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ABSTRACT
Sparse matrix-sparse vector multiplication (SpMSpV) is an impor-

tant primitive for graph algorithms and machine learning applica-

tions. The sparsity of the input and output vectors makes its floating

point efficiency in general lower than sparse matrix-vector multipli-

cation (SpMV) and sparse matrix-matrix multiplication (SpGEMM).

Existing parallel SpMSpV methods focused on various row- and

column-wise storage formats and merging operations. However,

the data locality and sparsity pattern of the input matrix and vector

are largely ignored.

We in this paper propose TileSpMSpV, a tiled algorithm for ac-

celerating SpMSpV on GPUs. Firstly, tile-wise storage structures

are developed for fast positioning a group of nonzeros in matrix

and vectors. Then, we develop the TileSpMSpV algorithm on top

of the storage structures. In addition, to accelerate directional opti-

mization breadth-first search (BFS) by using TileSpMSpV, we pro-

pose a TileBFS algorithm including three kernels called Push-CSC,

Push-CSR and Pull-CSC. In the experiments running on a high-end

NVIDIA GPU and using 2757 sparse matrices, the TileSpMSpV al-

gorithm outperforms TileSpMV, cuSPARSE and CombBLAS by a

factor of on average 1.83, 17.18 and 17.20 (up to 7.68, 1050.02 and

235.90), respectively. Moreover, our TileBFS algorithm outperforms

Gunrock and GSwitch by a factor of on average 2.88 and 4.52 (up

to 21.35 and 1000.85), respectively.
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1 INTRODUCTION
The sparse matrix-sparse vector multiplication (SpMSpV) opera-

tion y = Ax multiplies a sparse matrix A with a sparse vector

x and gives a resulting sparse vector y. The operation is partic-

ularly useful in graph processing and machine learning. Specifi-

cally, SpMSpV is a fundamental primitive in the GraphBLAS stan-

dard [13, 26], the Combinatorial BLAS package [5, 9], and some

graph processing frameworks such as GraphMat [47], GraphPad [2]

and GraphBLAST [51]. Also, a number of graph algorithms, such

as breadth-first search (BFS) [3], betweenness centrality [46] and

reverse Cuthill-McKee (RCM) ordering [4], can be accelerated by

fast SpMSpV. In addition, as the sparsity of graphs and deep neu-

ral networks is better exploited, SpMSpV is implemented in more

graph and AI accelerators [1].

The SpMSpV routine can be seen as a special case both of sparse

matrix-vector multiplication (SpMV) [35, 40, 58] and of sparse

matrix-matrix multiplication (SpGEMM) [25, 33, 34, 41, 50]. Com-

pared to SpMV, the two vectors involved in SpMSpV are both sparse,

and compared to SpGEMM, SpMSpVmultiplies a sparse matrix with

a sparse vector, but not with another sparse matrix of possibly a

large number of columns. As a result, to compute SpMSpV, it is

in general less efficient to just call an SpMV (mostly needs to first

convert the input sparse vector to its dense form, and wastes space

and calculations on zeros) or an SpGEMM (mostly needs to run the

Gustavson’s row-row method [19], and encounters very bad data

locality since each non-empty row of the multiplier has only one

element).

Therefore, designing efficient specific algorithms for SpMSpV

received much attention. Yang et al. [53] worked on the compressed

https://doi.org/10.1145/3545008.3545028
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sparse row (CSR) format and computed SpMSpV in an SpGEMM-

like style. Azad et al. [3] and Li et al. [30] used the compressed

sparse column (CSC) format and merged sparse columns together

in various load balanced ways. Using the knowledge of directional

optimization BFS algorithm [6], Li et al. [31] selected running SpMV

or SpMSpV according to the sparsity of the input vector. As can

be seen, developing variants of the basic CSR or CSC formats and

SpMSpV algorithms, as well as adaptively selecting an algorithm

among them, are for now the major strategy for parallel SpMSpV.

However, existing work, whether using CSR or CSC, largely

ignored exploiting local sparsity in the input sparse matrix. For

example, merging sparse columns ofA to a sparse y normally needs

much larger space over the size of on-chip memory, and working

on the off-chip global memory makes merging or sorting very slow.

Moreover, when using SpMSpV for BFS on an unweighted graph,

storing the position indices for the nonzeros (i.e., edges) in the

integer data type may not be space efficient. Furthermore, it is

well known that no one matrix storage formulation works for any

sparsity structure [28], but there currently lacks work considering

effective format for SpMSpV.

In this paper, we propose TileSpMSpV, a tiled algorithm for

SpMSpV on GPUs. The key feature of the TileSpMSpV is that the

sparse matrix A is stored in sparse tiles containing values, indices

and bitmasks, and the sparse vectors x and y are also saved in

tiles. Depending on the sparsity of the input vector, three compute

kernels called Push-CSC, Push-CSR and Pull-CSC are implemented

and automatically selected accordingly. Also, to save the storage

space for not storing too many zeros in the very sparse tiles, we

extract the nonzeros from such tiles into a separate submatrix

for subsequent computations. Through combining the tiled data

structures and the kernels, we develop the TileSpMSpV algorithm,

as well as a BFS algorithm called TileBFS on top of it.

In our experiments using an NVIDIA Geforce RTX 3090 Ampere

GPU and all the 2757 sparse matrices in the SuiteSparse Matrix

Collection [14], our TileSpMSpV outperforms TileSpMV [40], cuS-

PARSE and the Combinatorial BLAS library [3, 9] by a factor of

on average 1.83 (up to 7.68), 17.18 (up to 1050.02) and 17.20 (up

to 235.90), respectively. Moreover, our TileBFS algorithm is faster

than Gunrock [48] and GSwitch [37] on 93.12% and 70.80% matri-

ces, respectively. Speedup-wise, TileBFS outperforms Gunrock and

GSwitch by a factor of on average 2.88 (up to 21.35) and 4.52 (up

to 1000.85), respectively.

This work makes the following contributions:

• We develop tiled storage structures for the sparse matrix and

vectors involved in SpMSpV.

• We design a tiled sparse algorithm called TileSpMSpV and a

directional optimization BFS algorithm called TileBFS.

• We evaluate our algorithms on latest NVIDIA GPU and sig-

nificantly outperform existing work.

2 BACKGROUND
2.1 SpMSpV
Because the one matrix and two vectors are all sparse in SpM-

SpV, the routine can be executed from two directions shown in

Algorithms 1 and 2, respectively.

� � �

Figure 1: An example of SpMSpV that multiplies a 6-by-6
sparse matrix A with a sparse vector x of two nonzeros and
gets a sparse vector y of two nonzeros.

The one listed in Algorithm 1 in parallel computes dot product

(i.e., corresponding element of y) of each sparse row ai∗ of the
matrix and the vector x (line 3), which is like the row-wise SpMV

method, and logically needs to ensure the element in x requested

is nonzero (line 4). The method is also called matrix-driven.

The other shown in Algorithm 2 works from the sparse vector

side. Each nonzero in x finds the corresponding column a∗j (line
2), scales the nonzeros in the column, and merges the results into y
(lines 3-4). It is also called vector-driven method.

Algorithm 1 A pseudocode of row-wise SpMSpV for y = Ax

1: for each ai∗ in the matrix A in parallel do
2: yi ← 0

3: for each nonezero entry ai j in a∗j do
4: if x j ! = 0 then
5: yi ← yi + ai j × x j
6: end if
7: end for
8: end for

Algorithm 2 A pseudocode of column-wise SpMSpV for y = Ax

1: y ← 0

2: for each nonezero entry x j in the vector x do
3: for each nonezero entry ai j in a∗j do
4: yi ← yi + ai j × x j
5: end for
6: end for

2.2 BFS
BFS is one of the most studied traversal algorithms in graph compu-

tations. The algorithm starts from a source vertex in the graph and

accesses all reachable vertices through multi-layer traversal. Each

layer of the traversal can be implemented by an SpMSpV operator,

in which the sparse matrix A is derived from the adjacency matrix

of the graph, and the sparse vector x is the active vertex set (also

called frontier) of the current layer. The resulting vector y will be

the new set of vertices found in this round.

Figure 2 is an example of using SpMSpV to implement the first

iteration of BFS. The graph on the left (A’s graph form) is an undi-

rected graph composed of six vertices. We set the active vertex set

of the current layer to {1} (the green area), and the result of this

traversal is the vertex set {2, 3, 4}. Now we can use SpMSpV for



TileSpMSpV: A Tiled Algorithm for Sparse Matrix-Sparse Vector Multiplication on GPUs ICPP ’22, August 29-September 1, 2022, Bordeaux, France

Figure 2: An example of running the first iteration of BFS on
the graph (left) by using SpMSpV (right).

translating this process. The graph can be represented by a 6-by-6

adjacency matrix A. The active vertex set can be represented by a

vector x whose length is 6 (the number of vertices of the graph).

The x0 corresponding to the active vertex 0 is set to nonzero, and

the rest elements of x are set to zeros. The vector y is obtained by

multiplying A and x . As can be seen, the resulting vector y now

contains three nonzeros at positions 2, 3 and 4, which correspond

to the vertices traversed. Algorithm 3 shows the procedure.

Algorithm 3 A pseudocode of BFS using SpMSpV

1: while isnew(visited )=1 do
▷ The isnew is used to determine whether there is a new vertex

in the visited vector

2: SpMSpV(A, x, y)
3: for each nonezero entry yi in parallel do
4: visitedi ← yi
5: end for
6: memcpy(x, y, n)
7: end while

3 TILESPMSPV
3.1 Overview
Our TileSpMSpV extends the tiled storage formats proposed in

the TileSpMV [40] and TileSpGEMM [41], and adds extra tiled

information for sparse matrices and sparse vectors. This design

not only exploits sparsity of the matrix and the vectors, but also

better utilizes the SIMD/SIMT execution model of GPUs (e.g., 32

threads in a CUDA warp). We further extend TileSpMSpV for BFS

by adding a tiled dense bitmask storage format for fast symbolic

operations in BFS. Section 3.2 will explain the storage structure of

the matrix and vectors for SpMSpV and BFS in detail.

In our TileSpMSpV algorithm, tile is the minimum working unit,

and the sparsity of the vector determines the amount of computa-

tions required. So, we develop a tile indexing method for the sparse

vector which achieves O(1) time complexity to access the sparse

vector and to eliminate time wasted on multiplication with empty

tiles. Section 3.3 will detail the algorithm of TileSpMSpV.

On top of the TileSpMSpV algorithm, we implement a BFS al-

gorithm called TileBFS. The algorithm will choose a proper tile

size to compress and store both matrices and vectors. Furthermore,

we propose three new directional optimization methods (i.e., Push-

CSR, Push-CSC and Pull-CSC), and choose the best algorithm to

traverse each layer of vertices for avoiding the unnecessary amount

of computations brought by a single traversal method. Section 3.4

will introduce the algorithm of TileBFS in detail.

3.2 Storage Structures
3.2.1 Storage Structure of Sparse Matrix. When preprocessing the

input sparse matrix, TileSpMSpV divides it into sparse tiles of size

nt-by-nt , and takes a sparse tile as the basic working unit. nt is
usually 16, 32 or 64. If nt is set to 16, a single unsigned char can

store indices, and the first and last four bits will contain the row

and column indices, respectively. Besides, one warp can be used to

process a sparse tile (i.e., two threads works for each row). For a

matrix of sizem-by-n, we can partition it into (m/nt )*(n/nt ) sparse
tiles. Those sparse tiles with nonzeros are called ‘non-empty tiles’,

and the sparse tiles without nonzeros inside are called ‘empty tiles’.

From the matrix’s point of view, we treat the non-empty tile as a

nonzero element and store it in the CSR format, meaning that only

nonzeros inside are saved.

Besides, there can be a number of very sparse tiles (imagine

that a tile only contains a couple of nonzero) should not be stored

into regular storage formats for saving the cost of maintaining the

tile information. In such case, we extract the nonzeros in the very

sparse tiles and save them into a new matrix in the COO format.

� � � � � � � � � � � � � � � �

� �� � ��

� � � � � � � �

�����	
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Figure 3: An example of a sparse vector using the tiled stor-
age format.

3.2.2 Storage Structure of Sparse Vector. We store the input vector

in the similar tile style, which effectively reduces the data storage

space and removes the computations on zeros. For a vector of length

n, we will divide it into n/nt tiles. We remove the empty tiles from

the vector, store the non-empty tiles tightly, and store the original

positions of the non-empty tiles through an index array. The vector

of this storage structure contains two arrays: (1) x_ptr: an index

array of length n/nt that records the type and location of vector

tiles. If it is a non-empty tile, the index position will be recorded. If it

is an empty tile, the corresponding position will be marked as -1; (2)

x_tile: a value array that stores the elements of non-empty vector

tiles, and its length is that nt multiplies the number of non-empty

tiles.

As shown in Figure 3, a vector x of length 16 with five nonzeros

can be divided into four tiles of length four. Through traversing

the entire x and calculate the x_ptr array, the second and fourth

tiles do not have nonzeros and are marked as -1. Then the rest tiles

are marked as 0, 1, 2, ...., in the order of the non-empty tiles in the

vector. In this way, we can get the original x value by the formula

x_ptr[x_id/nt] + x_id%nt according to the position x_id of the

input vector.
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Figure 4: An example describing SpMSpV of a sparse matrix
A multiplied by a sparse vector x . The vector x is stored as
two arrays x_ptr and x_tile (as explained in Figure 3). The
tile vectors in x_tile are respectively multiplied by the tile
of the corresponding column index, and the results with the
same row index are added together.

3.2.3 Auxiliary Data Structure for TileBFS. The BFS algorithm de-

veloped only records the access relationship between vertices and

does not need to store the actual values correspondingly. Thus the

tile format of the adjacency matrix can be further compressed. To

adapt the possibly extremely sparse input vector at the beginning

of BFS, we provide two forms of SpMSpV algorithms for the BFS

algorithm: CSR-SpMSpV and CSC-SpMSpV.When using SpMSpV in

the CSR form, we still store the non-empty tiles in the CSR format.

Besides, the non-empty tiles use a binary bitmask to record whether

the elements in a tile are zero, and then compress the nt binary bits

of each row into an unsigned integer. As for CSC-SpMSpV, we use

the CSC format for non-empty tile storage, where nt binary bits of

each column are compressed into an unsigned integer within the

tile. It is worth noting that when the graph is an undirected graph,

these two compression methods will obtain same arrays, which

can save about half of the storage space. In addition, two arrays

are required to record the currently visited vertex set (input vector)

and the processed vertex set (mask vector) respectively. These two

vectors firstly are stored as dense tiled vectors of lengthn/nt , where
each value in the vector represents a tile vector of size nt*1. The
vector is then converted to its sparse form. We will maintain both

two vector formats during the BFS running, and this conversion

time is negligible (see the execution time of BFS in the experimental

section of the paper).

We in Figure 5 give an example: the top left graphG showing the

iterative process of BFS contains 16 vertices, which can be stored

as a 16-by-16 adjacency matrix A. The matrix A is divided into 16

tiles of 4-by-4 size, including nine non-empty tiles and seven empty

tiles. When using the CSC format, the tile is compressed by column,

the entire matrix is denoted as A1; when using CSR format, with

row-wise compression within a tile, the entire matrix is denoted as

A2. Not just matrices, each vector tile is compressed individually

to ensure data format consistency. Each of them is represented by

four binary bits which can be compressed into an unsigned integer.

3.3 TileSpMSpV Algorithm
According to the sparse storage format aforementioned, the non-

empty tiles in the matrix are stored as three arrays in the CSR

style. All non-empty tiles in each nt rows are treated as a group,

called row tiles. We use a CUDA warp of 32 threads to process

each row tile of the matrix. For each non-empty tile in the row

tile, 32 threads work together. Firstly, we will load the correspond-

ing tile data into the GPU shared memory. Then according to the

column position tile_col_id of the tile, we find the actual storage

position in x_tile_pos of the corresponding tile in the vector tile

index array x_ptr, that is, x_tile_pos = x_ptr[tile_col_id/nt]. If
x_tile_pos equal to -1, the corresponding matrix tile does not need

to be calculated. If x_tile_pos does not equal to -1, the real vector

nonzero elements are stored in the consecutive nt units starting
from the x_tile × nt position in x and these nt units will be loaded
into the GPU shared memory. Algorithm 4 shows a pseudocode of

the TileSpMSpV algorithm in the CSR style for y = Ax .
Figure 4 plots a calculation process of TileSpMSpV. The two

non-empty tiles A00 and A02 of the first row tiles are multiplied by

the corresponding vector tiles x0 and x2 and added with the result

vector to obtain y0. The second row tiles is calculated as the first

row tiles to obtain y1. The calculation is performed only when the

vector tiles corresponding to each non-empty tiles have nonzero

elements. Therefore, the third row tiles do not have to be calculated.

Finally, the entire vector y is given.

Algorithm 4 A pseudocode of TileSpMSpV in the CSR form.

1: for ti = 0 to 31 in parallel do
2: tile_colid = A_tile_colid[tile_id]
3: x_o f f set = x_ptr [tile_colid]
4: if x_o f f set == −1 then continue

5: end if
6: x_o f f set = x_o f f set ∗ nt
7: csr_o f f set = A_csr_o f f set[tile_id] ∗ nt
8: for i = A_Row_Ptr [csr_o f f set + ti/2] + ti%2 to i <

A_Row_Ptr [csr_o f f set + ti/2 + 1] do
9: col_id = A_Col_id[i]

//calculate the sum of each row in the tile

10: sum_x+ = x_tile[x_o f f set + col_id] ∗A_Val[i]
11: end for

//calculate the sum of each row in the row tile

12: sum_x += __shfl_down_sync(0xffffffff, sum_x , 1)
//__SHFL_DOWN_SYNC is for shuffling register data

within a warp of CUDA

13: sumsum += __shfl_down_sync(0xffffffff, sum_x , ti)
14: end for

3.4 TileBFS Algorithm
On top of the TileSpMSpV algorithm and data structure, we further

develop a BFS approach called TileBFS. We first generate the ad-

jacency matrix A in its tiled form of the given graph. To improve

parallelism and facilitate atomic operations, nt will be appropriately
changed according to the order of A. Specifically, if the order is

greater than 10,000, A will be divided into 64-by-64 tiles; other-

wise A will be divided into 32-by-32 tiles. After the non-empty tiles

in the adjacency matrix are stored as bitmasks, the binary sparse

vectors corresponding to one column or row will be represented

by numbers of two data types: 32 corresponds to the bit length of

the unsigned integer, and 64 corresponds to unsigned long long

integer. In the input vector x and mask vectorm that also stored

in the bitmask format, ‘1’ corresponds to the vertex that has been
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Figure 5: An example of BFS algorithm with a three-layer iterations using three methods starting from source vertex 0. The
graph G is represented as a adjacency matrix A of size 16-by-16, which is divided into 4-by-4 tiles. Each non-empty tile is
compressed horizontally or vertically to obtain A1 and A2. The current visited vertex set and the processed vertex set are
compressed to represent xi and mi, respectively (i means the ith iteration). The first iteration adopts the Push-CSC method,
selects the first column of A1 according to the nonzero position of x1. Then we use OR operation to operates the selected data
and vector y1, store the result into the vector y1, and update the x andm vectors. In the second iteration, the Push-CSRmethod
is adopted, and the nonzeros of each row of A2 and the corresponding nonzeros of x2 are used for AND operation to obtain
y2. The third iteration uses the Pull-CSC method to find the corresponding column in A1 according to the nonzero element
position loc in x3 obtained by m3, and conducts the AND operation with m3. If the result is not zero, set the result y[loc] to 1.
After three iterations, all vertices are traversed, and the BFS algorithm ends.

visited, and ‘0’ otherwise. Both matrices and vectors are stored as

bitmasks, and the matrix multiplication operation is now converted

to semiring operations, where the AND operation represents multi-

plication, and the OR operation represents addition. Figure 5 shows

the detailed process of the TileBFS algorithm from the data storage

structure to one BFS iteration using three different methods will

introduced later on. Here we will start BFS from the source vertex

‘0’, and finish a total of three levels of traversal.

In TileBFS, the input vector x usually undergoes a process of

increasing density first and then decreasing with some fluctuations.

Because the density of matrix and vector will greatly affect the

amount of calculations in themultiplication, it is difficult for a single
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operation method to maintain high performance when dealing with

vectors of different sparsity. From the view of linear algebra, when

the number of nonzeros in x is small, merging the corresponding

columns in the CSC form perform better. On the contrary, CSR

and SpMV may be more efficient when x is pretty dense. This

performance difference due to density is also the linear algebra

basis of the directional optimization BFS algorithm [6], which is

also called the push-pull optimization in graph algorithms [52].

In order to further accelerate TileBFS, we design three types of

SpMSpV methods according to the density of the input vector and

the number of vertices visited:

(1) When the sparsity of the input vector x is less than 0.01

and the number of unvisited vertices is large, we will use a

method called Push-CSC,

(2) When the sparsity of the input vector x is greater than or

equal to 0.01 and the number of unvisited vertices is large,

we will use a method called Push-CSR,

(3) When the number of unvisited vertices is small, we will use

a method called Pull-CSC.

The Push-CSCmethod is driven from the vector and finds the

tiles in the matrix. Firstly, we get corresponding matrix column

tiles according to the positions of the nonzeros in the input vector,

and then merge the corresponding matrix column tiles into the

result vector tile. We use a 32-thread warp to process the nonzeros

of a vector, where 32 threads will process consecutive nt tiles of the
matrix. Then we store all non-empty column tiles into the resulting

vector by atomic OR operation. This not only reduces the runtime

caused by frequent replacement of data in on-chip memory, but

also ensures that the work load of a single thread would not be too

large. As shown in Figure 5, x1 is the input vector and the first digit
‘8’ in it represents vector {1, 0, 0, 0}. This binary vector has only

one nonzero, and its position corresponds to the first column of the

sparse matrix A1. We can simplify the multiplication of A1 and x1
to the AND-OR operations to obtain the target vector y1 {14, 12, 0,
0}, which indicates that the vertices contained in the current layer

and the previous layer are ‘0, 1, 2, 4, 5’. At this time,m1 records

the vertex set contained in the ‘upper layer’ in the tree form of G
before the operation. By performing bitwise OR operation on the

upper layer vertex setm1 and the current layer vertex set y1, we
can obtain their union m2 which records all the vertices visited

so far. By invertingm1 and performing the AND operation with y1,
the result sparse vector x2 {6, 12, 0, 0} shows that current layer

contained vertices ‘1, 2, 4, 5’. Algorithm 5 shows a pseudocode of

this procedure.

Algorithm 5 A pseudocode of warp level Push-CSC.

1: for ti = 0 to 31 in parallel do
2: sum_x = A[(blk_id << 6) + x_id%nt]
3: blk_y_rowid = columnid[blk_id]
4: sum = (NOT (mask[blk_y_rowid] AND sum_x)) AND sum_x
5: Atomicor(y[blk_rowid], sum)

6: Atomicor(f laд[blk_rowid], sum)

7: end for

The Push-CSR method is matrix-driven and finds the vector

from row tiles in the matrix. By multiplying each row tile of the

matrix by the corresponding vector tiles, we can obtain the result

vector tiles of the corresponding position of each row tile. We use

a 32-thread warp to process a row tile of a matrix, and cyclically

compute in the units of 32 threads. In a loop, each thread processes

the nonzero elements in a matrix tile until all matrix tiles in the row

tile are calculated. For row tiles which is very long, the load will be

unbalanced and seriously affect the performance. Therefore, we in-

troduce the method of splitting long row tiles for optimization and

use multiple warps to process them for better load balancing. To re-

duce the amount of computations, we only compute corresponding

matrix tiles when the input vector tiles are non-empty.

In the Push-CSR method part in Figure 5, we only need to com-

pute the first two columns circled by the red box in the matrix A2.
For example, the nonzero elements in the vector x2 correspond to

the vector {6, 12} of length 2, and the first two elements in the first

row of A2 form the vector {14, 12}. By conducting AND and OR on

the two vectors, the value of the first item of the result vector y is

‘1’. Each bit of the vector y can be calculated like this.

Algorithm 6 A pseudocode of warp level Push-CSR.

1: for ti = 0 to 31 in parallel do
2: x_i = x[columnid[blk_id + ti]]
3: if x_i == 0 then continue

4: end if
5: sum_x = 0

6: for r j = 0 to nt do
7: if A[((blk_id + ti) << 6) + r j] AND x_i !=0 then
8: sum_x | = 1 << (nt − 1 − r j)
9: end if
10: end for
11: sum = ( NOT (mask[blk_rowid] AND sum_x)) AND sum_x
12: Atomicor(y[blk_rowid], sum)

13: Atomicor(f laд[blk_rowid], sum)

14: end for

The Pull-CSC method is also vector-driven and finds the ma-

trix saved in the CSC style by elements in vector. Firstly, we cal-

culate the input vector according to the mask vector, then several

corresponding matrix column tiles can be found according to the

position of the nonzeros of the input vector. The corresponding

matrix column tiles will be added to the mask vector. If the resulting

vector has a nonzero, the parent vertices of the unvisited vertices

must have been visited, and the vertices can be added to the vector

recording the visited vertices. We use a 32-thread warp to process

the nonzero elements of a vector. These 32 threads will process

consecutive tiles of size nt , and each thread processes a tile of vec-

tor by using AND operations. If obtained a nonzero element, the

corresponding vertex will be recorded as a visited vertex, and the

message will be synchronized to other threads to stop the operation

of the warp.

In the Pull-CSC method part in Figure 5, the vector x3 can be

obtained by bitwise inversion of each nonzeros in the vectorm3.

The element ‘1’ in the first item of the vector x3 is the result of the
compression of the vector {0, 0, 0, 1}. So it corresponds to the fourth

column in the matrix A1 (0, 0, #, 8). By using the AND-OR operations

of this vector with the vectorm3, we can get the result {0, 0, 0, 1}.
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If there exists nonzero, the same position of y3 will be set to ‘1’

according to the position of the input vector at x3. After performing

AND-OR operations withm3 for each column corresponding to the

nonzero elements of vector x3 in A, we obtain the complete vector

y3. Then y3 andm3 are computed by OR operation to getm4. In

m4, all binary bits are 1, which means that all vertices have been

visited. Up to now, the TileBFS algorithm is completed.

Algorithm 7 A pseudocode of warp level Pull-CSC.

1: for ti = 0 to 31 in parallel do
2: if x_id = −1 then break

3: end if
4: sum_x = A[(blk_id << 6) + x_id%nt]
5: blk_y_rowid = columnid[blk_id]
6: sum = ( NOT (mask[blk_y_rowid] AND sum_x)) AND sum_x
7: if sum_x !=0 then
8: sum = sum Or 1 << (nt − 1 − x_id%nt)
9: Atomicor(f laд[blk_rowid], sum)

10: x_id = −1
11: end if
12: end for

In order to deal with the very sparse part extracted from the ma-

trix (recall Section 3.2.1), we use GSwitch [37] to traverse this part

and to complete each iteration. The operation is like multiplying

two matrices with the same input vector, and merge the results

into one output vector. Although the very sparse cases do not show

frequently in the SuiteSparse dataset, we can see this hybrid op-

timization can greatly reduce unnecessary space and computing

time once it is required.

4 EXPERIMENTAL RESULTS
4.1 Experimental Setup
Our experimental platform is a Linux machine with two NVIDIA

Ampere GPUs, a Geforce RTX 3060 and a Geforce RTX 3090, in-

stalled. The CUDA version is 11.4, and the GPU driver version is

495.29.05.

In order to compare the performance of TileSpMSpV more com-

prehensively, we compare the algorithms of SpMV and SpMSpV.

For SpMV, we compared with the TileSpMV [40] algorithm and the

cusparse?bsrmv() kernel in the cuSPARSE library. For SpMSpV, we

did our best to implement the GPU version of the SpMSpV-bucket

algorithm in the CombBLAS library [3], which is hundreds of times

faster than its CPU version, and compared the performance with it.

For BFS, we compare our TileBFS with the BFS kernels in the Gun-

rock framework proposed by Wang et al. [48], and in the GSwitch

framework proposed by Meng et al [37]. In our experiments, we use

all the optimizations in the two frameworks, including push-pull,

ignore-weight, directed, etc., for a fair comparison. Table 1 lists the

specifications of the testbed used and algorithms involved.

Our evaluation dataset for SpMSpV contains all the 2757 sparse

matrices from the SuiteSparse Matrix Collection [14]. Inside the

dataset, 2081 sparse matrices are square and are used for testing

BFS. We also list 12 representative matrices in Table 2 to in-depth

analyze the performance of the algorithms tested.

Table 1: The specifications of the machine and the seven al-
gorithms evaluated.

Algorithm Machine specification

SpMSpV

(1) TileSpMV [40]

(1) NVIDIA Geforce RTX 3060 (Ampere),

3,584 CUDA cores @ 1.78 GHz,

12 GB GDDR6, B/W 360.0 GB/s,

(2) NVIDIA Geforce RTX 3090 (Ampere),

10,496 CUDA cores @ 1.70 GHz,

24 GB GDDR6X, B/W 936.2 GB/s.

(2) cuSPARSE v11.4 BSR

(3) CombBLAS [3]

(4) TileSpMSpV (this work)

BFS

(1) Gunrock [48]

(2) GSwitch [37]

(3) TileBFS (this work)

Table 2: Information of the 12 representative matrices.

Matrix Size #nonzeros #tiles (16*16) #tiles (32*32) #tiles (64*64)

af_5_k101 503K x 503K 17M 257K 110K 55K

cant 62K x 62K 4M 62K 20K 8K

cavity23 4K x 4K 144K 2K 1K 1K

pdb1HYS 36K x 36K 4M 50K 19K 8K

fullb 199K x 199K 11M 31K 112K 220K

ldoor 952K x 952K 46M 998K 574K 380K

in-2004 1M x 1M 27M 1M 641K 363K

msdoor 415K x 415K 20M 484K 288K 191K

roadNet-TX 1M x 1M 3M 1M 740K 464K

ML_Geer 1M x 1M 110M 1M 694K 332K

333SP 3M x 3M 22M 8M 7M 7M

dielFilterV2clx 607K x 607K 25M 2M 1M 481K

4.2 Performance Comparison of SpMSpV
By benchmarking the 2757 matrices on RTX 3090, we compare our

TileSpMSpV algorithm with TileSpMV, cuSPARSE and CombBLAS.

Figure 6 shows the performance of the four algorithms under dif-

ferent vector sparsity. Among them, vectors with different sparsity

are generated randomly with random seeds 1. It represents that the

result of our experiment can be reproduced in other comparison

scenarios.

As can be seen from Figure 6, our algorithm shows the best

performance on most matrices. Specifically, we achieve speedups

of on average (geometric mean) 1.10x, 1.65x, 2.20x, 2.38x (up to

1.42x, 4.85x, 12.14x, 12.34x) over TileSpMV, and speedups of on av-

erage 7.58x, 13.78x, 22.43x, 24.95x (up to 275.17x, 647.04x, 1452.73x,

1825.17x) over cuSPARSE, the speedups of on average 13.46x, 14.85x,

20.06x, 20.43x (up to 235.65x, 304.30x, 190.25x, 213.67x) over Comb-

BLAS at vector sparsity of 0.1, 0.01, 0.001 and 0.0001.

As the vector becomes more and more sparse, the amount of

computation required by SpMSpV decreases, while the necessary

computation overhead in the algorithm remains unchanged, and

the resource utilization of GPU decreases. In this case, TileSpMSpV

has a significant performance improvement over TileSpMV due to

its way of quickly locating the nonzero positions of sparse matri-

ces and avoiding a lot of computations. For example, the matrix

‘TSOPF_RS_b2383’ has only 0.25% nonzero vector tiles, and reaches

12.34x, 161.01x and 55.60x speedups over TileSpMV, cuSPARSE and

CombBLAS, respectively.

When the vectors are denser, the performance of TileSpMSpV

is still higher than that of the SpMV algorithms (TileSpMV and

cuSPARSE), and the performance improvement is more obvious

on large matrices. Our highest performance occurs on the ‘trans5’

matrix, which can reach 79.43 GFlops, and is 1.23x, 145.03x and

232.75x faster than TileSpMV, cuSPARSE and CombBLAS. Because

the number of non-empty tiles here is far less than in the other
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Figure 6: Performance comparison of TileSpMSpV, TileSpMV, cuSPARSE and CombBLAS method with four different sparsity.
The four sub-figures on top show performance (in GFlops), and the four sub-figures on the bottom show the speedups of our
algorithm over TileSpMV, cuSPARSE and CombBLAS.
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Figure 7: The two sub-figures on top show the performance of Gunrock, GSwitch and TileBFS on the two GPUs. The two
sub-figures on the bottom show the speedups of TileBFS over Gunrock and GSwitch on the two GPUs.

matrices of the same scale, the nonzeros of the calculated matrix

are relatively concentrated (only 0.00018% non-empty tiles in total).

So the runtime can be reduced by avoiding a large number of tile

information accesses. Also, TileSpMSpV reduces the overhead of

matrix tiles and ensures the efficiency by using the COO format

to store nonzeros if extremely sparse. For example, the ‘cryg10000’

matrix has 2.19% of non-empty tiles before extracting the COO data.

After adopting the extra COO format, 1.10% of non-empty tiles are

moved out, and the performance is improved by 1.6x.

4.3 Performance Comparison of BFS
We use the two GPUs, i.e., RTX 3060 and RTX 3090, for comparing

our TileBFS algorithm with the BFS algorithms in Gunrock and

GSwitch on the 2081 square matrices. The results are shown in Fig-

ure 7. As can be seen, our algorithm has better performance in most
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Figure 8: Performance comparison of 12 representative ma-
trices on RTX 3090 GPU
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Figure 9: Comparison of BFS performance using three-
direction optimization step by step of the representativema-
trices.

matrices than the other two algorithms. On RTX 3060, the average

speedup (geometric mean) of TileBFS over Gunrock is 3.03x, and

the maximum speedup is 21.70x. On 92.25% matrices of the dataset,

TileBFS is faster than Gunrock. Compared to GSwitch, the average

speedup is 4.35x, and the maximum speedup is 837.36x. On 73.00%

matrices, TileBFS is faster than GSwitch. On RTX 3090, the aver-

age speedup of TileBFS over Gunrock is 2.74x, and the maximum

speedups is 21.01x. On 93.99% matrices, TileBFS is faster. As for

GSwitch, the average speedup is 4.69x, and the maximum speedups

is 1164.35x. TileBFS is faster than GSwitch on 68.6% matrices.

Table 2 lists 12 typical matrices for more detailed experimental

analysis, and Figure 8 shows BFS performance of the three algo-

rithms on the matrices. In particular, our algorithm performs well

on matrices with less non-empty tiles occupation and dense dis-

tribution of nonzeros in the tiles, the matrix ‘ldoor’ is an example.

For these matrices, we not only use less memory through data com-

pression and improve memory access efficiency, but also increase

the parallelism of the tile-oriented CUDA kernels. Compared with

Gunrock and GSwitch, here we obtain the average speedups of

2.33x and 2.65x. The scalability of our algorithm can be seen in the

two sub-figures of Figure 7. On RTX 3090, the BFS performance on

large-scale matrices is significantly improved over on RTX 3060.

For example, the BFS performance of the matrix ‘dielFilterV3real’

on RTX 3090 has a speedup of 2.42x over on RTX 3060.

4.4 Directional Optimization Analysis
We test the performance of step-wise stacking of the three direc-

tional optimization BFS kernels: Push-CSC (K1), Push-CSR (K2)

and Pull-CSC (K3). Figure 9 shows the performance of BFS using
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Figure 10: The iteration time comparison of Gunrock,
GSwitch and TileBFS.

one, two, and three directional optimization methods, respectively.

It can be seen that because we divide the input data of BFS and

the fluctuation trend of the number of unvisited vertices in a fine-

grained manner and formulate an appropriate switching timing.

The performance is significantly improved with the increase in the

number of optimized kernels in the direction of use. On the matrix

‘dielFilterV2clx’, the speedups of 2.32x and 7.91x can be achieved.

4.5 Iteration Time Analysis
Figure 10 shows the comparison of time of each iteration step of

four representative matrices processed by Gunrock, GSwitch and

TileBFS. As can be seen, when the runtime of the three algorithms

are in the same trend, our algorithm is often obviously faster and

more stable than the other algorithms. Thanks to our kernel se-

lection methods, the execution time of TileBFS can be effectively

controlled, in particular when the compute time of the other meth-

ods nearly reach their peak (see thematrices ‘in-2004’ and ‘msdoor’).

Moreover, right before the end of the traversal, TileBFS sometimes

switches to the Pull-CSC kernel, and may consume a bit longer

time at a certain iteration before the end (see the matrices ‘msdoor’

and ‘cant’). But this approach actually saves time when the input

vector is very dense. For the matrix ‘roadNet-TX’, our TileBFS is

much faster than Gunrock, but is slower than GSwitch. The reason

is that the matrix has a large amount of non-empty tiles leading

to low compute effciency, and dynamic vector sparsity makes the

kernels Push-CSC and the Push-CSR switch back and forth during

the calculation. But the switching time is far less than GSwitch and

Gunrock in terms of the trend.
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Figure 12: Performance comparison of 6 representative ma-
trices on RTX 3090 GPU

4.6 Format Conversion Overhead
We show a comparison of the time converted a CSR matrix to tiled

format and a BFS execution time in Figure 11 on RTX 3090. The time

for format conversion does not exceed a single BFS processing time

in normal cases, and does not exceed 10x of a single BFS processing

time in most cases. This conversion efficiency is acceptable, since

after an input graphs is converted to the tile format once, it can be

continuously traversed many times from different sources.

4.7 Comparison over Enterprise
To our knowledge, Enterprise [32] is the first BFS algorithm that

performs different load balancing for different out-degrees of the

frontiers in BFS and reduces random access to memory. Figure 12

shows the performance comparison of TileBFS and Enterprise on

RTX 3090 using sparse matrices listed in its original paper. It can

be seen that TileBFS outperforms Enterprise on most matrices.

The average speedup is 1.39, and the maximum speedup is 2.31.

Especially on the matrix audikw1 which had low percentage of

nonzero tiles, our algorithm greatly reduces the memory overhead

and achieves higher speedups.

5 RELATEDWORK
There have been a few studies focusing on parallel SpMSpV.
Li et al. [30] and Yang et al. [53] developed SpMSpV methods using

merge primitives on CPUs and GPUs, respectively. In the Combina-

torial BLAS package [5, 9], Azad et al. [3] developed an SpMSpV

method by using MPI+OpenMP for distributed environments. Li

et al. [31] recently proposed an algorithm to select either SpMV

or SpMSpV for a certain sparsity of an input vector. Yavits and Gi-

nosar [55] developed an acceleration architecture for SpMSpV used

in machine learning. Burkhardt [10] recently gave theoretically

analysis for using SpMSpV in BFS.

Many graph processing frameworks, such as GraphLab [36],

GraphMat [47], MultiGraph [22], PowerGraph [18], CuSha [27],

GraphReduce [44], PowerLyra [11], Ligra [45], GSwitch [37], NX-

graph [12], GraphPhi [43], and GraphBLAST [51] have been de-

signed for the development of fast graph applications.

Accelerating BFS may be the most important task of paral-

lel graph processing. The directional optimization BFS algorithm

proposed by Beamer et al. [6] has been used in many subsequent

accelerating techniques. Merrill et al. [38] first developed fast BFS

on GPUs. Hong et al. [24],Liu and Huang [32], Wen and Zhang [49]

, Zhang and Lin [56] , Li and Becchi [29] also implemented BFS

algorithms for GPUs.

There also has been a few works on graph computations on
various hardware platforms. For distributed environments, Bu-

luç and Madduri [8], Hong et al. [23], Besta et al. [7] and Faisal et

al. [15] proposed some new graph algorithms and frameworks. In

contrast, processing big graphs on a single machine is accelerated

by Nguyen et al. [39], Gera et al. [16], and Han et al. [21]. Also,

designing and evaluating accelerators for graph processing received

attention by Ahn et al. [1], Ham et al. [20], Pal et al. [42] and Zhang

et al. [57].

Utilizing sparse linear algebra for accelerating graphprob-
lems is another efficient way received much attention. Graph-

BLAS [17, 26] is the representative in this direction. Yang et al. [51]

designed the GraphBLAST package. Sundaram et al. [47] in the

GraphMat package reduced complexity of the use of graph ana-

lytics through matrix operations. Yang et al. [54], designed sparse

matrix storage formats for fast graph processing. Yang et al. [52]

discussed several techniques for accelerating BFS by using sparse

matrix operations.

Moreover, TileSpMSpV and TileBFS are the latest work that

extends and improves the tiled formats and algorithms recently
proposed in our TileSpMV [40] and TileSpGEMM [41].

6 CONCLUSION
In this paper, we have proposed the tiled storage structures for

sparse matrices and vectors, as well as the TileSpMSpV and the

TileBFS algorithms on GPUs. Compared to the existing work, we

improve the data locality through tile-wise data accesses and the

execution efficiency by proposing three vector-friendly traversal

kernels. Our experiments showed that the TileSpMSpV and TileBFS

bring obvious performance advantages over TileSpMV, cuSPARSE

and CombBLAS, and two representative BFS methods Gunrock and

GSwitch, respectively.
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