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Abstract—Solving the DC operating point efficiently for large-
scale nonlinear circuit is crucial and quite challenging. Pseudo
transient analysis (PTA) is a widely-used and promising DC
solver in the industry, in which the stepping policy is of great
importance for PTA convergence and simulation efficiency. In this
brief, a reinforcement learning (RL)-enhanced stepping policy
is proposed. It designs dual Actor-Critic agents with stochas-
tic policy and online adaptive scaling to intelligently evaluate
PTA convergence status, and adaptively adjust forward and
backward time-step size. Numerical examples demonstrate that
a significant efficiency speedup and convergence improvement
over the previous stepping methods is achieved by the proposed
RL-enhanced stepping policy.

Index Terms—Circuit simulation, DC analysis, pseudo tran-
sient analysis, reinforcement learning.

I. INTRODUCTION

DC ANALYSIS is a vital and fundamental task in circuit
simulation. It is also a precondition for further analyses in

SPICE-like circuit simulators, including AC analysis, transient
analysis [1], [2], [3]. With the scale of integrated circuit (IC)
growing exponentially, how to efficiently solve a large set of
nonlinear algebraic equations established by modified nodal
analysis (MNA) [4] is quite challenging, and has emerged as
a hot research topic [5], [6], [7].

The numerical iterative algorithms to solve nonlinear alge-
braic equations have been widely used, including the Newton-
Raphson(NR)-based method, Gmin stepping, source step-
ping, pseudo-transient analysis (PTA) and homotopy methods
[8], [9]. When solving a high-dimensional nonlinear system,
the convergence of Gmin stepping and source stepping often
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have unsatisfactory performance [8]. In contrast, the globally
convergent homotopy method is difficult to be implemented
due to its high dependence on the device models [10], [11].
PTA and its variants (such as Pure PTA (PPTA), Compound
element PTA (CEPTA) and Damped PTA (DPTA) [12], [13],
[14]) are widely employed as alternative solutions in indus-
trial simulators because of their ease of implementation and
no discontinuation issues [15], [16].

The main principle of PTA method is to first modify the
circuit by adding some pseudo elements, and then to carry
out a transient analysis, starting from the initial states until a
DC steady state is (hopefully) reached [13]. The PTA meth-
ods simply the DC analysis to solve the steady-state problem
of a system of ordinary differential equations (ODE). The
ODE is then be solved iteratively through numerical integra-
tion stepping towards the steady state. Therefore, a effective
stepping policy is crucially important for the simulation effi-
ciency and convergence performance [9], [15]. The previous
works have proposed some heuristic stepping methods to speed
up PTAs [16], [17]. However, they rely on manually setting
formulas to tune the step size that are too general and do not
consider the specificities of different circuits. Moreover, the
device nonlinearity enhancement and the parasitic parameters
increasing exponentially places greater demands on the PTA
iterations. Designing a “intelligent” and “adaptive” stepping
policy blending machine learning (ML) methods has emerged
as a promising and hot research topic [18]. In [19], Bayesian
optimization method has been introduced for initial parameters
setting in PTA.

Reinforcement learning (RL), as an important branch of
machine learning, has achieved remarkable results in many
fields [20]. In the field of Electronic Design Automation
(EDA), RL has been successfully applied to placement, and
optimal device size selection [18], [21], [22]. In PTA iter-
ations, the optimal step size in each PTA step is unknown
and can not be manually labelled, so supervised machine
learning methods do not fit it. Compared with unsuper-
vised algorithm, RL is more suitable for solving the decision
optimization problem like stepping policy in PTA itera-
tions, which can be modeled as a Markov decision process
(MDP) [23]. In this brief, we propose a RL enhanced step-
ping policy. It comprehensively evaluates the circuit simulation
status, and generates more robust and online adaptive step
size to enhance the PTA convergence and accelerate the
iterative efficiency. The followings are the main novelty of this
brief:
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1) A RL-enhanced stepping policy for PTAs was proposed,
which can output the adaptive time-step size by intel-
ligently evaluating the simulation status of the pseudo
circuit. It achieved a remarkable convergence enhance-
ment and efficiency speedup over the previous stepping
methods.

2) Dual Actor-Critic agents with a stochastic time-step
distribution were designed. Dual agents deal with the
NR convergence and non-convergence situation sepa-
rately with different forward and backward stepping
policies. Stochastic stepping policy achieves stronger
stepping space exploration ability and helps damp out
the oscillations to achieve better convergence.

3) Online adaptive scaling based on momentum was
proposed to deal with the circuit differences between
offline training and online prediction. We employ first
and second moment estimates to extract history step
size features and online dynamically adjust the step size
scaling to further improve the simulation efficiency.

The proposed RL-enhanced stepping policy is compatible
to kinds of PTA solvers and easy to be implemented.

II. PRELIMINARY

A. PTA and Time-Step Control Method

PTA is a quite practical and principal DC solver in industry.
Describing a DC circuit, the resistive portion can be described
by MNA as F(x) = 0, where x = (v, i)T . v denotes the
node voltage to the datum node and i represents the branch
currents of the independent voltage sources [13]. When the
target circuit is modified to the PTA case, whatever various
pseudo-elements are inserted, the set of ODEs is obtained as
P(x(t), ẋ(t), t) = F(x)+ D ∗ ẋ(t) = 0.

ẋ(t) = (v̇(t), i̇(t)), and D is the incidence matrix to
represent the inserted pseudo elements [13]. When the
implicit DDF-k numerical integration .ẋ(t)|t=tn+1 = (xn+1 −
xn+1−k)/

∑k−1
j=0 (hn+1−j) [15] is employed at the discrete time

point tn+1, the ODEs will converge discretely to the steady-
state point under numerical iterative operation. It is clear that
the choice of time-step size affects the rate at which the steady
state is reached or even makes the iteration non-convergence.

The traditional PTA methods adopt a simple iterative count-
ing stepping method [15], [16], which enlarges or reduces the
step size according to the NR iteration number in previous
time-step or NR non-convergence. This policy is simple and
fast, but how to select appropriate parameters (IMAX, IMIN,
change rate, etc.) is difficult. Moreover, a adaptive time-step
method based on Switched Evolution/Relaxation (SER) was
proposed [17], but it is a heuristic method that relies on human
expertise and has weak generalization ability.

B. Reinforcement Learning

In reinforcement learning, the agent learns from the
interacting with the environment to achieve the maximum
reward or special goals [20]. The PTA iterations can be
treated as a MDP, which consists of five elements S(set
of states), A(set of actions), P(state transition probability
matrix), R(reward function) and γ (discount factor). In a MDP

Fig. 1. Dual Actor-Critic agents with stochastic output and online adaptive
scaling for PTA stepping.

with policy π , the score of a certain state s can be evaluated
by the state value function. The Bellman expectation function
of the state value function can be obtained [20]:

Vπ (s, a) = E
[
r′ + γ Vπ

(
s′, a′

)∣
∣St = s,At = a], (1)

where s, a are the current state and action. s′, a′, r′ represent
the state, action and reward of the next moment. In this brief,
RL is employed to “intelligently” output an optimal stepping
policy by interaction with the PTA iterations.

III. PROPOSED RL-ENHANCED STEPPING POLICY

In this section, we transform the PTA iteration process into
a MDP problem. As for the RL state RLs, it should reflect
whether and how difficult the PTA iterations tends toward
gradually convergence. In this brief, five states including
IterNR, ξ , δ, CNR and CPTA, are employed.

IterNR is the NR iteration number at each time-step. It eval-
uates the difficulty of NR iterations. ξ represents whether the
equation is close to final solution, defined as ξ = Cξ

‖xn−xn−1‖
‖tn−tn−1‖ .

Cξ is the residual coefficient. δ is the relative change rate
of solution to indicate whether the solution tends toward
the steady state or still changes drastically, that is δ =
Cδ
‖xn−xn−1‖
‖xn−1−xn−2‖ , (n ≥ 2). Cδ is the constant coefficient.
Besides, CNR and CPTA are two bool flags. CNR represents

whether NR iterations converge. It is the key for two agents
working alternately. CPTA denotes whether the PTA reaches
the steady state and it is a successful ending flag.

As shown in Fig. 1. The solution xn illustrated in the top
subgraph is used to obtain the simulation state sn, which is
input to the proposed dual agents network in the bottom subfig-
ure. Then the Actor outputs stochastic action an and combines
with the online adaptive scaling module to generate the next
step size hn+1 or hb

n+1 for PTA forward or rollback steppings,
by which the next time-step solution xn+1 shown in the top
subgraph is obtained.
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In this brief, conventional single agent structure of RL is
not suitable for PTA iterative process. First, both forward
steppings and backward steppings exist in circuit simulation,
especially in DC analysis of “difficult” circuits. Forward step-
ping when NR iterations converge, aims to take the step
size as large as possible to enhance convergence efficiency.
Backward stepping needs to rollback to the previous time
step and chooses smaller step size carefully to solve NR non-
convergence, which is different from many RL tasks (e.g.,
“Undo” in most games is not allowed). Second, the proportion
of training samples at forward steppings and backward step-
pings is highly imbalanced. Most training data are collected
at NR convergence situation. Single agent hardly learns valu-
able backward stepping information and tends to be unstable
due to the imbalanced samples, which is an obstacle for the
update of Actor network. As shown in Fig. 1, two agents, that
is, forward agent and backward agent, are proposed to deal
with the NR convergence and non-convergence and output the
different stepping policies for different situations, respectively.

Moreover, different from the previous PTA methods where
deterministic stepping policy is employed, a stochastic step-
ping policy is proposed to achieve stronger stepping space
exploration ability and helps damp out the oscillations
to obtain better convergence. The output action a is a
Gaussian distribution with mean and covariance given by the
Actor network, where improved proximal policy optimization
(PPO) [24] with online adaptive scaling is introduced. The
output Gaussian action a is then normalized to the interval
(−1, 1) by the activation function tanh.

The policy update range is limited to make the algorithm
training more stable. The objective function is as follows:

Jφ′
φ (φ) ≈

∑

(st,at)

min

(
pφ(at | st)

pφ′(at | st)
Aφ′(st, at) ,

clip

(
pφ(at | st)

pφ′(at | st)
, 1− λ, 1+ λ

)

Aφ′(st, at)

)

, (2)

where the φ′ and φ are the updated and original Actor param-
eters, λ is the changing limitation of the Actor network.
This function modifies the surrogate objective by clipping the
probability ratio. We take the minimum of the clipped and
unclipped objective, so the final objective is a lower bound on
the unclipped objective which can make the policy update in
a limited range [24]. Note that the probability ratio is clipped
at 1 − λ or 1 + λ depending on whether the advantage A is
positive or negative. The function A is the advantage function
estimated by Critic.

Next, the Gaussian action output a based the current five
RL states is employed to determine the next time-step size of
the PTA iteration. We design two exponential transformation
equations. In the forward agent, that is

hn+1 = hnρf (an) = hn
mf

1− ean+nf
. (3)

It is noted that the equation in the backward agent is designed
as:

hb
n+1 = hnρb(an) = hn

l∏

i=1

mb

1+ ean,i+nb
, (4)

where mf , nf , mb, nb are constant parameters, which are
selected according to the set maximum and minimum change
rates. l is the number of continuous NR non-convergence.
In the backward stepping stage, when continuous NR non-
convergence occurs, mb

1+ean,i+1+nb
< 1 holds and then a

smaller time-step size than previous non-convergent step size∏l
i=1

mb

1+ean,i+nb
<

∏l−1
i=1

mb

1+ean,i+nb
can be achieved.

At last, for the reward function, the weighted sum of nor-
malized simulation state variables and additional bias are
employed. The reward function of the forward agent is

rf =
3∑

i=1

Cfi
∥
∥R̃Ls

∥
∥+ Rfend + Cf , (5)

where R̃Ls represents the normalized state variables, Cfi is the
weight coefficient, Rfend is the additional reward value when
the current PTA iteration converges, and Cf is a constant bias
to make the reward value be negative.

Similarly, the reward function of the backward agent is

rb =
3∑

i=1

Cbi
∥
∥R̃Ls

∥
∥+ Rbend + Cb, (6)

where Rbend is also the additional reward value when the cur-
rent PTA iteration converges, and Cb is a constant bias to
achieve the reward value be negative.

The detailed pseudo-code of the RL-enhanced PTA stepping
policy is shown in the following Algorithm 1.

A. Online Adaptive Scaling

In actual circuit simulation, the structures and scales of the
test circuits are different from those in the training circuit
dataset. Therefore online learning and adaptively adjusting the
step size for the new test circuits is quite important. Moreover,
as shown in Eqs. (4) and (5), the change rate of the step-
ping policy trained by the offline circuit dataset is limited.
For example, the change rate interval in the forward stepping
stage is (

mf

1−enf−1 ,
mf

1−enf+1 ). This will bring down the simula-
tion efficiency when continuous NR convergences occur in the
test circuits, where more aggressive step size can be adopted.

In this brief, online adaptive scaling for the step size by the
scaling parameter Ks is designed using the concept of momen-
tum [25]. In the online step prediction stage for the actual test
circuits, Eqs. (5) and (6) are modified as

hn+1 = Kshn
mf

1− ean+nf
, (7)

hb
n+1 = Kshn

l∏

i=1

mb

1+ ean,i+nb
, (8)

Ks = Mn√
Vn + ε

, (9)

where ε is a value to make the denominator be a positive
value.

The Mn is the momentum of the maximum magnification
which is related with the weighted mean of first order moment,
and the Vn is the weighted mean of second order moment.
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Algorithm 1 RL-Enhanced PTA Stepping
Require: Important parameters setting:

1: Reward function rf , rb, step function ρf , ρb;
2: Learning rate αθ , αφ ;

Ensure:
3: Connect SPICE software;
4: Build Critic network Vθf , Vθb , Actor network πφf , πφb ;
5: Simulate with initial time step h, scaling Ks;
6: Record state s, CNR, CPTA, C′NR;
7: while CPTA 	= True do
8: if CNR 	= False then
9: get action a ∼ πφf (a | s); � Forward agent

10: calculate next time step h′ ← ρf (a)h;
11: get next state s′, update C′NR, CPTA;
12: calculate reward r← rf (s, a);
13: update forward trajectory τf ← τf ∪ {(s, a, r)};
14: else
15: get action a ∼ πφb(a | s); � Backward agent
16: calculate next time step h′ ← ρb(a)h;
17: get next state s′, update C′NR, CPTA;
18: calculate reward r← rb(s, a);
19: update forward trajectory τb ← τb ∪ {(s, a, r)};
20: end if
21: if CNR ⊕ C′NR then
22: gradient update:
23: θi ← θi − αθ∇θi JV(θi) for i ∈ {f , b};
24: φi ← φi − αφ∇φi Jπ (φi) for i ∈ {f , b};
25: trajectories reset;
26: end if
27: update the action trajectory τa ← τa ∪ {a}
28: update the Ks by τa; � Online adaptive scaling
29: calculate the true time-step size h′ ← Ks ∗ h′;
30: Iterate to the next step:
31: s← s′, h← h′, CNR ← C′NR;
32: end while

They are designed as
⎧
⎨

⎩

Mn = 
1Mn−1 + (1−
1)Kn−1,

Vn = 
2Vn−1 + (1−
2)
1
T

n−1∑

j=n−T
K̄2

j ,
(10)

where 
1,
2 are the filter coefficients, the T is the filtering
period. We calculate the discrete degree of the actions to rep-
resent the stability of NR iterations. In the forward stepping
case, Kn and K̄n are set as

mf

1−ean+nf
and

mf

1−eμn+nf
, respectively.

Otherwise, Kn and K̄n are
∏l

i=1
mb

1+ean,i+nb
and

∏l
i=1

mb

1+eμn,i+nb
,

respectively. μ is the mean of the Gaussian action a. Mn and
Vn online learn the history time-step size experiences of the
test circuit environment.

The momentum helps accelerate the time-step size in the
relevant direction and dampens oscillations by adding a fraction

1,
2 of the update vector of the past time step to the current
update vector. The momentum term increases step size whose
previous step magnifications are in the similar large scope and
reduces step size where previous step magnifications are not
stable. As a result, we obtain faster convergence and reduce
oscillation.

IV. EXPERIMENTS AND RESULTS

A. Experimental Environment

In this experiment, the proposed RL-enhanced stepping pol-
icy for PTAs is implemented in SPICE-like simulator, and its
performance is evaluated by dozens of benchmark circuits. We
conduct experiments on a 64-bit Ubuntu 18.04 computer with
Intel i7-10750H CPUs, 32 GB memory. GeForce RTX 2060
GPU is used to accelerate the dual agent network computing
and more computing resources are needed for the proposed
stepping policy.

First, seven typical circuits (two MOS circuits and five BJT
circuits) are selected as the training circuit dataset to achieve
the offline pre-training of model. The DPTA with the proposed
RL-enhanced stepping method conducts the DC analysis for
the seven circuits. The obtained sample at each time-step is
utilized to update the dual Actor-Critic network.

B. Results and Comparisons

For comprehensively evaluating the performance of the
proposed RL-enhanced stepping policy, it is implemented in
typical PTA method (DPTA [17], usually regarded as SOTA
PTA) and compared with two widely-used and effectively
time-step control methods (simple iteration counting (iter-
based) stepping method [15] and SER-based adaptive stepping
method [17]), which are also implemented in DPTA, respec-
tively. 50 benchmark circuits [26] are employed as test circuit
dataset, in which 17 “difficult to converge” circuits are used
for convergence comparisons. Moreover, both convergence and
simulation efficiency are compared.

For the simulation efficiency, the NR iteration number
with the three stepping methods in DPTA for 33 test cir-
cuits are shown in Table I. From Table I, it is clear that
the DPTA with the proposed RL-enahnced stepping pol-
icy has highest simulation efficiency. The DPTA with the
proposed RL-enhanced stepping policy outperforms the DPTA
with simple iter-based stepping method (Speedup: maximum
257.56x, average 17.90x) and the DPTA with SER-based
adaptive stepping method (Speedup: maximum 257.43x, aver-
age 17.58x) in terms of NR iteration number. In general,
large speedup occurs in some convergence difficult circuits,
where small forward stepping sizes and large number of
backward steppings usually exist by the traditional stepping
methods.

Apart from simulation efficiency enhancement, conver-
gence guarantee is actually more important especially for
the large-scale circuits and some “difficult” circuits. It
is highly desirable to make non-convergence cases con-
verge. Table II gives the test results of 17 “difficult” cir-
cuit cases and the DPTA with three stepping methods are
compared.

From Table II, for some circuits that the DPTA with “iter-
based” and “SER-based” stepping methods do not converge,
but PTA convergence can be achieved and DC solution can be
obtained with the proposed RL-enhanced stepping policy. It is
demonstrated that the proposed RL-enhanced stepping strategy
with stochastic stepping policy and online adaptive scaling
can noteworthily improve the convergence performance of the
DPTA (actually almost PTAs) solvers.
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TABLE I
SIMULATION EFFICIENCY COMPARISONS WITH THREE

STEPPING METHODS IN DPTA

TABLE II
CONVERGENCE COMPARISONS WITH THREE STEPPING METHODS

V. CONCLUSION

In this brief, we propose a RL-enhanced stepping pol-
icy to intelligently evaluate PTA convergence status and
adaptively adjust time-step size. Dual Actor-Critic agents
with stochastic action output and online adaptive scaling are
designed to enhance the model robustness and convergence.
Comparing with the widely-used iter-based and SER-based
stepping methods, the proposed RL-enhance stepping policy
achieves significant efficiency acceleration and convergence
enhancement.
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