
TileSpMV: A Tiled Algorithm for Sparse
Matrix-Vector Multiplication on GPUs

Yuyao Niu1, Zhengyang Lu1, Meichen Dong1, Zhou Jin1, Weifeng Liu1, Guangming Tan2

1. Super Scientific Software Laboratory, China University of Petroleum-Beijing, China
2. State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, China

{2019211256, 2017010055, 2019011738}@student.cup.edu.cn, {jinzhou, weifeng.liu}@cup.edu.cn, tgm@ict.ac.cn

Abstract—With the extensive use of GPUs in modern su-
percomputers, accelerating sparse matrix-vector multiplication
(SpMV) on GPUs received much attention in the last couple of
decades. A number of techniques, such as increasing utilization of
wide vector units, reducing load imbalance and selecting the best
formats, have been developed. However, the 2D spatial sparsity
structure has not been well exploited in the existing work for
SpMV on GPUs.

In this paper, we propose an efficient tiled algorithm called
TileSpMV for optimizing SpMV on GPUs through exploiting 2D
spatial structure of sparse matrices. We first implement seven
warp-level SpMV methods for calculating sparse tiles stored in
a variety of formats, and then design a selection method to find
the best format and SpMV implementation for each tile. We also
adaptively extract nonzeros in the very sparse tiles into a separate
matrix to maximize the overall performance. The experimental
results show that our method is faster than state-of-the-art SpMV
methods such as Merge-SpMV, CSR5 and BSR in most matrices
of the full SuiteSparse Matrix Collection and delivers up to 2.61x,
3.96x and 426.59x speedups, respectively.

Index Terms—sparse matrix-vector multiplication, tiling, GPU

I. INTRODUCTION

Sparse matrix-vector multiplication (SpMV) multiplies a

sparse matrix A and a dense vector x, and gives a resulting

dense vector y. It plays a key role in sparse iterative solvers,

such as conjugate gradient (CG) methods [1], and graph

processing frameworks, such as GraphBLAS [2]–[5], and may

be the most studied kernel of the level-2 sparse basic linear

algebra subprograms (sparse BLAS) in the past decades [1],

[6]–[29], [29]–[43].

The SpMV operation is in general both irregular and mem-

ory bandwidth bound, and thus is hard to optimize. To achieve

high throughput SpMV on modern processors, researchers

have proposed a number of techniques including reducing

memory footprint of sparse matrix [6], [7], [11], [13], [15]–

[17], [21], increasing data locality of accessing vector x [7]–

[9], [11], [13], [14], [17], [18], [21], [22], [25], [26], [28], [44],

utilizing wide vector units on modern architectures [12], [19],

[20], [23], [27], [34], [37], [39], [42], [44], improving load

balancing on massively parallel processors [12], [20], [21],

[24], [27], [30], [32], [36], [38], [42], [45], and selecting the

best format and algorithm through machine learning [1], [29],

[33], [40], [41].

However, in spite of the efforts aforementioned, it should be

noticed that parallel SpMV still faces a number of challenges

to best use the modern parallel processors, in particular GPUs.

The first one is that the recently optimized fundamental

formats, such as compressed sparse row (CSR), ELLpack

(ELL) and their variants, in general bring inadequate memory

bandwidth utilization. The reason is that neither CSR nor

ELL considered spatial structure of sparse matrix, and thus

the reuse of x is often unsatisfactory. The second is that

there lacks SpMV implementations optimized for very small

sparse matrices that can be completely stored in the on-chip

scratchpad memories. The third is that although the format and

algorithm selection techniques using machine learning have

been proven effective in SpMV, they have only been used for

the whole matrix, and the micro-structures of a sparse matrix

have not obtained benefits from the techniques.

To address the above challenges, we in this paper propose

a method called TileSpMV. Its objectives include to exploit

2D sparse tile structures of sparse matrices and to implement

and select the best formats and SpMV algorithms for a variety

of tiles. Firstly, TileSpMV stores sparse matrices into regular

sparse tiles of the same size (in our implementation, the size

is always 16 by 16) to obtain in general better cache locality

and higher bandwidth utilization. Secondly, the TileSpMV

kernel now sees the tiles as the basic working units, but not

rows or a group of nonzero elements in the existing methods,

and we optimize the implementations of SpMV using seven

typical formats (i.e., CSR, COO, ELL, HYB, dense, dense row

and dense column) involved in the warp level on the CUDA

platform. Thirdly, we design an adaptive selection method to

find a best format and SpMV implementation for each sparse

tile. Thus now the micro-structure could get benefits from tile-

wise format and algorithm selection.

In our experiments, we compare the TileSpMV kernel with

three state-of-the-art SpMV methods: the block compressed

row (BSR)-SpMV in cuSPARSE v11.1 (using dense block

of size 4x4), the CSR-SpMV in cuSPARSE v11.1 (i.e., an

improved implementation of the Merge-SpMV [32]), and the

CSR5-SpMV [27]. The test dataset includes all 2757 matrices

in the SuiteSparse Matrix Collection [46], and the experimen-

tal platform contains a latest NVIDIA A100 (Ampere) GPU

and an NVIDIA Titan RTX (Turing) GPU. The experimental

results show that our method is faster than Merge-SpMV on

1813 matrices, faster than CSR5 on 2040 matrices, and faster

than BSR on 1638 matrices, and achieves up to 2.61x, 3.96x

and 426.59x speedups over them, respectively.

978-1-6654-4066-0/21/$31.00 ©2021 IEEE
DOI 10.1109/IPDPS49936.2021.00016

2
0
2
1
 I

E
E

E
 I

n
te

rn
at

io
n
al

 P
ar

al
le

l
an

d
 D

is
tr

ib
u
te

d
 P

ro
ce

ss
in

g
 S

y
m

p
o
si

u
m

 (
IP

D
P

S
)

| 9
7
8
-1

-6
6
5
4
-4

0
6
6
-0

/2
0
/$

3
1
.0

0
 ©

2
0
2
1
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/I

P
D

P
S

4
9
9
3
6
.2

0
2
1
.0

0
0
1
6

Authorized licensed use limited to: China University of Petroleum. Downloaded on July 24,2021 at 06:58:14 UTC from IEEE Xplore. Restrictions apply.

This work makes the following contributions:

• We propose an efficient tiled algorithm called TileSpMV

for parallel SpMV on modern GPUs.

• We implement highly optimized warp-level SpMV ker-

nels for small sparse matrices represented as sparse tiles.

• We develop an adaptive selection method to find the best

storage format and kernel for each sparse tile.

• We achieve obvious speedups over state-of-the-art SpMV

methods on the newest GPUs.

II. BACKGROUND AND MOTIVATION

A. Parallel Sparse Matrix-Vector Multiplication (SpMV)

Sparse Matrix-Vector Multiplication (SpMV) operation

multiplies a sparse matrix A with a dense vector x, and gets

a dense vector y. Figure 1 shows a simple example of SpMV.

In this procedure, yi is computed by the dot product of ai∗,

i.e., the ith row of A, and the vector x. It is easy to find

that there is no dependency between rows throughout the

execution process. So SpMV can be executed in parallel in

rows. Algorithm 1 shows a pseudocode of parallel SpMV.

�

�

�

�

�

�

�

�

� � � � � �

	

�

Fig. 1. An example of SpMV that multiplies a 6-by-6 sparse matrix with a
dense vector x and gets a dense vector y.

Algorithm 1 A pseudocode of parallel SpMV.

1: for each ai∗ in the matrix A do
2: yi ← 0
3: for each nonzero entry aij in ai∗ in parallel do
4: yi ← yi + aij × xj

5: end for
6: end for

B. Motivation

There have been a series of studies on exploiting small dense

structures in sparse matrices generated from computational

science and engineering problems such as finite element

modeling. Figure 2 demonstrates three matrices that include

obvious small dense block structures. To use the structures

for accelerating SpMV on CPUs, Im et al. [7], [47], [48] de-

veloped the SPARSITY framework that could provide register

level optimization for the small dense block structures, and

Vuduc et al. [8], [49]–[51] developed the OSKI package [9]

with a number of auto-tuning methods for register blocking

and memory hierarchy optimizations.

However, such optimizations have only shown their effec-

tiveness on CPU platforms. On the GPU part, even though the

SpMV algorithms recently developed for GPUs resolved wide

vectorization and load balancing problems to some extent,

(a) pwtk (wind tunnel) (b) pdb1HYS (protein) (c) TSOPF FS b162..

Fig. 2. Three representative sparse matrices with small block structures.

the advantages of utilizing small block structures have been

largely ignored on GPUs.

Actually, it is not trivial to optimize the small block struc-

tures for parallel SpMV on GPUs for several reasons. The

first one is that to use the wide vector programming model on

GPUs, e.g., warp of 32 threads in CUDA, the blocks should be

enough large to saturate GPU’s wide SIMD units, i.e., should

not be as small as the ones used for CPU register. The second

reason is that when the blocks are large, they should not be

saved in the dense form that may waste too much space for

padding zeros and may offset the performance/space benefits.

The third reason is that there is no one single sparse format

and algorithm can always deliver the best performance for

blocks of any sparsity structures, and a selection method is

always needed. Therefore, how to design efficient GPU kernels

for relatively large and sparse blocks, and to select the best

formats and algorithms for them is in particular important

for optimizing SpMV using block structures on modern GPU

architectures.

This motivates us to design an efficient tiled SpMV algo-

rithm for GPUs. The next section will introduce the details of

the TileSpMV algorithm proposed by us and explain how we

effectively address these challenges.

III. TILESPMV

A. Overview

Our TileSpMV algorithm first divides the whole input sparse

matrix into a number of sparse tiles of the same and enough

large size (always 16-by-16 in this work) to obtain better data

locality and to saturate GPU SIMD units. We also deliver

seven format options (i.e., CSR, COO, ELL, HYB, dense,

dense row and dense column) for each sparse tile. Section

III.B will introduce the storage structure for TileSpMV.

Then in order to better compute the sparsity structures of

the tiles for SpMV, we develop seven corresponding warp-level

SpMV algorithms for different structures. Since the sparse tiles

are in general much smaller than a complete sparse matrix, the

algorithms are required to be carefully designed. Section III.C

will introduce the seven algorithms.

To make the algorithms more efficient, we also design a two-

level selection method to automatically find the most suitable

sparse format and algorithm for each sparse tile according

to its sparsity structure, and to decide whether it is worth to

extract very sparse tiles into a separate sparse matrix. Section

III.D will introduce the selection method.

Authorized licensed use limited to: China University of Petroleum. Downloaded on July 24,2021 at 06:58:14 UTC from IEEE Xplore. Restrictions apply.

� � � � � � � � � � � � � � � �

� �

��	��
��	

��	������

�������	���

� �

� �

�����
���

���������

������

� � � �������

������

� �

� �

�����
���

���������

������

� � � �������

������

� �

�

���	�
��	

���	�
���

���	�
���

� �

�

��������	

���������

���������

������

� � � � ��������	 � � � � � � � � � ����������� � � ���������������������� �

�!!" #$$"

%&'"

(�����" (����
"

(��"

�)�"

*�	+�� � � � � � � � � � �

�����	 � � �����	 � � � ���������	 � ����	�
��	

� � � � ���	��	 � ������	

�����	 � �

Fig. 3. An example matrix A of size 16-by-16 stored in 10 sparse tiles of size 4-by-4. The tile structure includes three arrays tilePtr, tileColIdx and tileNnz
representing the memory offsets of tiles, tile column indices and the offsets for the number of nonzeros in sparse tiles. According to the format selection
method, four of the 10 tiles keep the CSR format unchanged and use three arrays to store their information. The remaining six tiles are transformed to different
formats, including COO, ELL, HYB, Dns, DnsRow and DnsCol. Each format has several corresponding arrays to store the nonzeros and their indices.

B. Two-Level Storage Structure

TileSpMV first divides an input matrix A into a number

of sparse tiles of the same size (16-by-16 in this work),

and uses a sparse tile as the basic working unit. After the

partitioning, two levels of information represented as a group

of arrays are generated for storing the sparse tiles. The two

levels of the information store the tile structure of the matrix,

and the internal information of each sparse tile, respectively.

Figure 3 shows an example matrix of size 16-by-16. In this

case, we divide the matrix into 10 sparse tiles of size 4-by-4

for explaining the storage structure proposed.

The tile structure of the matrix in the first level contains

three arrays: (1) the tilePtr array of size tilemA+1, where

tilemA is the number of tile rows of the matrix, that stores

the memory offsets of tiles in tile rows, (2) the tileColIdx
array of size numtileA, where numtileA is the number of

sparse tiles in the matrix, that stores the column index of each

tile, and (3) the tileNnz array of size numtileA + 1 that

stores the memory offset of the number of nonzeros in the

sparse tiles. The three arrays are plotted on the top area of

Figure 3.

The second level stores the nonzero elements and their

indices in each sparse tile in different formats. In this work, we

have seven selections: CSR, COO, ELL, HYB, dense (Dns),

dense row (DnsRow), and dense column (DnsCol).

For the CSR format, we create three arrays for saving the

tile data: (1) the csrVal array of size nnzA that stores values

of all the nonzero entries in tile’s order, (2) the csrColIdx
array of size nnzA that stores the column index of each

nonzero. Note that due to the size of our sparse tile (i.e. 16-

by-16), the column index in a tile only needs four bits and the

column indices of two continuous entries are packed into one

unsigned char of eight bits to further reduce space required,

and (3) the csrRowPtr array of size numtileA × 16 that

stores 16 memory offsets for the nonzeros in the tile. Although

the normal row pointer should contain 16+1 entries in the

classical CSR, we only save 16 entries here for utilize the

unsigned char data type since the second last row pointer value

would not exceed 240. This means that unsigned char data type

is enough to save all offsets in the row pointer, except the last

value which is possibly 256. We will obtain the total number of

the nonzeros, i.e., the last value of the row pointer array, from

the above mentioned level-1 tileNnz array which stores the

nonzeros number of the sparse tiles.

For the COO format, we set three arrays cooVal,

cooRowIdx and cooColIdx to record the values, row

indices and column indices of the nonzero entries respectively.

Because the tile size is 16-by-16, we can find that four bits

are enough for each row/column index. So we pack the 4-bit

row index and 4-bit column index into an 8-bit unsigned char.

The green tile in Figure 3 shows an example of the COO tile

of two entries.

For the ELL format, we create two arrays ellVal and

ellColIdx to store values and column indices of the

nonzero entries. We also set the number of nonzero entries

for each row to an equal number, called tilewidth of this

tile. The value of tilewidth records the maximum number of

nonzero entries in each row. For rows less than tilewidth, we

fill the empty location with zero. For finding the corresponding

tilewidth to each tile in the ELL format, we need an extra

array to store the tilewidth information for each ELL tile.

In Figure 3, the yellow tile is an example of ELL, and its

tilewidth value is 1, because the number of nonzero entries

in each row is 1.

For the HYB format, a combination of ELL and COO

formats is created. We use the ELL format to store the regular

part of the tile, then the rest of the nonzero entries are stored in

the COO format. To determine the tilewidth of the ELL part,

we adapt a method to gradually calculate the least memory

space by setting the ELL width from the maximum to zero

until the smallest memory space is find. Then the width we

get is the tilewidth of the ELL part. The purple tile in Figure

3 shows an example of the HYB format. It can be seen that

four nonzeros in it are saved in the first column and will be

stored in the ELL part, and the other two are saved into the

Authorized licensed use limited to: China University of Petroleum. Downloaded on July 24,2021 at 06:58:14 UTC from IEEE Xplore. Restrictions apply.

��� � �� �� �� �	 �
 �� �� �

���

���

���

� �
 �

� � � 	 � � � 	

���������

���������

�����������

�� �� �� �	 �
 �� �� �

��� �

�

�� ��
� �

� �

���������

���������

������

�� ��

� �

�� �� �� �	

���

���
� � � 	!�����

!�����

!����� � �

"#$ �

�� �� �� �	

���

���

�� ��
%!��&

%���&

� � � �!�����

!�����

� �

� �

���������

���������

������

� �!�����

�� �� �� �	 �� ���� ����

'(� �

��

��

�� �� �� �	

���

���

�
 �� �� �

�(�����(���� � �

��

�	

�

��

��

�

�	

��

��

��

��

��

��

��

)	

��

��

��

��

��

��

��

)	

��

��

��

��

��

��

��

)	

��

��

��

��

��

��

��

)	

��

��

��

��

��

��

��

)	

'(���� �
�� �� �� �	

���

���
� �

��(�������

�(�������

�(������� ��

��

��

��

��

��

��

)	

'(���� �

�� �� �� �	

���

�� ���� �	

��

��

��

��

��

��

��

)	

� �

�

�(�������

�(�������

�(�������

�� ���� �	

�*

�!+,

�!+,

�!+,

�!+,

�!+,

Fig. 4. Examples of seven warp-level SpMV algorithms corresponding to the formats on GPUs. For COO tile, each thread processes one element and the
result of each thread will add to the corresponding location in an atomic way. For CSR tile, every 2 threads process one row, and then shuffle operations
add results from these threads. For DnsRow tile, due to the four nonzero entries are distributed in the third row, we use four threads t0 to t3 to calculate by
using x in registers. For DnsCol tile, there are four elements in the third column, so that the four threads can process them respectively in the register. For
ELL tile, all threads can process its corresponding elements one by one at the same time until the calculation is over. Due to the four elements are the first
element of each row, we assign four threads t0 to t3 to process them respectively. For HYB tile consisted of ELL part and COO part, the four threads t0
to t3 process the four elements stored in ELL data and then the two threads t0 and t1 process the two elements stored in COO data. For Dns format, eight
threads process 16 elements and add the corresponding values to get result.

COO part. Here the tilewidth of ELL is 1. The purple arrays

on the right side show the six nonzero entries data in HYB

format.

For the Dns format, we store very dense tiles such as the

gray tile in the example matrix of Figure 3 in it. We only need

one array dnsVal to stores values of all the nonzero entries

in the column-major order. The gray array in the bottom of

Figure 3 shows the Dns data.

For the DnsRow/DnsCol format, we create three arrays:

(1) the dnsRowVal/dnsColVal array that stores val-

ues of all the nonzero entries in a natural order. The

size of the array is dnsrownnzA/dnscolnnzA, where

dnsrownnzA/dnscolnnzA is the sum of nonzero entries

in all tiles stored in the DnsRow/DnsCol format. (2)

the rowid/colid array of size numrow/numcol records

the number of these rows/columns of all tiles store in

DnsRow/DnsCol, and (3) the dnsRowPtr/dnsColPtr
that saves the memory offsets for the numbers of dense

rows/columns in the sparse tiles of size numtileA + 1. As

shown in Figure 3, the four nonzero entries in the red sparse

tile are all in the third rows. Thus it should be saved into the

DnsRow format, and row index 3 is recorded in rowid of

this tile. The pink one which is converted to DnsCol format

is similar.

Now the high level storage structure and seven formats are

introduced, and the next subsection will explain the warp-level

SpMV implementations for the seven formats.

C. Tile-Wise SpMV Algorithms

Figure 4 shows examples of the seven warp-level SpMV

algorithms corresponding to the formats. The following will

explain these algorithms.

In the warp-level CSR-SpMV algorithm, a 32-thread warp

always processes a tile with 16 rows, which means that

every two consecutive threads process one row. Before the

computations, we load the corresponding segment of 16 entris

in vector x into the on-chip scratchpad shared memory for

better and controllable data locality. After the calculation of the

threads, the partial y are added together. There is an example

in the CSR part of Figure 4. We assume that we have 8 threads

(t0–t7) to process the 4-by-4 tile in the CSR format, and every

two consecutive threads process one row. It should be noted

that the third row only has one element, so that t4 can calculate

it alone, and t5 does nothing. On the contrary, the fourth row

has three elements, so t6 needs to process two elements. Then

we use sum to store the calculation result of every thread

and shuffle will be used twice to add the results of two

adjacent threads and transfer the result to fit sum, the operation

is shown in the far right of the CSR part. Algorithm 2 shows

its pseudocode.

In the warp-level COO-SpMV algorithm, very sparse tiles

are calculated. The 32 threads in a warp are assigned to

process all the nonzeros, and the resulting partial sums are

added together in shared memory by using the atomicAdd
operation. The COO part in Figure 4 shows an example. In this

case, only two elements are in the COO tile, and two threads

Authorized licensed use limited to: China University of Petroleum. Downloaded on July 24,2021 at 06:58:14 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 A pseudocode of warp-level CSR-SpMV.

1: for ti = 0 to 31 in parallel do
2: sum ← 0
3: ri = ti/2
4: vi = ti%2
5: for j =csrRowPtr[ri]+vi to csrrowptr[ri+ 1] do
6: csrcol ← csrColIdx[j]
7: sum += s x warp[csrcol]×csrVal[j]
8: end for
9: sum += SHFL DOWN SYNC(0xffffffff, sum, 1)

10: sum += SHFL DOWN SYNC(0xffffffff, sum, ti)
11: end for

(t0 and t1) process them at the same time. Algorithm 3 shows

its pseudocode.

Algorithm 3 A pseudocode of warp-level COO-SpMV.

1: for i = 0 to tilennz of the tile in parallel do
2: rowidx ←cooRowIdx[i]
3: colidx ←cooColIdx[i]
4: ATOMICADD(yrowidx,cooVal[i] ×xcolidx)
5: end for

In the warp-level ELL-SpMV algorithm, a warp of 32

threads is used to process nonzero entries stored in the column-

major. Each thread in a half warp of 16 threads is assigned

to a row, and the computation completes when the ELL width

is reached. The ELL part of Figure 4 shows an example.

As the ELL data are stored in the column-major, the four

elements are stored continuously, and the memory accesses

will be aligned. For the four elements, we assign four threads

(t0–t3) to process them respectively. For faster memory access

to the vector x, the corresponding segment of x is loaded into

registers, and accessed through register shuffle instructions.

After the calculation, the results of each thread are stored

into the corresponding sum as the final result of this tile.

Algorithm 4 shows its pseudocode.

Algorithm 4 A pseudocode of warp-level ELL-SpMV.

1: for ti = 0 to 31 in parallel do
2: sum ← 0
3: elllen ← tilewidth× 16
4: for j = ti to elllen do
5: of ellcol ← ellIdx[j]
6: x gathered ← SHFL SYNC(0x0000ffff,xti, ellcol)
7: sum += ellVal[j] ×x_gathered
8: end for
9: end for

In the warp-level HYB-SpMV algorithm, two steps respec-

tively calculating the ELL and COO parts are used. The purple

part in Figure 4 explains the two steps specifically. The HYB

tile is consisted by ELL part and COO part, so in the first step,

four threads (t0–t3) process the four elements stored in ELL

data and in the second step, two threads (t0 and t1) process

the two elements stored in the COO data. Similar to the ELL-

SpMV, the vector x and calculation processing are loaded into

the register in advance.

In the warp-level Dns-SpMV algorithm, all elements of the

tile are involved in the computation. A 32-thread warp need

to process a dense tile of 16-by-16 and finish the work after

eight rounds, and each thread processes 8 elements. After

calculating, results are stored to sum for each thread and

shuffle will be used to add the sum value of threads

processing the same row. As can be seen in the Dns part

of Figure 4, we assume there are eight threads (t0–t7) to

calculate the gray tile of 4-by-4. In the first round, the eight

threads process the elements in the first and second columns.

In the second round, they process the elements in the last two

columns. The gray array in the Dns part shows the detail of

each thread work.

In the warp-level DnsCol-SpMV algorithm, the task assign-

ment for threads is similar to the Dns-SpMV. The DnsCol part

of Figure 4 shows an example. The usable elements of vector

x are in the register now. Since there are four elements in the

third column, the threads (t0–t3) process them independently

but reuse the same entry in x in the register, as shown in the

pink arrays.

In the warp-level DnsRow-SpMV algorithm, the reduction-

sum operation is required, and the corresponding x should be

loaded into the registers. In the DnsRow part in Figure 4, the

elements are distributed in the third row. Four threads (t0–t3)

will process each element and the results of the four threads

will be added into a right result by reduction-sum implemented

using shuffle as shown in the DnsRow part.

D. Format Selection Method

On top of the storage structure and basic warp-level SpMV

kernels, we implement three TileSpMV algorithms to validate

the effectiveness of utilizing the variety of formats: (1) the

TileSpMV_CSR method that always stores all the sparse tiles

with the CSR formats. (2) the TileSpMV_ADPT method that

first inspects the sparsity structure of each tile and adaptively

selects a format from the seven to store and calculate the tile,

and (3) the TileSpMV_DeferredCOO method that defers

the computations of the nonzeros should be stored in the COO

form (i.e., in the COO format or in the COO part of the

HYB format) by extracting them into a separate matrix and

computing its own SpMV. This operation is like the HYB-

SpMV that computes an ELL-SpMV and a CSR/COO-SpMV.

Because storing all tiles in the CSR format and

computing CSR-SpMV is simple, we do not intro-

duce the TileSpMV_CSR method in detail. As for the

TileSpMV_ADPT method, we plot it in Figure 5 and con-

struct the following steps:

For very sparse tiles, such as the tiles in which the number

of nonzero entries is less than 12 and the nonzero entries

are distributed not evenly among the rows, the COO format

undoubtedly occupies the least memory space, and thus is

selected.

When a sparse tile contains no less than 128 nonzeros, it

is saved in the Dns format, i.e., in a pure dense pattern, and

only values are recorded.

Authorized licensed use limited to: China University of Petroleum. Downloaded on July 24,2021 at 06:58:14 UTC from IEEE Xplore. Restrictions apply.

�����

����	
���

�

�����
����

�

���������

�

���

���

����������� ���

�

���!�� �

��������"�� ���

�

������

�

"��"#����
$��%��%��

�

$��%��%��	
��

&''

�

$��%��%���
�(

)
*

�

��!

Fig. 5. The flow chart of our format selection method for TileSpMV_ADPT.

If all nonzeros of a tile are in certain rows/columns,

and all the other rows/columns are empty, we select the

DnsRow/DnsCol format to store the nonzeros of the tile.

After the above three steps, the selection of the first four

formats (i.e., COO, Dns, DnsRow, DnsCol) is completed. For

those tiles do not meet the above criteria, we use nonzero

entries distribution as the second group of rules to select

ELL, HYB or CSR format for them. We now set a parameter

variation (i.e., the ratio of standard deviation to average row

length) to evaluate the balance of nonzero distribution. When

the variation value goes down, the number of nonzero elements

between rows is more balanced. For distinguishing between

different format with individual nonzero entries distribution,

we set two thresholds te and th to split variation range into

three intervals, and each interval corresponds to a format.

The ELL format is selected when variation stays between

zero and te, meaning that the number of nonzero entries in

rows are relatively balanced, so we can select ELL format to

achieve better space cost.

When the variation is greater than th, meaning that the

distribution of the nonzero entries is more irregular, the HYB

format consisting ELL and COO parts is selected for possibly

better efficiency.

The remaining sparse tiles will be stored in the CSR format,

since variation between te and th indicates that general

pattern should give the best performance.

We in our method experimentally set te and th to 0.2 and

1.0, respectively, since we found the two thresholds in general

give us the best performance.

Besides the SpMV implementations of the tile-wise formats,

improving load balancing should also be considered. Although

using the sparse tiles of a fixed size as the basic working unit

already can naturally avoid load imbalance to some extent, we

also need to split very long tile rows into small pieces for more

even workload. In our implementation, we add a parameter

named tbalance (always set to 8 in our code) and let a warp

process no more than tbalance tiles. If the number of sparse

tiles in one tile row is greater than tbalance, we divide the tile

row and use multiple warps to deal with it together. Finally,

the partial y generated by the warps belong to the same tile

row are added by atomic addition. In this way, we can ensure

that each warp has similar tasks to improve load balancing.

Moreover, even though the above selection and load bal-

ancing methods can achieve good performance for most ma-

trices, the SpMV performance of very sparse matrices from

graph problems maybe still unsatisfactory. Their most obvious

structure is that COO tiles dominate the nonzero count. This

fact motivates us to develop the third selection method called

TileSpMV_deferredCOO. In this method, the tiles with

COO data (including all tiles in the COO format and the COO

part of the HYB format) are extracted to form a separate matrix

stored in a normal CSR format and computed by the CSR5-

SpMV method. That is to say, in the SpMV computation, two

matrices will be calculated for together generating the final

resulting vector y.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

Our experimental platform includes two NVIDIA GPUs:

a Geforce Titan RTX (Turing architecture) and an A100

(Ampere architecture). The GPU driver version is 455.23.05,

and the CUDA version is 11.1.

We compare our TileSpMV work with the latest cuSPARSE

v11.1 kernel cusparse?bsrmv() using the BSR format,

the Merge-SpMV algorithm1 proposed by Merrill and Gar-

land [32], and the CSR5-SpMV algorithm proposed by Liu and

Vinter [27]. The specifications of the GPUs and the algorithms

tested are listed in Table I. Besides, our experiments did

not test several other open-source SpMV algorithms such as

yaSpMV [21], HolaSpMV [36] and CSR-Adaptive [24], [30],

since we tried our best to build them but still cannot let them

run in the CUDA v11.1 environment and the newest GPUs.

The test dataset includes all 2757 sparse matrices in the

SuiteSparse Matrix Collection [46].

1It is worth to note that the cusparseSpMV() using the CSR format
with argument CUSPARSE_CSRMV_ALG2 in cuSPARSE v11.1 is an official
implementation of the Merge-SpMV work [32], but in most cases of our test
delivers slower performance than the open-source implementation of Merge-
SpMV. Thus we in this paper compare our work with the original Merge-
SpMV open-source code.

Authorized licensed use limited to: China University of Petroleum. Downloaded on July 24,2021 at 06:58:14 UTC from IEEE Xplore. Restrictions apply.

2 3 4 5 6 7 8
0

50

100

150

200

250

300

P
e
rf
o
rm

a
n
c
e
(G
F
lo
p
s
)

TileSpMV_CSR

TileSpMV_ADPT

TileSpMV_DeferredCOO

0

1

2

3

4

S
p
e
e
d
u
p

T
il
e
S
p
M
V
_
A
L
L

o
v
e
r
T
il
e
S
p
M
V
_
C
S
R

2 3 4 5 6 7 8

size in log10nnz

0
1
2
3
4
5
6

S
p
e
e
d
u
p

T
il
e
S
p
M
V
_
D
e
fe
rr
e
d
C
O
O

o
v
e
r
T
il
e
S
p
M
V
_
A
L
L

(a) Double precision TileSpMV performance and speedups on Titan RTX

2 3 4 5 6 7 8 9

0

50

100

150

200

250

300

P
e
rf
o
rm

a
n
c
e
(G
F
lo
p
s
)

TileSpMV_CSR

TileSpMV_ADPT

TileSpMV_DeferredCOO

0

1

2

3

4

S
p
e
e
d
u
p

T
il
e
S
p
M
V
_
A
L
L

o
v
e
r
T
il
e
S
p
M
V
_
C
S
R

2 3 4 5 6 7 8 9

size in log10nnz

0
1
2
3
4
5
6

S
p
e
e
d
u
p

T
il
e
S
p
M
V
_
D
e
fe
rr
e
d
C
O
O

o
v
e
r
T
il
e
S
p
M
V
_
A
L
L

(b) Double precision TileSpMV performance and speedups on A100

Fig. 6. The two sub-figures on top show performance (in GFlops) of the basic TileSpMV_CSR method and the two optimization methods TileSpMV_ADPT
and TileSpMV_DeferredCOO on the two GPUs. The four sub-figures on bottom respectively show the speedup of TileSpMV_ADPT to TileSpMV_CSR
and the speedup of TileSpMV_DeferredCOO to TileSpMV_ADPT.

TABLE I
THE TWO GPUS AND FOUR ALGORITHMS EVALUATED.

Two NVIDIA GPUs Four algorithms
(1) Titan RTX (Turing), 4608 CUDA cores (1) cuSPARSE v11.1 BSR

@ 1770 MHz, 24 GB, B/W 672 GB/s (2) Merge-SpMV [32]
(2) A100 (Ampere), 6912 CUDA cores (3) CSR5 [27]
@ 1410 MHz, 40 GB, B/W 1555 GB/s (4) TileSpMV (this work)

B. Effectiveness of Adaptive Format Selection

In the TileSpMV algorithm, the selection of formats and

corresponding methods gives significant performance gain. To

show its effectiveness, by benchmarking the 2757 matrices,

we plot the ratio of the number of tiles in different formats

to the total tiles, and the ratio of the number of nonzeros in

different formats to the total nonzeros in Figures 7(a) and (b),

respectively. In the figures, different color bars correspond to

different formats. As can be seen, the green bars (representing

the COO format) take up the largest area of the tile formats.

Also, in Figure 7(b), even though there are many tiles in the

COO format, the nonzero ratios of the COO format are not

that high compared to the format ratio, because of the low

density of the COO tiles.

We on the two GPUs test TileSpMV_CSR in

which each tile is originally stored in the CSR format,

TileSpMV_ADPT with adaptive format selection for each

tile, and TileSpMV_DeferredCOO which chooses whether

to split the COO tiles into a new matrix. The performance

and speedup are shown in Figure 6. It can be seen that after

the format selection, the performance of TileSpMV_ADPT
can be up to 6.75x faster than TileSpMV_CSR, and the

advantage becomes more obvious as the size of matrices

increase. Moreover, when the size of matrices is relatively

small, we still choose TileSpMV_ADPT. But when the

(a) The ratio of tiles in different formats

(b) The ratio of nonzero entries in different formats

Fig. 7. Two figures show the ratio of the number of tiles and nonzeros in
different formats to the total tiles and nonzeros, respectively.

size is larger than a certain size (1.8M in our work), the

advantage of TileSpMV_DeferredCOO begins to become

prominent. It further achieves up to 7.02x speedup over

TileSpMV_ADPT, which indicates that our optimizations

are quite effective.

Authorized licensed use limited to: China University of Petroleum. Downloaded on July 24,2021 at 06:58:14 UTC from IEEE Xplore. Restrictions apply.

2 3 4 5 6 7 8
0

50

100

150

200

250

300
P
e
rf
o
rm

a
n
c
e
(G
F
lo
p
s
)

Merge-SpMV

CSR5

BSR

TileSpMV (this work)

1

2

S
p
e
e
d
u
p

T
il
e
S
p
M
V

o
v
e
r
M
e
rg
e
-S
p
M
V

1

2

S
p
e
e
d
u
p

T
il
e
S
p
M
V

o
v
e
r
C
S
R
5

2 3 4 5 6 7 8

size in log10nnz

0

1

2

3

4

5

S
p
e
e
d
u
p

T
il
e
S
p
M
V

o
v
e
r
B
S
R

(a) Double precision SpMV performance and speedups on Titan RTX.

2 3 4 5 6 7 8
0

50

100

150

200

250

300

P
e
rf
o
rm

a
n
c
e
(G
F
lo
p
s
)

Merge-SpMV

CSR5

BSR

TileSpMV (this work)

1

2

S
p
e
e
d
u
p

T
il
e
S
p
M
V

o
v
e
r
M
e
rg
e
-S
p
M
V

0

1

2

3

4

S
p
e
e
d
u
p

T
il
e
S
p
M
V

o
v
e
r
C
S
R
5

2 3 4 5 6 7 8

size in log10nnz

0

1

2

3

4

5

S
p
e
e
d
u
p

T
il
e
S
p
M
V

o
v
e
r
B
S
R

(b) Double precision SpMV performance and speedups on A100.

Fig. 8. The two sub-figures on top show performance (in GFlops) of the four SpMV methods on two GPUs. The six sub-figures on bottom show the speedups
of our TileSpMV over the Merge-SpMV, CSR5 and BSR.

C. Performance Comparison over Existing SpMV Work

We compare our TileSpMW_DeferredCOO algorithm

with Merge-SpMV, CSR5 and BSR work, and the performance

comparison of the four methods on the two GPUs is shown

in Figure 8. As can be seen, our method shows the best

performance for most matrices on both Titan RTX and A100.

Specifically, compared with the three methods, our method is

faster than Merge-SpMV on 1813 matrices, faster than CSR5

on 2040 matrices, and faster than BSR on 1638 matrices,

and achieves up to 2.61x, 3.96x and 426.59x speedups over

them. The best speedups occur in matrices ‘exdata 1’, ‘rel8’

and ‘lp osa 60’, respectively. Since the nonzero entries are

concentrated in a certain area in ‘exdata 1’, the proportion

of the Dns tiles in it has exceeded 80%. Thus it is more

efficient to use the dense computation in our method than the

sparse for these tiles. The matrix ‘rel8’ has a large number

of tiles in the COO format extracted to the CSR5 part, and

using the best combination of CSR5 and TileSpMV gives

the matrix good performance. As for ‘lp osa 60’, the lack

of small dense structures makes BSR less efficient. Overall, it

can be seen that our method has obvious greater advantages

for many matrices, and our highest performance reaches nearly

300 GFlops (on matrix ‘TSOPF RS b2383’). In contrast, the

highest performance of Merge-SpMV does not exceed 200

GFlops, and CSR5 is merely around 210 GFlops.

Fig. 9. Performance comparison of 16 representative matrices on A100 GPU.

To conduct a more detailed analysis, we list the performance

comparison of 16 representative matrices (see Table II) on

A100 in Figure 9. As can be seen, the matrix that achieves

the highest performance in our method is ‘TSOPF RS b2383’,

Authorized licensed use limited to: China University of Petroleum. Downloaded on July 24,2021 at 06:58:14 UTC from IEEE Xplore. Restrictions apply.

TABLE II
INFORMATION OF THE 16 REPRESENTATIVE MATRICES.

Matrix Plot Size nnz

TSOPF RS b2383 38K×38K 16.1M

cant 62K×62K 4M

bcsstk37 25K×25K 1,1M

exdata 1 6K×6K 2.2M

raefsky3 21K×21K 1.4M

pdb1HYS 36K×36K 4.3M

pwtk 217K×217K 11.5M

shipsec1 140K×140K 3.5M

consph 83K×83K 6M

in-2004 1.4M×1.4M 16.9M

opt1 15K×15K 1.9M

matrix 9 103K×103K 1.2M

mip1 66K×66K 10.4M

webbase-1M 1M×1M 3.1M

gupta3 16.8K×16.8K 9.3M

ldoor 952K×952K 42.5M

which can reach 288 GFlops and is 1.88x and 1.63x faster

than Merge-SpMV and CSR5, respectively. This is because

that Dns tiles occupy a large portion of all tiles. Besides,

there are also 905 DnsRow tiles and 2885 DnsCol tiles in

it. Through the analysis of these matrix structure, our method

in general has performance advantage to handle the matrices

with a large proportion of Dns or DnsRow/DnsCol tiles. But

actually, for matrices with a moderate number of CSR and

COO tiles, through our optimized algorithm, we can also

achieve comparable performance to Merge-SpMV and CSR5.

The matrix ‘cant’ is an example.

D. Space Cost Comparison

Figure 10 shows the space costs of the standard CSR

format, our TileSpMV_CSR and the further optimized

TileSpMV_ADPT. In order to get a clearer comparison,

we use the largest 150 matrices in the dataset. As we can

see, compared with the standard CSR format (red line), our

TileSpMV_CSR (blue line) basically occupies the same or

less memory space on most matrices. But for a small number

of matrices, there are obvious higher memory consumption,

this is because the tiles of these matrices are very sparse and

a complete row pointer array of each tile is still allocated.

Moreover, in TileSpMV_ADPT (green line), the memory

footprint is overall improved, although some cases still occupy

more space than the CSR format.

Fig. 10. A space cost comparison of the standard CSR format,
TileSpMV_CSR and TileSpMV_ADPT.

Fig. 11. Comparison of preprocessing time and a serial single SpMV time
of the 16 representative matrices.

E. Preprocessing Overhead Analysis

We also record the preprocessing overhead of converting

a basic CSR matrix to our tile form in the TileSpMV algo-

rithm. Figure 11 shows an execution time comparison of the

preprocessing and a serial single SpMV time on CPU. As

can be seen, the preprocessing can take less than 10x more

cost than a single SpMV (matrix ‘mip1’), and can be even

faster than an SpMV (e.g., matrix ‘ldoor’), demonstrating that

the overhead depends on the sparsity structure and the several

adaptive optimizations for the matrix.

V. RELATED WORK

Accelerating SpMV through utilizing small block struc-
tures has been studied from various angles. Im et al. [7], [47],

[48] and Vuduc et al. [8], [9], [49], [50] proposed a series of

register level, memory hierarchy and auto-tuning optimizations

for small dense blocks and developed the SPARSITY and

OSKI packages. Buluç et al. [13], [17], [52], [53] proposed

the CSB and DCSC formats that keep the sparsity structures

in small sparse blocks and consider hyper sparse cases.

Moreover, Buttari et al. [54] designed the BCSR format, and

Martone [26] improved the CSB in a recursive formulation.

Also, Yzelman and Bisseling [14], [18], [22] developed cache-

oblivious methods for multi-cores. On GPUs, Choi et al. [15]

modeled SpMV with blocked formats, and Yan et al. [21]

developed the BCCOO format that stores dense 2D blocks.

Authorized licensed use limited to: China University of Petroleum. Downloaded on July 24,2021 at 06:58:14 UTC from IEEE Xplore. Restrictions apply.

Wang et al. [55] and Lu et al. [56] used block formats for

sparse triangular solve kernel of Sunway processors and GPUs,

respectively. Compared to the above work, the TileSpMV

proposed in this paper divides a sparse matrix into sparse

tiles of medium size and focuses performance optimizations

on GPUs.

Designing new formats and algorithms is the most widely

used method for parallel SpMV research. A number of new

formats have been developed on top of the basic ELL [6]

and CSR formats. Bell and Garland developed the HYB [12]

format consisting of both ELL and CSR/COO parts, and

Su and Keutzer [19] proposed the clSpMV framework that

includes more formats. Other ELL variants have been proposed

by Kreutzer et al [23], Liu et al. [20], Liang et al. [38], Ashari

et al. [28], Anzt et al. [42], [57] and Xie et al. [44]. Some

variants of the CSR format, such as CSX [16], ACSR [45],

CSR-Adaptive [24], [30], CSR5 [27], Merge-SpMV [32] and

HolaSpMV [36], also demonstrated low preprocessing cost

and fast SpMV performance on GPUs. Liu and Vinter [58]

developed a new speculative segmented sum primitive for

SpMV. Yesil et al [59] split the input matrix into a dense and a

sparse portion and stored the dense part in a new representation

for better data locality. Elafrou et al [60] break the rows into

multiple phases for conflict-free parallel execution. In contrast,

our TileSpMV work considers seven formats including CSR,

COO, ELL and HYB, and also proposes a method to adap-

tively select them.

Because there is no one single format can deliver the best

SpMV performance for all kinds of sparse matrices, machine
learning techniques are used for selecting the best format and

SpMV method for a given matrix. Various machine learning

tools have been used by Li et al. [41], Sedaghati et al. [29],

Benatia et al. [33] and Tan et al. [61]. Recently Zhao et al. [1],

[40] proposed new CNN and deep learning techniques and

took preprocessing stage into consideration. Xie et al. [62]

proposed MatNet for matrix structure analysis. Also, Guo and

Lee [25] and Lehnert et al. [34] proposed modeling techniques

for predicting SpMV performance on various platforms. In

this work, we use a simple but effective heuristics method for

selecting the best format and SpMV implementation for each

sparse tile, and receive obvious performance gain.

Besides the research work listed above, a number of per-
formance evaluations and surveys give valuable overview

of parallel SpMV. Williams et al. [11] studied several key

techniques for optimizing SpMV on multi-core CPUs. Goumas

et al. [10], Elafrou et al. [37], [39] and Filippone et al. [35]

evaluated the performance of SpMV on various CPU and

GPU platforms. Langr and Tvrdı́k [31] proposed a group of

evaluation criteria for sparse matrix formats. Li et al. [63], Tsai

et al. [64], [65], Zhang et al. [66] evaluated sparse kernels on

the latest CPUs, GPUs and APUs, respectively.

VI. CONCLUSION

In this work, we have proposed a tiled algorithm called Tile-

SpMV for accelerating SpMV on GPUs through exploiting 2D

spatial structures of sparse matrices. The algorithm optimized

warp-level tile-wise SpMV and adaptively selects the best

format and SpMV algorithm for each tile. The experimental

results from testing the 2757 matrices in the SuiteSparse

Matrix Collection show that our method is faster than Merge-

SpMV on 1813 matrices, faster than CSR5 on 2040 matrices,

and faster than BSR on 1638 matrices, and achieves up to

2.61x, 3.96x and 426.59x speedups over them, respectively.

ACKNOWLEDGEMENT

We deeply appreciate the invaluable comments from all the

reviewers. Zhou Jin is the corresponding author of this paper.

This research was supported by the Science Challenge Project

under Grant No. TZZT2016002, the National Natural Science

Foundation of China under Grant No. 61972415, 61972377,

62032023, and the Science Foundation of China University

of Petroleum, Beijing under Grant No. 2462019YJRC004,

2462020XKJS03, 2462020YXZZ024.

REFERENCES

[1] Y. Zhao, W. Zhou, X. Shen, and G. Yiu, “Overhead-conscious format
selection for spmv-based applications,” in IPDPS ’18, 2018.

[2] A. Buluç and J. R. Gilbert, “The combinatorial blas: design, implemen-
tation, and applications,” The International Journal of High Performance
Computing Applications, vol. 25, no. 4, pp. 496–509, 2011.

[3] J. Kepner, P. Aaltonen, D. Bader, A. Buluç, F. Franchetti, J. Gilbert,
D. Hutchison, M. Kumar, A. Lumsdaine, H. Meyerhenke, S. McMillan,
C. Yang, J. D. Owens, M. Zalewski, T. Mattson, and J. Moreira,
“Mathematical foundations of the graphblas,” in HPEC ’16, 2016, pp.
1–9.

[4] T. G. Mattson, C. Yang, S. McMillan, A. Buluç, and J. E. Moreira,
“Graphblas c api: Ideas for future versions of the specification,” in HPEC
’17, 2017, pp. 1–6.

[5] C. Yang, A. Buluç, and J. D. Owens, “Implementing push-pull efficiently
in graphblas,” in ICPP ’18, 2018, pp. 89:1–89:11.

[6] J. R. Rice and R. F. Boisvert, Solving Elliptic Problems Using ELLPACK.
Springer-Verlag New York, Inc., 1984.

[7] E. Im, “Optimizing the performance of sparse matrix-vector multiplica-
tion,” Ph.D. dissertation, University of California, Berkeley, 2000.

[8] V. R., “Automatic performance tuning of sparse matrix kernels,” Ph.D.
dissertation, University of California, Berkeley, 2003.

[9] R. Vuduc, J. Demmel, and K. Yelick, “Oski: A library of automatically
tuned sparse matrix kernels,” Journal of Physics: Conference Series,
vol. 16, no. 1, p. 521, 2005.

[10] G. Goumas, K. Kourtis, N. Anastopoulos, V. Karakasis, and N. Koziris,
“Performance evaluation of the sparse matrix-vector multiplication on
modern architectures,” The Journal of Supercomputing, vol. 50, no. 1,
pp. 36–77, 2009.

[11] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel,
“Optimization of sparse matrix–vector multiplication on emerging mul-
ticore platforms,” Parallel Computing, vol. 35, no. 3, pp. 178–194, 2009.

[12] N. Bell and M. Garland, “Implementing sparse matrix-vector multipli-
cation on throughput-oriented processors,” in SC ’09, 2009, pp. 18:1–
18:11.

[13] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E. Leiserson,
“Parallel sparse matrix-vector and matrix-transpose-vector multiplication
using compressed sparse blocks,” in SPAA ’09, 2009, pp. 233–244.

[14] A. N. Yzelman and R. H. Bisseling, “Cache-oblivious sparse ma-
trix–vector multiplication by using sparse matrix partitioning methods,”
SIAM Journal on Scientific Computing, vol. 31, no. 4, pp. 3128–3154,
2009.

[15] J. W. Choi, A. Singh, and R. W. Vuduc, “Model-driven autotuning of
sparse matrix-vector multiply on gpus,” in PPoPP ’10, 2010, pp. 115–
126.

[16] K. Kourtis, V. Karakasis, G. Goumas, and N. Koziris, “Csx: An extended
compression format for spmv on shared memory systems,” in PPoPP
’11, 2011, pp. 247–256.

[17] A. Buluç, S. Williams, L. Oliker, and J. Demmel, “Reduced-bandwidth
multithreaded algorithms for sparse matrix-vector multiplication,” in
IPDPS ’11, 2011, pp. 721–733.

Authorized licensed use limited to: China University of Petroleum. Downloaded on July 24,2021 at 06:58:14 UTC from IEEE Xplore. Restrictions apply.

[18] A. N. Yzelman and R. H. Bisseling, “Two-dimensional cache-oblivious
sparse matrix–vector multiplication,” Parallel Computing, vol. 37,
no. 12, pp. 806–819, 2011.

[19] B. Su and K. Keutzer, “clspmv: A cross-platform opencl spmv frame-
work on gpus,” in ICS ’12, 2012, pp. 353–364.

[20] X. Liu, M. Smelyanskiy, E. Chow, and P. Dubey, “Efficient sparse
matrix-vector multiplication on x86-based many-core processors,” in ICS
’13, 2013, pp. 273–282.

[21] S. Yan, C. Li, Y. Zhang, and H. Zhou, “yaspmv: Yet another spmv
framework on gpus,” in PPoPP ’14, 2014, pp. 107–118.

[22] A. N. Yzelman and D. Roose, “High-level strategies for parallel shared-
memory sparse matrix-vector multiplication,” IEEE Transactions on
Parallel and Distributed Systems, vol. 25, no. 1, pp. 116–125, 2014.

[23] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. Bishop, “A
unified sparse matrix data format for efficient general sparse matrix-
vector multiplication on modern processors with wide simd units,” SIAM
Journal on Scientific Computing, vol. 36, no. 5, pp. C401–C423, 2014.

[24] J. L. Greathouse and M. Daga, “Efficient sparse matrix-vector multi-
plication on gpus using the csr storage format,” in SC ’14, 2014, pp.
769–780.

[25] P. Guo, L. Wang, and P. Chen, “A performance modeling and opti-
mization analysis tool for sparse matrix-vector multiplication on gpus,”
IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 5,
pp. 1112–1123, 2014.

[26] M. Martone, “Efficient multithreaded untransposed, transposed or sym-
metric sparse matrix-vector multiplication with the recursive sparse
blocks format,” Parallel Computing, vol. 40, no. 7, pp. 251 – 270, 2014.

[27] W. Liu and B. Vinter, “Csr5: An efficient storage format for cross-
platform sparse matrix-vector multiplication,” in ICS ’15, 2015, pp. 339–
350.

[28] A. Ashari, N. Sedaghati, J. Eisenlohr, and P. Sadayappan, “A model-
driven blocking strategy for load balanced sparse matrix–vector mul-
tiplication on gpus,” Journal of Parallel and Distributed Computing,
vol. 76, pp. 3–15, 2015.

[29] N. Sedaghati, T. Mu, L. Pouchet, S. Parthasarathy, and P. Sadayappan,
“Automatic selection of sparse matrix representation on gpus,” in ICS
’15, 2015, pp. 99–108.

[30] M. Daga and J. L. Greathouse, “Structural agnostic spmv: Adapting
csr-adaptive for irregular matrices,” in HiPC ’15, 2015, pp. 64–74.

[31] D. Langr and P. Tvrdı́k, “Evaluation criteria for sparse matrix stor-
age formats,” IEEE Transactions on Parallel and Distributed Systems,
vol. 27, no. 2, pp. 428–440, 2016.

[32] D. Merrill and M. Garland, “Merge-based parallel sparse matrix-vector
multiplication,” in SC ’16, 2016, pp. 678–689.

[33] A. Benatia, W. Ji, Y. Wang, and F. Shi, “Sparse matrix format selection
with multiclass svm for spmv on gpu,” in ICPP ’16, 2016, pp. 496–505.

[34] C. Lehnert, R. Berrendorf, J. P. Ecker, and F. Mannuss, “Performance
prediction and ranking of spmv kernels on gpu architectures,” in Euro-
Par 2016: Parallel Processing, 2016, pp. 90–102.

[35] S. Filippone, V. Cardellini, D. Barbieri, and A. Fanfarillo, “Sparse
matrix-vector multiplication on gpgpus,” ACM Trans. Math. Softw.,
vol. 43, no. 4, pp. 30:1–30:49, 2017.

[36] M. Steinberger, R. Zayer, and H. Seidel, “Globally homogeneous, locally
adaptive sparse matrix-vector multiplication on the gpu,” in ICS ’17,
2017, pp. 13:1–13:11.

[37] A. Elafrou, G. Goumas, and N. Koziris, “Performance analysis and
optimization of sparse matrix-vector multiplication on modern multi-
and many-core processors,” in ICPP ’17, 2017, pp. 292–301.

[38] Y. Liang, W. T. Tang, R. Zhao, M. Lu, H. P. Huynh, and R. S. M. Goh,
“Scale-free sparse matrix-vector multiplication on many-core architec-
tures,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 36, no. 12, pp. 2106–2119, 2017.

[39] A. Elafrou, V. Karakasis, T. Gkountouvas, K. Kourtis, G. Goumas, and
N. Koziris, “Sparsex: A library for high-performance sparse matrix-
vector multiplication on multicore platforms,” ACM Trans. Math. Softw.,
vol. 44, no. 3, pp. 26:1–26:32, 2018.

[40] Y. Zhao, J. Li, C. Liao, and X. Shen, “Bridging the gap between deep
learning and sparse matrix format selection,” in PPoPP ’18, 2018, pp.
94–108.

[41] J. Li, G. Tan, M. Chen, and N. Sun, “Smat: An input adaptive auto-
tuner for sparse matrix-vector multiplication,” in PLDI ’13, 2013, pp.
117–126.

[42] H. Anzt, T. Cojean, C. Yen-Chen, J. Dongarra, G. Flegar, P. Nayak,
S. Tomov, Y. M. Tsai, and W. Wang, “Load-balancing sparse matrix

vector product kernels on gpus,” ACM Trans. Parallel Comput., vol. 7,
no. 1, 2020.

[43] W. Liu, “Parallel and scalable sparse basic linear algebra subprograms,”
Ph.D. dissertation, University of Copenhagen, 2015.

[44] B. Xie, J. Zhan, X. Liu, W. Gao, Z. Jia, X. He, and L. Zhang, “Cvr:
Efficient vectorization of spmv on x86 processors,” in CGO ’18, 2018,
pp. 149–162.

[45] A. Ashari, N. Sedaghati, J. Eisenlohr, S. Parthasarath, and P. Sa-
dayappan, “Fast sparse matrix-vector multiplication on gpus for graph
applications,” in SC ’14, 2014, pp. 781–792.

[46] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1:1–1:25, 2011.

[47] E.-J. Im and K. Yelick, “Optimizing sparse matrix computations for
register reuse in sparsity,” in ICCS ’01, 2001, pp. 127–136.

[48] E.-J. Im, K. Yelick, and R. Vuduc, “Sparsity: Optimization framework
for sparse matrix kernels,” The International Journal of High Perfor-
mance Computing Applications, vol. 18, no. 1, pp. 135–158, 2004.

[49] R. Vuduc, J. W. Demmel, K. A. Yelick, S. Kamil, R. Nishtala, and
B. Lee, “Performance optimizations and bounds for sparse matrix-vector
multiply,” in SC ’02, 2002, pp. 26–26.

[50] R. Vuduc, A. Gyulassy, J. W. Demmel, and K. A. Yelick, “Memory
hierarchy optimizations and performance bounds for sparse atax,” in
ICCS ’03, 2003, pp. 705–714.

[51] B. C. Lee, R. W. Vuduc, J. W. Demmel, and K. A. Yelick, “Performance
models for evaluation and automatic tuning of symmetric sparse matrix-
vector multiply,” in ICPP ’04, 2004, pp. 169–176 vol.1.

[52] A. Buluç and J. R. Gilbert, “On the representation and multiplication of
hypersparse matrices,” in IPDPS ’08, 2008, pp. 1–11.

[53] ——, “Parallel sparse matrix-matrix multiplication and indexing: Im-
plementation and experiments,” SIAM Journal on Scientific Computing,
vol. 34, no. 4, pp. C170–C191, 2012.

[54] A. Buttari, V. Eijkhout, J. Langou, and S. Filippone, “Performance
optimization and modeling of blocked sparse kernels,” The International
Journal of High Performance Computing Applications, vol. 21, no. 4,
pp. 467–484, 2007.

[55] X. Wang, W. Liu, W. Xue, and L. Wu, “swsptrsv: A fast sparse triangular
solve with sparse level tile layout on sunway architectures,” in PPoPP
’18, 2018, pp. 338–353.

[56] Z. Lu, Y. Niu, and W. Liu, “Efficient block algorithms for parallel sparse
triangular solve,” in ICPP ’20, 2020.

[57] H. Anzt, T. Cojean, G. Flegar, F. Göbel, T. Grützmacher, P. Nayak,
T. Ribizel, Y. M. Tsai, and E. S. Quintana-Ortı́, “Ginkgo: A modern
linear operator algebra framework for high performance computing,”
2020.

[58] W. Liu and B. Vinter, “Speculative segmented sum for sparse matrix-
vector multiplication on heterogeneous processors,” Parallel Computing,
vol. 49, no. C, pp. 179–193, 2015.

[59] S. Yesil, A. Heidarshenas, A. Morrison, and J. Torrellas, “Speeding
up spmv for power-law graph analytics by enhancing locality amp;
vectorization,” in SC ’20, 2020.

[60] A. Elafrou, G. Goumas, and N. Koziris, “Conflict-free symmetric sparse
matrix-vector multiplication on multicore architectures,” in SC ’19,
2019.

[61] G. Tan, J. Liu, and J. Li, “Design and implementation of adaptive spmv
library for multicore and many-core architecture,” ACM Trans. Math.
Softw., vol. 44, no. 4, 2018.

[62] Z. Xie, G. Tan, W. Liu, and N. Sun, “Ia-spgemm: An input-aware auto-
tuning framework for parallel sparse matrix-matrix multiplication,” in
ICS ’19, 2019, p. 94–105.

[63] A. Li, W. Liu, M. R. B. Kristensen, B. Vinter, H. Wang, K. Hou,
A. Marquez, and S. L. Song, “Exploring and analyzing the real impact
of modern on-package memory on hpc scientific kernels,” in SC ’17,
2017, pp. 26:1–26:14.

[64] Y. M. Tsai, T. Cojean, and H. Anzt, “Sparse linear algebra on amd and
nvidia gpus – the race is on,” in ISC ’20, 2020, pp. 309–327.

[65] ——, “Evaluating the performance of nvidia’s a100 ampere gpu for
sparse linear algebra computations,” 2020.

[66] F. Zhang, W. Liu, N. Feng, J. Zhai, and X. Du, “Performance evaluation
and analysis of sparse matrix and graph kernels on heterogeneous
processors,” CCF Transactions on High Performance Computing, p.
131–143, 2019.

Authorized licensed use limited to: China University of Petroleum. Downloaded on July 24,2021 at 06:58:14 UTC from IEEE Xplore. Restrictions apply.

