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Abstract—Sparse triangular solves (SpTRSVs) are widely used in linear algebra domains, and several GPU-based SpTRSV
algorithms have been developed. Synchronization-free SpTRSVs, due to their short preprocessing time and high performance, are
currently the most popular SpTRSV algorithms. However, we observe that the performance of those SpTRSV algorithms on different
matrices can vary greatly by 845 times. Our further studies show that when the average number of components per level is high and the
average number of nonzero elements per row is low, those SpTRSVs exhibit extremely low performance. The reason is that, they use a
warp on the GPU to process a row in sparse matrices, and such warp-level designs have severe underutilization of the GPU. To solve
this problem, we propose YuenyeungSpTRSYV, a thread-level and wrap-level fusion synchronization-free SpTRSV algorithm, which
handles the rows with a large number of nonzero elements at warp-level while the rows with a low number of nonzero elements at
thread-level. Particularly, YuenyeungSpTRSV has three novel features. First, unlike the previous studies, YuenyeungSpTRSV does not
need long preprocessing time to calculate levels. Second, YuenyeungSpTRSV exhibits high performance on matrices that previous
SpTRSVs cannot handle efficiently. Third, YuenyeungSpTRSV’s optimization does not rely on the specific sparse matrix storage
format. Instead, it can achieve very good performance on the most popular sparse matrix storage, compressed sparse row (CSR)
format, and thus users do not need to conduct format conversion. We evaluate YuenyeungSpTRSV with 245 matrices from the Florida
Sparse Matrix Collection on four GPU platforms, and experiments show that our YuenyeungSpTRSV exhibits 7.14 GFLOPS/s, which is
5.98x speedup over the state-of-the-art synchronization-free SpTRSV algorithm, and 4.83x speedup over the SpTRSV in cuSPARSE.

Index Terms—Thread-level, warp-level, synchronization-free, SpTRSV, GPU
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using GPUs to parallelize the SpTRSV algorithms. However,

SPARSE triangular solves (SpTRSVs) have been extensively
used in linear algebra fields, and have been indispensable
building blocks in many numerical linear algebra routines,
such as least-squares problems [1], direct methods [2], and
preconditioners of sparse iterative solvers [3]. For an equation
set, Lz = b, where L is a lower triangular sparse matrix, x is
the target solution vector, and b is a dense vector, SpTRSV
computes the target solution vector x based on L and b.
Because GPUs demonstrate powerful computing capabilities
in the field of linear algebra, researchers have been exploring
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compared with other linear algebra algorithms for sparse
matrices [4], such as sparse matrix-matrix multiplication [5],
[6], sparse matrix-vector multiplication [7], [8], [9], [10], [11],
[12], and sparse transposition [13], SpTRSV is challenging to
be efficiently parallelized because there are more internal
dependencies in the solution process.

To parallel the SpTRSV algorithm, we need to under-
stand more details about SpTRSV: the solution in SpTRSV
can be divided into subsolutions for each component z;,
which can be parallelized. There exist dependencies in the
solutions for each x;: solving a component xz; may depend
on the other components z; (j < i). Furthermore, the
dependency relationships in the component solutions can
be described in a directed acyclic graph (DAG), and the
components in the dependency DAG can be divided into
different levels. Only the components at the same level can
be solved in parallel. In the worst case, only one component
exists in one level, so there is no parallelism in this case.

To address the dependency problem, a level-set SpTRSV
algorithm has been proposed [14], [15], which involves a pre-
processing step to group the components in the same level
into a set, and the components in the same set can be solved in
parallel. However, such a level-set preprocessing often takes
too much time [16]; in our experiment, the preprocessing time
could be dozens of times to the execution time of solving
SpTRSV itself. Moreover, Li ef al. [17] pointed out that the

1045-9219 © 2021 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: China University of Petroleum. Downloaded on July 24,2021 at 03:25:44 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0003-1983-7321
https://orcid.org/0000-0003-1983-7321
https://orcid.org/0000-0003-1983-7321
https://orcid.org/0000-0003-1983-7321
https://orcid.org/0000-0003-1983-7321
https://orcid.org/0000-0003-4019-5327
https://orcid.org/0000-0003-4019-5327
https://orcid.org/0000-0003-4019-5327
https://orcid.org/0000-0003-4019-5327
https://orcid.org/0000-0003-4019-5327
mailto:fengzhang@ruc.edu.cn
mailto:2017202106@ruc.edu.cn
mailto:duyong@ruc.edu.cn
mailto:weifeng.liu@cup.edu.cn
mailto:weifeng.liu@cup.edu.cn
mailto:hebs@comp.nus.edu.sg
mailto:Jiya_Su@ruc.edu.cn
mailto:rwang67@iit.edu

2322

inter-level synchronization incurs large performance over-
head in the level-set SpTRSV. Although recent level-set
SpTRSV optimizations, such as simplifying synchronization
by pruning [18] and replacing synchronization by atomic
operations [16], reduce the number of synchronizations, the
synchronization overhead is still prohibitively high. Later,
Liu and others [16] proposed a synchronization-free SpTRSV
algorithm, which solves the synchronization problem and
greatly reduces the preprocessing time. Currently, this
algorithm is the state-of-the-art SpTRSV algorithm, which
outperforms other algorithms on a wide range of workloads.
However, this algorithm only considers GPU warp-level
parallelism, and we find that such a warp-level synchroniza-
tion-free SpTRSV algorithm exhibits significant performance
degradation when 1) the average number of components per
level is large, and 2) the number of related nonzero elements
for each row is small.

Solving such synchronization-free SpTRSV performance
degradation problems requires handling the following three
challenges. First, new SpTRSV algorithms need to be
designed to avoid thread idle within warps on GPU. Sec-
ond, novel intra-warp communication mechanisms need to
be carefully designed to avoid deadlocks, since threads
within a warp in GPU execute in a lock-step manner. Third,
preprocessing time should be as short as possible for the
usability and applicability of SpTRSV.

To solve the challenges above, we propose Yuenyeung
SpTRSV, a thread-level and warp-level fusion synchroniza-
tion-free SpTRSV algorithm, which addresses the sparse sit-
uations that current synchronization-free SpTRSV algorithm
cannot handle efficiently. Those matrices that have a large
number of components per level and a small number of nonzero ele-
ments per row are commonly seen in graph applications. Thus,
we develop an indicator, parallel granularity, detailed in Sec-
tion 3.2, to comprehensively describe these two characteristics
of sparse matrices. A high parallel granularity means that the
warp-level synchronization-free SpTRSV algorithms may not
be able to fully utilize GPU resources.

The high-level idea of YuenyeungSpTRSV is that, for
the rows with a low number of nonzero elements, we use one
thread to solve one component, which avoids the resource
waste caused by idle threads. At the same time, for
the other rows with a large number of nonzero elements, we
process these rows at warp level to maintain load balance in
GPU warps. Moreover, in order to improve SpTRSV perfor-
mance in a holistic manner, YuenyeungSpTRSV has three
novel features. First, unlike the previous studies [14], [15],
YuenyeungSpTRSV avoids the lengthy preprocessing for cal-
culating the levels. Second, YuenyeungSpTRSV exhibits high
performance on matrices that have high parallel granularities,
which is complementary to current warp-level synchroniza-
tion-free SpTRSVs. Third, YuenyeungSpTRSV’s optimization
does not rely on the specific sparse matrix storage format.
Instead, it can achieve very good performance on the most
popular sparse matrix storage, compressed sparse row (CSR)
format, and thus users do not need to conduct format conver-
sion in advance. Our preliminary work, CapelliniSpTRSV [19],
provides thread-level optimization and design. In contrast,
this work provides both thread-level and warp-level fusion
design of synchronization-free SpTRSV, including 1) integra-
tion of warp-level and thread-level SpTRSV algorithms, 2)
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threshold detection to distinguish thread-level and warp-
level designs, and 3) computation and segmentation algo-
rithms in YuenyeungSpTRSV. Additionally, we provide both
CUDA and OpenCL versions of our implementation, so that
our method can run on various platforms, which can help
existing applications directly.

Note that YuenyeungSpTRSV involves novel cross-GPU
optimizations, including data structures to represent differ-
ent processing levels, a lightweight model to predict the
configuration, and adaptation to GPU architectures. More-
over, we provide cross-platform YuenyeungSpTRSV imple-
mentation. We provide not only CUDA but also OpenCL
implementations, so that our method can run on various
platforms, which can help existing applications directly.

We evaluate YuenyeungSpTRSV with 245 matrices from
the University of Florida Sparse Matrix Collection [20] on
four GPU platforms, and compare our method with the
state-of-the-art SpTRSV algorithm [16], and the SpTRSV in
cuSPARSE [21]. The experimental results show that Yue-
nyeungSpTRSV exhibits high efficiency for the matrices that
have high parallel granularity. YuenyeungSpTRSV achieves
on average 5.98x performance speedup over the state-of-
the-art SpTRSV algorithm [16], and 4.83x speedup over the
SpTRSV in cuSPARSE.

To summarize our contributions in this paper:

e  We show our insights in current SpTRSV algorithms
and propose parallel granularity to describe sparse
matrices.

e We develop YuenyeungSpTRSV, a thread-level and
warp-level fusion synchronization-free SpTRSV, to
process sparse matrices that previous SpTRSV algo-
rithms cannot handle efficiently.

e We evaluate YuenyeungSpTRSV with 245 matrices,
and demonstrate its benefits over the state-of-the-art
SpTRSV.

2 PRELIMINARIES

In this section, we first discuss the background and prelimi-
naries about SpTRSV, including the basic SpTRSV, level-set
SpTRSV, and synchronization-free SpTRSV. Then, we sum-
marize and compare current SpTRSV algorithms, and iden-
tify their limitations.

2.1 Concepts and Basic SpTRSV

We first introduce the basic concepts that are essential for
understanding SpTRSV. For the equation set, Lz = b, we
provide the following concepts.

Component: An element in solution vector z.

Element: A nonzero element in matrix L, such as L.
Dependency: If the solution of component z; needs the
value of component zj, z; has a dependency on z;.

e Level: A solution order according to the dependen-
cies among components. The components at the
same level form a level-set.

Sparse Matrix in CSR Format. The compressed sparse row
(CSR) format is the most popular sparse matrix compres-
sion format, storing a matrix in three arrays without zero
values. Fig. 1 illustrates a sparse triangular matrix L in
SpTRSV. Fig. 1a shows an 8-by-8 sparse triangular matrix,
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Lower Triangular Matrix L Level 0
o|1]2[3]a]s5]6]7
b 0 | Level 1
Level 0 | 1 1
Level 1 | 2 101
Level2 | 3 1 /1)1
Levell | 4|1 |1 1 Level 2
Level2 | 5 1 1
Level3 | 6 | 1 1 1011
Level2 | 7|1 ] 1 1 1 Level 3

(a) Matrix form.

csrRowPtr= (0, 1,2,4,7,10, 1
esrColldx = (0,1,1,2,1,2,3,
csrlal 1L1,1 1

; (c) CSR form.

Fig. 1. Lower triangular matrix L in CSR format: (a) the color shows the
level of the row; (b) dependency of the components z. Each component
relates to one row, and there are four level-sets in L; (c) the CSR format.

which can be divided into four level sets, as shown in
Fig. 1b. The matrix in Fig. 1a can be further stored in Fig. 1c.
The array csrRowPtr stores the beginning position of each
row, the array csrColldx stores the column numbers of each
element, and the array csrVal stores the values.

Basic SpTRSV Algorithm. We show the basic SpTRSV in
Algorithm 1. The algorithm traverses all rows (Line 3). In
each row, it calculates all elements in the row except the last
one, and stores the value in intermediate variable left_sum
(Lines 5-6). At last, the component of the solution vector x
in the same row is solved (Line 7).

2323

Algorithm 2. Level-Set SpTRSV Algorithm for Lz = b

1: Input: InputMatrix L, array b
2: Output: array x
3: fori =0 to layer-1 do
for k = layer_numli] to layer_num[i+1]-1 in parallel do
id — order[k]
left_sum «— 0
for j = L.RowPtr[id] to L.RowPtr[id+1]-2 do
left_sum«— left_sum+L.Val[j]xx[L.Colldx[j]]
x[id]—(blid]-left_sum)/L.Val[L.RowPtr[id+1]-1]
_synchronize

2.3 Synchronization-Free SpTRSV

Because Level-Set SpTRSV method involves long prepro-
cessing time and has a bottleneck in synchronization, Liu
et al. [16] introduced a synchronization-free algorithm for
GPUs in CSC format (similar to CSR format except that val-
ues are stored in column order). Another previous study [22]
proposed a similar synchronization-free algorithm in CSR
format. The basic idea is to add a new flag array get_value to
show whether the component is solved or not and use a
warp to compute a component in parallel according to the
original row order of the input matrix, which avoids the
synchronization and greatly reduces the processing time.
Currently, the synchronization-free SpTRSV algorithm is
the state-of-the-art SpTRSV algorithm.

Algorithm 1. Basic SpTRSV Algorithm for Lz = b

1: Input: InputMatrix L, array b

2: Output: array x

3: fori=0to L.rows-1 do

left_sum < 0

for j = L.RowPtr[i] to L.RowPtr[i+1]-2 do
left_sum «— left_sum + L.Val[j] x x[L.Colldx[j]]

x[i] < (bli]- left_sum) / L.Val[L.RowPtr[i+1]-1]

2.2 Level-Set SpTRSV
As discussed in Section 2.1, the components z; at the same
level can be solved independently and simultaneously.
Therefore, the components can be partitioned into different
level-sets, so that the components in the same set can be
solved in parallel, while the sets are processed sequentially.
Each set relates to one level. However, a preprocessing is
required for generating level-sets. In the preprocessing
stage of the previous studies [14], [15], the algorithm stores
the level-set number in variable layer, records the row num-
ber in each level in the array layer_num, and rearranges the
order of rows according to their levels in the array order.
Level-Set  SpTRSV  Algorithm. We show the Level-Set
SpTRSV algorithm in Algorithm 2. The algorithm partitions
the components into level-sets, and the components in the
same level-set can be solved in parallel (Line 4), where id is
the row number to solve (Line 5). After calculating the whole
nonzero elements in the row (Lines 6-8), the component x/[id]
is obtained (Line 9). However, to make sure all the related
components have been calculated out, all threads have to wait
until the whole components in the set are solved (Line 10).
Such synchronizations can be costly in the execution time.

Algorithm 3. Synchronization-Free SpTRSV Algorithm
for L =b

: Input: InputMatrix L, array b
: Output: array x
: MALLOC («get_value, L.rows)
: MEMSET (xget_value, 0)
: fori=0to L.rows-1 in parallel do
component.
shared memory: left_sum[warp_size]
for thread_id = 0 to warp_size-1 in parallel do
thread for partial nonzeros

—_

T W N

> One warp for one

N

> One

8: sum 0
9: for j = L.RowPtr[il+thread_id to L.RowPtr[i+1]-2 Step
warp_size do > Step means j+=warp_size.
10: col — L.Colldx[j]
11: while get_value[col] # true do
12: /] busywait
13: sum «— sum + L.Val[j] x x[col]

14: left_sum|[thread_id] < sum

15: for add_len=warp_size/2 to add_len >0 Step add_len/=2
do

16: if thread_id < add_len then

17: left_sum|[thread_id] «— left_sum[thread_id] + left_sum
[thread_id+add_len]

18: if thread_id = 0 then

19: x[i]—(bli]-left_sum[thread_id])/L.Val[L.RowPtr[i+1]-1]
20: __threadfence()
21: get_value[i] — true

22: FREE (xgef_value)

Synchronization-Free SpTRSV Algorithm. The detailed algo-
rithm is shown in Algorithm 3. In Algorithm 3, the algorithm
computes components in the original row order of the input
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TABLE 1
Case Study for Preprocessing Time and Execution
Time of Different SpTRSV Algorithms
Algorithm Time (ms)  nlpkkt160 wiki-Talk cant

Level-Set [14], [15] Preprocessing  310.07 31.09 481
Execution 28.07 12.89  28.79
cuSPARSE [21] Preprocessing  16.24 1.99 0.28
Execution 37.98 11.88  7.69
Sync-Free [16] Preprocessing ~ 8.07 0.42 0.28
Execution 27.73 10.02  5.02

matrix and uses one warp (warp_size threads) to compute one
row (Line 5). When calculating the nonzero elements in the
row, each thread only computes part of elements in parallel
(Lines 7-14). When a thread computes the element /; .., to
make sure z, is solved, the thread needs to wait until its flag
get_value[col] is set to true (Lines 10-12), and then calculates
the value (Line 13). Next, we add the intermediate results in
the warp_size threads of a warp together in parallel with the
shared array left sum (Lines 15-17). After calculating the
whole nonzero elements in row, we obtain the component z;
and set get_valuel[i] to true (Lines 19-21).

2.4 cuSPARSE Library

cuSPARSE Library [21] provides functions for SpTRSV
directly. Since cuSPARSE is not open-sourced, we do not
know the implementation details it adopts, and can only
treat it as a black box. Compared to the performance of
SpTRSV in cuSPARSE version 7.5 used in [23], the perfor-
mance in cuSPARSE version 8.0 used in this paper doubles.
It shows the significant improvement of SpTRSV in cuS-
PARSE, which can be viewed as a strong state-of-the-art
approach for comparison.

2.5 Summary

We summarize the differences between the three parallel
SpTRSV algorithms and test their performance with three ran-
dom sparse matrices. As shown in Table 1, we can observe
that the synchronization-free SpTRSV algorithm exhibits
short preprocessing time and high performance. In compari-
son, the preprocessing time of the Level-Set SpTRSV algo-
rithm is very long, which greatly limits their applicability.
Other sparse matrices exhibit similar phenomena.

We also summarize the properties of current SpTRSV algo-
rithms in Table 2, including the preprocessing time, storage
format, synchronization, and granularity. Our findings are as
follows. First, synchronization-free algorithm has low prepro-
cessing overhead and high performance, which is the current
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trend for SpTRSV. Second, although the SpTRSV in cuS-
PARSE is not open source, we speculate that it now uses the
synchronization-free SpTRSV algorithm due to the short pre-
processing time. Third, to address the limitations of other
approaches, our proposed YuenyeungSpTRSV is a thread-level
and warp-level fusion synchronization-free approach with a
very short preprocessing stage.

3 REVISITING WARP-LEVEL SYNCHRONIZATION-
FREE SPTRSV

In this section, we first show our insights in the synchroni-
zation-free SpTRSV algorithm, including the limitations
and opportunities, followed by an experimental study to
motivate YuenyeungSpTRSV algorithm. Then, we present
the technical challenges.

3.1 Motivation

Observation: Warp-level synchronization-free SpTRSV
algorithms cannot fully utilize GPU resources when 1)
the average number of components x per level is large,
and 2) the average number of nonzero elements per row
of the input sparse matrix L is small.

Insight: Previous synchronization-free SpTRSV designs
are mainly based on 1) warp states (busy or idle) and 2)
synchronization between warps, but ignore the thread
states in warps. Hence, we call such warp-level SpTRSV
coarse-grained. In contrast, we additionally consider both
thread and wrap states, and both thread-level and warp-
level synchronizations within and between warps, which
is a mix, just like Yuenyeung (a popular beverage of coffee
with tea in Hong Kong).

Although the synchronization-free SpTRSV algorithm [16]
solves the performance bottleneck caused by synchroniza-
tion, the GPU resource still could be underutilized, espe-
cially when 1) the average number of components x per
level is large, and 2) the average number of nonzero ele-
ments per row is small. The reasons are as follows. First, the
GPU device consists of a limited number of streaming mul-
tiprocessors (SM), and each SM consists of light-weight
cores. The number of active warps for each SM is limited. If
we use a warp to handle a component, then the number of
components that can be processed simultaneously is limited
in the SM. When the number of components z in a level is
large enough that exceeds the SM threshold, the level has to
be processed in several rounds. Second, the instructions for
a warp are executed in a lock-step manner, which means
that all threads in one warp need to execute the same

TABLE 2
Summary for Different SpTRSV Algorithms

Algorithm Preprocessing Storage  Synchronization required Processing

overhead format or not granularity
Level-Set high CSR yes thread /warp
Sync-Free low csC no warp
cuSPARSE low CSR unknown unknown
YuenyeungSpTRSV very low CSR no fusion
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[ thread 1 | L(0,0) L(2,1) L(2,2) L@3.1) L(3,2) L(3,3) L(6,0) | L(6,2) | L(6,4) | L(6,5) | L(6,6) |
warp 1 4 thread2 [ L(1,1) L(4,0) L(4,1) L(4,4) L(5,2) L(5,5)
L thread 3 L(7,0) L(7,1) L(7,2) L(7,7)
[ thread 4
warp 2 thread 5
L thread 6 (a) Level-Set SpTRSV.
[ thread 1 | L(0,0) | L1 | L22) | L&0) | L@44) | L2 | L6s | Lao | L@y
warp 1 7 thread 2 L4,1) L(7,1)
L thread 3 L(7,2)
[ thread 4 | L(1,1) L(3,1) L(3,2) L(3,3) L(6,0) L(6,5) L(6,6)
warp 2  thread 5 L(6,2)
L thread 6 L(6,4)
(b) Warp-Level Synchronization-Free SpTRSV.
[ thread 1 L(0,0) L(6,0) L(6,2) L(6,4) L(6,5) L(6,6)
warp 1 9 thread 2 | L(1,1) L(7,0) L(7,1) L(7,2) L(7,7)
L thread 3 L(2,1) LiZ)
[ thread 4 L(3,1) L(3,2) L(3,3)
warp 2 7 thread 5 L(4,0) L#4,1) L4.4) ‘ Data
transmission
L thread 6 L(5,2) L(5,5)
Tsub-matrix 01 (¢) Thread-Level Synchronization-Free SpTRSV (CapelliniSpTRSV). I:] Level 0
[thread 1 |} LO0) | | T L(60) | L65) | L66) [ ] reven
1
warp 1 4 thread 2 [; L(L,1) ! L(6.2) l:]
T Level 2
L thread 3 |, L(2,1) L%Z) ] L(6,4) H T peena
e e P e (e T : sub-matrix 2;
thread 4 || L(@3.1) L(3.,2) L(3,3) " 1 L(7,0) L(7,7) " |:] Level 3
warp 2 7 thread 5 I L(4,0) L(4,1) L(4,4) | L(7,1)
[ thread6 |:_ | ey | wea i ).

time
>

>

Fig. 2. An example to show the benefits from our YuenyeungSpTRSV. The partitions for sub-matrices in (d) are used to integrate thread-level and

warp-level algorithms, detailed in Section 4.

instruction. Assume the warp size is warp_size (32 in Nvidia
GPUs). When the related row of a component has fewer
nonzero elements than warp_size, some threads will be idle
and have to wait until the end of the warp execution.
Opportunities. A fine-grained thread-level and warp-level
fusion synchronization-free SpTRSV could solve the limita-
tions of current warp-level synchronization-free SpTRSV
algorithms. First, when we handle the matrix parts with low
parallel granularity (detailed in Section 3.2), a thread-level
design could be applied without the limitations of warp-level
synchronization-free SpTRSV algorithms. Second, when we
handle other matrix parts with large parallel granularity, we
remain to use the warp-level design to fully utilize the GPU
capacities. Third, with such fusion design, we do not need to
worry about whether a thread will be idle waiting or have
imbalanced load in different situations. Before we show our
experimental analysis, we use a case study for illustration.
Case Study. We show the SpTRSV workflow for different
algorithms in Fig. 2. We use the matrix L of Fig. 1 as input.
For simplicity, we assume the GPU device can launch two
warps at the same time, and each warp can support three
threads. First, in Fig. 2a, for Level-Set SpTRSV, although it
can execute at thread level, the synchronization in the level-

set design limits its parallelism. Second, in Fig. 2b, although
the warp-level synchronization-free algorithm achieves per-
formance improvement by removing synchronizations com-
pared to Fig. 2a, there are still many idle threads. Note that
for L(4,4), thread3 cannot handle it along with L(4,0) and
L(4,1) because L(4,4) needs to be integrated with the inter-
mediate results after L(4,0) and L(4,1) are processed.
Third, in Fig. 2c, which is our preliminary design [19], the
overall efficiency is improved but there is still thread idle
waiting; thread3 of warpl is idle when warp]1 is solving com-
ponents x5 and x7, and warp2 is not fully used. Fourth, in
Fig. 2d, the thread-level and warp-level fusion SpTRSV
design utilizes the GPU better, but there exist several chal-
lenges, which shall be discussed in Section 3.3.

3.2 Experimental Study
We use real sparse matrices from the University of Florida
Sparse Matrix Collection [20] to analyze the performance of
warp-level synchronization-free SpTRSV algorithm. Before
we show our experimental findings, we need to design an
indicator for describing the parallelism in sparse matrices.
Parallel Granularity. We define a new indicator, parallel
granularity, as shown in Equation (1) to describe the
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Fig. 3. Performance trend of warp-level synchronization-free SpTRSV.
The performance declines after reaching the peak state.

influence from the two factors: 1) the average number of
components per level n.,., and 2) the average number of
nonzero elements per row nnz,.,. The larger nje.; the
worse the performance. The reason is that for warp-level
SpTRSV, if the number of components z in a level exceeds
the supported number of warps on GPUs, the level has to
be processed in several rounds. The larger nnz,,,, the better
the performance, since a large nnz,q, can reduce idle states.
We mainly use the logarithm function to normalize 7y
and nnz,,, in our analysis, because these two factors show a
different range of values. We add bias of b; and b, in Equa-
tion (1) to avoid numerical errors. The parameters of bases
and bias in Equation (1) can be adjusted by users; by
default, we use common logarithm where the all the bases
are 10, and b; and b, are 0.01 in Equation (1). For other val-
ues of these parameters, the performance trend is similar.

lOgcQ (nlm)el)

parallel_granularity = log., (m + b2> .
c3 TOW 1

1)

Performance Trend. The performance trend of the current
warp-level synchronization-free SpTRSV is shown in Fig. 3.
As the increase of parallel granularity, the SpTRSV perfor-
mance increases at first, and then declines. The reason is
that as the parallel granularity increases, the GPU resources
are underutilized: more idle states appear in threads. A
thread-level and warp-level fusion synchronization-free
SpTRSV could help when the performance declines.

3.3 Challenges
We present the technical challenges for developing
YuenyeungSpTRSV.

Challenge 1: Fusion of Thread-Level and Warp-Level Algo-
rithms. To further improve the performance of SpTRSV, we
propose a warp-level design and thread-level fusion design in
Fig. 2d, which means that we integrate the warp-level design
of Fig. 2b and the thread-level design of Fig. 2c together. How-
ever, we encounter two major difficulties. First, we need to
develop a segmentation method to allocate the rows with
fewer nonzero elements to be processed at thread level, and
allocate the other rows to be processed at warp level. Addi-
tionally, the segmentation should not disrupt the row order.
Second, both warp-level and thread-level algorithms coexist
at the same kernel execution, which could cause new parti-
tioning issues. For example, assume we plan to process row0
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and row]1 at thread level, and process row?2 at warp level. If we
use threadl and thread2 to process row( and rowl separately,
and use threads 3 to 5 to process row2, then both thread-level
and warp-level algorithms are executed in the same warp (the-
ads 1 to 3), which causes deadlock; however, if use another
warp such as warp2 to process row2, thread3 is wasted.

Challenge 2: Avoiding Deadlocks. Previous deadlock solution
designs of warp-level synchronization-free SpTRSV do not
work at thread level. Previous methods [16], [22] usually use a
while-loop to constantly check whether the related value has
been updated. Because the threads in a warp of the warp-level
algorithms are designed to update the same value, they do not
have deadlocks. In thread-level design, the threads in one
warp may have dependencies. For example, if our program
simply requires processing all the elements before updating
the component, then thread2 and thread3 in Fig. 2d shall incur
deadlocks. Because thread2 and thread3 are in the same warp,
when thread3 constantly checks z; for L(2, 1), according to the
GPU execution manner [22], thread? also executes the same
instructions, but does not update the status of z;.

Challenge 3: Last Element Checking. In SpTRSV, when proc-
essing a nonzero element in a row, we need to verify
whether the processed element is on the diagonal since the
element on the diagonal is the last element and processing
the last element means that the related component z; is
ready to be calculated. A common solution is to add an if
statement for checking the last element before processing
each nonzero element. However, such last element checking
causes runtime overhead. For example, in the process of
thread5 in Fig. 2d, last element checking happens before
thread5 processing L(4,0) and L(4,1), which should be
removed. In our experiments, such as matrix nlpkkt160, this
overhead can cause 27.3 percent performance slowdown.

Challenge 4: Thread Execution Model. Although we can use a
thread to handle one component, the GPUs are still executed
in the warp execution mode. In detail, the threads in the same
warp have to transmit the required components simulta-
neously. For example, in Fig. 2d, thread6 requires x, for proc-
essing L(5,2), which can only be obtained after the third
cycle. However, if we simply use a conditional while-loop to
check the condition to move on, thread6 starts this checking
from the beginning and the thread4 and thread5 within the
same warp also need to wait for thread6 in the constant condi-
tion check, which means that the processing of L(3,1) and
L(4,0) also needs to be postponed to the fourth cycle though
their required z; and z are ready at the second cycle.

4 OVERVIEW OF YUENYEUNGSPTRSV

We show YuenyeungSpTRSV in Fig. 4, which integrates
both the thread-level and warp-level synchronization-free
SpTRSVs. In detail, it identifies the components that cause
GPU underutilization at warp level, and processes these com-
ponents and their related rows in sparse matrices at thread
level. For the rest of components, YuenyeungSpTRSV remains
to use the warp-level algorithm.

We next show our four novel designs in Yuenyeung
SpTRSV, and then discuss how these designs solve the chal-
lenges mentioned in Section 3.3.

Design to Integrate Thread-Level and Warp-Level Algorithms.
We develop a light-weight fusion solution, which avoids
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Fig. 4. YuenyeungSpTRSV illustration.

warp-level and thread-level SpTRSVs being executed in the
same warp and at the same time, ensures that no threads are
idle. In detail, we divide the input matrix into multiple sub-
matrices with warp_size rows. In Fig. 2d, we divide matrix L
into three sub-matrices, sub-matrix0 from row0 to row2, sub-
matrix1 from row3 to rowb, and sub-matrix2 from rowb6 to row?.
If we process a sub-matrix at warp level, the number of
required warps is the number of rows in each sub-matrix,
which is warp_size except the last sub-matrix. For example, in
Fig. 2d, we process sub-matrix2 at warp level, where warpl han-
dles row6 and warp2 handles row?. If the sub-matrix is solved at
thread level, then we need only one warp (warp_size threads) to
handle it, where each thread solves one component. For exam-
ple, in Fig. 2d, sub-matrix0 is solved by warpl, and sub-matrix1
is solved by warp2. With this design, the warp-level and
thread-level algorithms coexist together with no idle threads.

Design to Avoid Deadlocks. We propose a two-phase mech-
anism to avoid the deadlocks in YuenyeungSpTRSV. We
divide the computation process of a warp into two phases.
The first phase is for the elements in the related row of
matrix L that has no inter-dependency within a warp. These
elements can be processed directly and do not cause the
deadlock problem. The busy-waiting strategy can be
applied here to obtain the uncalculated data. For example,
in Fig. 2d, thread4 in warp2 waits x» from thread3 in warpl.
The second phase relates to the rest of the elements in the
row that have inter-dependency within the warp. Instead of
using an endless loop, we use a for-loop and the number of
loops is the warp size: we guarantee the data that need to be
transmitted shall be put into the target place within a period
of warp-size loops. For example, in Fig. 2d, thread3 waits one
loop for z; from thread2 in the same warp to process L(2, 1).

Efficient Last Element Checking. As discussed in Challenge 3
of Section 3.3, last elements refer to the elements on the diago-
nal of matrix L. Since the time-consuming part is the constant
if checking for the last elements, a possible optimization is to
reduce the number of such last element checkings. We further
analyze the SpTRSV process, and find that to process element
L(i,7), the component z; needs to be ready. Consequently,
the last element checking can be integrated into the element
processing: if z; is ready, then the related L(i,j) must not be
on the diagonal (z; is the target to be calculated for row j) and
thus is not the last element of row i. Therefore, we only need
to check the element whose relevant component z; is not
ready. For example, in the process of thread5 in Fig. 2d, thread5
obtains z for L(4,0) and x; for L(4,1), and do not need to
make further last element checking.

Adaptation to GPU Thread Execution. Because GPUs exe-
cute in warps, we do not distribute components during
warp execution. Instead, we distribute tasks at the begin-
ning of the warp execution. For example, in Fig. 2d, we do
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not distribute the task for row3 of the component z3 to
thread4 during the warp execution; we distribute row3
to thread4 along with row4 to thread5 and rowb to thread6, but
thread4 is in a waiting state. After the component z; has
been processed, L(3,1) can be processed. Similar process
also happens for thread5 and thread6, which wait until the
components z; and x, are ready. With this strategy, our
thread-level execution can adapt to the current warp-based
GPU architectures. Furthermore, we propose a Writing-First
optimization in Section 5.3 that threads can compute the ele-
ments and write the partial results first without waiting for
the other threads. For example, in Fig. 2d, thread4 and
thread5 can compute elements L(3,1) and L(4,0) without
waiting L(5,2), and thread5 can compute the component x4
in the fourth cycle without waiting thread4 and threadé6.
Features. In addition to addressing the challenges above,
YuenyeungSpTRSV has the following desirable features.

e  Strong effectiveness. By addressing the limitations of
existing approaches, YuenyeungSpTRSV supports
sparse matrices that have high parallel granularity,
which enables the synchronization-free SpTRSV
design to be efficient for various sparse matrices.

e CSR format. YuenyeungSpTRSV adopts the most
popular CSR format, so that users do not need to
conduct format transformation.

o  Very low preprocessing time. YuenyeungSpTRSV does
not need to calculate levels or convert formats, so the
preprocessing time is very low and it can be easily
applied to various situations.

In the rest parts of the paper, we start with our design of
thread-level synchronization-free SpTRSV (Section 5), fol-
lowed by the fusion of thread-level and warp-level designs
which shows how to integrate the warp-level optimization
to our thread-level design (Section 6), and then our detailed
implementation (Section 7).

5 THREAD-LEVEL DESIGN

Following the general design in Section 4, we show our
thread-level synchronization-free SpTRSV in this section,
which mainly derived from CapelliniSpTRSV [19].

5.1 Algorithm Design
In this part, we show our first version of thread-level syn-
chronization-free SpTRSV in a two-phase manner.

Overview. The thread-level design does not need prepro-
cessing. Our thread-level SpTRSV computes the compo-
nents in the original row order of the input sparse matrix L.
As discussed in Section 4, the first phase is used to handle
the elements in the row of matrix L that have no inter-
dependency in a warp, and the second phase is for the rest
elements that have dependencies.

Detailed Algorithm. We show our Two-Phase Yuenyeung
SpTRSV in Algorithm 4. In the algorithm, each thread com-
putes a row or a component in the original row order of the
matrix. According to the prior paragraph, we divide the ele-
ments of the row into two groups according to the depen-
dencies within a warp. Because the threads compute the
components in order, there is only a border warp_begin we
need to compute to divide the elements (Line 6). We first
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compute the elements without the inter-warp dependency
(Lines 8-15) in the first phase, since these elements do not
cause the deadlock issue. In this group, we use the tradi-
tional busy-waiting method (Lines 11-12).

Algorithm 4. Two-Phase YuenyeungSpTRSV

1: Input: InputMatrix L, array b
2: Output: array x
3: MALLOC (xget_value, L.rows)
4: MEMSET (xget_value, 0)
5: fori=0to L.rows-1 in parallel do > One thread for one
component
6:  warp_begin — (i/warp_size) x warp_size
70 left_sum —0
8:  forj=L.RowPtr[i] to L.RowPtr[i+1]-2 do > Phase 1
9: col — L.Colldx[j]
10: if col < warp_begin then
11: while get_value[col] # true do
12: /] busywait
13: left_sum «— left_sum + L.Val[j] x x[col]
14: else
15: break
16:  col «— L.Colldx[j]
17: fork =0 to warp_size-1 do > Phase 2
18: while get_vlaue[col] = true do
19: left_sum «— left_sum + L.Val[j] x x[col]
20: je—j+1
21: col — L.Colldx[j]
22: if col = i then
23: x[i]«—(bli]-left_sum)/L.Val[L.RowPtr[i+1]-1]
24: _threadfence()
25: get_valueli] «— true
26: j—j+l
27: break

28: FREE (xget_value)

After calculating the elements without inter-warp depen-
dency, we compute the interdependent elements in the sec-
ond phase. Because components only depend on previous
ones, after computing all the components outside the warp,
the warp can solve at least one component in each for-loop.
Hence, the maximum number of loops for computing the
components in a warp is equal to the warp size warp_size, and
we set the number of iterations for the for-loop to the warp size
(Line 17). Since threads in the same warp execute synchro-
nously, the traditional busy-waiting method cannot be used.
Instead, the threads have to check the finishing conditions.
The first condition is whether the current element has been
computed or not. If the element is computed (Line 18), then
the algorithm accumulates its value (Line 19) and moves to
the next element in the same row (Lines 20-21). The second
condition is whether the current element is the last one in the
row (Line 22). The variable col is the column number of the
element. If col is equal to the last one of the row (Line 22), then
the algorithm will calculate and save the component’s related
value (Line 23), and set the array get_value to true (Line 25) to
tell the other threads that the component is solved.

5.2 Limitation of Two-Phase Design
Before we introduce our final thread-level synchronization-
free SpTRSV, we revisit Algorithm 4 shown in Section 5.1.
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For the first phase, the while-loop (Line 11) has a runtime
issue due to the busy waiting for the threads in the warp:
before the computation in Line 13, the thread needs to wait
for get_value[col] to be set to true; even worse, the other
threads in the same warp also need to wait due to the internal
warp execution mechanism in GPUs. For example, in Fig. 2c,
thread6 waits until the fourth cycle to process L(5,2); how-
ever, due to the while-loop (Line 11), the computations of
L(3,1) for thread4 and L(4,0) for thread5 also need to be post-
poned to the fourth cycle. For the second phase (Line 17), the
premise of starting the second phase is that all threads in the
same warp have finished the calculation of all nonzero ele-
ments whose relevant components have been computed in
the other warps. Due to the warp-level synchronous execution
in GPUs, for the threads that have finished their first-phase
computation, they still have to wait for the other threads in
the same warp to enter the second-phase in Line 17. For exam-
ple, in Fig. 2¢, thread5 cannot process L(4,4) directly after the
computation for L(4, 1), but needs to wait for the processing
of L(3,2) and L(5,2) in Line 16.

5.3 Control Flow Optimization

To solve the above performance limitation, we design a
Writing-First YuenyeungSpTRSV, which removes the com-
puting part for the elements without inter-warp depen-
dency (the first phase), and expands the scope of the
computation from the inter-warp dependent elements (the
second phase) to the whole elements in the row.

Algorithm 5. Writing-First YuenyeungSpTRSV

: Input: InputMatrix L, array b

: Output: array x

: MALLOC (xget_value, L.rows)

: MEMSET (xget_value, 0)

fori =0 to L.rows-1 in parallel do
component

Gk N =

> One thread for one

6: left_sum «—0
7:  j <« L.RowPtr[i]
8: whilej < L.RowPtr[i+1] do
9: col «— L.Colldx[j]
10: while get_value[col] = true do
11: left_sum «— left_sum + L.Val[j] x x[col]
12: je—j+1
13: col — L.Colldx[j]
14: if i = col then
15: x[i]«—(bli]-left_sum)/L.Val[L.RowPtr[i+1]-1]
16: _threadfence()
17: get_valueli] «— true
18: j—j+1
19: break

20: FREE (xget_value)

Detailed Algorithm. We show our Writing-First Yuenyeung
SpTRSV in Algorithm 5. In this algorithm, each thread com-
putes a component, which relates to a row, in the original row
order of the matrix (Line 5). The variable j is equal to the loca-
tion of the current computing element in the CSR-format
matrix (Line 7), and the variable col is equal to the column
number of the current element (Line 9). There are two condi-
tions to check. The first one is about whether the current com-
puting element is solved. If it is true (Line 10), then the
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algorithm accumulates its value (Line 11) and moves to the
next element in the same row (Lines 12-13). The second condi-
tion is whether the current element is the last one or not. If col
is equal to the last one in the row (Line 14), then, the algorithm
shall calculate and save the related values of the component
(Line 15), and set the related value in the array get_value to true
(Line 17) to tell the other threads that the component is ready.

6 FusIiON DESIGN OF YUENYEUNGSPTRSV

After introducing the thread-level design in Section 5, in
this section, we show how to integrate it with the warp-level
synchronization-free SpTRSV. We first show our general
design of YuenyeungSpTRSV, and then show our segmen-
tation method in preprocessing, followed by the detailed
algorithm design. YuenyeungSpTRSV involves novel cross-
GPU optimizations, including data structures to represent
different processing levels, a lightweight model to predict
the configuration, and adaptation to GPU architectures.

6.1 Fusion of Thread-Level and Warp-Level SpTRSV
We show our design in combining our thread-level SpTRSV
(Algorithm 5 in Section 5) with previous warp-level syn-
chronization-free SpTRSV (Algorithm 3 in Section 2.3) in
this part.

Analysis. As discussed in Section 3.3, a warp of threads
needs to be regarded as a whole to process components at
warp level or thread level. To handle such limitations, we
propose the following design rules. First, if we use one
thread of a warp to compute one component with one row
in the input sparse matrix, which represents the thread-level
SpTRSV, then the other threads within the same warp also
have to process components at thread level; otherwise, we
use the whole warp of threads to compute one component
with one row, which represents the warp-level SpTRSV.
Second, due to the warp-specific limitation on GPUs, the
sparse matrix needs to be segmented at warp granularity to
avoid assigning both thread-level and warp-level SpTRSVs
to one warp. In detail, for a group of rows of continuous
warp size, it can only select either warp-level or thread-level
SpTRSV to be processed. Third, an efficient mapping mech-
anism needs to be developed to map threads to components
(rows in the sparse matrix) at thread level or warp level.

Our Approach. We add an additional data structure to
represent different processing levels. To map the threads to
rows of the sparse matrix at both thread and warp levels
efficiently, we add a buffer execute_row_id to store the start
position for each warp. For warp i, if its related number of
rows “execute_row_id[i + 1]-execute_row_id[i]” is the warp
size, then this warp processes rows of warp size at thread
level; if “execute_row-id[i + 1] — execute_row_id[i]” is one,
the warp processes one row at warp level. We show an
example in Fig. 5. Assume a warp contains n threads and
there are m warps in the system. The threads in warpl pro-
cess rows 1 to n at thread level, because the address2 minus
addressl in execute_row_id equals the warp size n. The
threads in warp2 process row n+1 at warp level, because the
address3 minus address2 in execute_row_id equals one. With
this adaptation to GPU architectures, thread-level and
warp-level kernels co-run in YuenyeungSpTRSV.
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Fig. 5. Warp-level and thread-level fusion SpTRSV design.

6.2 Detecting Threshold

As discussed in Section 3, the thread-level SpTRSV is good
at processing sub-matrices with high parallel granularity,
while the warp-level SpTRSV is suitable for sub-matrices
with low parallel granularity. Hence, we need to define a
threshold to distinguish whether to use thread-level design
or warp-level design.

Analysis. We first analyze the selection criteria. Parallel
granularity has two influencing factors: the first is the aver-
age number of components per level 7., and the second is
the average number of nonzero elements per row 7112z,,.
However, calculating the number of components in each
level needs to identify the level where the row is located,
and then requires counting the number of components in
each level, which incurs large time overhead.

Our Approach. We build a lightweight model to predict the
configuration. First, we can have a preprocessing phase to
determine the threshold. During the procedure to find a suit-
able threshold, the preprocessing time should be very short, so
that our YuenyeungSpTRSV can have a wide range of applica-
tion scenarios. Second, to minimize the preprocessing time, we
only use the average number of nonzero elements per row
nNZye to select the processing level. After we identify a thresh-
old, if the nnz,,, of a sub-matrix exceeds the threshold, the
warp-level SpTRSV is used, and each row is computed by one
warp; otherwise, the thread-level SpTRSV is used, and the
entire sub-matrix is calculated by one warp. Third, the thresh-
old could be platform dependent, which means that the
thresholds on different platforms could be different.

Detailed Design. We prepare a training set of 1,000 matrices
generated from Graph 500 [24] with various parallel granular-
ities. We keep the lower triangular part of the sparse matrices
and calculate the number of nonzero elements per row for
training. For each matrix, we compare the number of nonzero
elements per row with its performance on both warp-level
synchronization-free SpTRSV and thread-level synchroniza-
tion-free SpTRSV. Note that the training set needs to be exe-
cuted only once when a platform is available, and the
threshold is determined after the training process. Then,
when a sparse matrix comes, we only need to calculate the
average number of nonzero elements per row for row seg-
mentation and assign an appropriate processing method to
each row by setting execute_row_id.
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6.3 YuenyeungSpTRSV Algorithm Design

In this part, we illustrate our thread-level and warp-level
fusion synchronization-free SpTRSV in Algorithm 6. The
ALGCHOOSE function is used to assign different processing
methods to sub-matrices.

Algorithm 6. YuenyeungSpTRSV

: Input: InputMatrix L, array b

: Output: array x

. execute_row_id, array_len = function ALGCHOOSE

: for warp = 0 to array_len-2 in parallel warp do

if execute_row_id[warp+1] - execute_row_id[warp] > 1 then
use thread-level SpTRSV to compute rows in a warp

else
use warp-level SpTRSV to compute a row in a warp

PN RN

—_
@ P

: Function ALGCHOOOSE(InputMatrix L)
11:  warp_id 0
12:  for row_start = 0 to L.rows-1 step warp_size do

13: row_end «— minimum(row_start+warp_size, L.rows)

14: avg_element_row «— (L.RowPtr[row_end]-L.RowPtr
[row _start]) / (row_end-row_start)

15: if avg_element_row > threshold then > warp-level

16: for i = row_start to row_end-1 do

17: execute_row_id[warp_id] — i

18: warp_id — warp_id + 1

19: else > thread-level

20: execute_row_id[warp_id] — row_start

21: warp_id «— warp_id + 1

22:  execute_row_id[warp_id] — L.rows

23:  warp_id — warp_id + 1

24:  array_len «— warp_id

25:  Return array execute_row_id, array_len

YuenyeungSpTRSV. In Algorithm 6, execute_row_id stores
the start location for each warp and array_len stores the
length of execute_row_id; “array len-1" is the number of
warps need to be executed. For each warp, if it needs to han-
dle multiple rows, which is warp_size rows in default (Line
5), YuenyeungSpTRSV calls the thread-level design for the
sub-matrix (Algorithm 5); otherwise, it calls the warp-level
design (Algorithm 3).

Segmentation. The ALGCHOOSE function is our segmenta-
tion algorithm. In the ALGCHOOSE function, row_start (Line
12) is the first row number of the sub-matrix, and row_end
(Line 13) is its last row number. The sub-matrices have warp_-
size rows except the last sub-matrix. The average number of
the nonzero elements per row in the sub-matrix is stored in
variable avg_element_row (Line 14). We use the threshold
described in Section 6.2; if avg_element_row is greater than the
threshold, which means that the number of nonzero elements
in each row of this sub-matrix is large, YuenyeungSpTRSV
selects warp-level synchronization-free SpTRSV to handle this
sub-matrix (Line 15). We use one warp to process one row, so
we set the row location for each warp of the sub-matrix in array
execute_row_id (Lines 16-18). If avg_element_row is less than the
threshold, indicating that the average number of nonzero
elements in each row of this sub-matrix is small, Yue-
nyeungSpTRSV selects the thread-level design for this sub-
matrix (Line 19). In thread-level design, YuenyeungSpTRSV
needs one warp to solve a sub-matrix, so we record only the
first-row location of the sub-matrix for this warp in array

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2021

execute_row_id (Lines 20-21). For the last warp, we set the last
element of array execute_row_id to the total number of rows of
the input sparse matrix (Line 22).

Applicability. The idea behind YuenyeungSpTRSV is not
limited to SpTRSV and can be used for other sparse problems,
especially in DAG-based situations that involve massive
dependencies. In this work, the SpTRSV process can be repre-
sented as a DAG traversal, as shown in Fig. 1, where each
node in the DAG tries to solve the related component z;. In
addition, our idea can be applied to the other irregular task
scheduling situations. For example, a large application can be
divided into several modules with dependencies, and the
modules without dependencies can be executed in parallel.
Another example is the query plan optimization in database
domain. A SQL query can be represented as a DAG of opera-
tors. In these cases, the amount of computation of each opera-
tor node is different, and we can choose different methods to
handle each node based on the amount of computation. In
this way, our idea can be applied to efficiently execute such
irregular computations on GPU with synchronization-free
thread-level and warp-level adaptation.

7 CROSS-PLATFORM IMPLEMENTATION

We provide cross-platform YuenyeungSpTRSV implementa-
tion for two purposes. The first purpose is to ease pro-
grammers’ burden in porting YuenyeungSpTRSV to various
platforms. To this end, we provide not only CUDA imple-
mentation but also OpenCL implementation, which is similar
to [23]. The CUDA module is used for the SpTRSV on Nvidia
GPUs, while the OpenCL module is used for the other plat-
forms, such as AMD GPUs. The second purpose is to provide
a light-weight high-performance SpTRSV implementation,
which can help existing applications directly.

8 EVALUATION

In this section, we evaluate YuenyeungSpTRSV in compari-
son with the state-of-the-art synchronization-free and cuS-
PARSE SpTRSV algorithms.

8.1 Experimental Setup
Methods. Our SpTRSV algorithm is denoted as “Yuenyeung”.
We compare our YuenyeungSpTRSV with the state-of-the-art
synchronization-free SpTRSV algorithm [23], which is denoted
as “SyncFree”. Because cuSPARSE [21] is very popular and has
been widely used in various areas, we also compare our algo-
rithm with the SpTRSV in cuSPARSE. Moreover, we compare
our work to CapelliniSpTRSV, denoted as “Capellini”, which
is our preliminary work presented in [19] with only thread-
level designs. We do not further analyze level-set based meth-
ods due to their excessive preprocessing time, as discussed in
Section 2.5. Because for SpTRSV, precision is very impor-
tant [16], [23], [25], we mainly focus on the double precision.
Platforms. We measure the performance of the SpTRSV
algorithms on four experimental platforms, as shown in
Table 3, including three generations of Nvidia GPUs (Pascal,
Volta, and Turing micro architectures) and an AMD APU.
Datasets. We randomly download 873 sparse matrices,
whose numbers of nonzero elements are larger than 100,000,
from the University of Florida Sparse Matrix Collection [20],
which have been widely used in previous research [16], [23].
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TABLE 3
Platform Configuration
Platform Pascal Volta Turing APU
GPU GTX 1080 V100 RTX 2080 Ti Radeon Vega 11
Memory GDDR5X HBM2 GDDR6 DDR4
CPU i7-7700K E5-2640 i9-9900K Ryzen 5 2400G
(O] Ubuntu 16.04.4 Ubuntu 16.04.1 Ubuntu 18.04.4 Ubuntu 18.04.3
Compiler CUDA 8 CUDA 9 CUDA 10.2 ROCm

To ensure the matrices are lower triangular (we use unit-lower
triangular here), we keep only the lower-left elements and
assign values to the diagonal elements. The average number of
nonzero elements per row is 19.6, and the average number of
components per level is 12484.9. As Fig. 3 in Section 3.2, the
performance of SyncFree SpTRSV decreases after the parallel
granularity is larger than 0.7. Therefore, we mainly focus on
the sparse matrices with parallel granularity larger than 0.7,
which include 245 matrices. We use the same matrices as
in [19]. These matrices come from various domains: 42.0 from
graph applications, 13.9 percent from circuit simulations, 11.0
percent from combinatorial problems, 9.4 percent from linear
programming problems, and 8.6 percent from optimization
problems.

8.2 Performance
YuenyeungSpTRSV targets sparse matrices with high paral-
lel granularity. We show the performance of different algo-

rithms in this part, which proves the effectiveness of our
SpTRSV algorithm.
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Fig. 6. Performance for different SpTRSVs.

GFLOPS. Experiments show that on all platforms, Yue-
nyeungSpTRSV exhibits the highest performance in the matri-
ces with parallel granularity larger than 0.7. We show the
performance results for different algorithms on various GPU
platforms when the parallel granularity ranges from 0.7 to 1.2
in Fig. 6, which shows that YuenyeungSpTRSV brings signifi-
cant performance benefits. We show the average performance
for different algorithms on the four platforms in Table 4.
On average, YuenyeungSpTRSV achieves a performance of
7.14 GFLOPS/s, while the SyncFree SpTRSV achieves only
1.79 GFLOPS/s on Nvidia GPUs, which implies that Yue-
nyeungSpTRSV successfully handles the matrices that previ-
ous work cannot handle in an efficient manner. The SpTRSV
in cuSPARSE can also achieve a performance of 1.93
GFLOPS/s. Our YuenyeungSpTRSV achieves the highest per-
formance for 95.28 percent of the matrices on the four
platforms. In Fig. 6, YuenyeungSpTRSV exhibits similar per-
formance on both Volta and Turing platforms, but much lower
performance on the Pascal platform. The reason is that the Pas-
cal platform has much fewer number of GPU cores and lower
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TABLE 4

The GFLOPS of Different SpTRSV Algorithms and the
Percentage of Matrices That Achieve the Optimal

Performance Using YuenyeungSpTRSV

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2021

Platform Pascal Volta Turing Average Apu

SyncFree 0.652 2.721 1.983 1.785  0.052

cuSPARSE 0.903 3245 1.636 1.928 none

CapelliniSpTRSV 3413 8.091 9.028 6.844  0.333

YuenyeungSpTRSV 3.613 8.601 9.204 7139  0.364

Percentage (%) 96.33 9238 97.14 9528 100.00
TABLE 5

The Average and Maximum Speedups Over SyncFree
and cuSPARSE on Different Platforms

Platform Pascal  Volta Turing Apu
Average speedup over 5.49 4.14 5.71 8.56
SyncFree

Maximum speedup over  19.89 36.50 4593 60.00
SyncFree

Matrix name Ip1 Ip1 Ip1 Ip_ken_18
Average speedup over 4.20 3.12 716  none
cuSPARSE

Maximum speedup over  22.20 2583 75.33 none
cuSPARSE

Matrix name watson_2atmosmodd  sls none

memory bandwidth. However, YuenyeungSpTRSV achieves
the highest performance for more than 90 percent of the matri-
ces on all platforms.

Speedup. To further elaborate the benefits of Yuenyeung
SpTRSV over the other SpTRSVs when the parallel granular-
ity is large, we show the performance speedup of Yue-
nyeungSpTRSV over the SyncFree and cuSPARSE algorithms
in Table 5. On average, YuenyeungSpTRSV achieves 5.98x
speedup over the SyncFree SpTRSV, and 4.83x speedup over
the cuSPARSE SpTRSV for these matrices when the parallel
granularity is larger than 0.7. We show the performance
speedup of YuenyeungSpTRSV over SyncFree SpTRSV in
Fig. 7, and we can see that the performance benefits increase
along with the parallel granularity.

Algorithm Preference Distribution. As shown in Section 3.2,
warp-level SpTRSV (SyncFree) has low performance when
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Fig. 8. Optimal algorithm distribution on Turing (GeForce RTX 2080 Ti).

the parallel granularity of matrices is high. Thread-level
SpTRSV (Capellini) has high performance on matrices with
high parallel granularity. Fig. 8 further proves our idea. The
parameter of parallel granularity relates to two factors of 1)
the average number of components per level 7., and 2) the
average number of nonzero elements per row nnz.,, We
show the optimal algorithm selection between warp-level
design and thread-level design under different factors of 1
and nnz,,, in Fig. 8 on Turing GPU. The thread-level design is
better when 7., is high and nnz,,, is low, while the warp-
level design is better when ., is low and nnz,, is high. Yue-
nyeungSpTRSV integrates the advantages of both designs.

8.3 Benefits of YuenyeungSpTRSV Over
Thread-Level SpTRSV

To quantify the benefits of warp-level and thread-level fusion
design over the thread-level SpTRSV design, we compare
YuenyeungSpTRSV with the thread-level SpTRSV design
(CapelliniSpTRSV). We show the average and maximum
speedups of YuenyeungSpTRSV over CapelliniSpTRSV in
Table 6, and have the following observations. First, the
fusion design achieves an average speedup of 1.86x over the
thread-level design, which proves the effectiveness of Yue-
nyeungSpTRSV. Second, the number of rows that are proc-
essed by warp-level SpTRSV is limited, but the proportion of
nonzero elements of these rows are large. Third, the perfor-
mance behavior on different architectures varies. For exam-
ple, the matrices that achieve the maximum speedup are
different on the four microarchitectures.

To better show the advantages of YuenyeungSpTRSV
over CapelliniSpTRSV, we accumulate the processing time
for each row of the three matrices in Table 6 on the Turing
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Fig. 7. Performance YuenyeungSpTRSV speedup over the SyncFree SpTRSV for different sparse matrices.
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TABLE 6

The Average and Maximum Speedups Over Thread-Level SpTRSV on Different Platforms
Platform Pascal Volta Turing APU
Average speedup over thread-level 1.52 1.77 1.65 2.04
Maximum speedup over thread-level 13.00 22.13 13.00 30
Matrix name tp-6 circuitbM tp-6 circuit_4
Warp-level rows 160 50080 160 369
Warp-level row ratio (%) 0.11 0.90 0.11 0.46
Warp-level elements 142176 6333690 142176 44952
Warp-level element ratio (%) 32.74 19.46 32.74 23.61

Warp-level rows: the number of rows that are processed by the warp-level design. Warp-level row ratio: the proportion of warp-level rows. Warp-level elements:
the number of nonzero elements processed by the warp-level design. Warp-level element ratio: the proportion of warp-level elements.

platform. We respectively accumulate the time to process
the rows that should be processed in thread-level and
warp-level designs, as shown in Fig. 9. Note that in Capelli-
niSpTRSV, both parts are processed in thread-level SpTRSV.
In Fig. 9, the first part of each method (Capellini or Yue-
nyeung) represents the accumulated processing time of dif-
ferent rows that should be processed at thread level. The
second part represents the accumulated time that should be
processed at warp level, which accounts for about 30 per-
cent in CapelliniSpTRSV. In YuenyeungSpTRSV, the second
part has been significantly reduced to less than 4 percent.
Moreover, the time in the first part of YuenyeungSpTRSV
has also been reduced accordingly, which is due to the
shorter time for processing the components at thread level
waiting for components processed at warp level.

8.4 Reasons for Performance Improvement
To further exhibit the reasons for higher performance of Yue-
nyeungSpTRSV, we perform a detailed analysis for our novel
designs in Section 4. In this part, we use the Turing platform
for illustration. The results of the other platforms are similar.
Fusion of Thread-Level and Warp-Level Algorithms. The fusion
of thread-level and warp-level algorithms apply different
algorithms to handle their appropriate parts. As shown in
Fig. 8, the warp-level SpTRSV is suitable for matrices with
high number of nonzero elements per row, while the thread-
level SpTRSV is good at processing matrices with low number
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Fig. 9. Accumulated processing time for rows that should be processed
at thread level and warp level.

of nonzero elements per row. We show the average number
of nonzero elements per row before and after partitioning for
different algorithms in Fig. 10. The average number of non-
zero elements per row of the original matrices is 3.44. After
partitioning, for the warp-level part, its number increases to
148.43, which is more suitable for warp-level SpTRSV. In con-
trast, for the thread-level part, its number decreases to 2.73,
which is more suitable for thread-level SpTRSV.

Deadlock Avoidance With Thread-Level Better Utilization. We
propose a Two-Phase SpTRSV of Algorithm 4 to avoid
deadlocks at thread level. For further thread-level better uti-
lization, we develop Algorithm 5 of Writing-First strategy,
which removes the computation for elements without inter-
warp dependency, as discussed in Section 5.3. Such a strat-
egy reduces the required number of instructions and better
utilizes bandwidth. Experiments show that our optimiza-
tion reduces 53.55 percent GPU instructions and improves
57.00x bandwidth utilization compared to the Two-Phase
SpTRSV. Accordingly, the performance of our Writing-First
SpTRSV is 55.05x over that of Two-Phase SpTRSV.

Efficiency in Last Element Checking. We reduce the number
of last element checkings, as discussed in Section 4, which
decreases the number of instructions. Fig. 11 shows the num-
ber of executed instructions. In general, YuenyeungSpTRSV
saves 72.54 percent instructions compared to the SyncFree
SpTRSV, and 94.65 percent instructions compared to the cuS-
PARSE SpTRSV. Such results indicate the effectiveness of the
last element checking design in YuenyeungSpTRSV.

Adaptation to GPU Thread Execution. As discussed in Sec-
tion 4, threads in YuenyeungSpTRSV compute the elements
and write partial results without waiting for the other
threads. Additionally, YuenyeungSpTRSV launches fewer
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Fig. 10. Matrix partitioning for thread-level and warp-level algorithms.
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warps than the previous SyncFree SpTRSV, and our algo-
rithm is also more concise. We compare the instruction stall
percentage of different algorithms to show the benefits of
the adaptation design in YuenyeungSpTRSV. Fig. 12 shows
the instruction stall percentage. The value of our Yue-
nyeungSpTRSV is 0.52 percent, which is 80.74 percent lower
than that of SyncFree SpTRSV and 71.23 percent lower than
that of cuSPARSE SpTRSV.

8.5 Detailed Analysis

In this section, we show the bandwidth utilization, the pre-
processing time, and a case study for detailed analysis on
the Turing platform.

Bandwidth. Fig. 13 shows the bandwidth utilization on
the Turing platform. We use the Nvidia performance
analysis tool, ncu, to obtain the DRAM read and write band-
width. YuenyeungSpTRSV achieves an average bandwidth of
97.15 GB/s for the matrices whose parallel granularities
are larger than 0.7. The bandwidth utilization of Yue-
nyeungSpTRSV is 53.23x higher than that of the cuSPARSE
SpTRSV, 4.60x higher than the SyncFree SpTRSV, and 1.59x
higher than CapelliniSpTRSV, which proves the effectiveness
of YuenyeungSpTRSV.

Preprocessing Time. We show the average preprocessing
time in different algorithms in Table 7. YuenyeungSpTRSV
exhibits the lowest preprocessing time. The reason is that
YuenyeungSpTRSV only needs to scan the buffer that stores
the number of nonzero elements, which is extremely
lightweight.

Case Study. We randomly select six matrices, and show the
detailed parameters of different SpPTRSVs for the six matrices
in Table 8. The matrices with high parallel granularities
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TABLE 7
The Preprocessing Time in Different Algorithms
Preprocessing time cuSPARSE SyncFree Yuenyueng
Average 1.11 0.36 0.30
Minimum 0.03 0.02 0.00
Maximum 24.01 8.63 10.56
TABLE 8
Detailed Performance Indicators for Six Matrices
Algorithm  Performance Bandwidth Instructions Stall
(GFLOPS/s) (GB/s) (10%) (%)

cvxbqpl (8: 0.73; «: 4.00; B: 2000.00)
cuSPARSE 2.49 7.55 18.05 2.32
SyncFree 4.04 24.80 5.66 2.05
Capellini 4.45 42.52 2.24 0.18
Yuenyeung 6.37 42.53 2.17 0.16

nevxqp3 (8: 0.76; a: 4.00; B: 3000.00)
cuSPARSE 2.82 13.26 25.28 3.85
SyncFree 4.49 29.26 7.60 2.18
Capellini 6.19 57.66 3.26 0.17
Yuenyeung 8.98 57.74 3.11 0.16

luxembourg_osm (§: 0.88; o: 2.04; B: 268.38)

cuSPARSE 0.43 0.44 174.93 0.13
SyncFree 0.29 2.61 61.45 0.44
Capellini 0.68 8.05 17.86 0.11
Yuenyeung 0.99 8.22 17.00 0.09

rajat29 (&: 0.78; o: 4.89; B: 14636.23)
cuSPARSE 2.59 0.51 2932.32 0.08
SyncFree 0.84 7.44 351.50 0.41
Capellini 10.43 109.69 18.57 0.15
Yuenyeung 12.65 121.25 16.79 0.22

bayer01 (8: 0.87; a: 3.39; B: 9622.50)
cuSPARSE 2.55 12.26 16.32 4.99
SyncFree 422 27.28 5.60 2.24
Capellini 11.8 104.76 0.77 0.38
Yuenyeung 12.76 78.14 0.86 0.79

circuitsM_dc (8: 0.92; o: 3.02; B: 12812.06)

cuSPARSE 1.74 4.76 2981.90 1.45
SyncFree 2.06 28.07 536.12 1.53
Capellini 14.57 200.06 47.41 0.35
Yuenyeung 20.11 201.47 46.72 0.49

8: parallel granularity. o: average number of nonzero elements per row. f:
average number of components per level.
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usually have low average number of nonzero elements per
row and high average number of components per level. For
these matrices, the bandwidth utilization and instruction effi-
ciency of our YuenyeungSpTRSV are also better.

9 RELATED WORK

SpTRSV is an important function in the matrix computing
field, and has attracted a lot of research efforts.

Level-Set SpTRSV. Anderson and others [14] and Saltz
and others [15] proposed that level-set methods can be used
for the parallelism in sparse triangular solves. However, the
synchronization barrier often limits the performance of par-
allel SpTRSV [23]. To address this problem, Naumov and
others [26] developed a GPU-based level-set SpTRSV with a
tradeoff to reduce the number of synchronizations. Further,
Park and others [18] proposed a synchronization-sparsifica-
tion optimization, which can largely decrease the synchroni-
zation overhead and improve the scalability.

Color-Set and Other SpTRSVs. Schreiber and Tang [27] first
constructed color-sets for SpTRSV on multiprocessors by
graph coloring. And Suchoski and others [28] extended the
method to GPUs. Besides, Anzt and others [29] applied an
iterative approach for an approximate SpTRSV solution
using GPUs.

Synchronization-Free SpTRSV. Liu and others replaced the
synchronization with atomic operations [16], [30] and devel-
oped a strategy for further parallelizing multiple right-hand
sides [23] for a synchronization-free SpTRSV at warp level,
which is the state-of-the-art SpTRSV algorithm. However,
because this work is based on the warp level, for sparse matri-
ces with high parallel granularity, this algorithm cannot fully
utilize the GPU capacity. Different from this work, we propose
YuenyeungSpTRSV, a thread-level and warp-level fusion
SpTRSV targeting the sparse matrices with high parallel gran-
ularity, which can handle the limitation of the previous work.

Non-Uniform Distribution in Sparse Matrices. Irregular dis-
tribution in sparse matrices is a performance bottleneck on
GPUs. There are many related studies, especially for sparse
solvers. Yan et al. [31] proposed yaSPMV, which solves
SpMV’s load imbalance and high memory bandwidth prob-
lems through a segmented scan approach. Liu et al. [32]
presented a GPU-based SpGEMM algorithm to handle irreg-
ularity from nonzero entries, parallel insertions, and load
balancing. In addition to algorithm adaptation, program-
ming model (Groute) [33], task aggregation (ATA) [34], and
irregular input transformation (Tigr) [35] have been devel-
oped to make irregular applications more efficient on GPUs.
Different from these works, YuenyeungSpTRSV needs to
handle mixed operation of warp level and thread level algo-
rithms under dependent conditions on GPU, which is much
more complicated.

Matrix Optimization. In addition to the algorithms, research-
ers also proposed other strategies to accelerate matrix comput-
ing, such as the storage format of the matrix and the access
speed to the memory. Kulkarni and others [36] designed an
optimistic parallelization system, called Galois, for irregular
applications. They also introduced a structural analysis and a
data-centric formulation of algorithms for the irregular data
structures, which reveal a generalized form of data-parallelism
and this parallelism can be used by inspector-executor,
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compiling, or optimistic parallelization [37]. Zhang and
others [38] removed dynamic irregularities through data reor-
dering and job swapping to improve the performance on
GPUs. Similarly, Wu and others [39] proposed novel data reor-
ganization algorithms to minimize the non-coalesced memory
accesses caused by irregular references. Picciau and others [40]
recently proposed a method that partitions the graphical form
of an input matrix into multiple subgraphs for balancing con-
currency and data access locality. Rodriguez and others [41]
partitioned the irregular computation of sparse matrices into a
union of regular parts, which can then be optimized by polyhe-
dral compilers.

10 CONCLUSION

SpTRSVs have been extensively used in linear algebra fields,
and many GPU-based SpTRSV algorithms have been pro-
posed. In this paper, we identified their limitations, and
developed YuenyeungSpTRSV that efficiently supports
the sparse matrices with high parallel granularities, which
cannot be handled efficiently by previous algorithms. Yue-
nyeungSpTRSV involves novel cross-GPU optimizations,
including data structures to represent different processing
levels, a lightweight model to predict the configuration, and
adaptation to GPU architectures, and we provide cross-plat-
form implementations. YuenyeungSpTRSV can be applied to
a wide range of HPC applications, such as iterative solver and
direct solver. Experiments show that YuenyeungSpTRSV
achieves 5.98x performance speedup over the state-of-the-art
synchronization-free SpTRSV and 4.83x speedup over the
SpTRSV in Nvidia cuSPARSE. Moreover, our proposed Yue-
nyeungSpTRSV is based on the most popular CSR format and
does not require preprocessing to calculate levels.

REPRODUCIBILITY

We support reproducible science. YuenyeungSpTRSV is avail-
able as a free open-source SpTRSV solve on GitHub (https://
github.com/JiyaSu/YuenyeungSpTRSV), Mulan Open Source
Community (https://toscode.gitee.com/JiyaSu/Yuenyeung
SpTRSV), and Code Ocean.
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