
Vol.:(0123456789)1 3

CCF Transactions on High Performance Computing
https://doi.org/10.1007/s42514-021-00075-8

REGULAR PAPER

Implementing LU and Cholesky factorizations on artificial intelligence
accelerators

Yuechen Lu1 · Yuchen Luo1 · Haocheng Lian1 · Zhou Jin1 · Weifeng Liu1

Received: 14 April 2021 / Accepted: 3 August 2021
© China Computer Federation (CCF) 2021

Abstract
LU and Cholesky factorizations for dense matrices are one of the most fundamental building blocks in a number of numeri-
cal applications. Because of the O(n3) complexity, they may be the most time consuming basic kernels in numerical linear
algebra. For this reason, accelerating them on a variety of modern parallel processors received much attention. We in this
paper implement LU and Cholesky factorizations on novel massively parallel artificial intelligence (AI) accelerators originally
developed for deep neural network applications. We explore data parallelism of the matrix factorizations, and exploit neural
compute units and on-chip scratchpad memories of modern AI chips for accelerating them. The experimental results show
that our various optimization methods bring performance improvements and can provide up to 41.54 and 19.77 GFlop/s
performance using single precision data type and 78.37 and 33.85 GFlop/s performance using half precision data type for
LU and Cholesky factorizations on a Cambricon AI accelerator, respectively.

Keywords LU factorization · Cholesky factorization · AI accelerator

1 Introduction

LU and Cholesky factorizations are one of the most com-
monly used matrix operations in solving systems of linear
equations (Golub and van Loan 2013). LU factorization
decomposes a square matrix A into the multiplication of two
matrices L and U, where L is a lower triangular matrix, and
U is an upper triangular matrix. Cholesky factorization can
be seen as a special form of LU factorization. It decomposes
a symmetric positive definite matrix A into LLT , where L is
a lower triangular matrix, and LT is its transpose.

Over the past few decades, designing acceleration algo-
rithms and optimization techniques for LU and Cholesky
factorizations has received extensive attention (Yamazaki
et al. 2015; Haidar et al. 2017; Kurzak et al. 2016; Dorris
et al. 2016). There have been a few major approaches to par-
allelize LU and Cholesky on a variety of parallel hardware
architectures. On CPUs and GPUs, panel (Rothberg 1996)
and tiling (Dongarra et al. 2014) methods are most used
for exploiting parallelism. Besides, batched factorization
methods for very small matrices (Haidar et al. 2018; Abdel-
fattah et al. 2016; Dong et al. 2014) have been developed
as well. In addition, mixed precision solvers can use low
precision LU or Cholesky for generating initial solution, and
iterative refinement for giving high precision solution vector
(Yamazaki et al. 2015). Many packages, such as LAPACK
(Anderson et al. 1990), ScaLAPACK (Choi et al. 1996a,
b), PLASMA (Agullo et al. 2009) and MAGMA (Agullo
et al. 2009; Abdelfattah et al. 2017), can provide optimized
parallel implementation of LU and Cholesky factorizations.

As the importance of artificial intelligence (AI) increases,
building special purpose architectures for AI computations
has became a hot topic in recent years (Chen et al. 2020;
Reuther et al. 2019, 2020). Representative work such as
Diannao family (Chen et al. 2014, 2016) and tensor process-
ing units (Jouppi et al. 2017, 2018) already showed higher

 * Weifeng Liu
 weifeng.liu@cup.edu.cn

 Yuechen Lu
 2020211270@student.cup.edu.cn

 Yuchen Luo
 2020211257@student.cup.edu.cn

 Haocheng Lian
 2017011344@student.cup.edu.cn

 Zhou Jin
 jinzhou@cup.edu.cn

1 Super Scientific Software Laboratory, Department
of Computer Science and Technology, China University
of Petroleum-Beijing, Beijing, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-021-00075-8&domain=pdf

 Y. Lu et al.

1 3

performance and lower energy consumption than general
purpose processors, e.g., CPUs and GPUs. Because one of
the most important functions of the AI chips is to acceler-
ate matrix-vector and matrix-matrix computations in deep
neural networks, they have great potential to accelerate more
numerical linear algebra operations. However, to the best of
our knowledge, such research opportunity has been largely
ignored.

In our work, we utilize BANG C programming language
for implementing the two factorization methods and opti-
mize them on a Cambricon AI accelerator. Specifically,
we first realize serial algorithm of LU and Cholesky using
the Global-DRAM (GDRAM) of the Cambricon AI accel-
erator. Since GDRAM is an off-chip memory, we use its
performance as a baseline of the subsequent optimizations.
Then, we migrate the serial code to the on-chip Neural-RAM
(NRAM) which has higher read and write throughput, and
carry out tensor quantification. After this, we start to use
multiple cores of the AI chip to scale out the algorithms.
Algorithm-wise, we first treat each row as an independent
task and hand it over to a core for execution, but this method
in general causes lots of repeated calls to the core function,
and degrades performance. So we further improve the par-
allelism to row block level, which reduces the number of
calls of kernel function to a much lower degree. Finally, we
carefully tune the size of the row blocks and the number of
cores used through a large amount of experimental results.

Our experiments are carried out on an MLU270-S4 AI
card. The performance of LU and Cholesky factorizations
under different optimization algorithms is tested, and the
matrix orders are from 128 to 8192. Compared with the
basic serial LU factorization, the performance of the row
level parallel algorithm is improved by up to 359.33% than
that of the serial algorithm, and the row level parallel algo-
rithm of Cholesky factorization is up to 277.44% better than
the serial algorithm. After analyzing the architecture of the
AI card, we further optimized the algorithm to a row-block
level version scheduling strategy. Compared with the row
level versions, the best performance of LU and Cholesky
factorizations is further increased up to 235% and 229% ,
respectively. Finally, our row-block level parallel LU and
Cholesky using single precision data type reach 41.54 and
19.77 GFlop/s, and half precision data type reach 78.37 and
33.85 GFlop/s, respectively.

This work makes the following contributions:

– To our knowledge, this a very early work that implements
and optimizes LU and Cholesky factorizations on mod-
ern AI accelerators.

– The factorization algorithms proposed are optimized
according to AI architectures.

– The optimized factorization methods achieve good per-
formance on matrices of various sizes.

2 Background

In this section, we give a background overview of the
research. We first introduce the basic LU and Cholesky
factorizations and their serial implementation, and then
introduce the Cambricon AI architecture and its BANG C
development language.

2.1 LU Factorization

LU factorization is used for square matrix decomposition
in linear systems. It is a variant of the Gaussian elimination
method and belongs to the direct method for linear solvers.
LU factorization decomposes a matrix A into the product of
a lower triangular matrix L and an upper triangular matrix
U by executing the following equations:

For a dense matrix, the time complexity of LU decom-
position is O(n3) , where n is the order of the input matrix.
The pseudocode in Algorithm 1 shows a basic implementa-
tion of LU factorization, and Figure 1 plots the procedure of
decomposing a matrix of size 5-by-5.

(1)Uij =Aij −

j−1
∑

k=0

LikUkj

{

i = 1, 2, ...,N

j = i, i + 1, ...,N

(2)Lij =
1

Ujj

(

Aij −

j−1
∑

k=1

LikUkj

)

{

i = 1, 2, ...,N

j = 1, 2, ..., i − 1

Fig. 1 Steps of serial LU fac-
torization

Implementing LU and Cholesky factorizations on artificial intelligence accelerators

1 3

Algorithm 1 A pseudocode of LU factorization.
1: for i = 0 : n− 1 do
2: for j = i+ 1 : n− 1 do
3: Aji = Aji/Aii

4: for x = i+ 1 : n− 1 do
5: Ajx = Ajx −Aji × Aix

6: end for
7: end for
8: end for

2.2 Cholesky Factorization

Cholesky factorization can be seen as a special form of the
LU factorization. It decomposes a symmetric positive defi-
nite matrix A into the product of a lower triangular matrix L
and its transpose matrix LT . Because of using the symmetry
of the input matrix, the Cholesky factorization is in general
more efficient than LU factorization. It can be computed
through

A serial pseudocode for Cholesky is shown in Algorithm 2.

Algorithm 2 A pseudocode of Cholesky factorization.
1: for i = 0 : n− 1 do
2: Aii =

√
Aii

3: for j = i+ 1 : n− 1 do
4: Aij = Aij/Aii

5: end for
6: for k = i+ 1 : n− 1 do
7: for j = k : n− 1 do
8: Akj = Akj − Aij ×Aik

9: end for
10: end for
11: end for

2.3 AI Accelerator and BANG C Programming
Language

As the growth of AI applications, designing domain specific
architectures for accelerating key AI kernels such as matrix
multiplication and convolution computations received much
attention. Besides running multiple parallel threads, which is
very similar to the multi- and many-core processors, the AI
chips can also take some specific hardware-level optimiza-
tions for neural network compute units and memory systems.

(3)Lii =

√

√

√

√Aii −

i−1
∑

p=1

L2
ip
, i ∈ [2, n], and

(4)L
ji
=
A
ji
−
∑i−1

p=1
L
ip
L
jp

L
ii

, i ∈ [2, n − 1], j ∈ [i + 1, n]

Also, the cores with fixed function units can be simpler than
the regular cores in general purpose processors.

Cambricon has developed a series of machine learning
processors called MLU (Machine Learning Unit) to achieve
good trade-off between flexibility and efficiency. A card
named MLU270 is a representative accelerator of this series.
Figure 2 shows a block diagram of the MLU270 AI card. As
can be seen, each MLU270 has four compute clusters, and
every cluster has four physical cores. Each core is mainly
composed of a functional unit (FU), a general register group
(GPR), a neuron storage unit NRAM, and a weight storage
unit (Weight–RAM, WRAM). The Shared-RAM (SRAM)
on the chip is shared by the four cores in the same cluster. In
addition, all cores can access global shared memory called
GDRAM using DDR technology, and each core has a sepa-
rate piece of memory called Local-DRAMs (LDRAMs).

BANG C language is a new language proposed by Cam-
bricon for programming MLU hardware. It brings general
purpose programming capabilities to Cambricon chips and
increases the freedom of user programming. Bang C lan-
guage provides a wealth of call APIs for vector function
units (VFU) and matrix function units (MFU), through
which computing performance can be greatly improved. For
example, using the vector function unit API (__bang_add)
instead of the vector addition implemented using the ordi-
nary for loop, the performance may have a gap of hundreds
of times.

BANG C can support half precision data type of two
bytes. In the experiments of this paper, we improve the per-
formance of the program by using half and float type, and
the loss of accuracy may be endurable in mixed precision
linear algebra routines (Yamazaki et al. 2015).

3 LU and Cholesky Factorizations on AI
Chips

3.1 Baseline Implementation

We first implement the serial LU and Cholesky factorization
algorithms based on Gaussian elimination to the Cambricon
chip. At this time, the input matrix is loaded without any
preprocessing, and the data is stored in the global mem-
ory GDRAM. The entire calculation process does not take
advantage of the superiority of the MLU hardware architec-
ture at all. So the execution time can be pretty long for large
matrices. Because all operations at this time are executed by
one core, its load is too heavy to finish in a reasonably time.
In order to improve performance, and also to handle larger-
scale matrices, it is very necessary to optimize the algorithm
based the architecture advantages of the MLU270 device.

 Y. Lu et al.

1 3

3.2 Optimizations Using On‑Chip Memories

On the Cambricon chip, on-chip memory is the storage unit
closer to the compute unit, and it also has better efficiency in
reading and writing. Therefore, we used NRAM instead of
GDRAM when performing matrix factorization operations
to increase the speed of the program. NRAM is a shared
memory on each core. Although it has a smaller space than

GDRAM, it can achieve higher read and write bandwidth
and lower access latency. In actual operation, we first apply
for a piece of NRAM space on the MLU terminal, then move
the GDRAM data to the NRAM, and move the NRAM data
back to the GDRAM after the calculation is completed.
Because the space on NRAM is relatively small, when we
are dealing with larger-scale matrices, we need to copy the
data in batches.

Fig. 2 Block diagram of Cambricon MLU270 AI accelerator

Algorithm 3 Cholesky Factorization Algorithm Using Tensor Quantization
Input: A : unfactorized matrix, n : integer
Output: A : factorized matrix
1: function cnrtInvokeKernel(A,n)
2: nAii[32] : NRAM float
3: nAij[32] : NRAM float
4: nAik[8192] : NRAM float
5: nAjk[8192] : NRAM float
6: nAjsum[8192] : NRAM float
7: for i = 0 : n− 1 do
8: Aii = sqrtf(Aii)
9: if i = n− 1 then
10: return
11: end if
12: memcpy(nAik , Aii , n− i− 1 , GDRAM2NRAM) // nAik ← Aii : Ain

13: memset(nAii , 1/Aii) // nAii ← 1/Aii

14: bang cycle mul(nAik, nAik, nAii, 8192, 32)
15: memcpy(Aii , nAik , n− i− 1 , NRAM2GDRAM) // Aii : Ain ← nAik
16: for j = i+ 1 : n− 1 do
17: memset(nAij , Aij) // nAij ← Aij

18: memcpy(nAjk , Ajj , n− j , GDRAM2NRAM) // nAjk ← Ajj : Ajn

19: bang cycle mul(nAjsum, nAik + j − i− 1, nAij, 8192, 32)
20: bang sub(nAjk, nAjk, nAjsum, 8192)
21: memcpy(Ajj , nAjk , n− j , NRAM2GDRAM) // Ajj : Ajn ← nAjk
22: end for
23: end for
24: end function

Implementing LU and Cholesky factorizations on artificial intelligence accelerators

1 3

3.3 Optimizations Using Tensor Quantization

In the LU and Cholesky factorization algorithms, there are
many scalar multiplication of vectors structures (Jia et al.
2012; Kurzak et al. 2012). When processing this part, we
need to perform the scalar multiplication operations repeat-
edly, which takes a long time. In the MLU architecture, there
are arithmetic modules VFU (Vector Function Unit) and
MFU (Matrix Function Unit) dedicated to tensor calcula-
tion on each core, which are used to complete vector opera-
tions and matrix operations, respectively. Bang C language
provides developers with interface for tensor quantization
calculation. Using this interface, a large number of scalar
multiplication calculations are combined into tensor calcula-
tions, and the hardware tensor calculation unit can be better
utilized. In general, it also improves the execution time of
the program. In BANG C language, the data calculated using
tensor quantization should be stored in NRAM.

Algorithm 3 is the Cholesky factorization algorithm of
tensor quantization. We directly call the kernel function and
transfer the entire matrix and matrix size to the MLU chip.
Here we introduce in detail the operation steps of using on-
chip storage NRAM and tensor quantization: first, applying
for NRAM space (lines 2-5), and then entering the for loop
(line 7) to start the update of each layer. In the update of each
layer, the first step is to calculate the value Aii on the diago-
nal, and then copy this value and the value of the entire row
to NRAM; the second step is to use the tensor quantization
interface provided by BANG C __bang_cycle_mul to per-
form vector multiplication calculation and update the value
of the current row, and then return it to the matrix A; the
third step is to enter the for loop (line 16), using the tensor
quantization calculation interface and the addition and sub-
traction function to update the remaining rows, and finally
returns the result to the matrix A. Until each layer is updated
in turn, the factorization of the entire matrix is completed.

3.4 Optimizations Using Row Level Parallelism

In the previous subsection, the factorization task of a
matrix is performed by an MLU core, and its efficiency was

relatively low. MLU270 is a multi-core heterogeneous plat-
form for acceleration. Using this feature, the performance of
the factorization algorithm can be greatly improved. Taking
the LU factorization algorithm as an example, because the
current updating layer are dependent on the results of the
previous layer, this determines that only the parallelism of
the current panel update can be improved, and the update
between panels needs to be executed sequentially. We use the
“row parallel” approach to update each row as a task. When
the current panel is updating all rows, all tasks are executed
in parallel to improve the efficiency of the algorithm.

In row parallel LU factorization, we have implemented
two algorithms: (1) updating the column vector and the
panel separately (NRS) and (2) updating the column vec-
tor and panel combined (NRC). The former assigns column
vector update and panel update to two kernel functions to
execute respectively, while the latter combines the two steps
into one kernel function. Note that the Cholesky factoriza-
tion algorithm has one more dependency than the LU fac-
torization algorithm. Thus, there is no such way of merge
execution in Cholesky’s row parallel algorithm.

3.5 Optimizations Using Row‑Block Level
Parallelism

To further improve the performance, we propose a new par-
allel pattern to complete LU and Cholesky factorizations.
The main idea is to divide the currently updated panel
equally by rows to obtain row blocks, and each row block
is handed over to a core for calculation. All row blocks are
calculated in parallel. After the calculation is completed, the
results are combined and returned to the matrix to achieve
the current panel update work. Compared with the algo-
rithms proposed in this paper, although row-block level par-
allelism reduces the degree of parallelism, it actually reduces
the overhead of repeatedly calling kernel functions.

 Y. Lu et al.

1 3

Algorithm 4 LU Factorization Algorithm of Row-Block-Level Parallelism
Input: A : unfactorized matrix, n : integer, workingKernelNum : integer
Output: A : factorized matrix
1: for i = 0 : n− 1 do
2: var rowBlockSz : integer
3: rowBlockSz = (n− i− 1)/workingKernelNum
4: function cnrtInvokeKernel(id = 0 : workingKernelNum)
5: nAji[32] : NRAM float
6: tmp[32] : NRAM float
7: nAjx[8192] : NRAM float
8: nAix[8192] : NRAM float
9: memcpy(nAix,Ai(i+1),n-i-1,GDRAM2NRAM)// nAix ← Ai(i+1) : Ain

10: for k = i : i+ rowBlockSz do
11: var j : integer
12: j = id × rowBlockSz + k + 1
13: if j >= n then
14: return
15: end if
16: Aji = Aji / Aii

17: memset(nAji , Aji) // nAji ← Aji

18: memcpy(nAjx,Aj(i+1),n-i-1,GDRAM2NRAM)// nAjx ← Aj(i+1) : Ajn

19: bang cycle mul(tmp, nAix, nAji, levelLen(n − i− 1), 32)
20: bang sub(nAjx, nAjx, tmp, levelLen(n − i− 1))
21: memcpy(Aj(i+1) ,nAjx,n-i-1,NRAM2GDRAM)// Aj(i+1) : Ajn ← nAjx
22: end for
23: end function
24: end for

Algorithm 4 is a row-block parallel algorithm of LU fac-
torization. The for loop (line 1) is running in the host, and
the variable rowBlockSz represents the number of rows con-
tained in each block of the current layer, and is also the num-
ber of rows that each core needs to calculate. Line 4 calls
the kernel function to start multi-core parallel computing,
and the variable workingKernelNum is the number of cores
participating in the calculation. The specific operation steps
of each core are as follows: First, applying for NRAM spaces
to temporarily store the variables used in the current core
calculation (lines 5-8), and copying the value of the first row
of the current layer to nAix (line 9). Then, starting to update
the rows of the current core. The first value of the current
row is calculated and copied to nAji, and then the remaining
value of the current row is copied to nAjx. Next, using the
tensor quantization interface to multiply nAix and nAji, and
temporarily storing the calculated result in tmp (line 19). At
last, using nAjx to subtract tmp to update the value of nAjx,
and finally returning the value of nAjx to matrix A, which
completes the update of the current rows. Until all cores
have finished updating all rows, the update operation of the
current layer is completed. Through the for loop on the host
side, the factorization of the entire LU matrix is completed
after all the layers are updated in sequence.

As can be seen in Figure 2, there are four clusters on the
MLU270 chip, and four cores on each cluster. So we need to
use the best combination of the clusters and cores (e.g., the
performance of using 2 clusters × 4 cores and 4 clusters × 2
cores may be different). Because when multiple cores on the
same cluster are accessing global memory at the same time,

there may be the contention of data transmission channel,
which will affect performance to a certain extent. Figure 3
shows the scheduling of computing cores when 8 cores are
used for row-block parallel computing. The number of rows
to be updated in the current layer is 16. So each core updates
two rows. Specially, the red borders represent the part that
a core needs to calculate. The color of the row block in the
matrix is the same as the color of the core doing the calcula-
tion. In this case, eight cores come from four clusters.

In the row-block level parallel algorithm, we have also
made some detailed optimizations. When using the tensor
quantization interface, one of the parameters needs to be
obtained by repeatedly calling a simple function. We definite
a macro function which can make the calling part expanded
by the macro expander to avoid calling the simple function
repeatedly. At the same time, in the compilation process, the
use of loop unrolling can also lift the speed.

4 Experimental Results

4.1 Experimental Setup

We used an MLU270-S4 AI card as the experimental plat-
form for testing the performance of LU and Cholesky fac-
torizations with various algorithm implementations. The test
matrix sizes are from 128 × 128 to 8192 × 8192 . We store the
matrices data with float type and half type separately. The

Implementing LU and Cholesky factorizations on artificial intelligence accelerators

1 3

Fig. 3 An example of core allo-
cation in the LU factorization
algorithm of row-block level
parallelism. The left part indi-
cates that at the current layer,
there are 16 rows of data to be
updated, and we assume that
we use eight cores for calcula-
tion. The right part of the figure
is the architectural abstraction
diagram of MLU270: the eight
cores involved in the calculation
are evenly distributed among
four clusters

(b)(a)

Fig. 4 The performance of LU factorization using GDRAM only and NRAM with tensor quantization, respectively

(b)(a)

Fig. 5 The performance of Cholesky factorization using GDRAM only and NRAM with tensor quantization, respectively

 Y. Lu et al.

1 3

following parts will show the performance of our algorithms
and analyze their performance.

When using GDRAM, because its MLU270 single-core
scalar computing power is very weak, it can only support
calculations of up to 600 × 600 matrix in our test. Also,
when using NRAM with tensor quantization, we use the
VFU inside the core. It can be calculated for larger scale
matrices of size up to 4096 × 4096.

4.2 Performance of Tensor Quantization

We firstly implement the serial Cholesky and LU factori-
zation algorithms on the off-chip memory GDRAM. We
migrate the serial code to the on-chip storage NRAM with
higher read and write throughput, and carry out tensor

quantization. We test the two algorithms using the two data
types separately, the performance comparison charts are
shown in Figures 4 and 5.

As can be seen, the performance of the tensor quantiza-
tion code on NRAM is much better than that of serial code
on GDRAM. The method on the GDRAM in the figures
only shows the performance of the matrix size of up to 600.
This is because when the matrix size is larger than 600,
the program will end with time out. As for the code per-
formance on NRAM, the maximum display matrix size is
4096 × 4096 . When the matrix size gets larger, the situation
of time out will also occur. Both of these cases are because
the serial algorithms take too long time on one core. From
these figures, we can see that for the code on NRAM, as the
matrix size increases, performance shows an scalable trend.

(a) (b)

Fig. 6 The performance of NRC LU factorization and NRS LU factorization with row level parallelism, which (a) uses half data type and (b)
uses float data type

(a) (b)

Fig. 7 The performance of Cholesky factorization with row level parallelism, which (a) uses half data type and (b) uses float data type

Implementing LU and Cholesky factorizations on artificial intelligence accelerators

1 3

In these figures, the peak performance of LU factorization
on GDRAM reaches up to 0.02 GFlop/s, the peak perfor-
mance of Cholesky factorization reaches 0.01 GFlop/s. The
peak performance of LU facorization on NRAM after tensor
quantization reaches 4.91 GFlop/s using float type and 6.59
GFlop/s using half type, and Cholesky peak performance
reaches 3.11 GFlop/s using float type and 4.46 GFlop/s usign

half type. From these data, we can get the code with tensor
quantization achieved a preliminary performance improve-
ment. Also, the performance of LU and Cholesky factoriza-
tion using half data type is 134.15% and 143.22% higher than
float data type, respectively.

Fig. 8 The performance of calling clusters with unbalanced strategy and balanced strategy

(a) (b)

Fig. 9 The best performance of LU factorization with row-block level parallelism

 Y. Lu et al.

1 3

4.3 Performance of Row Level Parallelism

In section 3.4, we proposed two LU factorization algorithms
named NRS and NRC. In the experiment, we tested the two
algorithms, and the results showed in Figure 6 match our
prediction. The performance of the two LU algorithms
reaches the best performance at a matrix size of 7936 × 7936
when using half type and 7800 × 7800 when using float type.
The maximum performances of NRC with the two data type
reach 27.98 and 17.65 GFlop/s, the maximum performance
of NRS with the two data type reach 2.38 and 15.01 GFlop/s.
The former avoids repeated copying of data from GDRAM
to NRAM and reduces the number of calls to MLU func-
tions, so the performance of NRC is better than that of NRS.
Also, changing from float type to half type can improve per-
formance by about 1.5 times.

Similarly, we also test the row level parallel algorithm
of Cholesky factorization, and get performances as shown
in Figure 7. Comparing the two parallel factorization algo-
rithms with the two serial factorization algorithms, it can be
obtained that the performance of LU row level parallel algo-
rithm is up to 359.33% higher than the serial algorithm, and
the performance of Cholesky factorization row level parallel
algorithm is up to 277.44% higher than the serial algorithm.

4.4 Performance of Row‑Block Level Parallelism

We compare the two scheduling strategies of calling cluster
normally (clusters load unbalanced) and calling more clus-
ters preferentially (clusters load balanced) for LU factoriza-
tion on a matrix with a size of 8192 × 8192 . In Figure 8, the
blue dots are the performance when the unbalanced sched-
uling strategy updating each layer of panel, and the yellow
dots are the performance of the balanced scheduling strategy.

When the numbers of cores are 1 and 16, there is almost no
difference in performance between the two; when the num-
bers of cores are 2, 4, and 8, different numbers of clusters
bring significant different performance. In particular, when
using eight cores, balanced strategy can be 2 GFlop/s higher
than unbalanced strategy.

As for the scaling test, we measure LU and Cholesky
with matrices of size (128 × 128 − 8192 × 8192) using
two data types, and obtained the performance in Figures 9
and 10. Except the LU factorization algorithm with float
data type, the performances of other algorithms are com-
pletely positively correlated with the number of cores. In
the Figure 9(b), when the matrix size exceeds 5000 × 5000 ,
the performance of eight cores exceeds the performance
of 16 cores. This is because that when the matrix size
becomes larger, the cluster’s internal cores copy more data
from GDRAM at the same time, causing data transmission
congestion. So reducing the number of active cores in the
cluster at this time can further improve performance. Like
Figure 9, the performance of row-block level parallel LU
algorithm with half data type is 2.54 times higher than float
data type. Using the half type row block parallel LU algo-
rithm to factorize the 8192 × 8192 matrix on 16 cores can
achieve the highest performance 78.37 GFlop/s and using
float type gets the best performance 41.53 GFlop/s when
using eight cores. As for Cholesky, the performance is
always positively correlated with the number of cores. This
is because that of the memory copy required for Cholesky
factorization is much less than LU. Using the half type and
float type row block parallel Cholesky algorithm to factorize
the 8192 × 8192 matrix on 16 cores can achieve up to 33.85
and 19.77 GFlop/s, respectively.

Moreover, we especially try to decompose a matrix of
16384 × 16384 with Cholesky. The 8-core performance with

(b)(a)

Fig. 10 The best performance of Cholesky factorization with row-block level parallelism

Implementing LU and Cholesky factorizations on artificial intelligence accelerators

1 3

float type is 13.89 GFlop/s, and the 16-core performance is
12.32 GFlop/s, which are lower than that of 8192 × 8192
size.

5 Conclusion

To the best of our knowledge, this is the first work that has
implemented LU and Cholesky factorizations on modern
AI chips, and developed a series of optimization techniques
for utilizing the specific architectures originally designed
for deep neural network computations. The experimen-
tal results show that LU and Cholesky factorizations can
obtain 78.37 and 33.85 GFlop/s with half data type, 41.53
and 19.77 GFlop/s with float data type on a Cambrican AI
chip, respectively, and a variety of optimizations demon-
strated their effectiveness.

Acknowledgements We would like to thank the invaluable comments
from all the reviewers. Weifeng Liu is the corresponding author of
this paper. This research was supported by the National Natural Sci-
ence Foundation of China under Grant No. 61972415, and the Science
Foundation of China University of Petroleum, Beijing under Grant Nos.
2462019YJRC004, 2462020XKJS03.

References

Abdelfattah, A., Haidar, A., Tomov, S., Dongarra, J. J.: “Performance
tuning and optimization techniques of fixed and variable size
batched cholesky factorization on gpus,” In International Con-
ference on Computational Science 2016, ICCS 2016, 6-8 June
2016, San Diego, California, USA, ser. Procedia Computer Sci-
ence, M. Connolly, Ed., vol. 80. Elsevier, (2016), pp. 119–130

Abdelfattah, A., Haidar, A., Tomov, S., Dongarra, J.J.: Fast Cholesky
factorization on GPUs for batch and native modes in MAGMA.
J. Comput. Sci. 20, 85–93 (2017)

Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J., Langou,
J., Ltaief, H., Luszczek, P., Tomov, S.: Numerical linear algebra
on emerging architectures: the PLASMA and MAGMA projects.
J. Phys. Conf. Ser. 180, 012037 (2009)

Anderson, E., Bai, Z., Dongarra, J., Greenbaum, A., McKenney, A., Du
Croz, J., Hammarling, S., Demmel, J., Bischof, C., Sorensen, D.:
In: Lapack: a portable linear algebra library for high-performance
computers, pp. 2–11. IEEE Computer Society Press, Washington,
DC, USA (1990)

Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen, Y., Temam, O.:
Diannao: A small-footprint high-throughput accelerator for ubiq-
uitous machine-learning. Presented at the (2014)

Chen, Y., Chen, T., Xu, Z., Sun, N., Temam, O.: Diannao family:
energy-efficient hardware accelerators for machine learning. Com-
mun. ACM 59(11), 105–112 (2016)

Chen, Y., Xie, Y., Song, L., Chen, F., Tang, T.: A survey of accelerator
architectures for deep neural networks. Engineering 6(3), 264–274
(2020)

Choi, J., Demmel, J., Dhillon, I., Dongarra, J., Ostrouchov, S., Petitet,
A., Stanley, K., Walker, D., Whaley, R.: “Scalapack: a portable
linear algebra library for distributed memory computers – design
issues and performance,” Computer Physics Communications,

vol. 97, no. 1, pp. 1–15, (1996), high-Performance Computing
in Science

Choi, J., Dongarra, J.J., Ostrouchov, S., Petitet, A., Walker, D.W.,
Whaley, R.C.: Design and implementation of the ScaLAPACK
LU, QR, and Cholesky factorization routines. Sci. Program. 5(3),
173–184 (1996b)

Dong, T., Haidar, A., Luszczek, P., Harris, J. A., Tomov, S., Dongarra,
J. J.: “LU factorization of small matrices: Accelerating batched
DGETRF on the GPU,” In 2014 IEEE International Conference
on High Performance Computing and Communications, 6th IEEE
International Symposium on Cyberspace Safety and Security, 11th
IEEE International Conference on Embedded Software and Sys-
tems, HPCC/CSS/ICESS 2014, Paris, France, August 20-22, 2014.
IEEE, (2014), pp. 157–160

Dongarra, J.J., Faverge, M., Ltaief, H., Luszczek, P.: Achieving numer-
ical accuracy and high performance using recursive tile LU fac-
torization with partial pivoting. Concurr. Comput. Pract. Exp.
26(7), 1408–1431 (2014)

Dorris, J., Kurzak, J., Luszczek, P., YarKhan, A., Dongarra, J. J.: “Task-
based cholesky decomposition on knights corner using openmp,”
In High Performance Computing - ISC High Performance 2016
International Workshops, ExaComm, E-MuCoCoS, HPC-IODC,
IXPUG, IWOPH, P 3A, VHPC, WOPSSS, Frankfurt, Germany,
June 19-23, 2016, Revised Selected Papers, ser. Lecture Notes in
Computer Science, M. Taufer, B. Mohr, and J. M. Kunkel, Eds.,
vol. 9945, (2016), pp. 544–562

Golub, G.H., van Loan, C.F.: Matrix computations, 4th edn. JHU Press,
USA (2013)

Haidar, A., Abdelfattah, A., Tomov, S., Dongarra, J. J.: “High-perfor-
mance cholesky factorization for gpu-only execution,” In Proceed-
ings of the General Purpose GPUs, GPGPU@PPoPP, Austin, TX,
USA, February 4-8, 2017. ACM, (2017), pp. 42–52

Haidar, A., Abdelfattah, A., Zounon, M., Tomov, S., Dongarra, J.J.: A
guide for achieving high performance with very small matrices
on GPU: a case study of batched LU and Cholesky factorizations.
IEEE Trans. Parallel Distrib. Syst. 29(5), 973–984 (2018)

Jia, Y., Luszczek, P., Dongarra, J. J.: “Multi-gpu implementation of LU
factorization,” In Proceedings of the International Conference on
Computational Science, ICCS 2012, Omaha, Nebraska, USA, 4-6
June, 2012, ser. Procedia Computer Science, H. H. Ali, Y. Shi,
D. Khazanchi, M. Lees, G. D. van Albada, J. J. Dongarra, and
P. M. A. Sloot, Eds., vol. 9. Elsevier, (2012), pp. 106–115

Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa,
R., Bates, S., Bhatia, S., Boden, N., Borchers, A., Boyle, R., Can-
tin, P.-L., Chao, C., Clark, C., Coriell, J., Daley, M., Dau, M.,
Dean, J., Gelb, B., Ghaemmaghami, T.V., Gottipati, R., Gulland,
W., Hagmann, R., Ho, C.R., Hogberg, D., Hu, J., Hundt, R., Hurt,
D., Ibarz, J., Jaffey, A., Jaworski, A., Kaplan, A., Khaitan, H.,
Killebrew, D., Koch, A., Kumar, N., Lacy, S., Laudon, J., Law, J.,
Le, D., Leary, C., Liu, Z., Lucke, K., Lundin, A., MacKean, G.,
Maggiore, A., Mahony, M., Miller, K., Nagarajan, R., Naraya-
naswami, R., Ni, R., Nix, K., Norrie, T., Omernick, M., Penu-
konda, N., Phelps, A., Ross, J., Ross, M., Salek, A., Samadiani,
E., Severn, C., Sizikov, G., Snelham, M., Souter, J., Steinberg,
D., Swing, A., Tan, M., Thorson, G., Tian, B., Toma, H., Tuttle,
E., Vasudevan, V., Walter, R., Wang, W., Wilcox, E., Yoon, D.H.:
In-datacenter performance analysis of a tensor processing unit.
Presented at the (2017)

Jouppi, N.P., Young, C., Patil, N., Patterson, D.: A domain-specific
architecture for deep neural networks. Commun. ACM 61(9),
50–59 (2018)

Kurzak, J., Luszczek, P., Faverge, M., Dongarra, J. J.: “Programming
the LU factorization for a multicore system with accelerators,”
In High Performance Computing for Computational Science -
VECPAR 2012, 10th International Conference, Kobe, Japan,
July 17-20, 2012, Revised Selected Papers, ser. Lecture Notes in

 Y. Lu et al.

1 3

Computer Science, M. J. Daydé, O. Marques, and K. Nakajima,
Eds., vol. 7851. Springer, (2012), pp. 28–35

Kurzak, J., Anzt, H., Gates, M., Dongarra, J.J.: Implementation and
tuning of batched Cholesky factorization and solve for NVIDIA
GPUs. IEEE Trans. Parallel Distrib. Syst. 27(7), 2036–2048
(2016)

Reuther, A., Michaleas, P., Jones, M., Gadepally, V., Samsi, S., Kepner,
J.: “Survey and benchmarking of machine learning accelerators,”
In. IEEE High Performance Extreme Computing Conference
(HPEC) 2019, 1–9 (2019)

Reuther, A., Michaleas, P., Jones, M., Gadepally, V., Samsi, S., Kepner,
J.: “Survey of machine learning accelerators,” In 2020 IEEE High

Performance Extreme Computing Conference (HPEC), (2020),
pp. 1–12

Rothberg, E.: Performance of panel and block approaches to sparse
Cholesky factorization on the ipsc/860 and paragon multicomput-
ers. SIAM J. Sci. Comput. 17(3), 699–713 (1996)

Yamazaki, I., Tomov, S., Dongarra, J.: Mixed-precision Cholesky QR
factorization and its case studies on multicore CPU with multiple
GPUs. SIAM J. Sci. Comput. 37(3), C307–C330 (2015)

	Implementing LU and Cholesky factorizations on artificial intelligence accelerators
	Abstract
	1 Introduction
	2 Background
	2.1 LU Factorization
	2.2 Cholesky Factorization
	2.3 AI Accelerator and BANG C Programming Language

	3 LU and Cholesky Factorizations on AI Chips
	3.1 Baseline Implementation
	3.2 Optimizations Using On-Chip Memories
	3.3 Optimizations Using Tensor Quantization
	3.4 Optimizations Using Row Level Parallelism
	3.5 Optimizations Using Row-Block Level Parallelism

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Performance of Tensor Quantization
	4.3 Performance of Row Level Parallelism
	4.4 Performance of Row-Block Level Parallelism

	5 Conclusion
	Acknowledgements
	References

