
SFLU: Synchronization-Free Sparse LU
Factorization for Fast Circuit Simulation on GPUs

Jianqi Zhao1, Yao Wen1, Yuchen Luo1, Zhou Jin1, Weifeng Liu1 and Zhenya Zhou2

1. Super Scientific Software Laboratory,
Department of Computer Science and Technology, China University of Petroleum-Beijing, Beijing, China

2. Huada Empyrean Software Co. Ltd Beijing, China
Email: 13022291538@163.com, wy044399@163.com, 546780156@qq.com, jinzhou@cup.edu.cn,

weifeng.liu@cup.edu.cn, zhouzhy@mail.empyrean.com.cn

Abstract—Sparse LU factorization is one of the key build-
ing blocks of sparse direct solvers and often dominates the
computing time of circuit simulation programs. Existing GPU-
accelerated sparse LU factorization methods either offload
relatively small dense matrix-matrix multiplications to GPU
cores, or extract level-set information to parallelize elimination
operations in each level. However, because of the insufficient
parallelism, neither of the methods can saturate a large amount
of compute units on modern GPUs.

We in this paper propose a synchronization-free sparse LU
factorization algorithm called SFLU. To saturate GPU cores,
our method lets each thread block eliminate a column and runs
all the thread blocks at the same time. Through communicating
dependency information stored on global memory, all the
thread blocks either busy wait to run or get updated by their
previous columns. Because elimination of all the columns work
concurrently, our method avoids any barrier synchronization
and saturates GPU resources. By benchmarking over 1000
sparse matrices on an NVIDIA Titan RTX GPU, our SFLU
outperforms SuperLU and GLU by a factor of on average 155.71
and 8.21 (up to 3585.62 and 252.66), respectively.

Index Terms—sparse LU factorization, circuit simulation,
GPU

I. Introduction

The sparse LU factorization A = LU decomposes a
sparse matrix A into the product of a unit lower triangular
sparse matrix L and an upper triangular sparse matrix U .
It may be the most studied kernel of sparse direct methods
for solving linear system Ax = b [1]. In a number of circuit
simulation tools, such as the SPICE package [2], the most
time consuming step is in general calling sparse solvers to
solve systems of circuit equations generated from linear
and nonlinear circuits. Thus the sparse LU factorization
becomes a crucial part of fast circuit simulation on modern
parallel platform.

Even though a number of parallel sparse LU fac-
torization methods, such as MUMPS [3], SuperLU [4],
NICSLU [5]–[8], as well as GLU and its variants [9]–[11],
already can use modern parallel processors such as GPUs,
their performance is still unsatisfactory. The main reason
is that their algorithms can not well use the thousands of
compute units on modern GPUs. Specifically, the MUMPS
and SuperLU find multifrontal or supernodes and offload
the corresponding dense matrix-matrix multiplication, i.e.,

GEMM, operations to GPUs. But the multifrontals or
supernodes generated from circuit simulation problems are
typically too small to exploit massively parallel GPUs. In
addition, the NICSLU and GLU need to divide the nodes
in the graph form of the matrix into multiple levels with
dependencies and solve the components inside each level
in parallel. However, when the sizes of those levels are
relatively small, the large amount of compute units on
GPUs can not be saturated.

To exploit the massive parallelism on modern GPUs,
we in this paper propose a synchronization-free sparse LU
factorization algorithm called SFLU. Our method assigns
the elimination work of each column to one thread block in
CUDA, and issues all the thread blocks in a single kernel.
Then through accessing a global memory array with
dependency information, all the thread blocks busy wait
until their dependencies on the other columns are relieved.
Once a thread block knows its dependencies is resolved, it
finishes its local work and updates the global memory
array to remove corresponding dependencies to other
thread blocks. Through this way, all the elimination work
on the columns runs at the same time to saturate GPU
resources, and does not need any kernel synchronization
between levels as used in the NICSLU and GLU methods.
As a result, the parallelism of our SFLU can be much
higher than existing sparse LU factorization work.

We compare our SFLU with the latest implementations
of SuperLU [4] and GLU [11] by benchmarking 1309 sparse
matrices in the SuiteSparse Matrix Collection [12] on an
Intel 20-core machine and an NVIDIA Titan RTX GPU.
Our experimental results show that for circuit matrices,
our method obtains up to 287.61 and 6.09 speedups over
SuperLU and GLU, respectively. Also, for a wider range
of sparse matrices, our SFLU is on average 155.71 (up to
3585.62) and on average 8.21 (up to 252.66) faster than
SuperLU and GLU, respectively.

II. Background and Motivation
A. Sparse LU Factorization

The function of LU factorization is to decompose a
square matrix A into the product of a unit lower triangular
matrix L and an upper triangular matrix U . The typical

978-1-6654-3274-0/21/$31.00 ©2021 IEEE 37

20
21

 5
8t

h
A

C
M

/IE
EE

 D
es

ig
n

A
ut

om
at

io
n

C
on

fe
re

nc
e

(D
A

C
) |

 9
78

-1
-6

65
4-

32
74

-0
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
D

A
C

18
07

4.
20

21
.9

58
61

41

Authorized licensed use limited to: China University of Petroleum. Downloaded on December 25,2023 at 04:45:07 UTC from IEEE Xplore. Restrictions apply.

method is Gauss elimination. The elements in L and U can
be determined according to the following two formulations:

Uij=Aij −
j−1∑
k=0

LikUkj

{
i = 1, 2, ..., N

j = i, i+ 1, ..., N
(1)

Lij =
1

Ujj

(
Aij −

j−1∑
k=1

LikUkj

){
i = 1, 2, ..., N

j = 1, 2, ..., i− 1
(2)

When the matrix A is sparse, the factorization proce-
dure can be divided into three steps, i.e., preprocessing,
symbolic decomposition and numeric decomposition. Pre-
processing in general reorders the rows and columns of the
original matrix to reduce the number of fill-ins, and the
symbolic and numeric factorization are used to determine
the sparsity structure of L and U and to calculate the
values of their nonzeros, respectively.

B. Gilbert-Peierls Algorithm
The Gilbert-Peierls algorithm [13], or G-P algorithm for

short, is a basic method used for sparse LU factorization. It
eliminates a column by traversing the elements of the lower
triangle part of its previous columns in a depth-first search
way. Specifically, for computing fill-ins, the G-P method
counts the nodes that can be traversed from the previous
columns, and observes whether there is already a nonzero
at the position of these nodes in the current column. If
the position is a zero element, it needs to be filled with
a nonzero. Figure 1 shows an example of factorizing a
matrix of order 4 by calling the G-P method.

Fig. 1. The G-P method used for factorizing an example matrix of
order four. The graph forms of the matrix in the four factorization
steps are plotted.

C. GLU Algorithm
GLU is a recently developed GPU-accelerated sparse

LU factorization package for circuit simulation and more
general scientific computing. It was first proposed to
mitigate the difficulty of fine-grain parallelization in the
G-P method. He et al. [9] proposed a hybrid right-looking
method on GPU, called GLU (also known as GLU v1.0).
It solved the problem that the G-P algorithm can only
work on one column at a time. Also, it has the benefits
of the left-looking method for column-based parallelism
and uses the same symbolic analysis routine. To compute
the columns in parallel, GLU used a dependency detection
algorithm, which considers the difference of the number

of columns in different levels. GLU first detects data
dependency between columns to factorize several columns
in parallel. With complete information of dependency,
columns can be grouped into levels, where all columns
at the same level are independent of each other and can
thus be factorized in parallel. However this also leads to
synchronization time consumption.

After the algorithm updates, from GLU v1.0 to GLU
v2.0 [10] and GLU v3.0 [11], GLU v3.0 still uses the
column classification algorithm based on dependency de-
tection proposed in GLU v1.0, which means the par-
allelization between columns in different levels may be
still limited. In other words, a level has to wait until
the columns in its previous levels are eliminated. It thus
may cause much useless waiting time. Especially for some
matrices with a large amount of level-sets, the synchro-
nization waiting time may dominate the whole calculation
time. This motivates us to design a new sparse LU
factorization method that can avoid the synchronization
costs.

III. SFLU: Synchronization-Free Sparse LU
As can be seen from the above analysis, we can find

that synchronizations are often a bottleneck for parallel
sparse LU on GPUs. In order to resolve this problem and
further improve performance, we propose SFLU algorithm
to avoid the synchronizations on GPUs. Our method still
uses column-wise elimination as the basic working pattern,
but issues all the work of the columns at the same time.
We in this section will first introduce the basic idea of
synchronization-free and then explain the symbolic and
numeric factorization methods.
A. Basic Idea of Synchronization-Free Method

The way to avoid synchronization costs of parallel
programs has always been one of the mostly studied topics
for improving parallelism. To the best of our knowledge, in
the field of matrix factorization, our work for the first time
avoids synchronization cost in parallel algorithm design.

In a synchronization-free algorithm, a global memory
space is allocated in advance, and the working state of a
CUDA thread block in the parallel program is determined
by a value in this memory space. The value will also
change as the thread block’s task is completed, which in
turn changes the working status of other thread blocks
until the whole task is finished. During the running of the
program, all thread blocks can access this global memory
space. Thus they know when to start, otherwise the thread
blocks will be in a busy waiting state. Because the thread
blocks work simultaneously through one single CUDA
kernel call, the synchronization cost between kernels is
removed. Also, since the thread blocks are self scheduled,
higher parallelism can be obtained.
B. Symbolic Factorization

SFLU can be divided into symbolic and numeric fac-
torization phases. Symbolic factorization runs first to

38

Authorized licensed use limited to: China University of Petroleum. Downloaded on December 25,2023 at 04:45:07 UTC from IEEE Xplore. Restrictions apply.

(a) step1 (b) step2 (c) step3 (d) step4 (e) step5 (f) step6 (g) step7 (h) step8 (i) step9 (j) step10

Fig. 2. The SFLU method used for factorizing an example matrix of order five. The graph forms of the matrix in the ten factorization
steps are plotted. The following directed acyclic graph is composed of the columns whose elements have been eliminated(degree=0),and
corresponding to the process graph of element elimination above.The green arrow of the matrix points to the working point, the red arrow
points to the busy waiting point, the black arrow points to the finished point, and the dotted line points to the new non-zero element.

Algorithm 1 Symbolic factorization of SFLU
1: /*All columns are executed in parallel*/
2: for all columns in parallel do
3: /*Set the column be k*/
4: for i = 0 to k where the A[i,k] != 0 do
5: /*Eliminate elements above the diagonal*/
6: while degree[i] != 0 do
7: //Busy wait
8: end while
9: Eliminate A[i,k] by using ith column
10: /*After elimination, update the value of degree*/
11: atomicSubtract(degree[k], 1)
12: end for
13: end for

determine the final nonzero element structures of the
factors L and U , and then the numeric factorization is
performed to calculate the values of the nonzero element
in the resulting matrices.

We introduce a global integer array degree, which is
of length n, where n is the order of the matrix A. The
values in the array degree corresponds to the number of
elements not deleted above the diagonal of each column
of the matrix. From the data dependence of symbolic
factorization of left-looking algorithm, we can know that
when the elements above the diagonal of a column k
are eliminated (at this time, degree[k] = 0), it is proved
that the column has completed the symbolic factorization,
and the elements above the diagonal line of the kth row
can be eliminated based on the elements of column k.
We assign a thread block to each column of the matrix,
which is responsible for the actual factorization of the
column. Thread 0 of the thread block is responsible for

observing the change of the values in the degree array.
When the corresponding degree value changes to 0, other
threads of the thread block will start to decompose.
Otherwise, thread 0 will make the whole thread block
in a busy waiting state. The actual factorization work
will be completed by all threads except number 0, such
as adding symbolic factorization, adding nonzero elements
and numerical calculation of numeric factorization. When
an element of the column is eliminated, thread 0 of the
thread block is responsible for atomically subtracting the
value of degree of this column by 1. If the value of degree
in this column finally becomes 0, this update will change
the working state of the thread block responsible for other
columns (from busy waiting state to working state).

Our algorithm is based on the left-looking algorithm,
in which the processing sequence logics of symbolic and
numeric factorization are basically the same. We use a
5x5 matrix example to introduce the processing logic of
the symbolic factorization in Figure 2, in which the 10
subfigures represent the elimination action. We use circles
to represent the elements already existing in the matrix,
triangles to represent newly filled elements, and colors to
indicate the state of the elements (green represents the
elements being eliminated, and red represents elements in
a busy waiting status). Also, we respectively use two arrays
indexL and indexU to represent the corresponding row
index of each column element in L and U , and nnzL and
nnzU to denote the number of elements in each column
in L and U . We introduce two graphs to represent the
algorithm action and matrix state. The graph at the top
represents the action of the algorithm, in which the green

39

Authorized licensed use limited to: China University of Petroleum. Downloaded on December 25,2023 at 04:45:07 UTC from IEEE Xplore. Restrictions apply.

arrow line from vertex a to b is used to eliminate column
b; the red arrow line from a to b represents that column
b is waiting to be eliminated by column a; the black line
represents the completed elimination work; and the dotted
line in the middle represents the work change due to the
addition of nonzero elements. The directed acyclic graph
below represents the state of the matrix, which consists
of columns with corresponding degree values of zero.

In the first step, the value of degree[0] is 0, which
indicates that the nonzero elements in the 0th row can be
eliminated (i.e., the corresponding thread block releases
the waiting state and starts working), and the nonzero
elements added in the elimination process are filled into
the resulting factors (lines 6-9 in Algorithm 1). The
diagram of the second step shows the matrix state after the
elimination of the first step, three new nonzero elements
are filled into the matrix. Meanwhile, the values of each
array are updated according to the changes (line 11 in
Algorithm 1). In the third step, since the value of degree[1]
is changed to 0, we can eliminate the elements above the
diagonal of the first row. It is worth noting that the storage
logic of the new element is at the end of the column,
and the thread block of each column is to eliminate the
sequence according to the row index indexU of the column.
Therefore, we can understand why the element a13 is
still in the waiting state. There are two conditions to
eliminate it: the value of degree[1] is 0 (achieved) and
a23 is eliminated (not achieved). In step 4, we complete
the elimination of the two elements in the second line
without filling in the new elements. The element a23 can be
eliminated due to the change of degree[3] in step 5. In the
sixth step, after eliminating a23, a new element is filled in,
but the value of degree does not change. At the same time,
the conditions for eliminating a13 have been achieved. We
eliminate it in step 7 and complete it in step 8, where the
value of degree[3] is 0. We eliminate the element a34 in
step 9 and complete all symbolic decomposition in step
10.

C. Numeric Factorization
Before the numeric factorization, we need to sort the

indices of each column in L and U . The purpose is to
ensure that the numeric factorization of any column is
carried out in the logical order of each column from top
to bottom. The processing logic of numeric factorization
is basically the same as the symbolic factorization shown
before. Each thread block is also assigned to each column
for its numeric factorization. The working state of each
column’s thread block is guided by the value of the array
degree as well.

From the pseudo code in algorithm 2, it can be seen that
the numeric calculation of each column can be divided
into two parts. The first part is to eliminate the upper
triangular U (including the diagonal), and the second
part is to compute the lower triangular L. The first part
of SFLU’s numeric factorization also involves the idea

Algorithm 2 Numeric factorization of SFLU
1: /*All columns are executed in parallel*/
2: for all columns in parallel do
3: /*Set the column be k*/
4: for i = 0 to k where the A[i,k] != 0 do
5: /*Calculate the value of the upper triangular U
6: (including diagonal)*/
7: while degree[i] != 0 do
8: //Busy wait
9: end while
10: for j=i+1 to n where A(j,k) != 0 in parallel do
11: A[j,k] = A[j,k] - A[j,i]*As[i,k]
12: end for
13: /*After calculation, update the value of degree*/
14: atomicSubtract(degree[k], 1)
15: end for
16: for i = k + 1 where A[i,k] != 0 in parallel do
17: /*Calculate the value of the lower triangular L*/
18: A[i,k] = A[i,k] / A[k,k]
19: end for
20: /*Complete factorization, update the value of degree*/
21: atomicSubtract(degree[k], 1)
22: end for

of synchronization-free parallel processing. The algorithm
will determine the working state of the column through
the value of degree, and sequentially solve the elements
above the diagonal. It is worth noting that in this process,
after solving, the algorithm will perform related operations
on the nonzero elements below the element (lines 10-12
in Algorithm 2). In this process, every time an element is
solved, the degree value corresponding to the column will
be reduced by 1 in an atomic way (line 14 in Algorithm
2). When all the elements above the diagonal (including
the diagonal) are solved, the degree value of this column
is 1. At this point, the second part of the factorization
can be executed for computing the elements below the
diagonal. All nonzero elements below the diagonal will be
divided by the value of the diagonal element in this column
(lines 16-19 in Algorithm 2). At this time, the numeric
decomposition of this column has been completed, and the
degree value corresponding to this column is subtracted
by 1 still in the atomic way (lines 21 in Algorithm 2). The
thread block of some columns will stop busy waiting due
to the change of degree.

IV. Experimental Results

A. Experimental Setup

We implement the SFLU algorithm with CUDA and
run tests on an Intel 20-core machine and an NVIDIA
Titan RTX GPU (Turing architecture, 4608 CUDA cores
and 24GB GDDR6 memory). We use in total 1309
sparse matrices downloaded from the SuiteSparse Matrix
Collection [12] as the benchmark suite. In particular,
we also select a number of representative matrices from
circuit simulation problems to show the effectiveness of our
method. Besides our SFLU work, we also test two existing
sparse LU factorization packages SuperLU_DIST [4] and
GLU for performance comparison.

40

Authorized licensed use limited to: China University of Petroleum. Downloaded on December 25,2023 at 04:45:07 UTC from IEEE Xplore. Restrictions apply.

TABLE I
A detailed performance comparison on circuit matrices

Martrix n nnz
Symbolic factorization time (ms) Numeric factorization time (ms)

SFLU GLU Speedup SuperLU Speedup SFLU GLU Speedup SuperLU Speedup
[11] over [11] [4] over [4] [11] over [11] [4] over [4]

adder_dcop_42 1813 11246 1.75 4.93 2.82 1.12 0.64 2.28 1.97 0.87 14.32 6.29
circuit_2 4510 21199 3.74 12.61 3.37 2.36 0.63 2.06 3.07 1.49 48.64 23.65

fpga_dcop_13 1220 5892 0.16 1.24 7.60 0.52 3.18 0.35 1.68 4.73 5.43 15.33
Hamrle2 5952 22162 6.85 5.09 0.74 3.31 0.48 2.42 14.75 6.09 42.38 17.50
memplus 17758 126150 20.51 21.24 1.04 3.15 0.15 1.45 5.09 3.53 29.09 20.13
rajat27 20640 99777 5.71 24.58 4.31 6.07 1.06 3.91 7.79 1.99 151.57 38.79
rajat22 39899 197264 10.52 69.81 6.64 9.06 0.86 8.49 14.76 1.74 115.92 13.65

mult_dcop_03 25187 193216 25.77 972.41 37.73 50.88 1.97 41.66 38.94 0.93 11983.03 287.61

Fig. 3. Performance comparison of symbolic factorization.

For all the benchmarks, we report the performance
of their symbolic and numeric decomposition phases in
Figures 3 and 4, respectively. The three subfigures in
Figures 3 and 4 are the runtime of SuperLU, GLU and
SFLU, the speedups of SFLU over SuperLU, and of SFLU
over GLU, respectively.

B. Symbolic Factorization

In the comparison of the symbolic decomposition of the
three methods, it can be seen from Figure 3 that our SFLU
algorithm has obvious performance gain compared with
SuperLU and GLU. It is worth to note that the symbolic
decomposition of SuperLU and GLU adopts CPU serial
algorithm, and normally gives degraded performance. But
for some matrices originally with limited parallelism and
many fill-ins, the sequential execution can give the best
performance. For example, the performance of symbolic
decomposition of SFLU in the matrix group adder_dcop
is better than that of GLU, but is slightly slower than
SuperLU. The performance of SFLU in the matrix group
fpga_dcop is always better than the other two algorithms.
Specifically, compared with SuperLU, the highest speedup
of 205.14 appears in the matrix TSC_OPF_300. Com-
pared with GLU, the highest speedup achieves a factor of
701 at the matrix human_gene2.

Fig. 4. Performance comparison of numeric factorization.

C. Numeric Factorization
As for the numeric phase, we can draw a conclusion from

Figure 4 that the SFLU algorithm significant outperforms
SuperLU and GLU. Specifically, our SFLU is faster than
the other two methods in all matrices tested. Compared
with SuperLU, our method is 3585.25 times faster, which
is the highest speedup and appears on the matrix c− 52.
The reason is that in this matrix SuperLU cannot form
relatively large supernodes and GEMM operations for sat-
urating GPUs. Compared with GLU, the highest speedup
achieved by SFLU is 252.2 on the matrix nemth18. The
reason is that GLU in this case generated 9497 level-sets
and thus need much synchronization cost. But our SFLU
does not need such barrier synchronizations.

D. Circuit Matrix Performance
In order to study the performance of the SFLU algo-

rithm for circuit matrices, we select different types of
circuit matrix performance data from the whole bench-
mark suite and form Table I. The table includes the
number of rows and nonzero elements of the matrix,
as well as the time consumed by SuperLU, GLU and
SFLU, and the performance speedup ratio of SFLU to
the other two algorithms. In the table, we can get two
observations. First, the performance of SuperLU symbolic
factorization is better than that of SFLU and GLU.
The reason may be related to the different preprocessing

41

Authorized licensed use limited to: China University of Petroleum. Downloaded on December 25,2023 at 04:45:07 UTC from IEEE Xplore. Restrictions apply.

operations performed. SFLU uses the same preprocess-
ing method as GLU, and the symbolic decomposition
performance of SFLU is significantly better than GLU.
Among them, when decomposing matrix A, SFLU is 37.73
times faster than GLU, which proves that the advantages
of SFLU symbolic decomposition are also applicable to
circuit matrices. The second point is that, in the numeric
factorization part, the performance of SFLU is mostly
better than the other two algorithms. Compared with
SuperLU, the highest speedup achieved by SFLU is 287.61
times on the matrix mutl_dcop_03. On the other hand,
for matrix Hamrle2, SFLU is 6.09 times faster than GLU.
Through the experiments, we can conclude that our SFLU
gives state-of-the-art performance for circuit matrices.

V. Related Work
The irregularity of circuit simulation problems brings

difficulties to utilizing GPUs for accelerating EDA pro-
grams. Fortunately, Garland [14] first pointed out that
sparse matrix computations in circuit simulation can well
utilize GPU in spite of their irregularity. Deng et al. [15]
implemented fast sparse matrix multiplication algorithms
for EDA tools on GPUs. Liu et al. [16] developed a
synchronization-free method for sparse triangular solve on
GPUs. Croix and Khatri [17] reviewed the use of GPU in
EDA tools and provided insight into the type of problem
best suited for the GPU architectures.

As for sparse LU on GPUs, based on the multifrontal
and supernodal styles, packages MUMPS [3] and Su-
perLU [4] can gather columns of the similar structures into
dense matrices of certain sizes (in general pretty small)
and call fast dense matrix-matrix multiplication. However,
sparse matrices from circuit analysis often do not have
such regular multifrontal and supernodal structure, and
thus seldom behave well on those packages. This is why the
KLU tool [18] focused on single threaded computations.

The other group of work fully uses GPUs for sparse
LU in the level-set way. The NICSLU package developed
by Ren et al. [19] and Chen et al. [5]–[8], and the GLU
package developed by He et al. [9], Lee et al. [10], and Peng
and Tan [11] are representatives in this direction. Their
methods need to find the parallelizable level information
in the L and U after symbolic phase, and issue one GPU
kernel for one level-set. As a result, the synchronizations
between the kernel calls often takes much time. Though
multiple optimizations have been proposed, the cost for
synchronizations is still not negligible. In contrast, the
SFLU method proposed in this work avoids kernel syn-
chronizations and brings higher parallelism for sparse LU.

VI. Conclusion
We have proposed SFLU: a synchronization-free al-

gorithm for sparse LU factorization on GPUs. SFLU
deals with synchronizations through communicating on
global memory with atomic operations on GPUs. The
new method avoided the global synchronizations between

levels in the existing methods and increased the amount of
parallelizable work for GPUs of a large mount of compute
units. Our experimental results demonstrated that SFLU
is on average 155.7 and 8.21 (up to 3585.2 and 252.5)
faster than SuperLU and GLU packages, respectively.

VII. Acknowledgement
We deeply appreciate the invaluable comments from the

reviewers. Zhou Jin is the corresponding author of this
paper. This work was supported by the National Natural
Science Foundation of China under Grant No. 61972415.

References
[1] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for

Sparse Matrices, 2nd ed. Oxford University Press, Inc., 2017.
[2] L. W. Nagel, “SPICE2: A Computer Program to Simulate Semi-

conductor Circuits,” Ph.D. dissertation, EECS Department,
University of California, Berkeley, 1975.

[3] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster,
“MUMPS: A General Purpose Distributed Memory Sparse
Solver,” in Applied Parallel Computing. New Paradigms for
HPC in Industry and Academia, 2001.

[4] X. S. Li, “An Overview of SuperLU: Algorithms, Implementa-
tion, and User Interface,” ACM Trans. Math. Softw., 2005.

[5] X. Chen, Y. Wang, and H. Yang, “An adaptive LU factorization
algorithm for parallel circuit simulation,” in ASP-DAC ’12,
2012.

[6] ——, “NICSLU: An Adaptive Sparse Matrix Solver for Parallel
Circuit Simulation,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2013.

[7] X. Chen, L. Ren, Y. Wang, and H. Yang, “GPU-Accelerated
Sparse LU Factorization for Circuit Simulation with Perfor-
mance Modeling,” IEEE Transactions on Parallel and Dis-
tributed Systems, 2015.

[8] X. Chen, L. Xia, Y. Wang, and H. Yang, “Sparsity-oriented
sparse solver design for circuit simulation,” in DATE ’16, 2016.

[9] K. He, S. X. . Tan, H. Wang, and G. Shi, “GPU-Accelerated
Parallel Sparse LU Factorization Method for Fast Circuit Analy-
sis,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 2016.

[10] W. Lee, R. Achar, and M. S. Nakhla, “Dynamic GPU Parallel
Sparse LU Factorization for Fast Circuit Simulation,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems,
2018.

[11] S. Peng and S. X. . Tan, “GLU3.0: Fast GPU-based Parallel
Sparse LU Factorization for Circuit Simulation,” IEEE Design
& Test, 2020.

[12] T. A. Davis and Y. Hu, “The University of Florida Sparse
Matrix Collection,” ACM Trans. Math. Softw., 2011.

[13] J. R. Gilbert and T. Peierls, “Sparse partial pivoting in time
proportional to arithmetic operations,” SIAM Journal on Sci-
entific and Statistical Computing, 1988.

[14] M. Garland, “Sparse Matrix Computations on Manycore
GPU’s,” in DAC ’08, 2008.

[15] Y. S. Deng, B. D. Wang, and S. Mu, “Taming Irregular EDA
Applications on GPUs,” in ICCAD ’09, 2009.

[16] W. Liu, A. Li, J. Hogg, I. S. Duff, and B. Vinter, “A
Synchronization-Free Algorithm for Parallel Sparse Triangular
Solves,” in Euro-Par ’16, 2016.

[17] J. F. Croix and S. P. Khatri, “Introduction to GPU Program-
ming for EDA,” in ICCAD ’09, 2009.

[18] T. A. Davis and E. Palamadai Natarajan, “Algorithm 907: KLU,
A Direct Sparse Solver for Circuit Simulation Problems,” ACM
Trans. Math. Softw., 2010.

[19] L. Ren, X. Chen, Y. Wang, C. Zhang, and H. Yang, “Sparse
LU Factorization for Parallel Circuit Simulation on GPU,” in
DAC ’12, 2012.

42

Authorized licensed use limited to: China University of Petroleum. Downloaded on December 25,2023 at 04:45:07 UTC from IEEE Xplore. Restrictions apply.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32

 D:20170330081459
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

