of

rowPtr from the corresponding value in tileNnz (storing

the number of nonzeros of the tiles) if needed, (4) in addition,

we set a mask array for each tile, since regular bit masks can

accelerate symbolic phase and in general only occupies very

small space. Here we create a 16-bit unsigned short array

of size 𝑛𝑢𝑚𝑡𝑖𝑙𝑒𝐴 × 16 to store the bit masks of sparse tiles.

Specifically, we mark 1 in the corresponding column index

position for the nonzeros of each row, and mark 0 otherwise.

This combined format facilitates the nonzeros in a certain

tile of matrix 𝐴 to be able to access corresponding tile of

matrix 𝐵 and its bit mask at the same time. A small example

using 4-by-4 tile can be found in Figure 2.

Note that the reason of setting the tile size to 16-by-16

is that fully utilizing the 8-bit unsigned char for storing

indices and pointers and 16-bit unsigned short for bit masks.

Compared to 16-by-16 used in this work, other tile sizes

(such as 4-by-4 and 8-by-8) cannot saturate 8-bit data type

and will bring more complex data packing and unpacking.

3.3 Algorithm Description
The TileSpGEMM method consists of three steps to deter-

mine three groups of information of 𝐶: (1) overall tile struc-

ture arrays tilePtr and tileColidx, (2) the number of

nonzeros array tileNnz, row pointer array rowPtr and bit

mask array mask of each sparse tile, and (3) index and value

arrays rowidx, colidx and val of nonzeros in each tile.
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In the first step, to find the possibly non-empty tiles and

to get the sparse tile structure of 𝐶 , we run an SpGEMM

to multiply the high level tile structure of the two input

matrices 𝐴 and 𝐵 also stored in our tile format. Here we use

𝐴′ and 𝐵′ to represent the high level tile layout of 𝐴 and 𝐵.

Now the numbers of rows or columns of 𝐴′ and 𝐵′ are the
numbers of tile rows or tile columns of 𝐴 and 𝐵, and the

numbers of nonzeros of the new matrices are the numbers

of non-empty tiles of the original matrices. Note that only

sparsity structures of matrices 𝐴′ and 𝐵′ are needed here.

After performing a normal symbolic SpGEMM𝐶 ′ = 𝐴′𝐵′, the
nonzero structure of the resulting matrix 𝐶 ′ is generated as

the tile structure of𝐶 . Figure 3 plots an example of𝐶 ′ = 𝐴′𝐵′.
It can be seen that matrix 𝐴′ of eight nonzeros multiplies

𝐵′ of six nonzeros and gets 𝐶 ′ of ten nonzeros, which also

means that 𝐴 of eight sparse tiles multiplies 𝐵 of six sparse

tiles and obtains 𝐶 of ten sparse tiles.

� � �

Figure 3. An example of the first step of TileSpGEMM. The

step determines the tile structure of 𝐶 , and each sparse tile

is now treated as a nonzero element in a symbolic SpGEMM.

The nonzeros in the three matrices represent sparse tiles.

Since the numbers of rows and columns of𝐴′ and 𝐵′ are a
proportion of the original numbers of rows and columns of

𝐴 and 𝐵, and the numbers of their sparse tiles are in general

much less than the numbers of nonzeros in 𝐴 and 𝐵, the

amount of floating point computations and execution time

of the first step often only take a low percentage of the entire

time of a full SpGEMM. According to our experimental data

in Figure 10, the first step normally takes no more than 5%

of the total execution time of TileSpGEMM. For simplicity,

we directly call the SpGEMM function in the NSPARSE li-

brary [93] in this step. The reason of using NSPARSE is that

compared to other existing open-source SpGEMM libraries,

NSPARSE provides better performance for small cases and a

simpler interface to use.

It should also be noticed that the multiplication does not

consider tile-wise cancellation, since this stage does not

know the number of nonzeros in each tile of𝐶 , and could not

remove any tile though it is actually empty. In other words,

the final 𝐶 is allowed to store empty tiles.

After this step, the tile structure of 𝐶 (e.g., the number of

sparse tiles 𝑛𝑢𝑚𝑡𝑖𝑙𝑒𝐶 , the tile pointer array tilePtr and the
tile column index array tileColidx) has been obtained.

In the second step, on top of the already known sparse

tile structure of 𝐶 , we generate the row pointer array, bit

mask array and the number of nonzeros of each tile. Then

we can allocate memory space of 𝐶 in the end of this step.

Here we use 𝐶𝑖 𝑗 to denote the sparse tile in 𝐶’s 𝑖th tile

row and 𝑗th tile column, and calculate it by multiplying the

corresponding sparse tiles𝐴𝑖𝑘 in the 𝑖th tile row of𝐴 and the

sparse tiles 𝐵𝑘 𝑗 in the 𝑗 th tile column of 𝐵 in a symbolic way.

Because empty tiles in𝐴 and 𝐵 should not be involved in the

computation, we need to find and match the non-empty tiles

with the same indices in the tile rows of𝐴 and tile columns of

𝐵. This procedure is actually equivalent to a set intersection

operation of sparse tiles that appear in both sets (i.e., tile

rows of 𝐴 and tile columns of 𝐵).

Algorithm 2 A pseudocode of the 2nd step of TileSpGEMM.

1: for 𝑖 = 0 to 𝑛𝑢𝑚𝑡𝑖𝑙𝑒𝐶 in parallel do
2: 𝑡𝑖𝑙𝑒_𝑖 ← tileRowidx_C[𝑖]
3: 𝑡𝑖𝑙𝑒_𝑗 ← tileColidx_C[𝑖]
4: 𝑙𝑒𝑛𝑎 = tilePtr_A[𝑡𝑖𝑙𝑒_𝑖 + 1] - tilePtr_A[𝑡𝑖𝑙𝑒_𝑖]
5: 𝑙𝑒𝑛𝑏 = tilePtr_B[𝑡𝑖𝑙𝑒_𝑗 + 1] - tilePtr_B[𝑡𝑖𝑙𝑒_𝑗]
6: if 𝑙𝑒𝑛𝑎 < 𝑙𝑒𝑛𝑏 then ⊲ Binary Search to get the intersection
7: 𝑖𝑑𝑥 ← tileColPtr_B[𝑡𝑖𝑙𝑒_𝑗]
8: 𝑝𝑜𝑠 ← 0

9: for each 𝑣𝑎𝑙𝑢𝑒 in tileColidx_A[tilePtr_A[𝑡𝑖𝑙𝑒_𝑖] do
10: if 𝑟𝑒𝑠 =Binary-Search(&tileRowidx_B[𝑖𝑑𝑥], 𝑣𝑎𝑙𝑢𝑒) exists then
11: atomicAdd(𝑝𝑜𝑠, 0 )

12: matched_posA[𝑝𝑜𝑠] = 𝑣𝑎𝑙𝑢𝑒_𝑖𝑛𝑑𝑒𝑥

13: matched_posB[𝑝𝑜𝑠] = 𝑟𝑒𝑠

14: end if
15: end for
16: else
17: Search 𝑡𝑖𝑙𝑒𝑟𝑜𝑤𝑖𝑑𝑥_𝐵 from 𝑡𝑖𝑙𝑒𝑐𝑜𝑙𝑖𝑑𝑥_𝐴

18: end if
19: for each matched tiles𝐴 and 𝐵 do ⊲ AtomicOr operation to generate the

maskc
20: get 𝑛𝑛𝑧𝑎 of𝐴

21: for 𝑘 = 0 to 𝑛𝑛𝑧𝑎 do
22: get𝑚𝑎𝑠𝑘𝑏 and𝑚𝑎𝑠𝑘𝑐

23: AtomicOr(𝑚𝑎𝑠𝑘𝑐,𝑚𝑎𝑠𝑘𝑏)

24: end for
25: end for
26: end for

Algorithm 2 shows a pseudocode of the 2nd step of Tile-

SpGEMM, and Figure 4 plots an example of generating two

sparse tiles of 𝐶 . As can be seen in the figure, the tile 𝐶12 is

computed by the sum of products of three tiles in the first

tile row of 𝐴 and two tiles in the second tile column of 𝐵.

From the basic storage structure, we can extract two arrays

tilecolidx_A1∗, including the column indices of the tile

row and tilerowidx_B∗2, including the row indices of the

tile column. Then we need to find the set intersection of the

two index arrays, and multiply the tiles at the corresponding

positions. We here assume that the column/row indices in

the two arrays are ordered and can use a serial merge-like

method by setting two pointers and traversing the two ar-

rays until all the matching tile-pairs are found. However,

we in our experiments find that the merging primitive is of-

ten slower than binary search approach for set intersection.

Specifically, when the two arrays have different sizes, we let

one CUDA thread to search each element in the shorter array

on the longer array with a typical binary search operation

(lines 6-18 in Algorithm 2) to find the tiles matched.
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Figure 4. An example of the 2nd and 3rd steps of the TileSpGEMM algorithm multiplying two 16-by-16 sparse matrices

stored as sparse tiles of size 4-by-4. In the 2nd step, a binary search approach applied to set intersection gathers sparse tiles

needed from 𝐴 and 𝐵. The bit mask operations for symbolic SpGEMM determine the number of nonzeros and the row pointer

array of each tile in 𝐶 . After allocating the resulting matrix, in the 3rd step, an adaptive method for selecting sparse or dense

accumulator in on-chip memory optimizes the process of calculating values of the nonzeros in each tile of 𝐶 . Here a dense

accumulator is used for 𝐶12, and a sparse accumulator is adopted for 𝐶32. Through the two steps and the three optimization

techniques, our tiled algorithm speeds up SpGEMM operation. It is worth to note that the threshold of selecting dense or

sparse accumulator is 192 for tiles of 16-by-16 in this work, but not this small number 12 for demonstration purpose.

In each search step, we in the on-chip scratchpad memory

set two index arrays match_pos_A1∗ and match_pos_B∗2 to
record the index positions of intersecting elements respec-

tively (lines 12-13 and the middle part of Figure 4). Since both

index arrays are ordered, when one search is completed, the

next search range will be narrowed. Specifically, the left

bound will be set to the next index of the last matched posi-

tion, while the right bound is still the final index of the array.

For example, in the left part of the middle of Figure 4, the

search range of ‘3’ starts at position 3 of tilecolidx_A1∗

because the last element ‘1’ is matched at position 2. After

the last element ‘3’ is matched successfully, the intersecting

tile pairs that need to be multiplied for generating resulting

tile𝐶12 have been obtained. It can be seen that tile𝐶12 should

be calculated by 𝐴11 ×𝐵12 + 𝐴13 ×𝐵32. Similar to𝐶12, the tile

𝐶32 is calculated through this way.

After completing the set intersection of the tiles in 𝐴 and

𝐵 for a certain tile in 𝐶 , we need to generate its row pointer

array and the number of nonzeros for allocating the com-

plete structure of the final 𝐶 . For speeding up the process,
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Figure 5. An example of computing bit masks of tiles 𝐶12.

Each element in tiles of 𝐵 and𝐶 has a bit mask storing 0 or 1

to indicate whether it is a nonzero. For instance, computing

𝐶12 requires that 𝐴11 and 𝐴13 and their corresponding bit

masks in 𝐵 are involved. Here the bit mask 1110 of the first

row c10 in 𝐶12 is computed from using AtomicOr on 1100
(b10) and 1010 (b12). When the traversal is complete, the bit

mask provides nonzero structure of the tile of 𝐶 .

we stored bit mask of each tile (recall Section 3.2) to reduce

memory transfer cost of repeatedly loading structure infor-

mation of tiles in 𝐵. Similar to the bit masks in 𝐴 and 𝐵, we

set a mask_C𝑖 𝑗 array to mark the position of nonzeros calcu-

lated for tile 𝐶𝑖 𝑗 in 𝐶 . For each pair of matched tiles 𝐴𝑖𝑘 and

𝐵𝑘 𝑗 , we load 𝐵𝑘 𝑗 ’s bit masks into on-chip memory, traverse

all the nonzeros of 𝐴𝑖𝑘 , and regard the column index of each

nonzero as the row index of the bit mask of 𝐵𝑘 𝑗 . Then we in

the scratchpad memory use the AtomicOr operation for all

the matched rowmasks for getting the result rowmask of𝐶𝑖 𝑗

(lines 19-25). Finally, when all the row masks in mask_C𝑖 𝑗 are
generated, the row pointer array of𝐶𝑖 𝑗 is easily calculated by

summing 1s in the mask and computing a prefix-sum scan.

In Figure 5, we show an example about how to generate

the mask_C12 and determine the number of nonzeros of tile

𝐶12 (c1). As can be seen, 𝐶12 is calculated by two sets of

matched tiles (𝐴11, 𝐵12) and (𝐴13, 𝐵32). For the multiplication

of 𝐴11 and 𝐵12, we firstly traverse nonzeros of each row in

𝐴11. For 𝑎00 with the column index 0, we can find the first row

mask 1100 (b10) from 𝐵12 (b1). Then the second entry 𝑎02

will extract the third row mask 1010 (b12) since the column

index of 𝑎02 is 2. Next we continue to multiply 𝐴13 and 𝐵32

in the same way. After the matching operation, AtomicOr
operations work for the two matched row masks b10 and b12,

and the first row mask 1110 (c10) of 𝐶12 is finally updated.

Similarly, c11 is generated by four row masks from b11 and

b12 in tile 𝐵12, and b20 and b23 in tile 𝐵32. The procedure

will be repeated until the last row mask c13 is completed as

Figure 5 shows.

Also note that in this step, all the memory requirements

are well bounded to no larger than 256 nonzeros and can be

completed in on-chip memory. Thus we do not allocate any

intermediate array on global memory and save overall space

overhead.

So far, we have calculated the number of nonzeros, row

pointer array rowPtr and bit mask array mask of each tile,

as well as the total number of nonzeros 𝑛𝑛𝑧𝐶 of the final 𝐶 .

Now we can prepare memory for the val and idx arrays of

size 𝑛𝑛𝑧𝐶 for the third step.

In the third step, a numeric phase is performed to calcu-

late the values and row/column indices of nonzeros in tiles of

𝐶 . Besides the binary search operations used in the 2nd step,

we in this step propose an adaptive method for selecting a

sparse or dense accumulator in on-chip memory for each

tile to improve performance.

Algorithm 3 A pseudocode of the 3rd step of TileSpGEMM.

1: for 𝑖 = 0 to 𝑛𝑢𝑚𝑡𝑖𝑙𝑒𝐶 in parallel do
2: 𝑗 ← tileRowIdx_C[𝑖]
3: 𝑙 ← tileColIdx_C[𝑖]
4: if the number of tile𝐶 𝑗𝑙 <= 𝑡𝑛𝑛𝑧 then ⊲ sparse accumulator
5: get ColIdx_C from maskC𝑗𝑙
6: for each matched tiles𝐴 𝑗𝑘 and 𝐵𝑘𝑙 do
7: for 𝑝 = 0 to the number of nonzeros of𝐶 𝑗𝑙 do
8: 𝑖𝑑𝑥𝑐 ← ColIdx_C[𝑝]
9: 𝑣𝑎𝑙 ← products of two 𝑣𝑎𝑙𝑢𝑒𝑠 in𝐴 𝑗𝑘 and 𝐵𝑘𝑙

10: AtomicAdd(Val_C[𝑖𝑑𝑥𝑐], 𝑣𝑎𝑙 )
11: end for
12: end for
13: else ⊲ dense accumulator
14: for each matched tiles𝐴 𝑗𝑘 and 𝐵 𝑗𝑙 do
15: load𝐴 𝑗𝑘 and 𝐵𝑘𝑙

16: AtomicAdd(Val_C,𝐴 𝑗𝑘 × 𝐵𝑘𝑙 )

17: end for
18: end if
19: end for

We set a threshold 𝑡𝑛𝑛𝑧 for adaptively selecting a sparse

accumulator working on a sparse tile, or a dense one firstly

working on a dense full matrix and then saving the result

into its sparse form. The reason of using the selection is

that in our observation when 𝑡𝑛𝑛𝑧 is larger than 75% of the

tile size (i.e., 256 nonzeros), working on dense space often

bring better performance. In contrast, for the tiles with less

nonzeros, a sparse accumulator is in general faster.

Here the bit masks of the sparse tiles in 𝐶 obtained from

the 2nd step are used to determine the column index of all

nonzeros of a tile. In this way, the intermediate products can

be directly accumulated at a certain position according to
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Figure 6. Performance comparison of TileSpGEMM and other four state-of-the-art SpGEMM methods on Geforce RTX 3090

and 3060 GPUs. The five sub-figures on top show double precision performance (in GFlops) of 𝐶 = 𝐴2
and 𝐶 = 𝐴𝐴𝑇

, and their

linear regression, and the five sub-figures on the bottom show the scalability of the methods on the two GPUs. The x-axis is

the compression rate in log
10
scale.

the column index instead of allocating a temporary space

for them. Also, the AtomicAdd operation is used in corre-

sponding position according to the column index to get the

resulting values. As shown in figure 4, the tile 𝐶32 is calcu-

lated by a sparse accumulator since the number of nonzeros

in it (i.e., 6) is less than 75% of its size (i.e., 16×75%=12).
For the tiles whose number of nonzeros is larger than 𝑡𝑛𝑛𝑧,

the dense accumulator will run on shared memory. Here we

directly allocate a dense matrix of tile size (i.e., 256) in on-

chip memory and add intermediate products onto it. Note

that since the tiles are small enough, TileSpGEMM does not

allocated global memory at all for saving space. For example,

the tile 𝐶12 in Figure 4 is calculated by a dense accumulator,

since it has 12 nonzeros.

For the implementation of the 2nd and 3rd steps, we assign

one warp of 32 CUDA threads for processing one sparse tile

on GPUs for saving thread synchronization costs.

After accumulating and saving all sparse tiles of 𝐶 onto

the global memory, the TileSpGEMM algorithm is completed,

and all information of a matrix in sparse tile form is obtained.

4 Experimental Results
4.1 Experimental Setup
We use two NVIDIA Ampere GPUs installed in an Ubuntu

18.04 machine as the testbed. The CUDA and GPU driver

versions are 11.4 and 470.57.02, respectively. We compare our

TileSpGEMM with four state-of-the-art SpGEMM methods

cuSPARSE v11.4 [31], bhSPARSE [80, 82], NSPARSE [93] and

spECK [96] in double precision, and with tSparse [118] opti-

mized for using GPU tensor cores in half precision. Table 1

lists some specifications of the setup.

As for the dataset, to saturate modern GPUs, we test all

142 sparse square matrices in the SuiteSparse Matrix Col-

lection [38] requiring no less than one billion floating point

operations when computing both 𝐶 = 𝐴2
and 𝐶 = 𝐴𝐴𝑇

. We

Table 1. The two GPUs and six algorithms evaluated.

Two NVIDIA GPUs Six algorithms

(1) NVIDIA Geforce RTX 3060 (Ampere), (1) cuSPARSE v11.4 [31],

3,584 CUDA cores @ 1.78 GHz, (2) bhSPARSE [80, 82],

12 GB GDDR6, B/W 360.0 GB/s, (3) NSPARSE [93],

(2) NVIDIA Geforce RTX 3090 (Ampere), (4) spECK [96],

10,496 CUDA cores @ 1.70 GHz, (5) tSparse [118],

24 GB GDDR6X, B/W 936.2 GB/s. (6) TileSpGEMM

(this work).

also evaluate 18 representative sparse matrices in Table 2

for a more in-depth performance comparison. Note that the

first 12 matrices are firstly tested by Williams et al. [105]

and are the classic dataset in much subsequent sparse matrix

research. As for the comparison with tSparse, we use the

16-matrix dataset in its original paper [118]. The reason is

that the dataset may best utilize the half precision tensor

cores on GPUs.

4.2 Performance Comparison over Existing Work
Figure 6 shows the performance comparison of running dou-

ble precision𝐶 = 𝐴2
and𝐶 = 𝐴𝐴𝑇

on the 142 square matrices

with cuSPARSE v11.4 [31], bhSPARSE [80], NSPARSE [93],

spECK [96] and our TileSpGEMM on the RTX 3060 and 3090

GPUs.

As can be seen in the top five sub-figures of Figure 6, the

vendor supported cuSPARSE v11.4, bhSPARSE and NSPARSE

can only complete a portion of matrices in the dataset, while

spECK and our TileSpGEMM can finish all 142 matrices.

In general, our TileSpGEMM runs faster than other four

methods on 139, 138, 127 and 94 matrices respectively on

RTX 3090, and on 142, 128, 114 and 92 matrices on RTX 3060

(note that no matrix in our benchmark can be computed with

cuSPARSE on RTX 3060).

Besides, our TileSpGEMM has obvious performance ad-

vantage over cuSPARSE, bhSPARSE, NSPARSE and spECK.
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Figure 7. Performance comparison of performing double precision 𝐴2
operation of the 18 representative matrices on Geforce

RTX 3090 GPU. The ‘0.00’ on bar areas indicate the corresponding algorithm fails to perform its SpGEMM operation on the

matrix.

Table 2. Information of the 18 representative matrices. The

compression rate is the ratio of the number of intermediate

products (i.e., half of the number of floating point operations)

of 𝐶 = 𝐴2
to the number of nonzeros in 𝐶 .

Matrix 𝐴 𝑛 (𝐴) 𝑛𝑛𝑧 (𝐴) #𝑓 𝑙𝑜𝑝𝑠 of
𝑛𝑛𝑧 (𝐶) Compression

𝐶 = 𝐴2
rate

pdb1HYS 36K 4.3M 1.1B 19.6M 28.34

consph 83K 6.0M 927.7M 26.5M 17.48

cant 62K 4.0M 539.0M 17.4M 15.45

pwtk 218K 11.6M 1.3B 32.8M 19.10

rma10 47K 2.4M 313.0M 7.9M 19.81

conf5_4-8x8-05 49K 1.9M 149.5M 10.9M 6.85

shipsec1 140K 7.8M 901.3M 24.1M 18.71

mac_econ_fwd500 206K 1.3M 15.1M 6.7M 1.13

mc2depi 525K 2.1M 16.8M 5.2M 1.60

cop20k_A 121K 2.6M 159.8M 18.7M 4.27

scircuit 170K 1.0M 17.4M 5.2M 1.66

webbase-1M 1M 3.1M 139.0M 51.1M 1.36

af_shell10 1.5M 52.7M 3.68B 142.7M 12.90

pkustk12 94K 7.5M 5.4B 474.8M 5.65

SiO2 155K 11.3M 28.5B 104.8M 136.03

case39 40K 1.0M 8.1B 404.7M 10.00

TSOPF_FS_b300_c2 56K 8.8M 107.9B 805.7M 66.96

gupta3 17K 9.3M 61.4B 270.9M 113.40
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Figure 8. Performance comparison of performing double

precision 𝐴𝐴𝑇
operation on six asymmetric matrices in the

18 representative matrices on the Geforce RTX 3090 GPU.

First of all, it is worth noting that the peak performance

of our algorithm on RTX 3090 GPU can reach up to 203.05

Gflops (at the matrix ‘TSOPF_FS_b300_c2’), while the peak

of spECK for it is 91.29 Gflops (cuSPARSE, bhSPARSE and

NSPARSE cannot calculate it). Also, the overall SpGEMM

performance is largely improved. Specifically, the average

SpGEMM performance of the five SpGEMM methods are

30.82, 11.54, 37.73, 46.92 and 54.56 Gflops on RTX 3090, re-

spectively, meaning that our TileSpGEMM is on average

1.77x, 4.73x, 1.45x, 1.16x (geometric mean) faster than the

other four methods. As for the maximum speedups on RTX

3060, TileSpGEMM achieves up to 2.78x, 145.35x, 97.86x and

3.70x speedups over cuSPARSE, bhSPARSE, NSPARSE and

spECK, respectively. On RTX 3060, the performance trend

is similar. From the linear regression lines, it can be seen

that our TileSpGEMM brings promising performance trend,

and may deliver relatively higher SpGEMM throughput for

matrices with larger compression rate.

Moreover, the remaining five sub-figures on the bottom

show the scalability of RTX 3090 over RTX 3060. Considering

the peak computational power and bandwidth of RTX 3090

are around 3x higher over RTX 3060.We expect the SpGEMM

methods tested can scale proportionally. As can be seen,

bhSPARSE, NSPARSE, spECK and our TileSpGEMM achieve

on average 2.12x, 2.66x, 2.82x and 2.53x speedups on RTX

3090 over RTX 3060. The reason of that our scalability is a bit

lower than NSPARSE and spECK is because some matrices

using our method has more arrays to allocate on GPUs and

takes longer time on memory allocation (see Figure 10).

To conduct a more detailed comparison and analysis, we

list the 18 representative matrices (see Table 2) and plot their

performance bars when computing 𝐶 = 𝐴2
and 𝐶 = 𝐴𝐴𝑇

using the five SpGEMM methods on RTX 3090 GPU. As

can be seen in Figure 7, our TileSpGEMM running 𝐶 = 𝐴2

performs in general better than the other four methods on

most of the commonly used matrices. In particular, for ma-

trices that fail to be calculated by certain methods due to

excessive memory capacity such as ‘TSOPF_FS_b300_c2’ and

‘gupta3’, our method naturally avoids the allocation of tem-

porary intermediate products (recall that sparse tiles are

calculated in the on-chip shared memory) and reflects obvi-

ous advantage. Compared with spECK that completes these

two matrices successfully, our method still gets 2.20x, 1.53x

speedups, respectively. Furthermore, the matrix ‘webbase-

1M’ with serious load imbalance problem achieves over 12
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Figure 9. Runtime peak space cost of running 𝐶 = 𝐴2
on 18 representative matrices. The x-axis shows completion time in

milliseconds, and the y-axis shows peak memory cost in megabyte.

Gflops performance with our TileSpGEMM, which is a great

improvement in recent years.

Figure 8 shows the performance of 𝐴𝐴𝑇
operation on the

six asymmetric matrices in the 18 representative matrices.

As can be seen, the efficiency of our method becomes even

more promising when computing 𝐴𝐴𝑇
. In particular, the

performance of ‘webbase-1M’ achieves 30.89 GFlops, while

cuSPARSE and NSPARSE both fail due to out of memory,

and bhSPARSE and spECK give 6.61 and 13.85 GFlops, re-

spectively.

However, for some matrices like ‘cop20k_A’ and ‘scircuit’,

our algorithm needs more time to complete, because their

matrix structures are too sparse and each tile only has little

computations. Taking ‘cop20k_A’ as an example, most tiles

in it are very sparse (specifically, 18,705,069 nonzeros dis-

tributed in 15,900,566 tiles), which makes the second step of

our method (generating and allocating tile structure) domi-

nates overall runtime.

4.3 Comparison of Peak Space Cost at Runtime
Figure 9 plots the memory consumption process of the Tile-

SpGEMM and the other three algorithms (cuSPARSE is a

closed source library, thus is not compared here) running

𝐶 = 𝐴2
on the 18 matrices in table 2. As can be seen, in most

matrices, bhSPARSE uses the most space, and NSPARSE and

spECK are comparable. Our TileSpGEMM often uses less

space than the three methods and finishes earlier. For ex-

ample, for the matrix ‘cant’, TileSpGEMM uses up to 257

MB space, which is 16%, 16% and 55% less than bhSPARSE,

NSPARSE and spECK, respectively. However, for some very

sparse matrices like ‘cop20k_A’, our method allocates a large

amount of sparse tiles for local row pointer and bit masks,

and thus usesmuch longer time to allocate and compute. This

also reflects the degraded SpGEMM performance shown in

Figures 7 and 8.

4.4 Runtime Breakdown of TileSpGEMM Algorithm
Figure 10 shows the runtime breakdown of the TileSpGEMM

algorithm. Three algorithm steps and all memory allocation

on CPU and GPU at runtime are included. As can be seen, the

first step (in red) in general takes less than 5% of the whole

runtime. Steps 2 (in green) and 3 (in yellow) account for on

average 15% and 70% of the entire time, respectively, and thus

are carefully optimized. Besides, memory allocation (in blue)

in some cases occupies on average around 20% time, and this

also aligns the observation of Gelado and Garland [50].

Figure 10. The runtime breakdown of TileSpGEMM.

4.5 Comparison of Space Overhead of Tiled Format
We compare the space cost of our TileSpGEMM with stan-

dard CSR, as well as CSB-M and CSB-I designed by Buluç

et al. [21, 27] in the Combinatorial BLAS [26]. As shown in

Figure 11, our tiled data structure on average takes 31.28 MB

less space than CSR, but uses 113.43 and 82.09MBmore space

than CSB-M and CSB-I, respectively. The main reason is that

our format stores local row pointer (16 unsigned chars) and

bit masks (16 unsigned shorts) for each tile. However, it is

still worth to save the extra memory space, since it in general

makes SpGEMM operation more convenient and faster.
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4.6 Format Conversion Overhead
We record the overhead of converting a CSR matrix to our

tiled data structure, and the comparison of the conversion

time and SpGEMM execution time on RTX 3090 GPU is plot-

ted in Figure 12. As can be seen, our conversion time in

general does not take longer time than ten single SpGEMM

operations. This conversion cost would not affect the effi-

ciency of SpGEMM, since we always assume the matrix is al-

ready stored in the tiled format before running TileSpGEMM.

This assumption is pretty reasonable in many applications,

such as algebraic multigrid (AMG) solvers using the output

matrices from an SpGEMM as the input of another SpGEMM

in the next round.

4.7 Comparison over tSparse Using Tensor Cores
tSparse [118] is a relatively new SpGEMM work designed

for using tensor cores on modern GPUs. It also saves a sparse

matrix in tile form, but uses hardware accelerated dense

GEMM on tensor cores to multiple tiles, and finally converts

the dense resulting tile to its sparse form. Since its open

source code currently only supports half precision input and

single precision output, we use the same precision setup in

our TileSpGEMM for a more intuitive performance compari-

son.

Figure 13 shows the performance comparison of 𝐶 = 𝐴2

on the 16 sparse matrices listed in the tSparse paper [118]

on RTX 3090 GPU. As can be seen, the TileSpGEMM outper-

forms tSparse on all of the 16 matrices. The average (geo-

metric mean) speedup is 1.98x, and the maximum speedup is

4.04x. To conduct a more comprehensive analysis, we plot the

runtime breakdown of the 16 matrices in Figure 14. As can be

seen, the ‘memory allocation’ phase of tSparse takes larger

proportion of overall time on many matrices. This is because

the memory allocation of 𝐶 needs to be resized repeatedly

during the execution. In addition, for the matrices whose

tiles are very sparse (such as ‘webbase-1M’ and ‘cage12’),

our TileSpGEMM utilizing sparsity structures of tiles takes

much less time on steps 2 and 3 than tSparse. Therefore, al-

though using dense multiplication on hardware accelerated

tensor cores can be much faster than normal CUDA cores,

recasting sparse tiles into dense ones for using the technique

in general wastes sparsity, and thus may be still less efficient

than sparse multiplication used in the TileSpGEMM.
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Figure 13. Performance Comparison of tSparse (using half

precision tensor cores) and TileSpGEMM (also in half preci-

sion) by using the 16-matrix dataset on RTX 3090 GPU.

5 Related Work
Optimizing SpGEMM received much attention in recent

years. The first performance issue to resolve is load im-
balance in the row-row approaches. Some of the existing

SpGEMM implementations inspect the number of interme-

diate products of the rows and group the rows of the similar

amount of computations together to balance the load. Liu

and Vinter [80, 82] divided the rows into 38 bins and se-

lected different methods for each bin group. Anh et al. [3]

used balanced hash methods. Nagasaka et al. [92, 93] used

two rounds of binning for symbolic and numeric stages, re-

spectively. Winter et al. [106] emphasized the effectiveness

of long rows, and Parger et al. [96] recently developed the

spECK library with a light-weight preprocessing method for

balancing. Lee et al. [75] developed a block reorganizer to
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split and gather the computation of blocks in parallel. Com-

pared with those load balancing methods, the basic working

unit in our TileSpGEMM is one sparse tile that takes much

smaller memory space and in general does not bring any

noticed load imbalance.

In addition, allocating temporary memory space for
intermediate products is the second performance issue to

address. For matrices with long rows, this inherent problem

of the row-row method can seriously impact performance.

Liu and Vinter [80] developed a progressive method to grad-

ually allocate long rows, but suffered from possibly frequent

memory copies. Nagasaka et al. [92, 93] allocated enough

large space, but their hash operations can be very inefficient

on global memory. Recently, the spECK library by Parger

et al. [96] gave an effective hybrid implementation for long

rows. But the performance degradation is also obvious in

cases of high density. In contrast, our TileSpGEMM proposed

in this paper does not allocate any temporary space on global

memory, since the single sparse tile is small enough to store

in on-chip scratchpad memory for even faster performance.

Moreover, the third performance issue on sparse accu-
mulator (SPA) received more attention. The earliest SPA

method proposed by Gilbert et al. [51] used a dense row

to accumulate the nonzeros and then converts them into

sparse form. When the number of nonzeros in a row is too

few, more “sparse” ways in general bring better performance.

One method is the so-called expansion, sorting and compres-

sion (ESC) proposed by Bell et al. [14] and is implemented in

the CUSP library [33]. To better use GPUs, Dalton et al. fur-

ther implemented a finer grained ESC variant [34] and used

more efficient sorting primitives [32]. Kunchum et al. [74]

later developed a multi-lock ESC approach. Another form of

SPA uses heap (i.e., priority queue) data structure on CPUs

by Azad et al. [4] and on GPUs by Liu and Vinter [80]. When

the nonzeros in rows of 𝐵 are already sorted, the merging

methods have been used by Liu and Vinter [80], Dalton et

al. [32], Gremse et al. [53, 54] and Ji et al. [66]. Compared

to the sorting and merging of 𝑂 (𝑛 log𝑛) complexity, hash

methods of 𝑂 (1) complexity are also used by Anh et al. [3],

Nagasaka et al. [92, 93] and Deveci et al. [42, 43]. Liu et

al. [78, 79] recently compared the above SPA methods on

GPUs and optimized them by better using registers. Besides

the classic SPA, Gu et al. [55] developed a new method using

outer product and propagation blocking technique for accu-

mulating nonzeros. Compared with those row-oriented SPA

techniques, our TileSpGEMM deals with sparse tiles of well-

bounded size, and binary search and dense indexing have

been found to be very efficient for accumulating nonzeros.

Besides the abovemajor performance considerations, there

have been several groups of work related to SpGEMM.

Yuster and Zwick [117] developed an algorithm using lower

algebraic operations. The sparse matrix-dense matrix multi-

plication [58, 72, 112] and sparse matrix-sparse vector multi-

plication [5], are also interesting directions in sparse BLAS,

and a series of work in the framework of GraphBLAS [25, 36,

67, 86–88, 111, 113] bring SpGEMM a wide range of graph

applications. Also, Xie et al. [109, 110] used deep learning

methods for selecting a better storage format for SpGEMM.

Pal et al. [95], Zhang et al. [119] and Wang et al. [103] de-

veloped hardware accelerators for SpGMM, and Chen et

al. [29] developed an SpGEMM method for Sunway proces-

sors. Willcock and Lumsdaine [104] proposed methods for

further compressing sparse matrices. Knight et al. [71] de-

veloped methods for sparse multiplication with low-rank

features. Some segmented primitives such as segmented sort

and segmented merge are used for accelerating SpGEMM

on GPUs [60, 66]. Moreover, compilation techniques have

been proven effective for a few important sparse computa-

tions [30, 69, 70, 73, 91, 98].

As for distributed SpGEMM, Buluç and Gilbert [22–24]

for the first time proposed blocking formulations and hy-

persparse formats. Ballard et al. studied the communication

cost for distributed linear algebra [10, 11], and Azad et al. [4]

considered multi-level parallelism for distributed SpGEMM.

The hypergraph partitioning techniques has been used in

shared memory platforms by Akbudak et al. [1, 2, 39] and

distributed environments by Ballard et al. [12, 13]. Hussain

et al. [62] developed a distributed-memory SpGEMM for

extremely large matrices. Xia et al. [108] scaled SpGEMM

computation by developing a distribution strategy. Azad et

al. [8] improved Combinatorial BLAS and minimized the

communication of distributed SpGEMM. Compared to the

methods designed for shared memory processors, the data

structure of our TileSpGEMM is more like the distributed

blocking SpGEMMmethods, but optimized for GPUswithout

concerns on communication costs.

Besides, tiling techniques have been well studied for lin-

ear algebra operations [19, 85], and tuning small dense tile

size is a main method for obtaining higher performance [17,

77, 116]. There also have been a few studies about storing

dense small blocks in sparse matrices. The Sparsity library by
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Im et al. [64, 65], the OSKI framework by Vuduc et al. [41, 99–

101] and the compressed sparse block formats by Buluç et

al. [21, 27] are representatives in this direction. Wang et

al. [102] and Lu et al. [84] developed tiled methods for sparse

triangular solve. Niu et al. [94] recently proposed TileSpMV,

a tiled algorithm for optimizing sparse matrix-vector multi-

plication on GPUs. Hong et al. [59] reordered nonzeros in

sparse tiles for sparse matrix-multiple vector multiplication

and sampled GEMM. Li et al. [76] proposed a blocked format

named HiCOO and various compute kernels for accelerating

high dimensional tensors on modern processors. Zachariadis

et al. [118] designed the tSparse library to better utilize the

GPU tensor cores of 16-bit floating point precision for op-

timized SpGEMM, which can be applied efficiently in deep

learning with best precision demands. Differently from those

methods, our method always stores tiles in sparse forms and

focuses on SpGEMM operation maintaining sparsity in all

three input and output matrices.

6 Conclusion
We in this paper have proposed TileSpGEMM, a tiled algo-

rithm for parallel SpGEMM on GPUs. Our method resolved

the three major performance issues, and designed highly

efficient data structures for tiled storage and a three-step

SpGEMM algorithm for modern GPU architectures. The ex-

perimental results on two newest NVIDIA Ampere GPUs

show that our TileSpGEMM brought significant speedups

over state-of-the-art SpGEMM work, gave good scalability,

and saved much memory space at runtime.
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A Artifact Description
A.1 Check-list
• Algorithm: parallel sparse matrix-matrix multiplica-

tion (SpGEMM)

• Program: CUDA and C/C++ OpenMP code

• Compilation: GPU CUDA code: NVIDIA nvcc and

GNU gcc (v11.4 and v7.5.0 as tested, respectively)

• Binary: CUDA and OpenMP executables

• Dataset: 142 sparse square matrices in the SuiteS-

parse Matrix Collection requiring no less than one

billion floating operations when computing 𝐶 = 𝐴2

and 𝐶 = 𝐴𝐴𝑇
and 18 representative matrices (for a

more detailed comparison and analysis).

• Run-time environment: Ubuntu 18.04 with CUDA

and GPU driver version are 11.4 and 470.57.02 as tested,

respectively.

• Hardware: Any CUDAGPUwith compute capability

at least 6.1 (NVIDIA Geforce RTX 3060 and NVIDIA

Geforce RTX 3090 as tested) and any Intel CPU (Intel

i9-7900X CPU @ 3.30GHz as tested)

• Output: execution time in total and breakdown,

GFLOPs throughput, and memory cost

• Experiment workflow: git clone projects; down-

load the matrices; run the executable; observe the re-

sults

• Publicly available?: Yes

A.2 How delivered
The source code of TileSpGEMM can be get in this link:

https://github.com/SuperScientificSoftwareLaboratory/Tile
SpGEMM.

A.3 Hardware dependencies
To better reproduce experiment results, we suggest anNVIDIA

GPU with compute capability 8.6.

A.4 Software dependencies
Our TileSpGEMM evaluation requires the CUDA GPU dri-

ver, nvcc CUDA compiler, and the cuSPARSE library, all of

them are included with the CUDA Toolkit. The artifacts have

been tested on Ubuntu 18.04/20.04, and are expected to run

correctly under other Linux distributions.

A.5 Datasets
At this time of writing, our matrix parser currently only

supports input files in the matrix market format (*.mtx), and

the matrix list (the datasets we used in our experiment) is in

our package. All these matrices in our matrix list are publicly

available from the SuiteSparse Matrix Collection, and they

can be downloaded from the website:

https://sparse.tamu.edu/

A.6 Installation
Firstly, one must clone the TileSpGEMM code to the local

machine.

Then, one must use GNU make to build the executable:

$ make
After that, one will get an executable called 𝑡𝑒𝑠𝑡 and finally

can (optionally) download and unpack the datasets for the

following tests.

A.7 Experimental workflow
Run our algorithm throught

$ ./test -d 0 -aat 0 <path/to/dataset/mtx>
(Tips: The code takes an optional d=<gpu-device, e.g., 0> pa-

rameter that specifies the GPU device to run if multiple GPU

devices are available on the machine, and another optional

aat=<transpose, e.g., 0> parameter that means computing

𝐶 = 𝐴2
(-aat 0) or 𝐶 = 𝐴𝐴𝑇

(-aat 1)). Then, one can observe

the output information on the screen.

In order to record various experimental data more conve-

niently, we deliver our artifact with two packages. The first

one called ‘TileSpGEMM’ including our source code, datasets

and all of our experimental data. Here we also provide six

python scripts to generate corresponding figures in our pa-

per. One can run ‘𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑒_𝑝𝑎𝑝𝑒𝑟_𝑓 𝑖𝑔𝑢𝑟𝑒.𝑠ℎ’ , and all of

the figures in our paper will be generated in ‘Figure’ folder.

The other one ‘Tilespgemm_step’ is used for testing the peak

space cost of running SpGEMM and generating Figure 9
in our paper. Its compiling and running instructions are

consistent with our source code.

A.8 Output information
Lines 1-2 outputs the input matrix’s information including

the path of matrix file, The number of rows, columns and

nonzeros.

Line 3 prints the file loading time (in seconds).

Line 4 prints the size of tile used in our TileSpGEMM algo-

rithm.

Line 5 prints the number of floating point operations during

the multiplication.

Line 6 prints the runtime of transforming the input matrix

from the CSR format to our tiled data structure (in millisec-

onds) (Figure 12 in our paper).
Line 7 prints TileSpGEMM data structure’s space consump-

tion (in million bytes) (Figure 11 in our paper).
Lines 8-14 print execution time (in milliseconds) of the three

algorithm steps and all memory allocation on CPU and GPU

(Figure 10 in our paper).
Line 15 prints the number of tiles of the resulting matrix 𝐶 .
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Line 16 prints the number of nonzeros of the resulting ma-

trix 𝐶 .

Line 17 prints TileSpGEMM runtime (in milliseconds) and

performance (in GFlOPs) (Figures 6 and 7 in our paper).
Line 18 prints the checking result after comparing our out-

put with the one generated by cuSPARSE.

106


	Abstract
	1 Introduction
	2 Background
	2.1 SpGEMM and Its Row-Row Algorithm
	2.2 Performance Issues of Row-Row SpGEMM
	2.3 Motivation of This Work

	3 TileSpGEMM
	3.1 Overview
	3.2 Sparse Tile Data Structure
	3.3 Algorithm Description

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Performance Comparison over Existing Work
	4.3 Comparison of Peak Space Cost at Runtime
	4.4 Runtime Breakdown of TileSpGEMM Algorithm
	4.5 Comparison of Space Overhead of Tiled Format
	4.6 Format Conversion Overhead
	4.7 Comparison over tSparse Using Tensor Cores

	5 Related Work
	6 Conclusion
	References
	A Artifact Description
	A.1 Check-list
	A.2 How delivered
	A.3 Hardware dependencies
	A.4 Software dependencies
	A.5 Datasets
	A.6 Installation
	A.7 Experimental workflow
	A.8 Output information


